
 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

Lab Code: 20EC504/JO1A

EMBEDDED SYSTEM & DESIGN
Lab Manual

DDeeppaarrttmmeenntt ooff EElleeccttrroonniiccss && CCoommmmuunniiccaattiioonn EEnnggiinneeeerriinngg

BBaappaattllaa EEnnggiinneeeerriinngg CCoolllleeggee :::: BBaappaattllaa
((AAuuttoonnoommoouuss))

G.B.C. Road, Mahatmajipuram, Bapatla-522102, Guntur (Dist.)

Andhra Pradesh, India.
EE--MMaaiill::bbeecc..pprriinncciippaall@@bbeeccbbaappaattllaa..aacc..iinn

WWeebb::www.becbapatla.ac.in

mailto:info@gcet.edu.in
mailto:info@gcet.edu.in

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

Contents

S.No. Title of the Experiment

1. Exploring the features of Keil and RTX51

2. Task Creation and Deletion usingRTX51in Keil

3. TaskschedulingusingRTX51in Keil

4. Processing Critical Section using RTX51inKeil

5. Task Synchronization using RTX51semaphores in Keil

6. Task Communication using shared memory in Keil

7. Task Communication using RTX51 mailbox in Keil

8. Introduction to ARM Cortex M3Processor

9. ALP to multiplytwo16-bit binary numbers

10. ALP to find the sum of the first 10integers.

11. ALP to find the number of 0’sand 1’sin32-bit data.

12. ALP to determine whether the given16-bitnumber is ODD or EVEN.

13. ALP to write data in RAM(CO4)

14. Display Hello World message using Internal UART.

15. Interface a Stepper motor and rotate it in clock wise and anti-clock

wise direction

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

Bapatla Engineering College :: Bapatla
(Autonomous)

Vision

• To build centers of excellence, impart high quality

education and instill high standards of ethics and

professionalism through strategic efforts of our dedicated staff,

which allows the college to effectively adapt to the ever

changing aspects of education.

• To empower the faculty and students with the knowledge,

skills and innovative thinking to facilitate discovery in

numerous existing and yet to be discovered fields of

engineering, technology and interdisciplinary endeavors.

Mission

• Our Mission is to impart the quality education at par with

global standards to the students from all over India and in

particular those from the local and rural areas.

• We continuously try to maintain high standards so as to make

them technologically competent and ethically strong

individuals who shall be able to improve the quality of life and

economy of our country.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Vision

To produce globally competitive and socially responsible

Electronics and Communication Engineering graduates to

cater the ever changing needs of the society.

Mission

• To provide quality education in the domain of Electronics

and Communication Engineering with advanced

pedagogical methods.

• To provide self learning capabilities to enhance

employability and entrepreneurial skills and to inculcate

human values and ethics to make learners sensitive

towards societal issues.

• To excel in the research and development activities

related to Electronics and Communication Engineering.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Educational Objectives (PEO’s)

PEO-I: Equip Graduates with a robust foundation in mathematics,

science and Engineering Principles, enabling them to excel in

research and higher education in Electronics and Communication

Engineering and related fields.

PEO-II: Impart analytic and thinking skills in students to develop

initiatives and innovative ideas for Start-ups, Industry and societal

requirements.

PEO-III: Instill interpersonal skills, teamwork ability,

communication skills, leadership, and a sense of social, ethical, and

legal duties in order to promote lifelong learning and Professional

growth of the students.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

Program Outcomes (PO’s)

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and

analyze complex engineering problems reaching substantiated conclusions

using first principles of mathematics, natural sciences, and engineering

sciences.

PO3. Design/development of solutions: Design solutions for complex

engineering problems and design system components or processes that meet

the specified needs with appropriate consideration for the public health and

safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based

knowledge and research methods including design of experiments, analysis

and interpretation of data, and synthesis of the information to provide valid

conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques,

resources, and modern engineering and IT tools including prediction and

modeling to complex engineering activities with an understanding of the

limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

PO7.Environment and sustainability: Understand the impact of the

professional engineering solutions in societal and environmental contexts, and

demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

PO9. Individual and Teamwork: Function effectively as an individual, and as

a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering

activities with the engineering community and with society at large, such as,

being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive clear

instructions.

PO11. Project management and finance: Demonstrate knowledge and

understanding of the engineering and management principles and apply these

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

to one’s own work, as a member and leader in a team, to manage projects and

in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for and have the preparation

and ability to engage in independent and life-long learning in the broadest

context of technological change.

Bapatla Engineering College :: Bapatla

(Autonomous)

Department of Electronics and Communication Engineering

Program Specific Outcomes (PSO’s)

PSO1: Develop and implement modern Electronic Technologies

using analytical methods to meet current as well as future

industrial and societal needs.

PSO2: Analyze and develop VLSI, IoT and Embedded Systems for

desired specifications to solve real world complex problems.

PSO3: Apply machine learning and deep learning techniques in

communication and signal processing.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

EMBEDDED SYSTEM & DESIGN

III B.Tech. V Semester (Code:20EC504/JO1-A)

Lectures : 2 Hours/Week Tutorial : 0 Hour/Week Practical : 2 Hour/Week

CIE Marks : 30 SEE Marks : 70 Credits : 3

Pre-Requisite: Microprocessors, and Microcontrollers.

Course Objectives: Students will learn how to

➢ Learn basic design and architectural concepts of embedded systems.

➢
Understand the concepts of Real-Time Operating Systems and provide the scheduling

Algorithms

➢
Familiarize with the fundamentals of prevalent IP-Core: ARM Cortex M3/M4 & Design of an

embedded system using ARM Cortex Processor

➢
Be able to use the instruction set of ARM Cortex M3/M4 processor and explain the ALP’s

Using ARM processor

Course Outcomes: After studying this course, the students will be able to

CO1 Describe different methodologies and approaches in the design of embedded systems

CO2 Analyze the concepts of Real-Time Operating systems and scheduling Algorithms.

CO3 Illustrate the features, basic architecture and memory management unit of ARM Processors

CO4
Simulate ARM Programming models using Keil µVision for different embedded

Applications.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

 PO’s PSO’s

CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3

CO1 3 3

CO2 2 3 3

CO3 3 3

CO4 2 3 2 3 3

AVG 2.5 3 2 3 3

Syllabus

UNIT-1: EMBEDDED SYSTEMS DESIGN: Introduction to Embedded System, categories of

embedded system, specialties, and recent trends in Embedded System.

ARCHITECTURE OF AN EMBEDDED SYSTEM: Hardware Architecture, Software Architecture,

application Software, Communication Software, Development/Testing Tools

UNIT-2 : OVERVIEW OF RTOS: Architecture of the Kernel, Tasks, Task scheduler, real-time tasks,

Task scheduling, Interrupt Service Routine, Memory Management, Semaphores, Mutex, Mailboxes,

Message Queues, Event Registers, Pipes.

CLASSIFICATION OF SCHEDULING ALGORITHMS: Clock driven Scheduling, Event driven

Scheduling, Resource sharing, Priority inversion problem, Deadlock.

UNIT-3: EMBEDDED PROCESSORS: Introduction to ARM family, ARM Architecture-Pipeline,

Registers, Operation modes, Big Endian and Little Endian. Cache Mechanism, Memory Management Unit

UNIT-4: ARM INSTRUCTIONS: ARM and Thumb Instruction Sets, Data Processing Instructions, Data

Transfer Instructions, Control Flow Instructions, Basic Assembly Language Programs. Case Study: Smart

Phone, Digital Camera, and Automatic Washing Machine

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

PRACTICAL EXERCISES

1. Exploring the features of Keil and RTX51

2. Task Creation and Deletion usingRTX51in Keil

3. TaskschedulingusingRTX51in Keil

4. Processing Critical Section using RTX51inKeil

5. Task Synchronization using RTX51semaphores in Keil

6. Task Communication using shared memory in Keil

7. Task Communication using RTX51 mailbox in Keil

8. Introduction to ARM Cortex M3Processor

9. ALP to multiplytwo16-bit binary numbers

10. ALP to find the sum of the first 10integers.

11. ALP to find the number of 0’sand 1’sin32-bit data.

12. ALP to determine whether the given16-bitnumber is ODD or EVEN.

13. ALP to write data in RAM(CO4)

14. Display Hello World message using Internal UART.

15. Interface a Stepper motor and rotate it in clock wise and anti-clock wise direction.

*Any Ten programs Compulsory.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

1. Exploring the Features of Keil and RTX51

AIM: To understand and utilize the features of Keil and RTX51 for real-time

operating system development.

APPARATUS:

1. Keil uVision IDE

2. RTX51 operating system

3. Microcontroller (e.g. STM32)

THEORY:

Keil is a development environment that provides a comprehensive set of tools for

creating embedded systems. It includes a compiler, assembler, linker, and

debugger, as well as a robust editor and project manager. Keil supports a wide

range of microcontrollers and provides a flexible and customizable development

environment.

RTX51 is a real-time operating system that provides multitasking,

synchronization, and communication mechanisms. It is designed to be highly

efficient and flexible, making it suitable for a wide range of applications. RTX51

provides a number of features, including task creation and management,

synchronization mechanisms such as semaphores and mutexes, and

communication mechanisms such as mailboxes and message queues.

One of the key features of RTX51 is its support for multitasking. This allows

multiple tasks to run concurrently, improving the overall efficiency and

responsiveness of the system. RTX51 also provides a number of synchronization

mechanisms, including semaphores and mutexes, which allow tasks to

coordinate their access to shared resources.

In addition to multitasking and synchronization, RTX51 also provides a number

of communication mechanisms, including mailboxes and message queues. These

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

allow tasks to exchange data and coordinate their actions, making it easy to

implement complex systems.

Overall, Keil and RTX51 provide a powerful platform for real-time operating

system development. Their flexibility, efficiency, and robustness make them

suitable for a wide range of applications, from small embedded systems to large

and complex systems.

By leveraging the features of Keil and RTX51, developers can create high-

performance and reliable real-time systems that meet the demands of today's

embedded systems applications. Whether you are developing a small

microcontroller-based system or a large and complex system, Keil and RTX51

provide the tools and features you need to succeed.

PROGRAM:

#include <rtx51.h>

// Define a task

void task1(void) {

 while (1) {

 // Task 1 code here

 os_delay(100); // Delay 100ms

 }

}

// Define another task

void task2(void) {

 while (1) {

 // Task 2 code here

 os_delay(200); // Delay 200ms

 }

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

}

// Main function

void main(void) {

 // Initialize RTX51

 os_init();

 // Create tasks

 os_task_create(task1, 0);

 os_task_create(task2, 0);

 // Start scheduler

 os_start_scheduler();

}

PROCEDURE:

1. Create a new project in Keil uVision IDE

2. Write a program that creates multiple tasks using RTX51

3. Use synchronization mechanisms to coordinate task access to shared

resources

4. Use communication mechanisms to exchange data between tasks

5. Compile and run the program

6. Observe and record the results

RESULT: Observed the basic program and how to use Keil and RTX51.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

2. TASK CREATION AND DELEATION USING RTX51

Aim: Write an embedded C program for 8051 microcontrollers using

RTX51 Tiny to create a task and delete it. Report on the code execution

statistics by identify the time-consuming module for optimization

Apparatus required: 1.PC with Windows 10 64-bit OS.

 2.Keil μVision5 Software,

Theory: Task is a unit of work or part of a program in execution. RTX51

Tiny supports a maximum of 16 standard tasks. They use individual

register bank of 8051 and have its own stack area. Standard tasks require

relatively more time for task switching and lesser internal memory. They

share a register bank and stack area. During standard task switch, current

contents of registers and stack are stored in external RAM.

RTX51 Tiny Task Declaration Syntax:

voidfunc (void) _task_ num

where, num is a task ID number from 0 to 15.

RTX51 Tiny Task States:

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

RTX51 Tiny Task Management Functions:

PROGRAM:

cprog.c

#include <reg51.h>

#include <rtx51tny.h>
#include <stdio.h>
extern char putchar(char c);

extern char getkey(void);
extern void serialinit(void);
void TASK0(void) _task_ 0

{
serialinit();

printf("Task Creation/Deletion Example using RTX51 Tiny
RTOS\n");
printf("CPU: 8xC51RD2, Memory Model: Large, Code ROM Size:

Large, XTAL:
11.0592 MHz\n");
printf("In Options for Target -> BL51 Misc -> Overlay -> * ! getkey,

printf ! *\n");
os_create_task(1);

os_delete_task(0);
}
void TASK1(void) _task_ 1

{
char c = ' ';

signed char sc;
sc = os_running_task_id();
printf("Task with ID %d created.\n", (int)sc);

printf("\nTask 1 Deleting\n");
os_delete_task(sc);
}

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

serial.c

#include <reg51.h>
#define BAUDRATE 9600

#define CRYSTAL 11059200
#define CONST (((CRYSTAL / 12) / BAUDRATE) >> 5)

charputchar(char c);
voidserialinit(void);
chargetkey(void);

voidserialinit(void)
{

EA = 1;
ES = 0;
PCON = 0X00;

TMOD = 0X20;
TH1 = 0X0FF + 1 - CONST;
SCON = 0X50;

TR1 = 1;
}

charputchar(char c)
{
SBUF = c;

while(!TI);
TI = 0;
return(c);

}
chargetkey(void)

{
char c;
while(!RI);

c = SBUF;
RI = 0;

return(c);
}

PROCEDURE:

1. Open Keil µVision5 Software in a PC.

2. Create a new Project by clicking on Project menu followed by New

Project submenu and give it a name.

3. Select the target device as 8xC51RD2.

4. Configure the Options for Target for BL51 appropriately.

5. Create two new source files by clicking on File menu followed by

New submenu.

6. Type the C code and save it.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

7. Add the required source files into the project by right mouse

clicking on Source Group 1 in Project Window and select Add

Files to Group ‘Source Group 1’.

8. Build the target file by clicking on Project menu followed by Build

target submenu.

9. Correct the errors if any and debug the project by clicking on

Debug menu followed by Start/Stop Debug Session submenu.

10. Open the required peripherals and debug the project.

OUTPUT:

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

3. TASK SCHEDULING USING RTX51 TINY

AIM: Write an embedded C program for an 8051 microcontroller using

RTX51 to create two tasks and schedule them using round robin

scheduling algorithm with a time slice of 1000 units. Report on the

code execution statistics by identifying the time-consuming module for

optimization.

APPARATUS: 1.PC with Windows 10 64-bit OS.

 2.Keil μVision5 Software,

THEORY: A task is a unit of work or part of a program in execution. RTX51

Tiny supports a maximum of 16 standard tasks. They use an individual

register bank of 8051 and have their own stack area. Standard tasks require

relatively more time for task switching and lesser internal memory. They share

a register bank and stack area. During the standard task switch, the current

contents of registers and stack are stored in external RAM.

PROGRAM:

cprog.c

#include <reg51.h>

#include <rtx51tny.h>

#include <stdio.h>

extern char putchar(char c);

extern char getkey(void);

extern void serialinit(void);

void TASK0(void) _task_ 0

{

serialinit();

printf("CPU: 8xC51RD2, Memory Model: Large, Code ROM Size:

Large, XTAL:

11.0592 MHz\n");

printf("In Options for Target -> BL51 Misc -> Overlay -> * ! getkey,

printf ! *\n");

os_create_task(1);

os_create_task(2);

os_delete_task(0);

}

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

void task1(void) _task_ 1

{

while(1)

{

printf("Task 1 Running and Task 2 Ready.\n");

P0++;

}

}

void task2(void) _task_ 2

{

while(1)

{

printf("Task 2 Running and Task 1 Ready.\n");

P1++;

}

}

PROCEDURE:

1. Open Keil µVision5 Software in a PC.

2. Create a new Project by clicking on Project menu followed by

New Project submenu and give it a name.

3. Select the target device as 8xC51RD2.

4. Configure the Options for Target for BL51 appropriately.

5. Create two new source files by clicking on File menu followed

by New submenu.

6. Type the C code and save it.

7. Add the required source files into the project by right mouse

clicking on Source Group 1 in Project Window and select Add

Files to Group ‘Source Group 1’.

8. Build the target file by clicking on Project menu followed by

Build target submenu.

9. Correct the errors if any and debug the project by clicking on

Debug menu followed by Start/Stop Debug Session submenu.

10. Open the required peripherals and debug the project.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

OUTPUT:

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

PROGRAM:

cprog.c

#include <reg51.h>

#include <rtx51tny.h>

#include <stdio.h>

extern char putchar(char c);

extern char getkey(void);

extern void serialinit(void);

void TASK0(void) _task_ 0

{

serialinit();

printf("CPU: 8xC51RD2, Memory Model: Large, Code ROM Size:

Large, XTAL:

11.0592 MHz\n");

printf("In Options for Target -> BL51 Misc -> Overlay -> * ! getkey,

printf ! *\n");

os_create_task(1);

os_create_task(2);

os_delete_task(0);

}

void task1(void) _task_ 1

{

while(1)

{

printf("Task 1 Running and Task 2 Ready.\n");

P0++;

}

}

void task2(void) _task_ 2

{

while(1)

{

printf("Task 2 Running and Task 1 Ready.\n");

P1++;

}

}

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

OUTPUT:

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

4. Processing Critical Section using RTX51inKeil

AIM: To demonstrate the use of RTX51 in Keil to process a critical section of

code.

APPARATUS:

1. Keil software

2. RTX51 library

THEORY:

In embedded systems, a critical section is a region of code that requires

exclusive access to a shared resource. The RTX51 operating system provides a

mechanism for processing critical sections using the os_critical_section_enter()

and os_critical_section_exit() functions.

When a task enters a critical section, it must first lock the critical section to

prevent other tasks from entering it simultaneously. This is done by calling

os_critical_section_enter(), which sets a flag indicating that the critical section

is occupied. If another task attempts to enter the critical section while it is

occupied, it will be blocked until the occupying task exits the critical section.

Once a task has entered a critical section, it can access the shared resource

without fear of interference from other tasks. When the task has finished

accessing the shared resource, it must exit the critical section by calling

os_critical_section_exit(), which clears the flag and allows other tasks to enter

the critical section.

The use of critical sections ensures that shared resources are accessed in a

mutually exclusive manner, preventing data corruption and other concurrency-

related issues. RTX51 provides a efficient and easy-to-use mechanism for

processing critical sections, making it a popular choice for embedded systems

developers.

In addition to critical sections, RTX51 also provides other synchronization

mechanisms such as semaphores, mutexes, and events, which can be used to

coordinate access to shared resources. By using these mechanisms, developers

can write robust and reliable code that can handle the demands of real-time

embedded systems.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

PROGRAM:

#include <rtx51.h>

// Define a critical section

os_critical_section_t my_critical_section;

// Initialize the critical section

os_critical_section_init(&my_critical_section);

// Task 1

void task1(void) {

 // Enter the critical section

 os_critical_section_enter(&my_critical_section);

 // Critical section code

 // ...

 // Exit the critical section

 os_critical_section_exit(&my_critical_section);

}

// Task 2

void task2(void) {

 // Enter the critical section

 os_critical_section_enter(&my_critical_section);

 // Critical section code

 // ...

 // Exit the critical section

 os_critical_section_exit(&my_critical_section);

}

PROCEDURE:

1. Create a new project in Keil and include the RTX51 library.

2. Write the program code as shown above.

3. Compile and run the program.

4. Observe the behavior of the tasks and the critical section.

RESULT: The tasks will run concurrently, but the critical section will be

processed exclusively by one task at a time. The output will depend on the

specific implementation and the tasks being run.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

5. Task Synchronization using RTX51 Semaphores in Keil

AIM: To demonstrate the use of semaphores in Keil for task synchronization.

APPARATUS:

1. Keil software

2. RTX51 library

THEORY:

Task synchronization is a crucial aspect of real-time operating systems,

ensuring that tasks access shared resources without conflicts. RTX51 provides

semaphores as a mechanism for task synchronization. A semaphore is a

variable that controls access to a shared resource by multiple tasks.

In RTX51, semaphores are initialized using the os_semaphore_init() function,

which sets the semaphore's initial value. The os_semaphore_wait() function is

used to decrement the semaphore's value, blocking the task if the value is zero.

The os_semaphore_signal() function increments the semaphore's value, waking

up a blocked task if necessary.

When a task wants to access a shared resource, it first waits on the semaphore

using os_semaphore_wait(). If the semaphore's value is zero, the task is blocked

until another task signals the semaphore using os_semaphore_signal(). Once

the task gains access to the shared resource, it executes its critical section

code and then signals the semaphore to release the resource.

RTX51 semaphores ensure that only one task can access a shared resource at

a time, preventing data corruption and other concurrency issues. By using

semaphores, developers can write robust and reliable code for real-time

embedded systems.

In addition to semaphores, RTX51 provides other synchronization mechanisms

like mutexes and events, which can be used to coordinate access to shared

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

resources. By leveraging these mechanisms, developers can create efficient and

reliable real-time systems.

In summary, RTX51 semaphores provide a powerful mechanism for task

synchronization, ensuring exclusive access to shared resources and preventing

concurrency issues. By understanding and utilizing semaphores effectively,

developers can create robust and reliable real-time embedded systems.

PROGRAM:

#include <rtx51.h>

// Create a semaphore

os_semaphore_t my_semaphore;

// Initialize the semaphore

os_semaphore_init(&my_semaphore, 1);

// Task 1

void task1(void) {

 // Wait on the semaphore

 os_semaphore_wait(&my_semaphore);

 // Critical section

 // ...

 // Signal the semaphore

 os_semaphore_signal(&my_semaphore);

}

// Task 2

void task2(void) {

 // Wait on the semaphore

 os_semaphore_wait(&my_semaphore);

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

 // Critical section

 // ...

 // Signal the semaphore

 os_semaphore_signal(&my_semaphore);

}

// Delete the semaphore

os_semaphore_delete(&my_semaphore);

PROCEDURE:

1. Create a new project in Keil and include the RTX51 library.

2. Write the program code as shown above.

3. Compile and run the program.

4. Observe the behavior of the tasks and the semaphore.

RESULT: The tasks will run concurrently, but the semaphore will ensure that

only one task can access the shared resource at a time. The output will depend

on the specific implementation and the tasks being run.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

6. Task Communication using shared memory in Keil

AIM: To demonstrate the use of shared memory for task communication in

Keil.

APPARATUS:

1. Keil software

2. RTX51 library

THEORY:

Task communication is a vital aspect of real-time operating systems, enabling

tasks to exchange data and coordinate actions. Shared memory is a

mechanism that allows tasks to communicate by accessing a common memory

region. In RTX51, shared memory is implemented using the

os_shared_memory_create() function, which creates a shared memory block.

Once created, tasks can access the shared memory block using the

os_shared_memory_attach() function, which maps the shared memory block to

the task's address space. Tasks can then read and write data to the shared

memory block using standard memory access operations.

Shared memory communication is fast and efficient, as tasks do not need to

use operating system services to exchange data. However, it requires careful

synchronization to prevent data corruption and ensure consistency.

RTX51 provides synchronization mechanisms like semaphores and mutexes to

coordinate access to shared memory. Tasks must use these mechanisms to

ensure exclusive access to the shared memory region, preventing simultaneous

writes and ensuring data integrity.

Shared memory communication is suitable for tasks that need to exchange

large amounts of data or require low-latency communication. By using shared

memory, developers can create efficient and reliable real-time systems.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

PROGRAM:

#include <rtx51.h>

// Define a shared memory variable

os_shared_memory_t my_shared_memory;

// Initialize the shared memory

os_shared_memory_init(&my_shared_memory, sizeof(int));

// Task 1

void task1(void) {

 int data = 10;

 // Write to shared memory

 os_shared_memory_write(&my_shared_memory, &data, sizeof(int));

}

// Task 2

void task2(void) {

 int data;

 // Read from shared memory

 os_shared_memory_read(&my_shared_memory, &data, sizeof(int));

 // Use the data

 printf("Received data: %d\n", data);

}

PROCEDURE:

1. Create a new project in Keil and include the RTX51 library.

2. Write the program code as shown above.

3. Compile and run the program.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

4. Observe the behavior of the tasks and the shared memory.

RESULT: The tasks will communicate with each other using the shared

memory, and the output will depend on the specific implementation and the

tasks being run.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

7. Task Communication using RTX51 Mailbox in Keil

AIM: To demonstrate the use of RTX51 mailbox for task communication in Keil.

APPARATUS:

1. Keil software

2. RTX51 library

THEORY:

Task communication is a crucial aspect of real-time operating systems,

enabling tasks to exchange data and coordinate actions. RTX51 provides a

mailbox mechanism for task communication, allowing tasks to send and

receive messages. A mailbox is a buffer that stores messages, and tasks can

access it using the os_mailbox_create() function.

To send a message, a task uses the os_mailbox_post() function, which copies

the message to the mailbox. The message is then stored in the mailbox until a

task receives it using the os_mailbox_pend() function. If a task attempts to

send a message to a full mailbox, it will be blocked until space becomes

available.

Similarly, if a task attempts to receive a message from an empty mailbox, it will

be blocked until a message is available. RTX51 provides synchronization

mechanisms like semaphores and mutexes to coordinate access to mailboxes,

ensuring exclusive access and preventing data corruption.

Mailboxes are suitable for tasks that need to exchange small amounts of data

or require asynchronous communication. By using mailboxes, developers can

create efficient and reliable real-time systems that meet the demands of

embedded applications.

In addition to mailboxes, RTX51 provides other communication mechanisms

like shared memory and message queues, which can be used to exchange data

between tasks. By leveraging these mechanisms, developers can create robust

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

and reliable real-time systems that meet the demands of embedded

applications.

The use of mailboxes in RTX51 provides a flexible and efficient way for tasks to

communicate, enabling real-time systems to respond to events and coordinate

actions. By understanding and utilizing mailboxes effectively, developers can

create high-performance and reliable real-time systems.

PROGRAM:

#include <rtx51.h>

// Define a mailbox

os_mailbox_t my_mailbox;

// Initialize the mailbox

os_mailbox_init(&my_mailbox, sizeof(int));

// Task 1

void task1(void) {

 int data = 10;

 // Send a message to the mailbox

 os_mailbox_send(&my_mailbox, &data, sizeof(int));

}

// Task 2

void task2(void) {

 int data;

 // Receive a message from the mailbox

 os_mailbox_receive(&my_mailbox, &data, sizeof(int));

 // Use the data

 printf("Received data: %d\n", data);

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

}

PROCEDURE:

1. Create a new project in Keil and include the RTX51 library.

2. Write the program code as shown above.

3. Compile and run the program.

4. Observe the behavior of the tasks and the mailbox.

RESULT: The tasks will communicate with each other using the mailbox, and

the output will depend on the specific implementation and the tasks being run.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

8. Introduction to ARM Cortex M3 Processor

AIM: To provide an overview of the ARM Cortex M3 processor and its features.

APPARATUS:

1. ARM Cortex M3 processor

2. Keil software

THEORY:

The ARM Cortex M3 processor is a 32-bit microprocessor that is widely used in

embedded systems and microcontrollers. It is based on the ARMv7-M

architecture and is designed for high performance, low power consumption, and

small size.

One of the key features of the ARM Cortex M3 processor is its pipelined

architecture, which allows it to execute instructions in a series of stages. This

improves performance by allowing the processor to execute multiple instructions

simultaneously. Additionally, the processor uses the Thumb instruction set,

which is a compressed version of the ARM instruction set. This reduces code size

and improves performance.

The processor also has a number of built-in features, including a Nested

Vectored Interrupt Controller (NVIC) and a System Tick Timer (SysTick). The

NVIC allows for efficient handling of interrupts, while the SysTick provides a

regular tick interrupt. Furthermore, the processor has a memory protection unit

(MPU), which allows for memory access control and protection.

The ARM Cortex M3 processor is widely used in a variety of applications,

including microcontrollers, embedded systems, automotive systems, industrial

control systems, and consumer electronics. Its high performance, low power

consumption, and small size make it a popular choice for many applications.

However, the processor also has some limitations. For example, it has a limited

instruction set and a limited address space. Despite these limitations, the ARM

Cortex M3 processor is a powerful and efficient processor that is widely used in

many different applications.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

LPC2148 (ARM) MICROCONTROLLER:

Procedure:

1. Introduction to the ARM Cortex M3 processor architecture:

The ARM Cortex M3 processor is a 32-bit microprocessor that is based on

the ARMv7-M architecture. It is designed for embedded systems and

microcontrollers. The processor core has the following features:

a. 32-bit instruction set

b. 32-bit data bus

c. 16-bit Thumb instruction set (for efficient code density)

d. Harvard bus architecture (separate data and instruction buses)

e. Pipelined architecture (for improved performance)

2. Overview of the processor's features, including:

The ARM Cortex M3 processor has several features that make it suitable

for embedded systems:

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

a. Nested Vectored Interrupt Controller (NVIC): The NVIC is a built-in

interrupt controller that allows for efficient handling of interrupts. It

supports up to 240 interrupts and has a flexible priority scheme.

b. System Tick Timer (SysTick): The SysTick is a built-in timer that

provides a regular tick interrupt. It can be used for tasks such as

scheduling, timing, and synchronization.

c. Memory protection: The processor has a memory protection unit

(MPU) that allows for memory access control and protection.

d. Thumb instruction set: The Thumb instruction set is a compressed

version of the ARM instruction set. It provides efficient code density

and improved performance.

3. Discussion of the processor's applications, including:

The ARM Cortex M3 processor is widely used in various applications,

including:

a. Microcontrollers: The processor is used in many

microcontrollers, such as the STM32 and LPC175x series.

b. Embedded systems: The processor is used in various

embedded systems, such as industrial control systems,

automotive systems, and consumer electronics.

c. Automotive systems: The processor is used in various

automotive systems, such as infotainment systems, navigation

systems, and safety systems.

d. Industrial control systems: The processor is used in various

industrial control systems, such as motor control systems,

power supply systems, and automation systems.

Result: Understanding of the ARM Cortex M3 processor and its features, as
well as its applications in various fields.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

9. MULTPLICATION OF TWO 16 BIT NUMBERS USING ARM CORTEX-3

AIM: To study and verify the multiplication of 2 16-bit numbers using ARM

cortex-3 ALP program.

APPARATUS: 1. PC with Windows 10, 64-bit OS.

 2. Keil μVision4 Software.

PROCEDURE:

1. Double click on µvision 4 icon in the desktop.

2. Select “New µvision Project” from project in the menubar.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

3. Browse and create a new project in the required location.

4. Select the target device (here, LPC1768 from NXP) from the list or type

the exact name of the device. Press OK.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

5. Copy start up to Project folder and add to project file”?- Press NO.

6. In the project window, right click on source and select Add new item to

group “source group1”.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

7. Select ASM file and give name of the file with .s extension and press

ADD.

8. Type the program in the editor space and save

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

9. Translate the program by select the icon from tool bar or from menu bar,

also Check for errors and warnings in the bottom window.

10. If no error, Select “Build” icon from tool bar or from menu bar.

11. Start the debug session from Menu bar.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

12. Press OK

13. Press function key F11 or select “step” option under Debug menu for single step

execution and verify the outputin register window/Memorywindow/xPSR.

PROGRAMME:

ALP TO MULTIPLY TWO 16-BIT NUMBERS

AREA Reset, DATA, READONLY

EXPORT_Vectors

_Vectors

DCD 0X20001000

DCD Reset_Handler;

AREA MULTIPLY, CODE, READONLY ENTRY

EXPORT Reset_Handler

Reset_Handler

MOV r0,#num1

MOV r1,#num2

MUL r2,r0,r1

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

LDR r3,=product

STR r2,[r3]

stop B stop

AREA DATA2, DATA, READWRITE

num1 EQU 0XFFFF ;maximum value of 16 bit

number num2 EQU 0XFFFFj

product DCD 0X0 END

OUTPUT:

RESULT:(0xFFFF) x(0xFFFF) =0xFFFE0001 in the product memory location.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

10. SUM OF FIRST TEN INTEGER NUMBERS USING ARM CORTEX-3

AIM: To find sum of first ten integer numbers using ARM cortex-3 ALP program.

APPARATUS: 1. PC with Windows 10, 64-bit OS.
 2. Keil μVision4 Software.

PROCEDURE:

1. Double click on µvision 4 icon in the desktop.

2. Select “New µvision Project” from project in the menu bar.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

3. Browse and create a new project in the required location.

4. Select the target device (here, LPC1768 from NXP) from the list or type the exact

name of the device. Press OK.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

5. Copy start up to Project folder and add to project file”?- Press NO.

6. In the project window, right click on source and select Add new item to group

“source group1”.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

7. Select ASM file and give name of the file with .s extension and press ADD.

8. Type the program in the editor space and save.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

9. Translate the program by select the icon from tool bar or from menubar, also

Check for errors and warnings in the bottom window.

10. If no error, Select “Build” icon from tool bar or from menubar.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

11. Start the debug session from Menubar.

12. PressOK

13. Press function key F11 or select “step” option under Debug menu for

single step execution and verify the outputin register

window/Memorywindow/xPSR.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

PROGRAMME:

ALP TO FIND THE SUM OF FIRST 10INTEGERS

AREA Reset, DATA,READONLY
EXPORTVectors

Vectors
DCD 0X20001000
DCDReset_Handler;

AREA SUM, CODE, READONLY ENTRY
EXPORT Reset_HandlerReset_Handler

MOV r3,#10 MOV r0,#0 MOV r1,#1
l1 ADD r0,r0,r1 ADD r1,r1,#1 SUBS r3,#1 BNEl1

LDR r4, =RESULT STR r0, [r4]

XSS BXSS

AREA DATA2, DATA, READWRITE

RESULT DCD 0X0
END ;Mark theend

Result:
1+2+3+……+10=55d=37H. (At RESULT Memory Location)

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

11. TO FIND THE 1’S AND 0’ IN THE GIVEN 32-BIT DATA USING

ARM CORTEX-3

AIM: To find the 1’s and 0’s in the given 32-bit data using ARM

cortex-3 ALP program.

APPARATUS: 1. PC with Windows 10, 64-bit OS.

 2. Keil μVision4 Software.

PROCEDURE:

1. Double click on µvision 4 icon in thedesktop.

2. Select “New µvision Project” from project in the menu bar.

3. Browse and create a new project in the required location.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

4. Select the target device (here, LPC1768 from NXP) from the list or type

the exact name of the device. PressOK.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

5. Copy start up to Project folder and add to project file”?- PressNO.

6. In the project window, right click on source and select Add new item to

group “source group1”.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

7. Select ASM file and give name of the file with .s extension and

pressADD.

8. Type the program in the editor space andsave.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

9. Translate the program by select the icon from tool bar or from menubar,

also Check for errors and warnings in the bottom window.

10. If no error,Select “Build” icon from tool bar or from menubar.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

11. Start the debug session from Menubar.

12. PressOK

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

13. Press function key F11 or select “step” option under Debug menu for single step

execution and verify the outputin register window/Memorywindow/xPSR.

PROGRAM

ALP TO FIND THE 1’S AND 0’ IN THE GIVEN 32-BITDATA.

AREA Reset, DATA, READONLY

EXPORT Vectors
 Vectors
DCD 0X20001000

DCD Reset_Handler;

AREA onezero, CODE, READONLY

num EQU 15

ENTRY
EXPORT Reset_Handler Reset_Handler
MOV r0,#num MOV r1,#0 MOV r2,#0 MOV r3,#32

loop LSRS r0,r0,#1
BCS l1 ADD r2,#1

B l2
l1 ADD r1,#1
l2 SUBS r3,#1

BNE loop

LDR r5,=ones LDR r6,=zeros STR r1,[r5] STR r2,[r6]

stop B stop

AREA DATA1, DATA, READWRITE
ones DCB 0X0 zeros DCB 0X0
END

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

RESULT:
 If num=15d no of 1’s=4 and No.of 0’s=28d=1Ch

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

12. ALP to determine whether the given16-bitnumber is ODD or EVEN.

Aim: To find whether the given16-bitnumber is ODD or EVEN using ARM cortex-3 ALP
program.

APPARATUS: 1. PC with Windows 10, 64-bit OS.
 2. Keil μVision4 Software.

PROCEDURE:

1. Double click on µvision 4 icon in the desktop.

2. Select “New µvision Project” from project in the menu bar.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

3. Browse and create a new project in the required location.

4. Select the target device (here, LPC1768 from NXP) from the list or type the exact

name of the device. Press OK.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

5. Copy start up to Project folder and add to project file”?- Press NO.

6. In the project window, right click on source and select Add new item to group

“source group1”.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

7. Select ASM file and give name of the file with .s extension and press ADD.

8. Type the program in the editor space and save.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

9. Translate the program by select the icon from tool bar or from menubar, also

Check for errors and warnings in the bottom window.

10. If no error, Select “Build” icon from tool bar or from menubar.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

11. Start the debug session from Menubar.

12. PressOK

13. Press function key F11 or select “step” option under Debug menu for single

step execution and verify the outputin register window/Memorywindow/xPSR.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

PROGRAM:

ALP to determine whether the given16-bitnumber is ODD or EVEN

AREA Reset, DATA, READONLY

EXPORT Vectors

 Vectors

DCD 0X20001000

DCD Reset_Handler;

AREA oddeven, CODE, READONLY

res EQU 'o' resu EQU 'e'

ENTRY

EXPORT Reset_Handler Reset_Handler

LDR r1,=num LDR r0,[r1] RORS r0,#1 BCS l1

MOV r2,#resu B l2

l1 MOV r2,#res l2 LDR r3,=result

STR r2,[r3]

stop B stop

AREA data, DATA, READWRITE

num DCW 16 result DCB 0X0

END

RESULT:
num=16d.Hence it is EVEN

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

13. ALP to write data in RAM
Aim: To write data in RAM using ARM cortex-3 ALP program.

APPARATUS: 1. PC with Windows 10, 64-bit OS.
 2. Keil μVision4 Software.

PROCEDURE:

1. Double click on µvision 4 icon in the desktop.

2. Select “New µvision Project” from project in the menu bar.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

3. Browse and create a new project in the required location.

4. Select the target device (here, LPC1768 from NXP) from the list or

type the exact name of the device. Press OK.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

5. Copy start up to Project folder and add to project file”?- Press NO.

6. In the project window, right click on source and select Add new

item to group “source group1”.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

7. Select ASM file and give name of the file with .s extension and press

ADD.

8. Type the program in the editor space and save.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

9. Translate the program by select the icon from tool bar or from

menubar, also Check for errors and warnings in the bottom window.

10. If no error, Select “Build” icon from tool bar or from menubar.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

11. Start the debug session from Menubar.

12. PressOK

13. Press function key F11 or select “step” option under Debug

menu for single step execution and verify the outputin register

window/Memorywindow/xPSR.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

Program:

ALP TO MOVE A BLOCK OF DATA FROM CODE TO RAM MEMORY

Method1:
AREA Reset, DATA, READONLY

EXPORT Vectors
 Vectors
DCD 0X20001000

DCD Reset_Handler;

AREA writedata, CODE, READONLY src DCD 0x11,0X22,0X33,0X44,0X55
ENTRY
EXPORT Reset_Handler Reset_Handler

LDR r0,=src LDR r1,=dst MOV r2,#5
l1 LDR r3,[r0],#4

STR r3,[r1],#4 SUBS r2,#1 BNE l1

stop B stop

AREA data, DATA,READWRITE

dst DCD 0X0 END

Method 2:
;ALP TO MOVE A BLOCK OF DATA FROM CODE TO RAM MEMORY-USING

LDM and STM INSTRUCTIONS(MULTIPLE DATA TRANSFER)
AREA Reset, DATA, READONLY

EXPORT Vectors
 Vectors
DCD 0X20001000

DCD Reset_Handler;
AREA writedata, CODE, READONLY src DCD 0x11,0X22,0X33,0X44,0X55
ENTRY

EXPORT Reset_Handler Reset_Handler

LDR r0,=src LDR r1,=dst MOV r2,#5
l1 LDMIA r0!,{r4-r8} STMIA r1!,{r4-r8} SUBS r2,#1
BNE l1

stop B stop

AREA data, DATA,READWRITE

dst DCD 0X0 END

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

Result:
INPUT: 00000011h,00000022h,00000033h,00000044h,00000055h. OUTPUT at

dst : 00000011h,00000022h,00000033h,00000044h,00000055h.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

LPC1768
USB CABLE

PC

MONITOR

TxD0 (P0.2)

RxD0 (P0.3)

UART0

14. Display Hello World Message Using Internal UART

AIM: To display “Hello World” message using Internal UART

APPARATUS: 1. PC with Windows 10, 64-bit OS.
 2. Keil μVision4 Software.

PROCEDURE:

Connection Details:

UART Registers:
The below table shows the registers associated with LPC1768 UART.

Register Description

RBR Contains the recently received Data

THR Contains the data to be transmitted

FCR FIFO Control Register

LCR Controls the UART frame formatting(Number of Data Bits, Stop

bits)

DLL Least Significant Byte of the UART baud rate generator value.

DLM Most Significant Byte of the UART baud rate generator value.

UART Register formats or configuration:
FCR (FIFO Control Register):

LPC1768 has inbuilt 16byte FIFO for Receiver/Transmitter. Thus it can store 16-
bytes of data received on UART without overwriting. If the data is not read before

the Queue(FIFO) is filled then the new data will be lost and the OVERRUN error
bit will be set.

FCR
31:8 7:6 5:4 3 2 1 0

RESERVED RX
TRIGGE

R

RESERVE
D

DMA
MOD

E

TX
FIFO

RESET

RX
FIFO

RESET

FIFO
ENABLE

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

LSR (Line Status Register):

The is a read-only register that provides status information of the UART TX and
RX blocks.

LSR Format:

31:8 7 6 5 4 3 2 1 0

Reserved RXFE TEMT THRE BI FE PE OE RDR

TER (Transmitter Enable register): This register is used to Enable/Disable the
transmission

TER Format:

31:8 7 6-0

Reserved TXEN Reserved

Baudrate Calculation

LPC1768 generates the baud rate depending on the values of DLM,DLL.

Baudrate = PCLK/ (16 * ((256 * DLM) + DLL) * (1+ DivAddVal/MulVal))
where, DLM=0, DLL= , (DivaddVal/MulVal)=0.

Steps for Configuring UART0

Below are the steps for configuring the UART0.
1. Configure the P0.2 and P0.3 as first alternate function UART0

function using PINSEL0 register. 2.Configure the FCR for enabling
the FIFO and Reset both the Rx/Tx FIFO.

3. Configure LCR for 8-data bits, 1 Stop bit, Disable Parity and Enable DLAB.
4. Calculate the DLM,DLL values for required baudrate from PCLK.
6. Update the DLM,DLL with the calculated values(i.e DLM=0;DLL=163).

7. Finally clear DLAB to disable the access to DLM,DLL.
After this the UART will be ready to Transmit/Receive Data at the specified

baudrate, by sending the string character by character.

PROGRAM:

#include<lpc17xx.h>

void U0Write(char txdata)
{

while(!(LPC_UART0->LSR & 0x20));
LPC_UART0->THR=txdata;
}

void initUART0(void)
{

LPC_PINCON->PINSEL0 =(1<<4)|(1<<6); LPC_UART0->LCR=0x83;
LPC_UART0->DLL=163; LPC_UART0->DLM=0; LPC_UART0->FCR =0x7;

LPC_UART0->FDR=0x0; LPC_UART0->LCR = 0x03;
}

int main(void)
{

charmsg[]= "Hello World"; int i=0;
initUART0(); for(i=0;msg[i];i++)
{ Program:

#include<lpc17xx.h>
void U0Write(char txdata)

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

{
while(!(LPC_UART0->LSR & 0x20));

LPC_UART0->THR=txdata;
}

void initUART0(void)
{

LPC_PINCON->PINSEL0 =(1<<4)|(1<<6); LPC_UART0->LCR=0x83;
LPC_UART0->DLL=163; LPC_UART0->DLM=0; LPC_UART0->FCR =0x7;

LPC_UART0->FDR=0x0; LPC_UART0->LCR = 0x03;
}

int main(void)
{
charmsg[]= "Hello World"; int i=0;

initUART0(); for(i=0;msg[i];i++)
{

U0Write(msg[i]);

}

}
U0Write(msg[i]);

}
}

RESULT:
The output is observed on the monitor.

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

15. Interface a Stepper motor and rotate it in clock wise and
anti-clock wise direction

AIM: To Interface a Stepper motor and rotate it in clock wise and anti-clock

wise direction.

AIM: To display “Hello World” message using Internal UART

APPARATUS: 1. PC with Windows 10, 64-bit OS.

 2. Keil μVision4 Software.

CONNECTION DETAILS:

1. Configure the Port 0 and Port 2 as GPIO.

2. Configure the Port 2 in input direction and Port 0 in output direction.
3. Read the status of the switch 1. If it is pressed, set the direction as 0 for

clock wise rotation.

4. Else read the status of switch 2. If it is pressed, set the direction as 1 for
anticlock wise rotation.

5. If the direction is 0, send the data to energize the stepper motor coils in a

sequence A-B-C-D else in D-C-B-A sequence.
6. Insert an appropriate delay between energizing two consecutive coils.

7. Repeat from steps 3 unconditionally.

PROGRAM:

#include<lpc17xx.h>
#define SW1 11

#define SW2 12
void delay(unsigned int x)
{

unsignedinti,j; for(i=0;i<x;i++)
{ for(j=0;j<90000;j++);
}

}
int main(void)

{
unsignedint direct;

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

LPC_PINCON->PINSEL0=0X00000000; LPC_PINCON-
>PINSEL1=0X00000000; LPC_PINCON->PINSEL4=0X00000000;

LPC_GPIO0->FIODIR=0xFFFFFFFF; LPC_GPIO2-
>FIODIR=0X00000000;

LPC_GPIO0->FIOCLR=0X00078000;// CLEAR P0.15 TO p0.18
while(1)
{

if(!((LPC_GPIO2->FIOPIN>>SW1)& 0X1))
{

while(!((LPC_GPIO2->FIOPIN>>SW1) & 0X1));
direct=1;
}

else if(!((LPC_GPIO2->FIOPIN>>SW2) & 0X1))
{
while(!((LPC_GPIO2->FIOPIN>>SW2) & 0X1));

direct=0;
}

if(direct==1)
{
LPC_GPIO0->FIOPIN=0X00008000;

delay(15);
LPC_GPIO0->FIOPIN=0X00010000;

delay(15);
LPC_GPIO0->FIOPIN=0X00020000;
delay(15);

LPC_GPIO0->FIOPIN=0X00040000;
delay(15);
}

else
{

LPC_GPIO0->FIOPIN=0X00040000;
delay(15);
LPC_GPIO0->FIOPIN=0X00020000;

delay(15);
LPC_GPIO0->FIOPIN=0X00010000;
delay(15);

LPC_GPIO0->FIOPIN=0x00008000;

delay(15);
}
}

}

 EMBEDDED SYSTEM & DESIGN(20EC504/JO1A) ECE Dept.

RESULT:

The is observed on the virtual simulator.

