
Big Data Analytics: UNIT – 1

1

INTRODUCTION TO BIG DATA ANALYTICS

Data Big Analytics involves examining large and complex datasets to uncover hidden patterns,

correlations, and insights that can inform decision-making. Here’s a brief overview:

1. What is Big Data?

Big Data refers to datasets that are so large or complex that traditional data-processing

software is inadequate to handle them. It is often characterized by the "three Vs":

 Volume: The amount of data.

 Velocity: The speed at which data is generated and processed.

 Variety: The different types of data (structured, unstructured, semi-structured).

2. Key Components of Big Data Analytics

 Data Collection: Gathering data from various sources, such as social media, sensors,

transactional systems, etc.

 Data Storage: Storing large volumes of data in scalable storage solutions like Hadoop

Distributed File System (HDFS) or cloud-based storage.

 Data Processing: Using tools and technologies to process and analyze data. Common

frameworks include Apache Hadoop and Apache Spark.

 Data Analysis: Applying statistical, machine learning, and data mining techniques to

extract meaningful insights.

 Data Visualization: Presenting data insights through graphs, charts, and da boards to

make them understandable.

3. Tools and Technologies

 Hadoop: An open-source framework for distributed storage and processing.

 Spark: A fast, in-memory data processing engine.

 NoSQL Databases: Such as MongoDB and Cassandra, designed for handling

unstructured data.

 Data Warehouses: Like Amazon Red ift and Google BigQuery, for large-scale data

analysis.

4. Applications

 Business Intelligence: Enhancing decision-making through insights from customer data,

sales, and operations.

 Healthcare: Analyzing patient data for better diagnosis and treatment.

 Finance: Fraud detection and risk management.

 Retail: Personalized marketing and inventory management.

5. Challenges

 Data Privacy and Security: Ensuring that data is handled securely and ethically.

 Data Quality: Maintaining accuracy and consistency in data.

 Scalability: Efficiently managing and processing growing data volumes.

6. Future Trends

Big Data Analytics: UNIT – 1

2

 Artificial Intelligence: Integrating AI to automate and enhance analytics processes.

 Real-time Analytics: Providing immediate insights and responses.

 Edge Computing: Processing data closer to where it is generated.

Big Data Analytics is a dynamic field that combines data science, statistics, and technology to

drive informed decisions and innovations.

CHARACTERISTICS OF BIG DATA

The characteristics of Big Data are often summarized by the "Three Vs," but as the field has

evolved, more dimensions have been added to fully describe the nature of Big Data. Here’s a

detailed look:

1. Volume

 Definition: Refers to the eer amount of data being generated and collected. The scale

can range from terabytes to petabytes and beyond.

 Example: Social media platforms generate massive volumes of user-generated content

daily.

2. Velocity

 Definition: The speed at which data is generated, processed, and analyzed. This includes

the frequency of data creation and the rate at which it must be processed to be useful.

 Example: Streaming data from sensors in real-time for applications like autonomous

vehicles.

3. Variety

 Definition: The different types and formats of data. This can include structured data

(e.g., databases), unstructured data (e.g., text, images), and semi-structured data (e.g.,

JSON, XML).

 Example: Combining data from customer transactions, social media posts, and email

communications.

Big Data Analytics: UNIT – 1

3

4. Veracity

 Definition: The trustworthiness and accuracy of the data. It involves addressing issues of

data quality and reliability.

 Example: Ensuring that data from different sources is accurate and consistent for

making reliable business decisions.

5. Value

 Definition: The usefulness and insights that can be derived from data. Not all data has

inherent value; it must be processed and analyzed to provide actionable insights.

 Example: Analyzing customer purchase data to identify trends and improve marketing

strategies.

6. Variability

 Definition: The inconsistency of data over time. Data can change in its format, meaning,

or quality, making it challenging to handle.

 Example: Seasonal variations in sales data that affect forecasting.

7. Complexity

 Definition: The complexity of managing and integrating different types of data from

various sources. It involves dealing with interconnections and dependencies between

datasets.

 Example: Integrating data from multiple departments (e.g., sales, finance, customer

service) to get a comprehensive view of company performance.

8. Actionability

 Definition: The ability to turn data insights into actionable strategies. This involves not

just analyzing data but applying the results to drive decisions and actions.

 Example: Using predictive analytics to anticipate customer needs and optimize supply

chain operations.

9. Data Integration

 Definition: Combining data from disparate sources into a unified view. This often

involves overcoming challenges related to data formats, schemas, and sources.

 Example: Merging customer data from CRM systems with transaction data from sales

platforms.

Understanding these characteristics helps in designing systems and strategies to effectively

manage and leverage Big Data.

SOURCES OF BIG DATA

Big Data comes from a variety of sources, each contributing different types and volumes of

data. Here’s a breakdown of common sources:

Big Data Analytics: UNIT – 1

4

1. Social Media

 Description: Platforms like Facebook, Twitter, Instagram, LinkedIn, and others generate

vast amounts of unstructured data including posts, comments, likes, ares, and

multimedia content.

 Examples: User-generated content, sentiment analysis, and trend tracking.

2. IoT Devices

 Description: Internet of Things (IoT) devices generate data through sensors and

connected devices that monitor various parameters.

 Examples: Smart thermostats, wearable fitness trackers, industrial sensors, and

connected vehicles.

3. Transactional Data

 Description: Data generated from financial transactions, including sales, purchases, and

payments.

 Examples: Point-of-sale (POS) systems, online transactions, and e-commerce platforms.

4. Log Files

 Description: Generated by systems and applications to record events, activities, and

transactions.

 Examples: Web server logs, application logs, and system logs.

5. Sensors and Devices

 Description: Data collected from sensors embedded in various devices that monitor and

record real-world conditions.

 Examples: Environmental sensors (temperature, humidity), GPS devices, and smart

meters.

6. Multimedia Data

Big Data Analytics: UNIT – 1

5

 Description: Includes images, videos, audio files, and other forms of multimedia

content.

 Examples: Video surveillance footage, user-generated videos, and image repositories.

7. Enterprise Data

 Description: Data generated within organizations, encompassing various business

processes and operations.

 Examples: Customer relation ip management (CRM) systems, enterprise resource

planning (ERP) systems, and business databases.

8. Web Data

 Description: Data collected from web interactions and online activities.

 Examples: Clickstream data, web traffic logs, and user behavior analytics.

9. Public Data

 Description: Data made available to the public, often by governments, research

institutions, or organizations.

 Examples: Government databases, open research data, and public records.

10. Communication Data

 Description: Data from various communication channels, including emails, messages,

and call records.

 Examples: Email metadata, chat logs, and customer service interactions.

11. Health Data

 Description: Data from healthcare systems, including patient records, diagnostic results,

and treatment data.

 Examples: Electronic health records (EHR), wearable health devices, and medical

imaging data.

12. Data from Surveys and Research

 Description: Data collected from surveys, research studies, and other data-gathering

methods.

 Examples: Market research surveys, academic studies, and customer feedback.

13. Geographic Data

 Description: Data related to geographical locations and spatial information.

 Examples: Geographic Information Systems (GIS) data, satellite imagery, and mapping

data.

Each of these sources contributes to the overall landscape of Big Data, providing a diverse

range of information that can be analyzed to generate insights and drive decision-making.

APPLICATIONS OF BIG DATA

Big Data Analytics: UNIT – 1

6

Big Data has a wide range of applications across various industries. Here’s how it’s used in

different domains:

1. Healthcare

 Predictive Analytics: Forecast patient outcomes, disease outbreaks, and treatment

responses.

 Personalized Medicine: Tailor treatments based on individual patient data and genetic

information.

 Operational Efficiency: Optimize hospital operations, reduce costs, and improve patient

care.

2. Finance

 Fraud Detection: Identify unusual patterns and anomalies in transactions to prevent

fraud.

 Risk Management: Assess and mitigate financial risks through advanced analytics.

 Algorithmic Trading: Use complex algorithms and real-time data to make trading

decisions.

3. Retail

 Customer Personalization: Deliver targeted marketing and personalized

recommendations based on purchase history and behavior.

 Inventory Management: Optimize stock levels and supply chain operations using sales

and demand data.

 Customer Sentiment Analysis: Monitor social media and reviews to gauge customer

sentiment and improve service.

4. Manufacturing

Big Data Analytics: UNIT – 1

7

 Predictive Maintenance: Monitor machinery and equipment to predict and prevent

failures before they occur.

 Quality Control: Analyze production data to ensure quality and reduce defects.

 Supply Chain Optimization: Enhance logistics and inventory management with real-time

data insights.

5. Transportation and Logistics

 Route Optimization: Improve delivery routes and reduce transportation costs using

real-time traffic data.

 Fleet Management: Monitor vehicle performance and driver behavior to enhance fleet

efficiency.

 Demand Forecasting: Predict transportation needs and adjust resources accordingly.

6. Telecommunications

 Network Optimization: Analyze network traffic and usage patterns to optimize

performance and prevent outages.

 Customer Churn Prediction: Identify customers at risk of leaving and implement

retention strategies.

 Fraud Detection: Detect and prevent fraudulent activities related to telecom services.

7. Government

 Public Safety: Analyze crime data to improve law enforcement strategies and public

safety measures.

 Urban Planning: Use data to inform city planning, infrastructure development, and

resource allocation.

 Policy Making: Base policy decisions on comprehensive data analysis to address social

and economic issues.

8. Energy

 Smart Grid Management: Monitor and optimize energy distribution and consumption

using data from smart meters and sensors.

 Predictive Analytics: Forecast energy demand and supply, and plan for future energy

needs.

 Maintenance: Predict and prevent equipment failures in energy production and

distribution.

9. Entertainment and Media

 Content Recommendations: Suggest movies, music, and ows based on user

preferences and viewing history.

 Audience Insights: Analyze audience data to tailor content and marketing strategies.

 Social Media Analytics: Track trends and engagement to inform content creation and

promotional activities.

10. Education

Big Data Analytics: UNIT – 1

8

 Student Performance: Analyze student data to identify learning patterns and improve

educational outcomes.

 Adaptive Learning: Personalize learning experiences based on individual student needs

and progress.

 Institutional Management: Optimize administrative processes and resource allocation

in educational institutions.

11. E-Commerce

 Customer Experience: Enhance the online opping experience through personalized

recommendations and targeted promotions.

 Price Optimization: Adjust pricing strategies based on market trends, competitor

pricing, and demand data.

 Fraud Detection: Monitor transactions and user behavior to identify and prevent

fraudulent activities.

12. Research and Development

 Scientific Research: Analyze large datasets in fields like genomics, astronomy, and

climate science to advance scientific knowledge.

 Innovation: Leverage data to drive innovation in product development and

technological advancements.

Big Data enables organizations to make informed decisions, improve efficiency, and create new

opportunities across diverse sectors. Its applications continue to evolve as data collection and

analysis technologies advance.

INTRODUCTION TO HADOOP

Hadoop is an open-source framework designed to handle and process large datasets in a

distributed computing environment. It was developed by the Apache Software Foundation and

is widely used for Big Data processing. Here’s an introduction to its key components and

features:

1. What is Hadoop?

Hadoop is a framework that allows for the distributed processing of large data sets across

clusters of computers using simple programming models. It provides scalability, fault tolerance,

and efficiency for managing and analyzing vast amounts of data.

Big Data Analytics: UNIT – 1

9

2. Core Components of Hadoop

a. Hadoop Distributed File System (HDFS)

 Description: A distributed file system designed to store large files across multiple

machines. HDFS breaks down files into blocks and stores multiple copies of these blocks

across different nodes in the cluster.

 Features:

o Fault Tolerance: Data is replicated across multiple nodes to prevent data loss.

o Scalability: Easily scales by adding more nodes to the cluster.

o High Throughput: Optimized for large-scale data processing.

b. MapReduce

 Description: A programming model for processing large datasets in parallel across a

Hadoop cluster. It involves two main stages:

o Map: Processes input data and converts it into a set of key-value pairs.

o Reduce: Aggregates and processes the key-value pairs produced by the Map

stage to produce the final output.

 Features:

o Parallel Processing: Distributes tasks across multiple nodes to improve

processing speed.

o Fault Tolerance: Automatically recovers from failures during the processing.

c. YARN (Yet Another Resource Negotiator)

 Description: A resource management layer for Hadoop that handles the allocation of

resources and scheduling of tasks across the cluster.

 Features:

o Resource Management: Manages and allocates resources to different

applications.

o Job Scheduling: Coordinates the execution of tasks and jobs.

d. Hadoop Common

 Description: A set of ared utilities and libraries used by other Hadoop modules. It

includes tools and APIs necessary for the functioning of the Hadoop ecosystem.

 Features:

o Support Libraries: Provides essential components needed for Hadoop's various

functionalities.

3. Ecosystem and Tools

Hadoop’s ecosystem includes a variety of tools and projects that complement its core

components:

 Apache HBase: A NoSQL database that runs on top of HDFS and provides real-time

read/write access to large datasets.

Big Data Analytics: UNIT – 1

10

 Apache Hive: A data warehousing tool that provides an SQL-like interface for querying

and managing data stored in Hadoop.

 Apache Pig: A high-level scripting language used for processing and analyzing large

datasets.

 Apache Spark: A fast, in-memory data processing engine that can work alongside

Hadoop to provide real-time data processing capabilities.

 Apache Flume: A distributed service for collecting, aggregating, and moving large

amounts of log data.

 Apache Sqoop: A tool for transferring data between Hadoop and relational databases.

 Apache Oozie: A workflow scheduler system that manages Hadoop jobs.

4. Key Features

 Scalability: Hadoop clusters can easily scale by adding more nodes to handle larger data

volumes.

 Fault Tolerance: Designed to handle hardware failures by replicating data and

redistributing tasks.

 Cost-Effectiveness: Runs on commodity hardware, making it a cost-effective solution for

managing large datasets.

5. Use Cases

 Data Storage and Processing: Managing and analyzing massive volumes of structured

and unstructured data.

 Log Analysis: Processing server logs for monitoring and trouble ooting.

 Data Warehousing: Storing and querying large datasets for business intelligence.

Hadoop provides a robust framework for managing and analyzing Big Data, and its ecosystem

continues to expand with new tools and technologies to address various data processing needs.

HADOOP COMPONENTS

Hadoop has several key components that work together to provide a robust framework for

processing and storing large datasets. Here’s a detailed look at each component:

1. Hadoop Distributed File System (HDFS)

 Function: HDFS is the primary storage system in Hadoop, designed to store large files

across multiple machines.

 Key Features:

o Block-Based Storage: Files are split into fixed-size blocks (typically 128 MB or

256 MB) and distributed across a cluster of nodes.

o Replication: Each block is replicated across multiple nodes to ensure fault

tolerance and data reliability. The default replication factor is three.

o Fault Tolerance: If a node fails, the data can be recovered from the replicated

blocks on other nodes.

Big Data Analytics: UNIT – 1

11

o High Throughput: Optimized for large-scale data access with high throughput

rather than low latency.

2. MapReduce

 Function: MapReduce is a programming model used for processing and generating large

datasets with a parallel, distributed algorithm.

 Key Stages:

o Map Stage: Processes input data to produce a set of intermediate key-value

pairs. Each mapper works on a portion of the data.

o Reduce Stage: Aggregates and processes the intermediate key-value pairs

produced by the mappers to produce the final output.

 Key Features:

o Parallel Processing: Tasks are distributed across multiple nodes to improve

processing efficiency.

o Fault Tolerance: Automatically reassigns tasks if a node fails during processing.

3. Yet Another Resource Negotiator (YARN)

 Function: YARN is the resource management layer of Hadoop that manages and

schedules resources for various applications.

 Key Components:

o ResourceManager: Manages resource allocation across the cluster and

schedules jobs.

o NodeManager: Monitors resource usage on individual nodes and reports to the

ResourceManager.

o ApplicationMaster: Manages the lifecycle of applications, including job

scheduling and resource allocation.

 Key Features:

Big Data Analytics: UNIT – 1

12

o Resource Allocation: Manages resources across different applications and users.

o Job Scheduling: Handles scheduling and execution of tasks.

4. Hadoop Common

 Function: Provides a set of ared utilities, libraries, and tools that support other Hadoop

components.

 Key Features:

o Support Libraries: Includes necessary libraries for Hadoop's operations, such as

serialization, configuration, and security.

o Utilities: Provides essential tools for managing and interacting with the Hadoop

ecosystem.

5. Hadoop Ecosystem Tools

The Hadoop ecosystem includes various tools and projects that enhance the functionality of

Hadoop:

a. Apache HBase

 Function: A NoSQL database that runs on top of HDFS, providing real-time read/write

access to large datasets.

 Key Features: Supports random, real-time read/write access; designed for scalability

and high performance.

b. Apache Hive

 Function: A data warehousing tool that provides an SQL-like query language (HiveQL)

for querying and managing data stored in Hadoop.

 Key Features: Simplifies data querying and analysis for users familiar with SQL

CONFIGURATION OF HADOOP

Configuring Hadoop involves setting up its various components to ensure efficient and

optimized operation. The configuration typically involves editing configuration files to define

cluster settings, resource allocation, and various operational parameters. Here’s a step-by-step

guide to the basic configuration of Hadoop:

1. Prerequisites

 Java: Hadoop requires Java to run. Ensure that the Java Development Kit (JDK) is

installed and configured on all nodes.

 S : Secure ell (S) needs to be set up for communication between nodes without

requiring a password.

2. Hadoop Installation Directories

 Hadoop Home Directory: This is the directory where Hadoop is installed.

 Data Directories: Directories where HDFS stores its data and metadata.

3. Key Configuration Files

Hadoop has several key configuration files located in the conf or etc/hadoop directory:

a. core-site.xml

Big Data Analytics: UNIT – 1

13

 Purpose: Defines core configuration settings, including the default file system and I/O

settings.

 Key Properties:

xml

<configuration>

 <property>

 <name>fs.defaultFS</name>

 <value>hdfs://namenode:9000</value>

 </property>

 <property>

 <name>hadoop.tmp.dir</name>

 <value>/app/hadoop/tmp</value>

 </property>

</configuration>

b. hdfs-site.xml

 Purpose: Configures HDFS-specific settings, including replication factor and data

directory paths.

 Key Properties:

xml

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>3</value>

 </property>

 <property>

 <name>dfs.namenode.name.dir</name>

 <value>file:///var/hadoop/namenode</value>

 </property>

 <property>

 <name>dfs.datanode.data.dir</name>

 <value>file:///var/hadoop/datanode</value>

 </property>

</configuration>

c. mapred-site.xml

 Purpose: Contains MapReduce framework-specific settings.

 Key Properties:

Big Data Analytics: UNIT – 1

14

xml

<configuration>

 <property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

 </property>

</configuration>

d. yarn-site.xml

 Purpose: Configures YARN-specific settings, including resource management and

scheduling.

 Key Properties:

xml

<configuration>

 <property>

 <name>yarn.resourcemanager.hostname</name>

 <value>resourcemanager</value>

 </property>

 <property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_ uffle</value>

 </property>

</configuration>

e. hadoop-env.

 Purpose: Sets environment variables for Hadoop, such as the Java home directory.

 Key Properties:

export JAVA_HOME=/path/to/java

export HADOOP_HOME=/path/to/hadoop

export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop

export HADOOP_HEAPSIZE=1024

4. Configuring S for Hadoop

 Generate S Key:

s -keygen -t rsa

Big Data Analytics: UNIT – 1

15

 Copy S Key to Nodes:

s -copy-id user@hostname

5. Formatting the Namenode

Before starting the Hadoop cluster, the HDFS namenode needs to be formatted:

hdfs namenode -format

6. Starting and Stopping Hadoop Services

 Start HDFS:

start-dfs.

 Start YARN:

start-yarn.

 Stop HDFS:

stop-dfs.

 Stop YARN:

stop-yarn.

7. Verifying the Hadoop Installation

 Access HDFS Web UI: Typically available at http://namenode:50070

 Access YARN Web UI: Typically available at http://resourcemanager:8088

8. Configuring Resource Management and Monitoring

 Resource Allocation: Set properties in yarn-site.xml for resource allocation and limits.

 Monitoring Tools: Integrate monitoring tools like Apache Ambari, Cloudera Manager, or

third-party monitoring solutions.

9. Tuning Performance

 Heap Sizes: Adjust Java heap sizes for various Hadoop daemons in hadoop-env. .

 Block Size: Configure the HDFS block size in hdfs-site.xml based on workload

requirements.

 Replication Factor: Set an appropriate replication factor in hdfs-site.xml to balance data

redundancy and storage efficiency.

By properly configuring these components and files, you can optimize Hadoop for your specific

environment and workload, ensuring efficient data processing and storage.

THE DESIGN OF HDFS

Big Data Analytics: UNIT – 1

16

Hadoop Distributed File System (HDFS) is designed to store and manage large datasets

efficiently across multiple nodes in a distributed computing environment. Its design principles

emphasize scalability, reliability, and fault tolerance. Here’s an overview of the key design

aspects of HDFS:

1. Architecture

a. NameNode

 Role: The master server that manages the filesystem namespace and controls access to

files by clients.

 Responsibilities:

o Maintains the directory tree of all files and folders in the filesystem.

o Manages metadata (e.g., filenames, permissions, and the mapping of files to

data blocks).

o Keeps track of the locations of data blocks on DataNodes.

b. DataNodes

 Role: The worker nodes that store the actual data.

 Responsibilities:

o Store and retrieve blocks as instructed by the NameNode.

o Report the status of the data blocks to the NameNode periodically.

o Perform block creation, deletion, and replication based on the NameNode's

instructions.

c. Secondary NameNode

 Role: A helper node that periodically merges the namespace image with the edit logs to

prevent the NameNode from becoming a single point of failure.

 Responsibilities:

o Takes snap ots of the NameNode’s metadata.

o Helps in minimizing the downtime of the NameNode during failure recovery by

providing a recent checkpoint.

2. Data Storage and Replication

a. Blocks

 Definition: Files in HDFS are split into large blocks (default size: 128 MB) and distributed

across DataNodes.

 Advantages:

o Facilitates large-scale processing by allowing the system to read and write data

in parallel.

o Simplifies data management and recovery.

b. Replication

 Definition: Each block is replicated across multiple DataNodes to ensure fault tolerance

and data availability (default replication factor: 3).

Big Data Analytics: UNIT – 1

17

 Replication Strategy:

o One replica on a node in the local rack.

o Another replica on a node in a different (remote) rack.

o A third replica on a different node in the same remote rack.

3. Fault Tolerance

a. Data Integrity

 Checksums: HDFS creates checksums for data blocks and verifies data integrity during

read/write operations.

 Automatic Recovery: If a corrupted block is detected, HDFS retrieves another copy from

a different DataNode.

b. Heartbeats and Block Reports

 Heartbeats: DataNodes send regular heartbeats to the NameNode to confirm their

availability.

 Block Reports: DataNodes send block reports to the NameNode periodically, detailing

the blocks they store.

c. Rebalancing

 Load Balancing: HDFS can redistribute blocks across DataNodes to balance the storage

utilization and optimize performance.

4. High Throughput and Scalability

a. Large Block Size

 Efficient Data Transfers: The large block size minimizes the overhead of metadata

management and optimizes data transfer rates.

 Batch Processing: Designed to support high-throughput data access suitable for batch

processing jobs like MapReduce.

b. Horizontal Scaling

 Scalability: HDFS can scale horizontally by adding more DataNodes to the cluster,

allowing it to handle growing datasets seamlessly.

5. File System Namespace

a. Hierarchical Structure

 Directories and Files: HDFS organizes files in a hierarchical directory structure similar to

traditional file systems.

 Metadata Storage: Metadata such as file permissions, modification timestamps, and

block locations are managed by the NameNode.

b. Write-Once, Read-Many

 Design Philosophy: HDFS follows a write-once, read-many access model, allowing for

simple coherency semantics and optimized for batch processing workloads.

6. Data Access and Client Interaction

a. Client Interaction

Big Data Analytics: UNIT – 1

18

 File Operations: Clients interact with the NameNode to perform file operations like

create, delete, and rename.

 Data Read/Write: Clients communicate directly with DataNodes to read/write data

blocks, reducing the load on the NameNode.

b. API and Interfaces

 File System API: HDFS provides a POSIX-like file system interface for seamless

integration with applications.

 Streaming Data Access: Supports high-throughput streaming data access, making it

ideal for large-scale data processing applications.

7. Security and Access Control

a. User Authentication

 Kerberos: HDFS can integrate with Kerberos for secure user authentication.

 Access Control Lists (ACLs): Provides granular access control for files and directories.

b. Data Encryption

 Encryption at Rest: Supports encryption of data stored in HDFS to protect sensitive

information.

 Encryption in Transit: Ensures data is encrypted during transfer between clients and

DataNodes.

HDFS’s design aims to provide a reliable, scalable, and high-performance distributed file system

for Big Data applications. Its architecture and features make it well-suited for environments

requiring large-scale data storage and processing.

HDFS CONCEPTS

Hadoop Distributed File System (HDFS) is designed to handle large data sets reliably and

efficiently by distributing data across multiple nodes in a cluster. Here are the key concepts and

features of HDFS:

1. Blocks

 Definition: HDFS stores each file as a series of blocks. These blocks are the basic units of

storage.

 Block Size: The default block size is typically 128 MB, but it can be configured.

 Advantages: Large block sizes minimize the overhead of metadata management and

support efficient data streaming.

2. Replication

 Definition: HDFS replicates data blocks to ensure fault tolerance and high availability.

 Replication Factor: The default replication factor is 3, meaning each block is stored on

three different nodes.

 Replica Placement: One replica is stored on a node in the local rack, another on a node

in a different rack, and the third on a different node in the same remote rack.

Big Data Analytics: UNIT – 1

19

3. NameNode and DataNode

 NameNode:

o Role: The master node that manages the filesystem namespace and regulates

access to files.

o Responsibilities: Maintains metadata, including the directory structure, file

permissions, and the mapping of blocks to DataNodes.

o Fault Tolerance: The NameNode is a single point of failure (though this can be

mitigated with a Secondary NameNode or High Availability setup).

 DataNode:

o Role: The worker nodes that store actual data blocks.

o Responsibilities: Store and retrieve blocks as instructed by the NameNode,

perform block creation, deletion, and replication, and periodically report the

status of blocks to the NameNode.

4. Secondary NameNode

 Role: A helper node that performs regular checkpoints of the NameNode's namespace

metadata.

 Responsibilities: Merges the namespace image with the edit logs to produce a new

checkpoint, which helps in minimizing the downtime of the NameNode during recovery.

5. High Availability (HA)

 Concept: Provides a failover mechanism to ensure the continuous availability of the

NameNode.

 Implementation: Typically involves two NameNodes (Active and Standby) and a pair of

JournalNodes for aring metadata updates.

6. Heartbeats and Block Reports

 Heartbeats: DataNodes send regular heartbeats to the NameNode to confirm their

availability.

 Block Reports: DataNodes send periodic reports listing all blocks they store, allowing

the NameNode to maintain an accurate mapping.

7. Data Integrity

 Checksums: HDFS calculates and stores checksums for data blocks to detect and recover

from data corruption.

 Verification: During data retrieval, checksums are verified to ensure data integrity.

8. Data Pipelining

 Concept: When writing data, HDFS uses pipelining to distribute data blocks to multiple

DataNodes in a sequential manner.

 Process: The client writes the first block to the first DataNode, which forwards it to the

second DataNode, and so on.

9. Rack Awareness

Big Data Analytics: UNIT – 1

20

 Definition: HDFS is rack-aware and uses the network topology to place replicas to

improve data reliability and availability.

 Rack Awareness: Helps in optimizing data transfer rates and fault tolerance by placing

replicas across different racks.

10. File System Namespace

 Structure: HDFS provides a hierarchical file system namespace similar to traditional file

systems.

 Operations: Supports operations like create, delete, rename, and move files and

directories.

11. Write Once, Read Many (WORM)

 Concept: HDFS follows a write-once, read-many model for files, meaning once a file is

written, it cannot be modified.

 Advantages: Simplifies data coherency and supports efficient data streaming and batch

processing.

12. Federation

 Concept: Allows multiple independent NameNodes to are the same DataNodes to scale

the namespace horizontally.

 Benefits: Enhances scalability by partitioning the namespace across multiple

NameNodes.

13. Snap ots

 Definition: HDFS supports snap ots, which are read-only point-in-time copies of the

filesystem or parts of it.

 Usage: Useful for backup, recovery, and data archiving.

14. Quotas

 Function: HDFS can enforce quotas on the number of files and directories as well as

storage space usage.

 Purpose: Helps in managing resources and preventing a single user or application from

consuming excessive resources.

15. Data Encryption

 Encryption at Rest: Data stored in HDFS can be encrypted to protect it from

unauthorized access.

 Encryption in Transit: Ensures that data is encrypted during transfer between clients

and DataNodes to secure data communication.

HDFS is designed to handle large volumes of data with high reliability and performance, making

it a crucial component of the Hadoop ecosystem for big data processing and storage.

THE COMMAND LINE INTERPRETER

The command-line interpreter for HDFS, also known as the Hadoop ell, allows users to interact

with the Hadoop Distributed File System (HDFS) using a set of commands. These commands are

Big Data Analytics: UNIT – 1

21

similar to Unix ell commands and provide functionalities for managing files and directories in

HDFS. Here's an overview of the key commands and their usage:

Basic HDFS Commands

1. hdfs dfs

 Description: The primary command to interact with HDFS.

 Syntax: hdfs dfs [options] <args>

File and Directory Management

2. ls

 Description: Lists the contents of a directory.

 Syntax: hdfs dfs -ls <path>

 Example:

hdfs dfs -ls /user/hadoop

3. mkdir

 Description: Creates a directory in HDFS.

 Syntax: hdfs dfs -mkdir <path>

 Example:

hdfs dfs -mkdir /user/hadoop/newdir

4. mkdir -p

 Description: Creates a directory and any necessary parent directories.

 Syntax: hdfs dfs -mkdir -p <path>

 Example:

hdfs dfs -mkdir -p /user/hadoop/newdir/subdir

5. rmdir

 Description: Removes an empty directory.

 Syntax: hdfs dfs -rmdir <path>

 Example:

hdfs dfs -rmdir /user/hadoop/newdir

File Operations

6. put

 Description: Copies files from the local filesystem to HDFS.

Big Data Analytics: UNIT – 1

22

 Syntax: hdfs dfs -put <local_src> <dest>

 Example:

hdfs dfs -put localfile.txt /user/hadoop/

7. copyFromLocal

 Description: Copies files from the local filesystem to HDFS (same as put).

 Syntax: hdfs dfs -copyFromLocal <local_src> <dest>

 Example:

hdfs dfs -copyFromLocal localfile.txt /user/hadoop/

8. get

 Description: Copies files from HDFS to the local filesystem.

 Syntax: hdfs dfs -get <src> <local_dest>

 Example:

hdfs dfs -get /user/hadoop/file.txt localfile.txt

9. copyToLocal

 Description: Copies files from HDFS to the local filesystem (same as get).

 Syntax: hdfs dfs -copyToLocal <src> <local_dest>

 Example:

hdfs dfs -copyToLocal /user/hadoop/file.txt localfile.txt

10. moveFromLocal

 Description: Moves files from the local filesystem to HDFS.

 Syntax: hdfs dfs -moveFromLocal <local_src> <dest>

 Example:

hdfs dfs -moveFromLocal localfile.txt /user/hadoop/

11. moveToLocal

 Description: Moves files from HDFS to the local filesystem.

 Syntax: hdfs dfs -moveToLocal <src> <local_dest>

 Example:

Big Data Analytics: UNIT – 1

23

hdfs dfs -moveToLocal /user/hadoop/file.txt localfile.txt

12. cat

 Description: Displays the contents of a file.

 Syntax: hdfs dfs -cat <path>

 Example:

hdfs dfs -cat /user/hadoop/file.txt

13. rm

 Description: Deletes files from HDFS.

 Syntax: hdfs dfs -rm <path>

 Example:

hdfs dfs -rm /user/hadoop/file.txt

14. rm -r

 Description: Recursively deletes a directory and its contents.

 Syntax: hdfs dfs -rm -r <path>

 Example:

hdfs dfs -rm -r /user/hadoop/dir

File and Directory Information

15. du

 Description: Displays disk usage of files and directories.

 Syntax: hdfs dfs -du <path>

 Example:

hdfs dfs -du /user/hadoop/

16. df

 Description: Displays the filesystem disk space usage.

 Syntax: hdfs dfs -df

 Example:

hdfs dfs -df

Big Data Analytics: UNIT – 1

24

17. stat

 Description: Prints statistics about a file or directory.

 Syntax: hdfs dfs -stat <path>

 Example:

hdfs dfs -stat /user/hadoop/file.txt

18. count

 Description: Counts the number of directories, files, and bytes under a given path.

 Syntax: hdfs dfs -count <path>

 Example:

hdfs dfs -count /user/hadoop/

Permissions and Owner ip

19. chown

 Description: Changes the owner of a file or directory.

 Syntax: hdfs dfs -chown <owner>[:group] <path>

 Example:

hdfs dfs -chown hadoop:supergroup /user/hadoop/

20. chmod

 Description: Changes the permissions of a file or directory.

 Syntax: hdfs dfs -chmod <mode> <path>

 Example:

hdfs dfs -chmod 755 /user/hadoop/

21. chgrp

 Description: Changes the group association of a file or directory.

 Syntax: hdfs dfs -chgrp <group> <path>

 Example:

hdfs dfs -chgrp supergroup /user/hadoop/

Advanced Commands

22. fsck

Big Data Analytics: UNIT – 1

25

 Description: Runs a filesystem check.

 Syntax: hdfs fsck <path>

 Example:

hdfs fsck /user/hadoop/

23. setrep

 Description: Changes the replication factor of files.

 Syntax: hdfs dfs -setrep <replication> <path>

 Example:

hdfs dfs -setrep 2 /user/hadoop/file.txt

24. tail

 Description: Displays the last kilobyte of the file.

 Syntax: hdfs dfs -tail <path>

 Example:

hdfs dfs -tail /user/hadoop/file.txt

Summary

The HDFS command-line interpreter provides a powerful set of commands for managing files

and directories in the Hadoop Distributed File System. These commands cover a wide range of

operations, from basic file manipulations to more advanced administrative tasks, allowing users

to effectively interact with and manage their data within HDFS.

BASIC FILE SYSTEM OPERATIONS

Basic file system operations in HDFS (Hadoop Distributed File System) involve managing files

and directories, such as creating, listing, copying, moving, deleting, and viewing files. These

operations can be performed using the hdfs dfs command-line interface, which provides a set

of commands similar to Unix file system commands. Here are the basic file system operations in

HDFS:

1. Listing Files and Directories

ls

 Description: Lists the contents of a directory.

 Syntax: hdfs dfs -ls <path>

 Example:

Big Data Analytics: UNIT – 1

26

hdfs dfs -ls /user/hadoop

ls -R

 Description: Recursively lists the contents of a directory.

 Syntax: hdfs dfs -ls -R <path>

 Example:

hdfs dfs -ls -R /user/hadoop

2. Creating Directories

mkdir

 Description: Creates a directory in HDFS.

 Syntax: hdfs dfs -mkdir <path>

 Example:

hdfs dfs -mkdir /user/hadoop/newdir

mkdir -p

 Description: Creates a directory and any necessary parent directories.

 Syntax: hdfs dfs -mkdir -p <path>

 Example:

hdfs dfs -mkdir -p /user/hadoop/newdir/subdir

3. Copying Files

put

 Description: Copies files from the local filesystem to HDFS.

 Syntax: hdfs dfs -put <local_src> <dest>

 Example:

hdfs dfs -put localfile.txt /user/hadoop/

copyFromLocal

 Description: Copies files from the local filesystem to HDFS (same as put).

 Syntax: hdfs dfs -copyFromLocal <local_src> <dest>

 Example:

hdfs dfs -copyFromLocal localfile.txt /user/hadoop/

Big Data Analytics: UNIT – 1

27

get

 Description: Copies files from HDFS to the local filesystem.

 Syntax: hdfs dfs -get <src> <local_dest>

 Example:

hdfs dfs -get /user/hadoop/file.txt localfile.txt

copyToLocal

 Description: Copies files from HDFS to the local filesystem (same as get).

 Syntax: hdfs dfs -copyToLocal <src> <local_dest>

 Example:

hdfs dfs -copyToLocal /user/hadoop/file.txt localfile.txt

4. Moving Files

moveFromLocal

 Description: Moves files from the local filesystem to HDFS.

 Syntax: hdfs dfs -moveFromLocal <local_src> <dest>

 Example:

hdfs dfs -moveFromLocal localfile.txt /user/hadoop/

moveToLocal

 Description: Moves files from HDFS to the local filesystem.

 Syntax: hdfs dfs -moveToLocal <src> <local_dest>

 Example:

hdfs dfs -moveToLocal /user/hadoop/file.txt localfile.txt

mv

 Description: Moves files or directories within HDFS.

 Syntax: hdfs dfs -mv <src> <dest>

 Example:

hdfs dfs -mv /user/hadoop/file.txt /user/hadoop/backup/

5. Deleting Files and Directories

rm

Big Data Analytics: UNIT – 1

28

 Description: Deletes files from HDFS.

 Syntax: hdfs dfs -rm <path>

 Example:

hdfs dfs -rm /user/hadoop/file.txt

rm -r

 Description: Recursively deletes a directory and its contents.

 Syntax: hdfs dfs -rm -r <path>

 Example:

hdfs dfs -rm -r /user/hadoop/dir

6. Viewing File Contents

cat

 Description: Displays the contents of a file.

 Syntax: hdfs dfs -cat <path>

 Example:

hdfs dfs -cat /user/hadoop/file.txt

tail

 Description: Displays the last kilobyte of the file.

 Syntax: hdfs dfs -tail <path>

 Example:

hdfs dfs -tail /user/hadoop/file.txt

7. Checking File and Directory Information

stat

 Description: Prints statistics about a file or directory.

 Syntax: hdfs dfs -stat <path>

 Example:

hdfs dfs -stat /user/hadoop/file.txt

count

 Description: Counts the number of directories, files, and bytes under a given path.

Big Data Analytics: UNIT – 1

29

 Syntax: hdfs dfs -count <path>

 Example:

hdfs dfs -count /user/hadoop/

du

 Description: Displays disk usage of files and directories.

 Syntax: hdfs dfs -du <path>

 Example:

hdfs dfs -du /user/hadoop/

df

 Description: Displays the filesystem disk space usage.

 Syntax: hdfs dfs -df

 Example:

hdfs dfs -df

8. Changing Permissions and Owner ip

chown

 Description: Changes the owner of a file or directory.

 Syntax: hdfs dfs -chown <owner>[:group] <path>

 Example:

hdfs dfs -chown hadoop:supergroup /user/hadoop/

chmod

 Description: Changes the permissions of a file or directory.

 Syntax: hdfs dfs -chmod <mode> <path>

 Example:

hdfs dfs -chmod 755 /user/hadoop/

chgrp

 Description: Changes the group association of a file or directory.

 Syntax: hdfs dfs -chgrp <group> <path>

 Example:

Big Data Analytics: UNIT – 1

30

hdfs dfs -chgrp supergroup /user/hadoop/

These basic file system operations in HDFS provide a comprehensive set of tools for managing

files and directories in a distributed environment, ensuring efficient data storage, access, and

manipulation.

EXPLAIN HADOOP FILE SYSTEM

The Hadoop File System (HDFS) is the primary storage system used by Hadoop applications. It is

a distributed file system that provides high-throughput access to data and is designed to be

highly fault-tolerant. HDFS is an integral part of the Apache Hadoop project and follows a

master-slave architecture. Here's an in-depth explanation of HDFS:

Key Features of HDFS

1. Scalability:

o Designed to store and manage large datasets, scaling to petabytes of data across

thousands of nodes.

2. Fault Tolerance:

o Data is replicated across multiple nodes to ensure reliability and fault tolerance.

If one node fails, the data can still be accessed from another node with a replica.

3. High Throughput:

o Optimized for large streaming read and write operations rather than random

access, ensuring high throughput for data-intensive applications.

4. Cost-Effectiveness:

o Runs on commodity hardware, reducing costs compared to traditional enterprise

storage systems.

Architecture of HDFS

HDFS follows a master-slave architecture comprising the following key components:

1. NameNode:

o Role: The master server that manages the file system namespace and regulates

access to files.

o Responsibilities: Maintains the directory tree of all files in the file system and

tracks where across the cluster the file data is kept. It also records changes in the

namespace or in the properties of the files and directories.

o Fault Tolerance: The NameNode is a single point of failure, but high availability

can be achieved using secondary NameNodes or standby NameNodes in an HA

setup.

2. DataNodes:

Big Data Analytics: UNIT – 1

31

o Role: Worker nodes that store and retrieve data blocks when requested by

clients or the NameNode.

o Responsibilities: Perform block creation, deletion, and replication upon

instruction from the NameNode. They also send periodic heartbeats and block

reports to the NameNode to confirm their health and report on the blocks they

are storing.

3. Secondary NameNode:

o Role: Assists the NameNode by periodically merging the namespace image with

the edit log to create a new image.

o Responsibilities: Reduces the load on the NameNode and helps ensure that the

NameNode restarts quickly by keeping the size of the edit log within bounds.

HDFS Data Flow

1. Data Storage:

o Data is stored in large blocks (default 128 MB) across the cluster.

o Each block is replicated (default replication factor is 3) to different DataNodes

for fault tolerance.

2. Data Access:

o Read Operation: A client requests the NameNode for the locations of the blocks

of a file. The NameNode responds with the list of DataNodes containing the

blocks. The client then directly reads the blocks from the DataNodes.

o Write Operation: A client requests the NameNode to create a file. The

NameNode allocates DataNodes to host the replicas of the first block of the file.

The client writes the data to the allocated DataNodes, which then replicate the

blocks to other DataNodes.

HDFS Operations

1. File Creation:

o When a file is created, it is divided into blocks. These blocks are stored on

DataNodes and replicated based on the replication factor. The metadata about

the file and its block locations is stored in the NameNode.

2. File Deletion:

o When a file is deleted, the NameNode removes the metadata associated with

the file. The DataNodes later delete the blocks of the file during their regular

block reporting process.

3. File Reading:

o The client retrieves the block locations from the NameNode and then directly

reads the blocks from the DataNodes.

4. File Writing:

Big Data Analytics: UNIT – 1

32

o The client writes the blocks to a sequence of DataNodes. Once the primary

DataNode receives the data, it writes it to its local storage and forwards the data

to the next DataNode in the pipeline.

Data Integrity and Reliability

1. Replication:

o Ensures data availability even if some nodes fail. The replication factor can be

configured, and the system can automatically replicate blocks to maintain the

desired replication factor.

2. Heartbeat and Block Reports:

o DataNodes send regular heartbeats and block reports to the NameNode to

confirm their health and the status of the blocks they store. If a DataNode fails to

send a heartbeat, it is considered failed, and its data blocks are replicated to

other nodes.

3. Rack Awareness:

o HDFS is rack-aware, meaning it understands the network topology and optimizes

data placement for fault tolerance and network efficiency. Blocks are stored on

different racks to ensure that data is available even if an entire rack fails.

HDFS Commands

Some basic HDFS commands include:

 hdfs dfs -ls /: List files in the root directory.

 hdfs dfs -mkdir /newdir: Create a new directory.

 hdfs dfs -put localfile.txt /newdir: Copy a local file to HDFS.

 hdfs dfs -get /newdir/localfile.txt .: Copy a file from HDFS to the local filesystem.

 hdfs dfs -rm /newdir/localfile.txt: Delete a file in HDFS.

Conclusion

HDFS is a robust and scalable distributed file system that plays a critical role in the Hadoop

ecosystem. It is designed to handle large amounts of data efficiently, ensuring high throughput,

fault tolerance, and reliability. By distributing data across multiple nodes and replicating it,

HDFS ensures that data remains accessible even in the face of hardware failures.

INTERFACES DATA FLOW

In the context of Hadoop and HDFS (Hadoop Distributed File System), the data flow interfaces

refer to the various APIs and command-line interfaces that allow users and applications to

interact with the Hadoop ecosystem. These interfaces enable data storage, retrieval,

processing, and management. Here’s an overview of the key interfaces and how data flows

through them:

1. HDFS Client Interface

The HDFS client interface allows users to interact with the HDFS file system. It includes both

command-line tools and APIs for programmatic access.

Big Data Analytics: UNIT – 1

33

Command-Line Interface (CLI)

 Description: Provides a set of commands for managing files and directories in HDFS.

 Common Commands:

o hdfs dfs -put localfile.txt /user/hadoop/: Copies a local file to HDFS.

o hdfs dfs -get /user/hadoop/file.txt localfile.txt: Retrieves a file from HDFS.

o hdfs dfs -ls /user/hadoop/: Lists the contents of a directory in HDFS.

API Interface

 Description: Provides programmatic access to HDFS for applications written in Java,

Python, or other languages.

 Key Classes and Methods (Java API):

o FileSystem fs = FileSystem.get(conf);: Obtain a FileSystem object.

o fs.copyFromLocalFile(new Path("localfile.txt"), new Path("/user/hadoop/"));:

Copy a file to HDFS.

o fs.copyToLocalFile(new Path("/user/hadoop/file.txt"), new Path("localfile.txt"));:

Copy a file from HDFS.

2. MapReduce Framework

The MapReduce framework is a core component of Hadoop for processing large datasets in a

distributed manner.

Data Flow

1. Input Data Splits:

o Input data is split into chunks called input splits, each processed by a separate

Map task.

2. Map Phase:

o Each Map task processes an input split and produces key-value pairs.

3. uffle and Sort Phase:

o The intermediate key-value pairs are uffled and sorted to group values by keys.

4. Reduce Phase:

o Each Reduce task processes the grouped key-value pairs to produce the final

output.

5. Output:

o The final output is written to HDFS.

Interfaces

 Mapper Interface:

o Processes input splits and generates key-value pairs.

o public class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {

... }

 Reducer Interface:

o Processes grouped key-value pairs to produce the final output.

Big Data Analytics: UNIT – 1

34

o public class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

... }

3. YARN (Yet Another Resource Negotiator)

YARN manages resources and schedules tasks in a Hadoop cluster.

Data Flow

1. Resource Request:

o Applications request resources (CPU, memory) from the ResourceManager.

2. Resource Allocation:

o The ResourceManager allocates resources to ApplicationMasters.

3. Task Execution:

o The ApplicationMaster negotiates with NodeManagers to launch tasks on nodes.

4. Task Monitoring:

o NodeManagers monitor the execution of tasks and report the status to the

ResourceManager.

Interfaces

 ResourceManager:

o Manages cluster resources and schedules tasks.

 NodeManager:

o Manages resources on a single node and launches tasks.

 ApplicationMaster:

o Manages the execution of a specific application.

4. Hive and Pig

Hive and Pig are high-level interfaces for processing and analyzing large datasets in Hadoop.

Hive

 Description: A data warehouse system that provides SQL-like querying capabilities.

 Data Flow:

1. Query Submission: Users submit queries using HiveQL.

2. Compilation: Queries are compiled into MapReduce or Tez jobs.

3. Execution: The jobs are executed on the Hadoop cluster.

4. Result Retrieval: Results are retrieved and presented to the user.

Pig

 Description: A high-level platform for creating data analysis programs using a scripting

language called Pig Latin.

 Data Flow:

1. Script Submission: Users write Pig Latin scripts.

2. Compilation: Scripts are compiled into MapReduce jobs.

3. Execution: The jobs are executed on the Hadoop cluster.

4. Result Retrieval: Results are retrieved and presented to the user.

Big Data Analytics: UNIT – 1

35

5. HBase

HBase is a NoSQL database that runs on top of HDFS and provides real-time read/write access

to large datasets.

Data Flow

1. Data Ingestion:

o Data is ingested into HBase through APIs or bulk load operations.

2. Data Storage:

o Data is stored in HBase tables, which are divided into regions and distributed

across the cluster.

3. Data Access:

o Data is accessed through HBase APIs, providing random read/write capabilities.

Interfaces

 Java API:

o HTable table = new HTable(conf, "mytable");: Access an HBase table.

o Get get = new Get(Bytes.toBytes("row1"));: Create a Get object to retrieve data.

o Result result = table.get(get);: Retrieve data from HBase.

Conclusion

The Hadoop ecosystem provides a variety of interfaces for data flow, ranging from low-level file

system operations to high-level data processing frameworks. Each interface is designed to

handle specific types of data flow and processing requirements, enabling efficient and scalable

data management and analysis.

PARALLEL COPYING WITH DISTCP

distcp (distributed copy) is a powerful tool provided by Hadoop for efficiently copying large

datasets in parallel across different clusters within HDFS or from one HDFS to another. It

leverages the MapReduce framework to distribute the copy operation across multiple nodes,

ensuring high throughput and fault tolerance.

Key Features of distcp

1. Scalability: Utilizes MapReduce to parallelize the copying process across many nodes.

2. Fault Tolerance: Provides retries and fault-tolerant mechanisms to handle node failures

during the copy process.

3. Efficiency: Handles large data transfers efficiently by dividing the task into multiple

smaller tasks.

4. Resumable: Supports resuming partially completed copy operations.

5. Preserves Attributes: Can preserve file attributes such as permissions, block size,

replication factor, and checksums.

How distcp Works

Big Data Analytics: UNIT – 1

36

distcp operates by creating a MapReduce job where each map task is responsible for copying a

portion of the data. The copied data can be within the same HDFS, between different HDFS

clusters, or from HDFS to other Hadoop-compatible file systems.

Basic Usage of distcp

The basic syntax for distcp is:

hadoop distcp [options] <source_path> <target_path>

Common Options and Examples

1. Basic Copy

o Copies data from source to destination.

hadoop distcp hdfs://source_cluster/path/to/data hdfs://destination_cluster/path/to/data

2. Preserve Attributes

o Preserves file attributes like permissions, owner ip, and timestamps.

hadoop distcp -p hdfs://source_cluster/path/to/data hdfs://destination_cluster/path/to/data

3. Overwrite Target Files

o Overwrites files at the destination if they already exist.

hadoop distcp -overwrite hdfs://source_cluster/path/to/data

hdfs://destination_cluster/path/to/data

4. Update

o Only copies files that are missing or have been modified at the destination.

hadoop distcp -update hdfs://source_cluster/path/to/data

hdfs://destination_cluster/path/to/data

5. Skip CRC

o Skips checksum verification during the copy process.

hadoop distcp -skipcrccheck hdfs://source_cluster/path/to/data

hdfs://destination_cluster/path/to/data

6. Bandwidth Control

Big Data Analytics: UNIT – 1

37

o Limits the bandwidth used by the copy operation.

hadoop distcp -bandwidth <bandwidth_in_MB_per_sec> hdfs://source_cluster/path/to/data

hdfs://destination_cluster/path/to/data

Advanced Usage of distcp

Copying Large Data Sets

When copying large data sets, it's essential to manage resources efficiently to avoid overloading

the network or the clusters involved. You can control the number of map tasks and the

bandwidth used by distcp.

hadoop distcp -m 100 -bandwidth 50 hdfs://source_cluster/large_data

hdfs://destination_cluster/large_data

 -m 100: Specifies 100 map tasks.

 -bandwidth 50: Limits the bandwidth to 50 MB per second.

Incremental Data Transfer

For incremental data transfer, where only new or modified files are copied, use the -update

option.

hadoop distcp -update hdfs://source_cluster/data hdfs://destination_cluster/data

Resuming a Failed Copy

If a distcp operation fails, you can resume it using the -i (ignore failures) option.

hadoop distcp -i hdfs://source_cluster/data hdfs://destination_cluster/data

Internals of distcp

1. Job Setup:

o distcp initializes a MapReduce job with each map task responsible for copying a

subset of the data.

2. Input Splits:

o The input paths are divided into splits. Each split is assigned to a map task.

3. Copying Process:

o Each map task copies its assigned files from the source to the destination. The

copying is done in parallel, leveraging the distributed nature of Hadoop.

4. Monitoring and Fault Tolerance:

Big Data Analytics: UNIT – 1

38

o distcp monitors the progress of the copy operation. If a task fails, it retries based

on the configured number of attempts.

5. Completion:

o Once all map tasks complete successfully, the distcp job is marked as successful.

Conclusion

distcp is a robust tool for parallel copying of large datasets within HDFS or between different

HDFS clusters. By leveraging Hadoop’s distributed architecture, distcp ensures efficient,

scalable, and fault-tolerant data transfers. It is particularly useful for migrating data between

clusters, backing up data, or synchronizing data across multiple Hadoop environments.

