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Anatomy of YARN application runs 

The anatomy of a YARN (Yet Another Resource Negotiator) application run involves several key 

components and steps. Here’s an overview of the process: 

Key Components 

1. ResourceManager (RM): Manages the resources across the cluster. 

2. NodeManager (NM): Manages the lifecycle of containers on individual nodes. 

3. ApplicationMaster (AM): Manages the lifecycle of applications. 

4. Containers: Execution units that run the application tasks. 

Steps in a YARN Application Run 

1. Client Submission: 

o The client submits an application to the ResourceManager. 

o The submission includes application code, necessary files, and resource 

requirements. 

2. ResourceManager: 

o The ResourceManager allocates a container for the ApplicationMaster. 

o It notifies the NodeManager to launch the container. 

3. ApplicationMaster Initialization: 

o The ApplicationMaster is launched in the allocated container. 

o It registers with the ResourceManager and negotiates resources for the 

application's tasks. 

4. Resource Allocation: 

o The Application Master requests resources for application tasks. 

o The Resource Manager allocates containers on appropriate NodeManagers 

based on resource availability and requirements. 

5. Container Launch: 

o The Node Manager launches containers as per the instructions from the 

Resource Manager. 

o Containers execute the application tasks. 

6. Task Execution: 

o The tasks run inside the containers and perform the necessary computations. 

o Containers can communicate with each other as needed. 

7. Monitoring and Progress Reporting: 

o The ApplicationMaster monitors the progress of the tasks and reports to the 

ResourceManager. 

o The ResourceManager monitors the overall application status and resource 

utilization. 

8. Completion: 
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o Once all tasks are completed, the ApplicationMaster notifies the 

ResourceManager. 

o The ResourceManager deallocates the resources. 

o The ApplicationMaster exits, and the client is notified of the application 

completion. 

9. Cleanup: 

o The NodeManager cleans up the resources used by the containers. 

o Logs and other artifacts may be collected for further analysis. 

Diagrammatic Representation 

Here’s a simplified flow diagram of a YARN application run: 
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Cleanup 

This is a high-level overview. Each step involves detailed interactions and protocols ensuring 

efficient resource management and task execution in a distributed computing environment. 

YARN compared to Map Reduce 1 

YARN (Yet Another Resource Negotiator) and MapReduce 1 (MR1) are both frameworks for 

processing large data sets in a distributed environment, but they have significant differences in 

architecture and functionality. Here’s a detailed comparison: 

Architecture 

MapReduce 1 (MR1): 

 Single Master Node: MR1 has a single master node called the JobTracker. 

o JobTracker: Manages both job scheduling and resource management. 

o TaskTrackers: Slave nodes that run tasks and report progress back to the 

JobTracker. 

 Limitations: 

o Scalability issues due to the single JobTracker. 

o Potential bottleneck and single point of failure. 

YARN: 

 Separation of Responsibilities: YARN separates resource management from job 

scheduling and monitoring. 

o ResourceManager (RM): Manages resources across the cluster. 

o NodeManagers (NM): Manage resources on individual nodes and monitor 

containers. 

o ApplicationMaster (AM): Manages the lifecycle of a specific application, 

handling job scheduling and monitoring. 

Resource Management 

MapReduce 1 (MR1): 

 Fixed Slots: TaskTrackers have fixed slots for Map and Reduce tasks. 

o Underutilization: If there are no Map tasks, Reduce slots remain idle, and vice 

versa. 

 Centralized Control: JobTracker handles all resource allocation and scheduling. 

YARN: 

 Dynamic Resource Allocation: Resources are allocated dynamically based on the needs 

of the application. 
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o Containers: Units of resource allocation that can run any type of task (Map, 

Reduce, or other). 

 Scalability: More scalable as resource management is distributed, reducing the burden 

on a single node. 

Flexibility 

MapReduce 1 (MR1): 

 Rigid Framework: Designed specifically for MapReduce applications. 

o Limited to Map and Reduce programming model. 

YARN: 

 Flexible Framework: Can run various types of distributed applications beyond 

MapReduce. 

o Supports multiple programming models like Graph processing (Apache Giraph), 

Iterative processing (Apache Spark), and more. 

Fault Tolerance and Recovery 

MapReduce 1 (MR1): 

 Single Point of Failure: JobTracker is a single point of failure. 

o If JobTracker fails, running jobs may fail or need to be restarted. 

YARN: 

 Better Fault Tolerance: ApplicationMaster failures can be handled by restarting them on 

different nodes. 

o ResourceManager High Availability: ResourceManager can be configured for high 

availability. 

Resource Utilization 

MapReduce 1 (MR1): 

 Static Slot Configuration: Fixed Map and Reduce slots can lead to inefficient resource 

utilization. 

YARN: 

 Resource Containers: Flexible and efficient resource utilization through dynamic 

containers that can be allocated based on application requirements. 

Ecosystem Integration 

MapReduce 1 (MR1): 

 MapReduce Centric: Primarily designed to support MapReduce jobs. 

YARN: 

 Broad Ecosystem: Integrates with a wide range of data processing frameworks and 

applications. 

o Ecosystem support: HDFS, HBase, Hive, Spark, and others. 

Evolution and Community Support 

MapReduce 1 (MR1): 
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 Legacy System: The original Hadoop processing framework, but largely superseded by 

YARN. 

YARN: 

 Modern Standard: Adopted as the standard resource management layer in Hadoop 2 

and beyond. 

o Continual improvements and wide community support. 

Summary 

Feature MapReduce 1 (MR1) YARN 

Architecture 
Single JobTracker, multiple 

TaskTrackers 

ResourceManager, NodeManagers, 

ApplicationMasters 

Resource Management 
Fixed slots for Map and 

Reduce tasks 

Dynamic resource allocation with 

containers 

Flexibility Designed for MapReduce 
Supports various distributed 

applications 

Fault Tolerance and 

Recovery 

Single point of failure 

(JobTracker) 

Better fault tolerance and HA for 

ResourceManager 

Resource Utilization Static slot configuration Efficient, dynamic container allocation 

Ecosystem Integration MapReduce focused 
Broad integration with various 

frameworks 

Evolution and 

Community Support 
Legacy system 

Modern standard with wide community 

support 

YARN offers significant improvements in scalability, flexibility, and resource utilization over 

MapReduce 1, making it a more versatile and robust choice for modern distributed computing 

needs. 

Scheduling in YARN 

Scheduling in YARN (Yet Another Resource Negotiator) is a critical aspect of managing resources 

efficiently in a distributed environment. YARN employs several schedulers, each with its own 

approach to resource allocation and job prioritization. Here’s a detailed overview of scheduling 

in YARN: 

Key Schedulers in YARN 

1. FIFO Scheduler: 

o First In, First Out: Jobs are scheduled in the order they are submitted. 

o Simplicity: Easy to implement and understand. 

o Limitations: Can lead to resource starvation for smaller or later-submitted jobs. 

2. Capacity Scheduler: 
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o Resource Guarantees: Divides cluster resources into queues, each with a 

guaranteed capacity. 

o Hierarchical Queues: Supports nested queues, enabling resource sharing within 

organizational hierarchies. 

o Resource Allocation: Dynamically adjusts resource allocation based on demand 

and queue configurations. 

o Use Case: Suitable for multi-tenant environments where resource fairness and 

guarantees are important. 

3. Fair Scheduler: 

o Fairness: Attempts to allocate resources such that all jobs get, on average, an 

equal share of resources over time. 

o Preemption: Supports preemption to ensure fairness, where long-running jobs 

may be preempted to make way for others. 

o Pools: Jobs can be grouped into pools, each with its own policies and resource 

shares. 

o Use Case: Ideal for environments requiring fair resource distribution among 

users or applications. 

Scheduling Mechanisms 

1. Resource Requests: 

o Containers: Applications request containers specifying resource requirements 

(memory, CPU). 

o Priority: Applications can specify priority for different resource requests. 

2. Resource Allocation: 

o NodeManagers: Track available resources on each node and report to the 

ResourceManager. 

o ResourceManager: Uses the scheduler to match resource requests with available 

resources. 

3. Node Selection: 

o Data Locality: Scheduler tries to place tasks on nodes where the data resides, 

minimizing data transfer. 

o Rack Awareness: If data-local nodes are not available, tasks are placed on nodes 

within the same rack. 

4. Preemption: 

o Fairness and Capacity: In scenarios where certain jobs or users are consuming 

more than their fair share or guaranteed capacity, preemption can occur. 

o Controlled Preemption: Ensures minimal disruption and fairness by preempting 

tasks in a controlled manner. 

5. Resource Utilization: 
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o Dynamic Allocation: Resources are allocated and de-allocated dynamically based 

on the application’s lifecycle. 

o Efficiency: Scheduler aims to maximize cluster utilization while maintaining 

fairness and capacity guarantees. 

Example Flow of Scheduling 

1. Job Submission: A client submits an application to the ResourceManager. 

2. ApplicationMaster Launch: The ResourceManager allocates a container for the 

ApplicationMaster (AM) on a NodeManager. 

3. Resource Requests: The AM requests containers for tasks from the ResourceManager. 

4. Scheduling Decisions: The scheduler evaluates available resources and job priorities to 

make allocation decisions. 

5. Container Launch: NodeManagers launch containers as per the scheduler’s instructions. 

6. Task Execution: Tasks run within containers, processing data. 

7. Monitoring and Adjustment: The AM monitors task progress and may request 

additional resources or release unused ones. 

8. Completion: Once all tasks are complete, the AM releases all resources and reports job 

completion to the ResourceManager. 

Advantages and Challenges 

Advantages: 

 Flexibility: Multiple scheduling policies support diverse workload requirements. 

 Scalability: Efficient resource management in large clusters. 

 Fairness: Ensures fair resource distribution among users and applications. 

Challenges: 

 Complexity: Managing and configuring multiple schedulers and policies can be complex. 

 Resource Contention: Ensuring optimal resource allocation without contention requires 

careful tuning. 

 Preemption Overhead: Preempting tasks can lead to overhead and performance 

degradation if not managed properly. 

Conclusion 

YARN’s scheduling framework is designed to balance resource utilization, fairness, and 

efficiency in a distributed environment. By offering multiple schedulers like FIFO, Capacity, and 

Fair schedulers, YARN provides flexibility to cater to different workload demands and 

organizational policies. Effective scheduling in YARN ensures that resources are used optimally, 

jobs are executed efficiently, and the overall system performance is maximized. 

Anatomy of Map Reduce job run 

The anatomy of a MapReduce job run involves multiple stages, each crucial for the successful 

execution of the job. Here’s a detailed overview of the key stages and components involved in a 

MapReduce job: 
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Key Components 

1. JobClient: Submits the job and tracks its status. 

2. JobTracker: Manages the job scheduling and resource allocation (In MR1). 

3. TaskTracker: Executes the individual tasks of the job (In MR1). 

4. MapTask: Processes the input data and produces intermediate key-value pairs. 

5. ReduceTask: Processes the intermediate data and produces the final output. 

6. HDFS: Hadoop Distributed File System, where input and output data are stored. 

Stages of a MapReduce Job Run 

1. Job Submission: 

o Client: The user or client submits a job to the JobTracker (MR1) or 

ResourceManager (YARN). 

o Job Configuration: The client specifies job configuration parameters, including 

input/output paths, mapper/reducer classes, and other settings. 

2. Job Initialization: 

o JobTracker (MR1): Assigns a unique job ID and creates a job configuration. 

o ResourceManager (YARN): Allocates a container for the ApplicationMaster (AM), 

which then initializes the job. 

3. Splitting the Input Data: 

o InputFormat: Determines how the input data is split into smaller chunks (input 

splits). 

o Input Splits: Logical divisions of the input data, each assigned to a mapper. 

4. Map Phase: 

o Mapper Tasks: Each input split is processed by a mapper task, which reads the 

data, processes it, and produces intermediate key-value pairs. 

o RecordReader: Converts input splits into key-value pairs for the mapper. 

5. Shuffling and Sorting: 

o Intermediate Data: The key-value pairs produced by mappers are partitioned by 

key and shuffled to the reducers. 

o Sorting: The data is sorted by key within each partition to facilitate the reduce 

phase. 

6. Reduce Phase: 

o Reducer Tasks: Each reducer processes a partition of the intermediate data, 

aggregating the values for each key and producing the final output. 

o OutputFormat: Determines how the final output is written to the file system. 

7. Job Completion: 

o Task Completion: TaskTrackers (MR1) or NodeManagers (YARN) report task 

completion to the JobTracker or ApplicationMaster. 

o JobTracker (MR1): Monitors the progress of the job and updates its status. 
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o ResourceManager (YARN): The ApplicationMaster coordinates with the 

ResourceManager to monitor job progress. 

8. Cleanup: 

o Temporary Data: Intermediate data and temporary files are cleaned up. 

o Resource Release: Resources allocated for the job (containers, memory, etc.) are 

released. 

Detailed Flow of a MapReduce Job Run 

1. Job Submission: 

o The client submits the job to the JobTracker (MR1) or ResourceManager (YARN). 

o The job configuration is sent along with the job. 

2. Job Initialization: 

o The JobTracker (MR1) or ResourceManager (YARN) initializes the job. 

o The input data is split into input splits. 

3. Map Phase: 

o Each input split is assigned to a mapper task. 

o The mapper processes the input data and produces intermediate key-value pairs. 

o The output of the mapper is written to local disk. 

4. Shuffling and Sorting: 

o The intermediate data is shuffled and sorted by key. 

o Each reducer receives all the values associated with a particular key. 

5. Reduce Phase: 

o The reducer processes the intermediate data. 

o The output of the reducer is written to the output location specified in the job 

configuration. 

6. Job Completion: 

o The JobTracker (MR1) or ApplicationMaster (YARN) monitors the job's progress. 

o The client is notified upon job completion. 

7. Cleanup: 

o Intermediate and temporary data are cleaned up. 

o Resources are released back to the cluster. 

Diagrammatic Representation 

Here’s a simplified diagram of a MapReduce job run: 
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Job Completion and Cleanup 

Summary 

A MapReduce job run involves submitting a job, splitting the input data, processing it through 

map and reduce tasks, shuffling and sorting intermediate data, and finally writing the output. 

The process is managed by JobTracker and TaskTrackers in MR1, or ResourceManager and 

ApplicationMaster in YARN, ensuring efficient resource utilization and fault tolerance. 

Failures  

Handling failures is a critical aspect of the MapReduce framework to ensure robustness and 

reliability in a distributed computing environment. Here’s a detailed look at the types of failures 

that can occur in a MapReduce job run and how they are handled: 

Types of Failures 

1. Task Failure: 

o Map Task Failure: Occurs when a mapper fails to process its input split. 

o Reduce Task Failure: Occurs when a reducer fails to process its intermediate 

data. 

2. Node Failure: 
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o TaskTracker/NodeManager Failure: Occurs when a node running TaskTracker 

(MR1) or NodeManager (YARN) crashes or becomes unreachable. 

3. JobTracker/ResourceManager Failure: 

o JobTracker Failure (MR1): Single point of failure in MR1; if the JobTracker fails, 

the entire job may need to be restarted. 

o ResourceManager Failure (YARN): Can be mitigated with high availability 

configurations. 

4. ApplicationMaster Failure (YARN): 

o Occurs when the ApplicationMaster managing the job fails in a YARN 

environment. 

5. Network Failures: 

o Data Transfer Issues: Failures in transferring data between nodes during 

shuffling and sorting. 

Handling Failures 

Task Failure Handling 

1. Map Task Failure: 

o Retries: If a map task fails, it is retried a certain number of times (usually 4 by 

default). 

o Re-execution: The task is re-executed on a different node. The input split is read 

again and processed by a new mapper. 

2. Reduce Task Failure: 

o Retries: Similar to map tasks, reduce tasks are retried a certain number of times 

upon failure. 

o Re-execution: The task is re-executed on a different node. The intermediate data 

is fetched from the mappers again and processed by a new reducer. 

Node Failure Handling 

1. TaskTracker/NodeManager Failure: 

o Task Reassignment: Tasks assigned to a failed TaskTracker (MR1) or 

NodeManager (YARN) are reassigned to other healthy nodes. 

o Heartbeat Mechanism: The JobTracker (MR1) or ResourceManager (YARN) 

detects node failures through periodic heartbeats from TaskTrackers or 

NodeManagers. 

JobTracker/ResourceManager Failure 

1. JobTracker Failure (MR1): 

o Single Point of Failure: In MR1, JobTracker failure is a critical issue. The job 

might need to be restarted from scratch. 

2. ResourceManager Failure (YARN): 
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o High Availability: YARN can be configured for high availability, with multiple 

ResourceManagers in an active-standby configuration. 

o Failover: Upon ResourceManager failure, a standby ResourceManager takes 

over, minimizing disruption. 

Application Master Failure (YARN) 

 Retries: If the Application Master fails, it is restarted on another node. 

 State Persistence: Application Masters can persist their state, allowing them to recover 

and continue from the point of failure. 

Network Failures 

 Retries and Timeouts: Data transfer operations have built-in retries and timeouts to 

handle transient network issues. 

 Data Replication: HDFS stores data in multiple replicas to ensure availability even if 

some nodes or network paths are unavailable. 

Fault Tolerance Mechanisms 

1. Speculative Execution: 

o Slow Task Detection: The framework detects slow-running tasks (stragglers) and 

launches duplicate tasks (speculative tasks) on other nodes. 

o Improved Performance: The first task to complete successfully is used, 

improving overall job performance. 

2. Data Replication in HDFS: 

o Multiple Replicas: Input data is stored in multiple replicas across different 

nodes. 

o Data Availability: If a node fails, data can still be accessed from another replica. 

3. Job and Task Monitoring: 

o Progress Tracking: The JobTracker (MR1) or ApplicationMaster (YARN) monitors 

job and task progress, detecting and handling failures promptly. 

o Retries and Task Failover: Automatic retries and task reassignment ensure 

continued progress despite failures. 

Summary 

Failures in a MapReduce job can occur at various levels: task, node, 

JobTracker/ResourceManager, ApplicationMaster, or network. The framework includes robust 

mechanisms to handle these failures, such as retries, re-execution, task reassignment, 

speculative execution, and high availability configurations. These mechanisms ensure that 

MapReduce jobs can complete successfully even in the presence of failures, making the system 

reliable and resilient. 
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Shuffle and sort  

The Shuffle and Sort phase is a critical step in the MapReduce framework, responsible for 

transferring and organizing intermediate data between the map and reduce phases. Here’s a 

detailed overview of the Shuffle and Sort process: 

Overview of Shuffle and Sort 

The Shuffle and Sort phase involves the following steps: 

1. Shuffling: The process of moving intermediate data produced by the mappers to the 

reducers. 

2. Sorting: Organizing the intermediate data by key before it is processed by the reducers. 

Detailed Steps in Shuffle and Sort 

During the Map Phase 

1. Intermediate Data Generation: 

o Each mapper produces intermediate key-value pairs from the input splits. 

o The output is written to local disk, partitioned by the key's hash code. 

2. Partitioning: 

o The intermediate data is divided into partitions, each corresponding to a 

reducer. 

o The number of partitions equals the number of reducers. 

3. Combiner (Optional): 

o A local aggregation step that runs after the mapper to reduce the volume of data 

transferred across the network. 

o Combines intermediate data with the same key, reducing the number of key-

value pairs. 

During the Shuffle Phase 

1. Data Transfer: 

o The intermediate data is transferred from the mappers to the reducers. 

o Each reducer pulls its corresponding partition from all the mappers. 

2. Data Spilling: 

o If the intermediate data exceeds the memory buffer, it is spilled to disk. 

o The data is periodically merged and sorted to reduce the number of spills. 

During the Sort Phase 

1. Sorting: 

o The intermediate data pulled by each reducer is sorted by key. 

o Sorting ensures that all values for a given key are grouped together. 

2. Merge Sort: 

o Multiple sorted files (if data was spilled to disk) are merged to produce a single 

sorted output. 
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o This merge sort is efficient and necessary for handling large data volumes that 

cannot fit into memory. 

Data Flow Example 

1. Map Phase: 

o Input data: [("apple", 1), ("banana", 1), ("apple", 1), ("cherry", 1)] 

o Mapper output: [("apple", 1), ("apple", 1), ("banana", 1), ("cherry", 1)] 

2. Partitioning: 

o Partition 0: [("apple", 1), ("apple", 1)] 

o Partition 1: [("banana", 1), ("cherry", 1)] 

3. Shuffling: 

o Reducer 0 pulls data from Partition 0 of all mappers. 

o Reducer 1 pulls data from Partition 1 of all mappers. 

4. Sorting (Reducer 0): 

o Before: [("apple", 1), ("apple", 1)] 

o After: [("apple", [1, 1])] 

5. Sorting (Reducer 1): 

o Before: [("banana", 1), ("cherry", 1)] 

o After: [("banana", [1]), ("cherry", [1])] 

Diagrammatic Representation 

Here’s a simplified diagram of the Shuffle and Sort process: 

lua 

Copy code 

Map Phase: 

--------------- 

Mapper 1:         Mapper 2: 

("apple", 1)      ("banana", 1) 

("apple", 1)      ("cherry", 1) 

("banana", 1)     ("apple", 1) 

 

Shuffle and Sort Phase: 

--------------- 

Reducer 1:        Reducer 2: 

("apple", 1)      ("banana", 1) 

("apple", 1)      ("cherry", 1) 

("apple", 1)       

 

Sort Phase: 

--------------- 
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Reducer 1:        Reducer 2: 

("apple", [1, 1, 1]) ("banana", [1]) 

                   ("cherry", [1]) 

Key Considerations 

1. Network I/O: 

o Shuffling can be network-intensive as it involves transferring data across nodes. 

o Efficient network communication is crucial for performance. 

2. Memory and Disk Usage: 

o Proper memory management and efficient use of disk for spills are essential. 

o Sorting large datasets that exceed memory limits requires efficient disk I/O 

operations. 

3. Combiner Effectiveness: 

o The combiner can significantly reduce the amount of data transferred, improving 

performance. 

o It should be used when possible to aggregate intermediate data. 

4. Data Locality: 

o Ensuring data locality (processing data close to where it is stored) can minimize 

network I/O. 

o Hadoop attempts to place tasks on nodes where data is already present. 

Summary 

The Shuffle and Sort phase is a vital part of the MapReduce framework, enabling the transition 

from the map phase to the reduce phase. It involves partitioning intermediate data, 

transferring it across the network, and sorting it by key. Effective management of this phase is 

crucial for the performance and scalability of MapReduce jobs, as it directly impacts network 

I/O, memory, and disk usage. 

Task execution 

Task execution in the MapReduce framework involves the detailed steps that a task (either a 

map task or a reduce task) undergoes from initiation to completion. Here’s a comprehensive 

look at the task execution process: 

Task Execution Workflow 

Map Task Execution 

1. Task Initialization: 

o The TaskTracker (MR1) or NodeManager (YARN) initializes the task. 

o The task is assigned resources (CPU, memory) and input splits. 

2. Reading Input Data: 

o InputFormat: Defines how input data is read and split into records. 

o RecordReader: Converts input splits into key-value pairs for the mapper. 

3. Map Function: 
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o Mapper: Processes each key-value pair to generate intermediate key-value pairs. 

o OutputCollector: Collects the output of the mapper. 

4. Combiner (Optional): 

o Local Aggregation: The combiner function performs local aggregation on the 

mapper output to reduce data size. 

o Intermediate Output: The output is still in the form of key-value pairs, but 

potentially reduced. 

5. Partitioning: 

o Partitioner: Assigns each intermediate key-value pair to a reducer based on a 

partitioning function. 

o Partition Files: Intermediate data is written to local disk, partitioned by reducer. 

6. Sorting and Spilling: 

o Sorting: The intermediate data is sorted by key. 

o Spilling: If the buffer holding intermediate data is full, it is spilled to disk. 

o Merging: Multiple spills are merged into a single sorted file. 

7. Completion: 

o The TaskTracker (MR1) or NodeManager (YARN) marks the task as complete. 

o The output files are made available for the shuffle phase. 

Reduce Task Execution 

1. Shuffle Phase: 

o Data Transfer: The reducer pulls its corresponding partitioned data from all 

mappers. 

o Merging: The pulled data is merged and sorted by key. 

2. Sort Phase: 

o Sorting: The intermediate data is sorted to group values by key. 

o Merge Sort: Efficiently merges sorted data from multiple mappers. 

3. Reduce Function: 

o Reducer: Processes the sorted key-value pairs to generate the final output. 

o OutputCollector: Collects the output of the reducer. 

4. Writing Output: 

o OutputFormat: Defines how the final output is written to HDFS. 

o RecordWriter: Writes the final key-value pairs to the specified output location. 

5. Completion: 

o The TaskTracker (MR1) or NodeManager (YARN) marks the task as complete. 

o The final output is available in HDFS or the specified output location. 

Detailed Flow of Task Execution 

1. Task Initialization: 

o The TaskTracker (MR1) or NodeManager (YARN) launches a JVM for the task. 
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o Configuration parameters and input splits are passed to the task. 

2. Reading Input Data: 

o The InputFormat determines the boundaries of input splits. 

o The RecordReader reads data from the input split and converts it into key-value 

pairs. 

3. Map Function: 

o The map method is called for each key-value pair. 

o The mapper generates intermediate key-value pairs, which are collected by the 

OutputCollector. 

4. Combiner (Optional): 

o The combiner aggregates intermediate key-value pairs with the same key. 

o The output is a reduced set of key-value pairs. 

5. Partitioning: 

o The Partitioner assigns each intermediate key-value pair to a partition. 

o The partitions correspond to reducers, ensuring data for the same key goes to 

the same reducer. 

6. Sorting and Spilling: 

o The intermediate data is sorted by key within each partition. 

o If the in-memory buffer is full, the data is spilled to disk. 

o Multiple spills are merged into a single sorted file. 

7. Completion of Map Task: 

o The TaskTracker (MR1) or NodeManager (YARN) marks the map task as 

complete. 

o The intermediate data is ready for the shuffle phase. 

8. Shuffle Phase (Reduce Task): 

o The reducer pulls its corresponding partitioned data from all mappers. 

o The data is merged and sorted by key. 

9. Sort Phase: 

o The intermediate data is sorted to group values by key. 

o Merge sort handles large data efficiently by merging sorted chunks. 

10. Reduce Function: 

o The reduce method is called for each key and its list of values. 

o The reducer generates the final key-value pairs. 

11. Writing Output: 

o The OutputFormat defines the output location and format. 

o The RecordWriter writes the final key-value pairs to HDFS. 

12. Completion of Reduce Task: 
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o The TaskTracker (MR1) or NodeManager (YARN) marks the reduce task as 

complete. 

o The final output is stored in the specified location in HDFS. 

Example 

Consider a word count MapReduce job: 

1. Map Task: 

o Input: "apple banana apple cherry" 

o Intermediate output: [("apple", 1), ("banana", 1), ("apple", 1), ("cherry", 1)] 

2. Shuffle and Sort: 

o Partitioned by key: Reducer 0 gets [("apple", 1), ("apple", 1)], Reducer 1 gets 

[("banana", 1), ("cherry", 1)] 

o Sorted: [("apple", [1, 1]), ("banana", [1]), ("cherry", [1])] 

3. Reduce Task: 

o Reducer 0: [("apple", [1, 1])] -> [("apple", 2)] 

o Reducer 1: [("banana", [1])] -> [("banana", 1)], [("cherry", [1])] -> [("cherry", 1)] 

4. Final Output: 

o [("apple", 2), ("banana", 1), ("cherry", 1)] 

Fault Tolerance and Retries 

 Retries: If a task fails, it is retried a certain number of times (default is 4). 

 Speculative Execution: Slow tasks may be duplicated to avoid delays. 

 TaskTracker/NodeManager Monitoring: These components monitor task progress and 

handle retries or failover. 

Summary 

Task execution in MapReduce involves initializing tasks, reading and processing input data, 

partitioning, sorting, shuffling, and finally writing output data. Map tasks generate intermediate 

key-value pairs, which are shuffled and sorted before being processed by reduce tasks to 

produce the final output. Effective task execution is crucial for the performance and reliability 

of MapReduce jobs, with built-in mechanisms for fault tolerance and resource management. 

Map Reduce Features 

MapReduce is a powerful programming model and processing technique used for processing 

large data sets in a distributed computing environment. Here are some of the key features of 

MapReduce: 

1. Scalability 

 Horizontal Scalability: MapReduce can scale horizontally by adding more nodes to the 

cluster. This allows it to handle increasing volumes of data efficiently. 

 Data Parallelism: The model processes data in parallel across multiple nodes, making it 

suitable for handling large-scale data. 

2. Simplicity 
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 Simplified Programming Model: The MapReduce model abstracts the complexity of 

parallel and distributed computing, allowing developers to focus on writing the map and 

reduce functions. 

 Automatic Parallelization: The framework automatically handles the distribution of data 

and computation across the cluster. 

3. Fault Tolerance 

 Task Retry: If a map or reduce task fails, the framework retries the task on another 

node. 

 Speculative Execution: Slow-running tasks (stragglers) are detected and duplicated on 

other nodes to ensure timely completion. 

 Data Replication: Input data is stored in multiple replicas across different nodes in 

HDFS, ensuring data availability even in case of node failures. 

4. Data Locality 

 Processing Data Close to Storage: MapReduce attempts to schedule tasks on nodes 

where the data resides, reducing network I/O and improving performance. 

 Minimized Data Transfer: By processing data locally, the framework reduces the need 

for data transfer across the network. 

5. Flexibility 

 Support for Various Data Formats: MapReduce can process structured, semi-structured, 

and unstructured data from different sources. 

 Customizable Input/Output Formats: Developers can define custom InputFormat and 

OutputFormat classes to read and write data in various formats. 

6. Load Balancing 

 Dynamic Task Scheduling: The JobTracker (MR1) or ResourceManager (YARN) 

dynamically schedules tasks based on the availability of resources and node health. 

 Task Prioritization: High-priority tasks can be scheduled to run earlier, ensuring efficient 

use of cluster resources. 

7. Compatibility 

 Integration with HDFS: MapReduce works seamlessly with HDFS, providing a reliable 

and distributed storage system. 

 Ecosystem Integration: It integrates well with other Hadoop ecosystem components like 

Hive, Pig, and HBase, providing a robust data processing environment. 

8. Cost Efficiency 

 Commodity Hardware: MapReduce can run on clusters of commodity hardware, 

reducing the cost of infrastructure. 

 Efficient Resource Utilization: The framework efficiently utilizes cluster resources, 

minimizing wastage and improving cost-effectiveness. 

9. High Throughput 
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 Batch Processing: MapReduce is designed for high-throughput batch processing, making 

it suitable for large-scale data processing tasks. 

 Aggregated Results: The reduce phase aggregates intermediate results, providing 

summarized outputs efficiently. 

10. Security 

 Access Control: Integration with Kerberos and other security mechanisms ensures 

secure access to data and resources. 

 Data Encryption: Data can be encrypted during transfer and at rest, ensuring data 

security and privacy. 

Key Components and Their Roles 

1. JobTracker (MR1): 

o Manages job scheduling and resource allocation. 

o Monitors task progress and handles retries and failures. 

2. TaskTracker (MR1): 

o Executes map and reduce tasks assigned by the JobTracker. 

o Sends periodic heartbeats to the JobTracker to report task status. 

3. ResourceManager (YARN): 

o Manages resource allocation across the cluster. 

o Coordinates with NodeManagers to monitor resource usage and availability. 

4. NodeManager (YARN): 

o Manages resources on individual nodes. 

o Executes containerized tasks and monitors their status. 

5. ApplicationMaster (YARN): 

o Manages the lifecycle of a specific application (job). 

o Negotiates resources with the ResourceManager and coordinates task execution. 

Summary 

MapReduce offers a robust and scalable framework for processing large data sets in a 

distributed manner. Its features, such as fault tolerance, data locality, flexibility, and simplicity, 

make it a popular choice for big data processing tasks. The integration with Hadoop's 

ecosystem components and the ability to run on commodity hardware further enhance its 

utility and cost-effectiveness. 

Sorting 

Sorting is a fundamental operation in the MapReduce framework, playing a critical role in 

organizing intermediate data and ensuring the correct execution of the reduce phase. Here’s a 

detailed look at the sorting process within MapReduce: 

Sorting in MapReduce 

1. Map Phase Sorting: 
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o Intermediate Data: During the map phase, each mapper produces key-value 

pairs as intermediate data. 

o In-Memory Buffer: The intermediate data is initially stored in an in-memory 

buffer. 

o Spilling to Disk: When the buffer fills up, the data is sorted by key and then 

spilled to disk. This is known as a "spill file." 

2. Combiner (Optional): 

o Local Aggregation: The combiner function may be applied to reduce the volume 

of intermediate data. This function acts on the sorted data before spilling to disk. 

3. Multiple Spills: 

o Merging Spill Files: If the mapper generates multiple spill files, these are merged 

and sorted to form a single sorted output file. This merge operation can happen 

multiple times if necessary. 

Shuffle and Sort Phase 

1. Shuffle Phase: 

o Data Transfer: During the shuffle phase, the reducer nodes fetch the sorted 

intermediate data from the mapper nodes. 

o Partitioning: Each reducer fetches data from all mappers for its assigned 

partition. This ensures that all key-value pairs for a given key are sent to the 

same reducer. 

2. Merge Sort: 

o Merging Intermediate Data: The fetched data from different mappers is merged 

and sorted by key. This is a critical step as it ensures that all values for a given 

key are grouped together. 

o Efficient Sorting: The merging process is efficient and can handle large amounts 

of data by merging sorted chunks incrementally. 

Reduce Phase Sorting 

1. Reduce Phase: 

o Sorted Input: The input to the reducer is sorted by key. This allows the reducer 

to process each key and its associated list of values sequentially. 

o Reduce Function: The reduce function is applied to each key and its list of values 

to produce the final output. 

Detailed Sorting Process 

During Map Phase 

1. In-Memory Buffer Management: 

o The mapper writes the output to an in-memory buffer. The buffer is partitioned 

into regions corresponding to each reducer. 

2. Sorting and Spilling: 
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o When the buffer reaches a certain threshold, it is sorted by key. The data is then 

spilled to disk as a sorted file. 

3. Combiner Application (Optional): 

o The combiner function, if specified, is applied to the sorted data to aggregate 

values with the same key locally. 

4. Merging Spill Files: 

o If there are multiple spill files, they are merged into a single sorted file to 

minimize the number of files that reducers need to fetch. 

During Shuffle Phase 

1. Data Transfer: 

o Each reducer pulls its assigned partition of the intermediate data from all 

mappers. This involves transferring sorted spill files over the network. 

2. Intermediate Data Merging: 

o The reducer merges the sorted intermediate data from multiple mappers into a 

single sorted sequence. This merging is typically done in memory if the data size 

allows, or using disk-based merge sort for larger datasets. 

During Reduce Phase 

1. Processing Sorted Data: 

o The reducer processes the sorted key-value pairs. For each key, the reducer 

receives a list of values, which it processes to produce the final output. 

2. Writing Final Output: 

o The final output key-value pairs are written to the specified output location, 

usually HDFS. 

Example 

Consider a word count job as an example: 

1. Map Phase: 

o Input: "apple banana apple cherry" 

o Mapper output: [("apple", 1), ("banana", 1), ("apple", 1), ("cherry", 1)] 

2. Sorting and Spilling: 

o Sorted and spilled to disk: [("apple", 1), ("apple", 1)], [("banana", 1)], [("cherry", 

1)] 

3. Shuffle and Sort: 

o Reducer 0 pulls: [("apple", 1), ("apple", 1)] 

o Reducer 1 pulls: [("banana", 1)], [("cherry", 1)] 

o Merging and sorting at reducers: 

 Reducer 0: [("apple", [1, 1])] 

 Reducer 1: [("banana", [1])], [("cherry", [1])] 

4. Reduce Phase: 
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o Reducer 0 processes: [("apple", [1, 1])] -> [("apple", 2)] 

o Reducer 1 processes: [("banana", [1])] -> [("banana", 1)], [("cherry", [1])] -> 

[("cherry", 1)] 

5. Final Output: 

o [("apple", 2), ("banana", 1), ("cherry", 1)] 

Summary 

Sorting in MapReduce ensures that intermediate data is organized by key, enabling efficient 

data transfer during the shuffle phase and correct execution of the reduce phase. The process 

involves multiple steps of in-memory sorting, spilling to disk, merging spill files, and final sorting 

at the reducers. This organized approach ensures that the MapReduce framework can handle 

large datasets efficiently and produce accurate results. 

Joins side data distribution 

Joins and side data distribution are important techniques in distributed computing, especially in 

the context of MapReduce, to efficiently combine data from different sources. Here's a detailed 

look at how joins are performed and how side data is distributed in a MapReduce environment. 

Joins in MapReduce 

1. Map-Side Join 

o Description: Both datasets to be joined are pre-sorted and partitioned in the 

same way, allowing them to be joined during the map phase. 

o Process: 

 Input data is pre-sorted and partitioned. 

 Mappers read corresponding partitions from both datasets. 

 Mappers perform the join operation locally, emitting the joined records 

directly. 

o Advantages: Efficient since it avoids the shuffle and sort phase. 

o Disadvantages: Requires data to be pre-sorted and partitioned, which can be 

cumbersome. 

2. Reduce-Side Join 

o Description: Joins are performed during the reduce phase after a shuffle and 

sort. 

o Process: 

 Mappers tag records from each dataset with a source identifier. 

 Mappers emit key-value pairs with the join key as the key. 

 Reducers receive all records with the same key, sort them, and perform 

the join operation. 

o Advantages: Simple to implement, works even if data is not pre-sorted. 

o Disadvantages: Requires the shuffle and sort phase, which can be resource-

intensive. 
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3. Broadcast Join (Replicated Join) 

o Description: A small dataset is replicated across all nodes, and the join is 

performed in the map phase. 

o Process: 

 The small dataset (side data) is distributed to all mapper nodes. 

 Mappers read the large dataset and perform the join using the in-

memory side data. 

o Advantages: Efficient for small side data, avoids the shuffle and sort phase. 

o Disadvantages: Only feasible if the side data fits into memory on each mapper 

node. 

Side Data Distribution 

Side data refers to additional datasets that are used in conjunction with the primary datasets 

being processed. Efficient distribution of side data is crucial for optimizing join operations. 

1. Distributed Cache 

o Description: A mechanism provided by Hadoop to distribute side data to all 

nodes in the cluster. 

o Usage: 

 Side data files are added to the distributed cache. 

 Nodes fetch the side data from the cache and store it locally. 

o Advantages: Simplifies distribution of side data, ensures consistency. 

o Disadvantages: Limited by the size of the side data that can be efficiently 

distributed. 

2. HDFS-Based Distribution 

o Description: Side data is stored in HDFS and accessed by nodes as needed. 

o Usage: 

 Side data is read from HDFS by mappers or reducers. 

o Advantages: Can handle larger side data compared to distributed cache. 

o Disadvantages: May incur additional I/O overhead, especially if accessed 

frequently. 

Detailed Example: Reduce-Side Join 

Consider two datasets: 

 Users: (user_id, user_name) 

 Orders: (order_id, user_id, product_id) 

The goal is to join these datasets on user_id to get user details along with their orders. 

1. Mapper: 

o Reads both Users and Orders datasets. 

o Emits key-value pairs with user_id as the key. 

o For Users: Emits (user_id, ("user", user_name)) 
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o For Orders: Emits (user_id, ("order", order_id, product_id)) 

python 

Copy code 

def map(key, value): 

    if is_user_record(value): 

        user_id, user_name = parse_user_record(value) 

        emit(user_id, ("user", user_name)) 

    elif is_order_record(value): 

        order_id, user_id, product_id = parse_order_record(value) 

        emit(user_id, ("order", order_id, product_id)) 

2. Reducer: 

o Receives all records with the same user_id. 

o Sorts records by type (user or order). 

o Joins user details with orders. 

python 

Copy code 

def reduce(user_id, values): 

    user_info = None 

    orders = [] 

    for value in values: 

        if value[0] == "user": 

            user_info = value[1] 

        elif value[0] == "order": 

            orders.append((value[1], value[2])) 

    if user_info is not None: 

        for order_id, product_id in orders: 

            emit(user_id, (user_info, order_id, product_id)) 

Summary 

Joins in MapReduce can be performed efficiently using different strategies, such as map-side 

join, reduce-side join, and broadcast join, depending on the size and distribution of the 

datasets. Side data distribution is managed using mechanisms like the distributed cache or 

HDFS, ensuring that small datasets are available locally on nodes for efficient processing. These 

techniques enable MapReduce to handle complex data processing tasks involving multiple 

datasets. 

Writing map reduce programs 

Writing MapReduce programs involves creating a Mapper and a Reducer class, configuring the 

job, and managing the input and output formats. Here's a step-by-step guide to writing a simple 

MapReduce program using the Hadoop framework, along with an example. 
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Components of a MapReduce Program 

1. Mapper Class: Processes input data and produces intermediate key-value pairs. 

2. Reducer Class: Processes intermediate key-value pairs to produce final output. 

3. Driver Class: Configures and runs the MapReduce job. 

Example: Word Count Program 

Step 1: Set Up Your Development Environment 

1. Install Hadoop (if not already installed). 

2. Set up your project structure. 

3. Include the Hadoop libraries in your project's classpath. 

Step 2: Create the Mapper Class 

The Mapper class processes the input data and produces intermediate key-value pairs. In this 

example, the input data is a text file, and the mapper outputs each word with a count of 1. 

java 

Copy code 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.LongWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Mapper; 

 

import java.io.IOException; 

import java.util.StringTokenizer; 

 

public class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> { 

    private final static IntWritable one = new IntWritable(1); 

    private Text word = new Text(); 

 

    public void map(LongWritable key, Text value, Context context) throws IOException, 

InterruptedException { 

        StringTokenizer itr = new StringTokenizer(value.toString()); 

        while (itr.hasMoreTokens()) { 

            word.set(itr.nextToken()); 

            context.write(word, one); 

        } 

    } 

} 

Step 3: Create the Reducer Class 

The Reducer class processes the intermediate key-value pairs generated by the mapper and 

produces the final output. In this example, it sums up the counts for each word. 
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java 

Copy code 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Reducer; 

 

import java.io.IOException; 

 

public class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { 

    private IntWritable result = new IntWritable(); 

 

    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws 

IOException, InterruptedException { 

        int sum = 0; 

        for (IntWritable val : values) { 

            sum += val.get(); 

        } 

        result.set(sum); 

        context.write(key, result); 

    } 

} 

Step 4: Create the Driver Class 

The Driver class configures and runs the MapReduce job. 

java 

Copy code 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

 

public class WordCount { 

    public static void main(String[] args) throws Exception { 

        Configuration conf = new Configuration(); 

        Job job = Job.getInstance(conf, "word count"); 

        job.setJarByClass(WordCount.class); 
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        job.setMapperClass(TokenizerMapper.class); 

        job.setCombinerClass(IntSumReducer.class); // Optional combiner 

        job.setReducerClass(IntSumReducer.class); 

        job.setOutputKeyClass(Text.class); 

        job.setOutputValueClass(IntWritable.class); 

        FileInputFormat.addInputPath(job, new Path(args[0])); 

        FileOutputFormat.setOutputPath(job, new Path(args[1])); 

        System.exit(job.waitForCompletion(true) ? 0 : 1); 

    } 

} 

Step 5: Compile and Run the Program 

1. Compile the Java Code: 

bash 

Copy code 

javac -classpath $(hadoop classpath) -d wordcount_classes TokenizerMapper.java 

IntSumReducer.java WordCount.java 

2. Create a JAR File: 

bash 

Copy code 

jar -cvf wordcount.jar -C wordcount_classes/ . 

3. Run the Hadoop Job: 

bash 

Copy code 

hadoop jar wordcount.jar WordCount /input_path /output_path 

Detailed Example 

Mapper Class (TokenizerMapper.java) 

java 

Copy code 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.LongWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Mapper; 

 

import java.io.IOException; 

import java.util.StringTokenizer; 

 

public class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> { 

    private final static IntWritable one = new IntWritable(1); 
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    private Text word = new Text(); 

 

    public void map(LongWritable key, Text value, Context context) throws IOException, 

InterruptedException { 

        StringTokenizer itr = new StringTokenizer(value.toString()); 

        while (itr.hasMoreTokens()) { 

            word.set(itr.nextToken()); 

            context.write(word, one); 

        } 

    } 

} 

Reducer Class (IntSumReducer.java) 

java 

Copy code 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Reducer; 

 

import java.io.IOException; 

 

public class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { 

    private IntWritable result = new IntWritable(); 

 

    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws 

IOException, InterruptedException { 

        int sum = 0; 

        for (IntWritable val : values) { 

            sum += val.get(); 

        } 

        result.set(sum); 

        context.write(key, result); 

    } 

} 

Driver Class (WordCount.java) 

java 

Copy code 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.fs.Path; 
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import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

 

public class WordCount { 

    public static void main(String[] args) throws Exception { 

        Configuration conf = new Configuration(); 

        Job job = Job.getInstance(conf, "word count"); 

        job.setJarByClass(WordCount.class); 

        job.setMapperClass(TokenizerMapper.class); 

        job.setCombinerClass(IntSumReducer.class); 

        job.setReducerClass(IntSumReducer.class); 

        job.setOutputKeyClass(Text.class); 

        job.setOutputValueClass(IntWritable.class); 

        FileInputFormat.addInputPath(job, new Path(args[0])); 

        FileOutputFormat.setOutputPath(job, new Path(args[1])); 

        System.exit(job.waitForCompletion(true) ? 0 : 1); 

    } 

} 

Running the Program 

1. Ensure Hadoop is Running: Start your Hadoop cluster if it's not already running. 

2. Prepare Input Data: Place your input data in HDFS. 

bash 

Copy code 

hdfs dfs -mkdir /input 

hdfs dfs -put /path/to/local/input/file /input 

3. Execute the Job: 

bash 

Copy code 

hadoop jar wordcount.jar WordCount /input /output 

4. Check the Output: After the job completes, check the output in HDFS. 

bash 

Copy code 

hdfs dfs -cat /output/part-r-00000 

Summary 
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Writing a MapReduce program involves creating Mapper, Reducer, and Driver classes. The 

Mapper processes input data and generates intermediate key-value pairs, while the Reducer 

processes these pairs to generate the final output. The Driver configures and runs the job. By 

following the steps outlined above, you can write, compile, and run a basic MapReduce 

program to perform tasks like word counting. 

Writing map reduce programs python 

Writing MapReduce programs in Python can be achieved using the Hadoop Streaming API, 

which allows you to write the Mapper and Reducer in any language that can read from 

standard input and write to standard output. Here's a step-by-step guide to writing a simple 

MapReduce program in Python, using a word count example. 

Components of a MapReduce Program 

1. Mapper: Processes input data and produces intermediate key-value pairs. 

2. Reducer: Processes intermediate key-value pairs to produce the final output. 

Example: Word Count Program in Python 

Step 1: Write the Mapper 

The Mapper script reads input data from standard input, processes each line, and outputs key-

value pairs (word and 1). 

python 

Copy code 

# mapper.py 

import sys 

 

def main(): 

    for line in sys.stdin: 

        line = line.strip() 

        words = line.split() 

        for word in words: 

            print(f"{word}\t1") 

 

if __name__ == "__main__": 

    main() 

Step 2: Write the Reducer 

The Reducer script reads intermediate key-value pairs from standard input, aggregates the 

counts for each word, and outputs the final counts. 

python 

Copy code 

# reducer.py 

import sys 
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def main(): 

    current_word = None 

    current_count = 0 

    word = None 

 

    for line in sys.stdin: 

        line = line.strip() 

        word, count = line.split('\t', 1) 

        try: 

            count = int(count) 

        except ValueError: 

            continue 

 

        if current_word == word: 

            current_count += count 

        else: 

            if current_word: 

                print(f"{current_word}\t{current_count}") 

            current_word = word 

            current_count = count 

 

    if current_word == word: 

        print(f"{current_word}\t{current_count}") 

 

if __name__ == "__main__": 

    main() 

Step 3: Prepare Input Data 

Create an input text file with some sample data. 

bash 

Copy code 

echo "hello world" > input.txt 

echo "hello hadoop" >> input.txt 

Step 4: Run the MapReduce Job Using Hadoop Streaming 

Use the Hadoop Streaming API to run the MapReduce job with the Python scripts. 

bash 

Copy code 

hadoop jar /path/to/hadoop-streaming.jar \ 
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    -input /path/to/input.txt \ 

    -output /path/to/output \ 

    -mapper /path/to/mapper.py \ 

    -reducer /path/to/reducer.py \ 

    -file /path/to/mapper.py \ 

    -file /path/to/reducer.py 

Detailed Example 

Mapper Script (mapper.py) 

python 

Copy code 

import sys 

 

def main(): 

    for line in sys.stdin: 

        line = line.strip() 

        words = line.split() 

        for word in words: 

            print(f"{word}\t1") 

 

if __name__ == "__main__": 

    main() 

Reducer Script (reducer.py) 

python 

Copy code 

import sys 

 

def main(): 

    current_word = None 

    current_count = 0 

    word = None 

 

    for line in sys.stdin: 

        line = line.strip() 

        word, count = line.split('\t', 1) 

        try: 

            count = int(count) 

        except ValueError: 

            continue 
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        if current_word == word: 

            current_count += count 

        else: 

            if current_word: 

                print(f"{current_word}\t{current_count}") 

            current_word = word 

            current_count = count 

 

    if current_word == word: 

        print(f"{current_word}\t{current_count}") 

 

if __name__ == "__main__": 

    main() 

Running the Program 

1. Ensure Hadoop is Running: Start your Hadoop cluster if it's not already running. 

2. Prepare Input Data: Place your input data in HDFS. 

bash 

Copy code 

hdfs dfs -mkdir /input 

hdfs dfs -put input.txt /input 

3. Execute the Job: 

bash 

Copy code 

hadoop jar /path/to/hadoop-streaming.jar \ 

    -input /input/input.txt \ 

    -output /output \ 

    -mapper /path/to/mapper.py \ 

    -reducer /path/to/reducer.py \ 

    -file /path/to/mapper.py \ 

    -file /path/to/reducer.py 

4. Check the Output: After the job completes, check the output in HDFS. 

bash 

Copy code 

hdfs dfs -cat /output/part-00000 

Summary 

Writing a MapReduce program in Python involves creating Mapper and Reducer scripts that 

read from standard input and write to standard output. Using the Hadoop Streaming API, you 
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can run these scripts as part of a Hadoop job. The example above demonstrates a simple word 

count program, illustrating the key steps involved in setting up and executing a MapReduce job 

using Python. 

Deploying map-reduce python programs on Hadoop Cluster 

Deploying MapReduce programs written in Python on a Hadoop cluster involves several steps. 

This includes setting up the Hadoop cluster, preparing your Python scripts, and running the 

MapReduce job using Hadoop Streaming. Here is a step-by-step guide: 

Prerequisites 

1. A working Hadoop cluster. 

2. Python installed on all nodes in the Hadoop cluster. 

3. Your MapReduce scripts (mapper and reducer). 

Step-by-Step Guide 

Step 1: Set Up the Hadoop Cluster 

Make sure your Hadoop cluster is properly set up and running. You should be able to access the 

Hadoop Distributed File System (HDFS) and run Hadoop jobs. 

Step 2: Prepare Your Python Scripts 

Create your mapper.py and reducer.py scripts. Ensure they are working correctly on your local 

machine before deploying them to the cluster. 

Mapper Script (mapper.py): 

python 

Copy code 

import sys 

 

def main(): 

    for line in sys.stdin: 

        line = line.strip() 

        words = line.split() 

        for word in words: 

            print(f"{word}\t1") 

 

if __name__ == "__main__": 

    main() 

Reducer Script (reducer.py): 

python 

Copy code 

import sys 

 

def main(): 
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    current_word = None 

    current_count = 0 

    word = None 

 

    for line in sys.stdin: 

        line = line.strip() 

        word, count = line.split('\t', 1) 

        try: 

            count = int(count) 

        except ValueError: 

            continue 

 

        if current_word == word: 

            current_count += count 

        else: 

            if current_word: 

                print(f"{current_word}\t{current_count}") 

            current_word = word 

            current_count = count 

 

    if current_word == word: 

        print(f"{current_word}\t{current_count}") 

 

if __name__ == "__main__": 

    main() 

Step 3: Upload Data to HDFS 

Upload your input data to HDFS. For example, if you have a file named input.txt: 

bash 

Copy code 

hdfs dfs -mkdir /input 

hdfs dfs -put input.txt /input 

Step 4: Upload Python Scripts to HDFS 

Upload your Python scripts to HDFS so that they can be accessed by all nodes in the cluster. 

bash 

Copy code 

hdfs dfs -put mapper.py /input 

hdfs dfs -put reducer.py /input 

Step 5: Run the Hadoop Streaming Job 
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Run the Hadoop Streaming job, specifying the paths to your Python scripts and input/output 

directories in HDFS. 

bash 

Copy code 

hadoop jar /path/to/hadoop-streaming.jar \ 

    -input /input/input.txt \ 

    -output /output \ 

    -mapper /input/mapper.py \ 

    -reducer /input/reducer.py \ 

    -file /path/to/local/mapper.py \ 

    -file /path/to/local/reducer.py 

Explanation of the command: 

 -input /input/input.txt: Specifies the input file or directory in HDFS. 

 -output /output: Specifies the output directory in HDFS. 

 -mapper /input/mapper.py: Specifies the mapper script to use. 

 -reducer /input/reducer.py: Specifies the reducer script to use. 

 -file /path/to/local/mapper.py: Uploads the mapper script from the local file system. 

 -file /path/to/local/reducer.py: Uploads the reducer script from the local file system. 

Step 6: Check the Output 

After the job completes, check the output in HDFS. 

bash 

Copy code 

hdfs dfs -ls /output 

hdfs dfs -cat /output/part-00000 

Step 7: Clean Up 

If needed, you can delete the output directory in HDFS to clean up. 

bash 

Copy code 

hdfs dfs -rm -r /output 

Summary 

Deploying a MapReduce program written in Python on a Hadoop cluster involves preparing 

your Python scripts, uploading them and your input data to HDFS, and running the job using 

Hadoop Streaming. This allows you to leverage the power of Hadoop's distributed computing 

capabilities while writing your mapper and reducer in Python. 

 


