

AWS RDS
(Relational database service)(Relational database service)

AWS RDS
• Amazon RDS is a fully managed relational database service.

• Amazon Relational Database Service (Amazon RDS) is a web service that makes it
easier to set up, operate, and scale a relational database in the cloud.

• It provides cost-efficient and resizable capacity while automating time-consuming
administration tasks such as hardware provisioning, database setup, patching and
backups.

• It frees you to focus on your applications so you can give them the fast
performance, high availability, security and compatibility they need.

• Amazon RDS is available on several database instance types - optimized for
memory, performance or I/O - and provides you with six familiar database engines memory, performance or I/O - and provides you with six familiar database engines
to choose from, including

• Amazon Aurora,

• PostgreSQL,

• MySQL,

• MariaDB,

• Oracle Database, and

• SQL Server.

• You can use the AWS Database Migration Service to easily migrate or replicate
your existing databases to Amazon RDS.

Amazon RDS

AWS RDS
•

Amazon RDS

AWS RDS features
• Scalable− Amazon RDS permits to scale the social database by utilizing the AWS

Management Console or RDS-explicit API. We can either increase or decrease your RDS
prerequisites within minutes.

• Inexpensive− Using Amazon RDS, we pay just for the features that we actually use. There
is no forthcoming and long-term payment.

• Secure− Amazon RDS gives unlimited authority over the system to get to their database
and their related services.

• Automatic backups− Amazon RDS backs up everything in the database including
exchange logs up to most recent five minutes and furthermore oversees programmed
backup timings.backup timings.

• Software patching− Automatically gets all the most recent patches for the database
programming. We can likewise indicate when the product ought to be fixed utilizing DB
Engine Version Management.

•

AWS RDS benefits
• https://console.aws.amazon.com/rds/ - AWS CONSOLE

Benefits:

 Easy to administer

 Highly scalable

 Available and durable

 Fast

 Secure

 Inexpensive

 reliable

Easy to administer:Easy to administer:

• Amazon RDS makes it easy to go from project conception to deployment. Use the Amazon RDS
Management Console, the AWS RDS Command-Line Interface, or simple API calls to access the
capabilities of a production-ready relational database in minutes.

• No need for infrastructure provisioning, and no need for installing and maintaining database
software.

Highly scalable

• You can scale your database's compute and storage resources with only a few mouse clicks or an
API call, often with no downtime.

• Many Amazon RDS engine types allow you to launch one or more Read Replicas to offload read
traffic from your primary database instance.

AWS RDS benefits
Available and durable:

• Amazon RDS runs on the same highly reliable infrastructure used by other Amazon Web
Services.

• When you provision a Multi-AZ DB Instance, Amazon RDS synchronously replicates the
data to a standby instance in a different Availability Zone (AZ). Amazon RDS has many
other features that enhance reliability for critical production databases, including automated
backups, database snapshots, and automatic host replacement.

Fast

• Amazon RDS supports the most demanding database applications. You can choose between
two SSD-backed storage options: one optimized for high-performance OLTP applications,
and the other for cost-effective general-purpose use.

• In addition, Amazon Aurora provides performance on par with commercial databases at
1/10th the cost.

AWS RDS benefits
Secure

• Amazon RDS makes it easy to control network access to your database. Amazon RDS also
lets you run your database instances in Amazon Virtual Private Cloud (Amazon VPC),
which enables you to isolate your database instances and to connect to your existing IT
infrastructure through an industry-standard encrypted IPsec VPN.

• Many Amazon RDS engine types offer encryption at rest and encryption in transit.

Inexpensive

• You pay very low rates and only for the resources you actually consume. • You pay very low rates and only for the resources you actually consume.

• In addition, you benefit from the option of On-Demand pricing with no up-front or long-
term commitments, or even lower hourly rates via our Reserved Instance pricing.

Deploying with Amazon RDS
The normal process for deploying a DBMS is:

• Choose the system

• Obtain the software:
− If commercial software, purchase license for estimated usage

− If open source software, choose the version and download the software

• Specify, purchase, install, and configure the platform (hardware and disk storage)

• Install the DBMS

• Configure the administrative user and the initial database

• Secure the system • Secure the system

Setup Amazon RDS
Steps:

1. Login to AWS Mgt. Console. Using the link: https://console.aws.amazon.com/rds/

2. Select the region where the db instance is to be created, at top right corner of the rds
console.

3. Select instances in navigation pane. Then click ‘Launch DB instance’ button. The Launch
DB instance wizard opens.

4. Select the type of instance and click Select button.

•

Setup Amazon RDS
5. Give the details in ‘Launch DB instance Wizard’ dialog:

Setup Amazon RDS
Step 6: On the ‘Additional Configuration’ page, provide additional information required to
launch MySql db instance.

Setup Amazon RDS
Step 7: On ‘Management Options’ page,select options and click ‘Continue’.

Setup Amazon RDS

Step 8: Review and click ‘Launch DB instance’ button to Finish.

•

Cost of Amazon RDS
Parameters:

1. Instance Class

2. Running Time

3. Storage

4. I/O requests per month

5. Backup storage

•

Amazon RDS

Amazon RDS

Amazon RDS

Amazon RDS

Amazon RDS

Amazon RDS

Amazon RDS

Amazon RDS

AWS RDS:

AWS RDS
Why do you want a managed relational database service? Because Amazon RDS
takes over many of the difficult and tedious management tasks of a relational
database:

 When you buy a server, you get CPU, memory, storage, and IOPS, all bundled together. With
Amazon RDS, these are split apart so that you can scale them independently. If you need more
CPU, less IOPS, or more storage, you can easily allocate them.

 Amazon RDS manages backups, software patching, automatic failure detection, and recovery.
 To deliver a managed service experience, Amazon RDS doesn't provide shell access to DB

instances. It also restricts access to certain system procedures and tables that require advanced
privileges.privileges.

 You can have automated backups performed when you need them, or manually create your own
backup snapshot. You can use these backups to restore a database. The Amazon RDS restore
process works reliably and efficiently.

 You can use the database products you are already familiar with: MySQL, MariaDB, PostgreSQL,
Oracle, Microsoft SQL Server.

 You can get high availability with a primary instance and a synchronous secondary instance that
you can fail over to when problems occur. You can also use MariaDB, Microsoft SQL Server,
MySQL, Oracle, and PostgreSQL read replicas to increase read scaling.

 In addition to the security in your database package, you can help control who can access your
RDS databases by using AWS Identity and Access Management (IAM) to define users and
permissions. You can also help protect your databases by putting them in a virtual private cloud.

AWS RDS:

AWS RDS - MySQL DB
1. Crating an Amazon RDS DB instance (CreateDBInstance)

 using Console

 using AWS CLI

 using RDS API

2. Connecting to an Amazon RDS DB instance

 Finding the connection information for a MySQL DB instance

 Connecting from the MySQL client

 using MySQL client (Mysql workbench)

 using RDS API

 MySQL commandline tool (mysql shell)/ AWS CLI

3. Getting DescribeDBInstances information

 using Console

 using AWS CLI

 using RDS API

4. Importing and Exporting data

5. Managing and RDS DB Instance

 Starting, Stopping, Rebooting, Modifying, Renaming, Deleting DB instances

6. Working with RDS events

AWS RDS - Connecting to Db
Reasons for connection to db failure:

• The RDS DB instance is in a state other than available, so it can't accept connections.

• The source you use to connect to the DB instance is missing from the sources authorized to
access the DB instance in your security group, network access control lists (ACLs), or local
firewalls.

• The wrong DNS name or endpoint was used to connect to the DB instance.

• The Multi-AZ DB instance failed over, and the secondary DB instance uses a subnet or
route table that doesn't allow inbound connections.

• The user authentication is incorrect.• The user authentication is incorrect.

Sdk urls:

https://docs.aws.amazon.com/code-samples/latest/catalog/javav2-rds-src-main-java-com-
example-rds-CreateDBInstance.java.html

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/rds/Am
azonRDSClient.html

https://docs.aws.amazon.com/code-samples/latest/catalog/javav2-rds-src-main-java-com-
example-rds-DescribeDBInstances.java.html

AWS RDS - Connecting to MySql Db instance
• The connection information for a DB instance includes its endpoint, port, and a

valid database user, such as the master user.

• For example, suppose that an endpoint value is mydb.123456789012.us-east-
1.rds.amazonaws.com. In this case, the port value is 3306, and the database user is
admin.

• Given this information, you specify the following values in a connection string:
• For host or host name or DNS name, specify mydb.123456789012.useast1.rds.amazonaws.com.

• For port, specify 3306.

• For user, specify admin.

• To connect to a DB instance, use any client for a DB engine. For example, you might • To connect to a DB instance, use any client for a DB engine. For example, you might
use the mysql utility to connect to a MariaDB or MySQL DB instance.

AWS RDS - Connecting to MySql Db instance
Getting Connection Information:

Console

To find the connection information for a DB instance in the AWS Management Console

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://

console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases to display a list of your DB instances.

3. Choose the name of the MySQL DB instance to display its details.

4. On the Connectivity & security tab, copy the endpoint. Also, note the port number. You need
both the endpoint and the port number to connect to the DB instance. both the endpoint and the port number to connect to the DB instance.

Ex: From Windows command prompt, give command to get connection information:

aws rds describe-db-instances --filters "Name=engine,Values=mysql" --query
"*[].[DBInstanceIdentifier,Endpoint.Address,Endpoint.Port,MasterUsername]"

AWS RDS - Connecting to MySql Db instance
To connect to a DB instance using the MySQL client, enter the following command at a
Windows command prompt to connect to a DB instance using the MySQL client.

 For the -h parameter, substitute the DNS name (endpoint) for your DB instance.

 For the -P parameter, substitute the port for your DB instance.

 For the -u parameter, substitute the user name of a valid database user, such as the master user. Enter the
master user password when prompted.

Ex: To connect with mydb1id mysql database

C:\Users\bh>mysql -h mydb1id.c90djrnrrzvh.us-east-1.rds.amazonaws.com -P 3306 -u admin -p

Output:

Enter password: **********Enter password: **********

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MySQL connection id is 193

Server version: 8.0.20 Source distribution

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MySQL [(none)]>

AWS RDS - Connecting to MySql Db instance
using AWS JAVA API:

AWS RDS - Connecting to MySql Db instance FROM
MYSQL WORKBENCH

using AWS JAVA API:

To connect from MySQL Workbench

1. Download and install MySQL Workbench at Download MySQL Workbench

2. Open MySQL Workbench.

3. From Database, choose Manage Connections.

4. In the Manage Server Connections window, choose New.

5. In the Connect to Database window, enter the following information:
• Stored Connection – Enter a name for the connection, such as MyDB.

• Hostname – Enter the DB instance endpoint.• Hostname – Enter the DB instance endpoint.

• Port – Enter the port used by the DB instance.

• Username – Enter the user name of a valid database user, such as the master user.

• Password – Optionally, choose Store in Vault and then enter and save the password for the user.

6. Optionally, choose Test Connection to confirm that the connection to the DB
instance is successful.

7. Choose Close.

8. From Database, choose Connect to Database.

9. From Stored Connection, choose your connection.

10. Choose OK.

AWS RDS - Data import

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/My
SQL.Procedural.Importing.Other.html
• You can use several different techniques to import data into an Amazon RDS for MySQL

DB instance. The best approach depends on the source of the data, the amount of data, and
whether the import is done one time or is ongoing.

• If you are migrating an application along with the data, also consider the amount of
downtime that you are willing to experience.

• mysqldump:
• For Windows, the following command needs to be run in a command prompt that has been opened by right-• For Windows, the following command needs to be run in a command prompt that has been opened by right-

clicking Command Prompt on the Windows programs menu and choosing Run as administrator:

• mysqldump -u localuser

• --databases world

• --single-transaction

• --compress

• --order-by-primary

• -plocalpassword | mysql -u rdsuser

• --port=3306

• --host=myinstance.123456789012.us-east-1.rds.amazonaws.com

• -prdspassword

AWS RDS - Data import
mysqldump -u local_user \

--databases database_name \

--single-transaction \

--compress \

--order-by-primary \

-plocal_password | mysql -u RDS_user \

--port=port_number \

--host=host_name \

-pRDS_password

AWS RDS
The parameters used are as follows:

-u local_user – Use to specify a user name. In the first usage of this parameter, you
specify the name of a user account on the local MySQL or MariaDB database identified
by the --databases parameter.
--databases database_name – Use to specify the name of the database on the local
MySQL or MariaDB instance that you want to import into Amazon RDS.
--single-transaction – Use to ensure that all of the data loaded from the local database
is consistent with a single point in time. If there are other processes changing the data
while mysqldump is reading it, using this option helps maintain data integrity.
--compress – Use to reduce network bandwidth consumption by compressing the data --compress – Use to reduce network bandwidth consumption by compressing the data
from the local database before sending it to Amazon RDS.
--order-by-primary – Use to reduce load time by sorting each table's data by its
primary key.
-plocal_password – Use to specify a password. In the first usage of this parameter, you
specify the password for the user account identified by the first -u parameter.
-u RDS_user – Use to specify a user name. In the second usage of this parameter, you
specify the name of a user account on the default database for the MySQL or MariaDB
DB instance identified by the --host parameter.

AWS RDS
--port port_number – Use to specify the port for your MySQL or MariaDB DB
instance. By default, this is 3306 unless you changed the value when creating the
instance.
--host host_name – Use to specify the DNS name from the Amazon RDS DB
instance endpoint, for example, myinstance.123456789012.us-east-
1.rds.amazonaws.com. You can find the endpoint value in the instance details in
the Amazon RDS Management Console.
-pRDS_password – Use to specify a password. In the second usage of this
parameter, you specify the password for the user account identified by the second
-u parameter.

AWS CLI for RDS
 To find the connection information for a DB instance by using the AWS CLI, call the

describe-dbinstances command. In the call, query for the DB instance ID, endpoint,
port, and master user name.

 aws rds describe-db-instances --query
"*[].[DBInstanceIdentifier,Endpoint.Address,Endpoint.Port,MasterUsername]"

Managing RDS DB Instance:

Starting, Stopping, Rebooting, Modifying, Renaming, Deleting DB
instances

AWS RDS – Stopping DB Instance
Managing an RDS DB Instance:

 Starting, Stopping, Rebooting, Modifying, Renaming, Deleting DB instances

Stopping an RDS DB Instance:

• If you use a DB instance intermittently, for temporary testing, or for a daily development
activity, you can stop your Amazon RDS DB instance temporarily to save money.

• While your DB instance is stopped, you are charged for provisioned storage (including
Provisioned IOPS) and backup storage (including manual snapshots and automated backups
within your specified retention window), but not for DB instance hours.

You can stop a DB using the AWS Management Console, the AWS CLI, or the RDS You can stop a DB using the AWS Management Console, the AWS CLI, or the RDS
API.

Limitations:

1. You can't stop a DB instance that has a read replica, or that is a read replica.

2. You can't stop an Amazon RDS for SQL Server DB instance in a Multi-AZ
configuration.

3. You can't modify a stopped DB instance.

4. You can't delete an option group that is associated with a stopped DB instance.

5. You can't delete a DB parameter group that is associated with a stopped DB
instance.

AWS RDS – Stopping DB Instance
Using AWS Console:

To stop a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://

console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you
want to stop.

3. For Actions, choose Stop.

4. (Optional) In the Stop DB Instance window, choose Yes for Create Snapshot? and
enter the

snapshot name for Snapshot name. Choose Yes if you want to create a snapshot of the snapshot name for Snapshot name. Choose Yes if you want to create a snapshot of the
DB instance before stopping it.

5. Choose Yes, Stop Now to stop the DB instance, or choose Cancel to cancel the
operation.

using RDS API:

To stop a DB instance by using the Amazon RDS API, call the StopDBInstance operation
with the following parameter:

• DBInstanceIdentifier – the name of the DB instance.

Using AWS CLI:

aws rds stop-db-instance --db-instance-identifier mydbinstance.

Where:

DBInstanceIdentifier the name of the DB instance.

AWS RDS – Starting DB Instance
Starting an Amazon RDS DB instance that was previously stopped:
• After you stop your DB instance, you can restart it to begin using it again.

• When you start a DB instance that you previously stopped, the DB instance retains the
ID, Domain Name Server (DNS) endpoint, parameter group, security group, and option
group. When you start a stopped instance, you are charged a full instance hour.

To start a DB instance using Console:
1. Sign in to the AWS Management Console and open the Amazon RDS console at https://

console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that you 2. In the navigation pane, choose Databases, and then choose the DB instance that you
want to start.

3. For Actions, choose Start.

Using AWS CLI:

aws rds start-db-instance --db-instance-identifier mydbinstance

Using RDS API:

To start a DB instance by using the Amazon RDS API, call the StartDBInstance operation
with the

following parameter:

• DBInstanceIdentifier – The name of the DB instance.

AWS RDS – Modifying DB Instance
Using AWS Console:

To modify a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at
https://

console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that
you want to modify.

3. Choose Modify. The Modify DB Instance page appears.

4. Change any of the settings that you want. 4. Change any of the settings that you want.

5. When all the changes are as you want them, choose Continue and check the
summary of

modifications.

6. (Optional) Choose Apply immediately to apply the changes immediately. Choosing
this option can cause downtime in some cases.

7. On the confirmation page, review your changes. If they are correct, choose Modify
DB Instance to save your changes.

Or choose Back to edit your changes or Cancel to cancel your changes.

AWS RDS – Modifying DB Instance
Using AWS CLI:
To modify a DB instance by using the AWS CLI, call the modify-db-instance command.
Specify the DB instance identifier and the values for the options that you want to
modify.

Modifying an Amazon RDS DB instance:

aws rds modify-db-instance ^

--db-instance-identifier mydbinstance ^

--backup-retention-period 7 ^--backup-retention-period 7 ^

--deletion-protection ^

--no-apply-immediately

Using RDS API:
 To modify a DB instance by using the Amazon RDS API, call the ModifyDBInstance

operation. Specify the DB instance identifier, and the parameters for the settings
that you want to modify

AWS RDS - Renaming DB Instance
Renaming DB Instance using Console:
1. Sign in to the AWS Management Console and open the Amazon RDS console at
https://

console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB instance that you want to rename.

4. Choose Modify.

5. In Settings, enter a new name for DB instance identifier.

6. Choose Continue.6. Choose Continue.

7. To apply the changes immediately, choose Apply immediately. Choosing this
option can cause an outage in some cases.

8. On the confirmation page, review your changes. If they are correct, choose Modify
DB Instance to save your changes.

AWS RDS - Renaming DB Instance
Renaming DB instance Using using CLI:

aws rds modify-db-instance ^

--db-instance-identifier DBInstanceIdentifier ^

--new-db-instance-identifier NewDBInstanceIdentifier

Using RDS API:

To rename a DB instance, call Amazon RDS API operation ModifyDBInstance with the
following parameters:

• DBInstanceIdentifier — existing name for the instance

• NewDBInstanceIdentifier — new name for the instance • NewDBInstanceIdentifier — new name for the instance

AWS RDS - Rebooting DB Instance
using Console:

To reboot a DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at
https://

console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB instance that
you want to reboot.

3. For Actions, choose Reboot.

The Reboot DB Instance page appears.The Reboot DB Instance page appears.

4. (Optional) Choose Reboot with failover? to force a failover from one AZ to
another.

5. Choose Reboot to reboot your DB instance. Alternatively, choose Cancel.

using CLI:

To reboot a DB instance by using the AWS CLI, call the reboot-db-instance command.

aws rds reboot-db-instance ^

--db-instance-identifier mydbinstance

Using RDS API:

To reboot a DB instance by using the Amazon RDS API, call the RebootDBInstance
operation

NoSQL

No SQL
• NoSQL databases enable you to store data with flexible schema and a variety of data models.

These databases are relatively easy for developers to use, and have the high performance and
functionality needed for modern applications.

• NoSQL is a new breed of database management systems that fundamentally differ from relational
database systems. NoSQL database is a highly scalable and flexible database management
system. NoSQL database allows the user to store and process unstructured data and semi-
structured data; this feature is not possible in RDBMS tools.

• NoSQL database is a type of non-relational database, and it is capable of processing structured,
semi-structured and unstructured data.

• NoSQL databases, also referred to as “non-SQL” and “Not Only SQL” databases, are mainly used
for unstructured data.

• Data is not stored in tabular format but is stored mainly in documents, key-value pairs,
graphs, or wide column stores format. As NoSQL databases are schema agnostic, unstructured
data such as blog articles, photos, videos, or other content can be stored very easily.data such as blog articles, photos, videos, or other content can be stored very easily.

• NoSQL is an approach to database design that can accommodate a wide variety of data models,
including key-value, document, columnar and graph formats.

• NoSQL systems don’t generally provide the same level of data consistency as SQL databases.
• SQL databases have traditionally sacrificed scalability and performance for the ACID properties.
• NoSQL databases guarantee high speed and scalability performance.
• NoSQL systems have the architecture in such a way to operate at high speed and wider flexibility

towards the developer side.
• Some of the most common NoSQL databases are MongoDB, MarkLogic, CloudDB, and Dynamo

DB.
• Unlike SQL databases, NoSQL databases are more horizontally scalable which means that the

load can be distributed by adding more database servers in the pool. This elastic scalability is a big
advantage in providing optimal support for the MapReduce programming model, which makes
NoSQL the perfect candidate for big-data applications.

No SQL - Characteristics
• Multi-Model: This feature of NoSQL databases makes them extremely flexible

when it comes to handling data.

• Easily Scalable: This feature of NoSQL databases easy scales to adapt to huge
volumes and complexity of cloud applications. This scalability also improves
performance, allowing for continuous availability and very high read/write speeds.

• Flexible: This feature of NoSQL databases allows you to process all varieties of
data. It can process structured, semi-structured and unstructured data. It works on
many processors—NoSQL systems allow you to store your database on multiple
processors and maintain high-speed performance.

• Less Downtime: The elastic nature of NoSQL allows for the workload to • Less Downtime: The elastic nature of NoSQL allows for the workload to
automatically be spread across any number of servers.

•

No SQL
• Models of NoSQL Databases Offered on AWS

• Key-Value Databases

• Document Databases

• Wide Column Databases

• Graph Databases

• Time Series Databases

• Ledger Databases

• AWS NoSQL Databases Services

• Amazon DynamoDB

Amazon ElastiCache• Amazon ElastiCache

• Amazon Neptune

• Amazon Timestream

• Amazon QLDB

• Amazon DocumentDB

• Amazon Keyspaces

•

SQL dbs
• SQL databases use the ACID database properties to ensure that the database transactions are

reliable.

• ACID stands for
• Atomicity (An “all or nothing” approach for the data that is committed to be saved),

• Consistency (Interrupted changes are rolled back),

• Isolation (Intermediate state of a transaction is not visible to other transactions), and

• Durability (Completed transactions retain their state even in system failure).

SQL VS No SQL
You would choose an SQL database when:

• You need a database with a predefined schema so that applications adhere to that
schema.

• You are designing an application that requires multi-row transactions.

• You require a database that has no room for error and is very consistent, for
example in the case of data warehousing systems.

You would choose an NoSQL database when:

• You need a database that accounts for exponential growth with no clear schema • You need a database that accounts for exponential growth with no clear schema
definitions.

• You require a database which can accommodate variable data structures and plays
well with big data platforms such as Hadoop.

• You need a distributed database system that scales easily and inexpensively.

No SQL

SQL NoSQL

Relational Data Base Management System
(RDBMS)

Non-relational or distributed database system.
(Non – RDBMS)

These databases have fixed or static or predefined
schema

They have dynamic schema

These databases are not suited for hierarchical These databases are best suited for hierarchical These databases are not suited for hierarchical
data storage.

These databases are best suited for hierarchical
data storage.

These databases are best suited for complex queries These databases are not so good for complex
queries

Vertically Scalable Horizontally scalable

Follows ACID (Automocity, Consistency, Isolation
and Durability) property

Follows CAP(consistency, availability, partition
tolerance)

SQL vs No SQL
1. Type:

 SQL databases are primarily called as Relational Databases (RDBMS); whereas

 NoSQL database are primarily called as non-relational or distributed database.

2. Language difference:

 SQL requires you to use predefined schemas to determine the structure of your data before you work
with it. Also all of your data must follow the same structure. This can require significant up-front
preparation which means that a change in the structure would be both difficult and disruptive to your
whole system.

 A NoSQL database has dynamic schema for unstructured data. Data is stored in many ways which
means it can be document-oriented, column-oriented, graph-based or organized as a KeyValue store. means it can be document-oriented, column-oriented, graph-based or organized as a KeyValue store.
This flexibility means that documents can be created without having defined structure first. Also each
document can have its own unique structure. The syntax varies from database to database, and you can
add fields as you go.

3. The Scalability:

 In almost all situations SQL databases are vertically scalable. This means that you can increase the
load on a single server by increasing things like RAM, CPU or SSD.

 NoSQL databases are horizontally scalable. This means that you handle more traffic by sharing, or
adding more servers in your NoSQL database. It is similar to adding more floors to the same building
versus adding more buildings to the neighbourhood. Thus NoSQL can ultimately become larger and
more powerful, making these databases the preferred choice for large or ever-changing data sets.

SQL vs No SQL

4. The Structure:

 SQL databases are table-based

 NoSQL databases are either key-value pairs, document-based, graph databases or wide-
column stores. This makes relational SQL databases a better option for applications that require
multi-row transactions such as an accounting system or for legacy systems that were built for a
relational structure.

5. Property followed:

 SQL databases follow ACID properties (Atomicity, Consistency, Isolation and Durability)
whereas

 NoSQL database follows the Brewers CAP theorem (Consistency, Availability and Partition  NoSQL database follows the Brewers CAP theorem (Consistency, Availability and Partition
tolerance).

6. Support:

 Great support is available for all SQL database from their vendors. Also a lot of independent
consultations are there who can help you with SQL database for a very large scale deployments

 NoSQL database you still have to rely on community support and only limited outside experts
are available for setting up and deploying your large scale NoSQL deployments.

 Some examples of SQL databases include PostgreSQL, MySQL, Oracle and Microsoft SQL
Server.

 NoSQL database examples include Redis, RavenDB Cassandra, MongoDB, BigTable,
HBase, Neo4j and CouchDB, DynamoDB.

No SQL db models offered on AWS
• Models of NoSQL Databases Offered on AWS

• Key-Value Databases

• Document Databases

• Wide Column Databases

• Graph Databases

• Time Series Databases

• Ledger Databases

AWS No SQL databases
Types of No-SQL Databases offered on AWS:

There are six types of NoSQL dataase models you can choose from in AWS.

1) Key-Value Databases

2) Document Databases

3) Wide Column Databases

4) Graph Databases

5) Time Series Databases

6) Ledger Databases

Key-Value Databases:

Key-value databases enable you to store data in pairs containing a unique ID and a data value. This
provides a flexible storage structure since values are not assigned to a table and can hold any amount or
structure of data. These databases can manage large volumes of data or requests.

 Use cases for key-value databases include gaming applications, eCommerce systems, and high traffic
applications.

AWS service: Amazon DynamoDB

No SQL
Document Databases:

Document databases are structured similarly to key-value databases except that keys and values are stored
in documents written in a markup language like JSON, XML, or YAML. You can use these databases to
store hierarchies of data by linking documents. Use cases for document databases include user profiles,
catalogs, and content management.

AWS service: Amazon DocumentDB, DynamoDB

Wide Column Databases:

Wide column databases are based on tables but without a strict column format. Rows do not need a value
in every column and segments of rows and columns containing different data formats can be combined. in every column and segments of rows and columns containing different data formats can be combined.
Use cases for wide column databases include route optimization, fleet management, and industrial
maintenance applications.

AWS service: Amazon Keyspaces (for Apache Cassandra)

Graph Databases

Graph databases are structured as collections of edges and nodes. Nodes are the individual data values and
edges are the relationships between those values. These databases enable you to track intricately related
data in an organic network rather than a structured table. Use cases for graph databases include
recommendation engines, social networking, and fraud detection.

AWS service: Amazon Neptune

No SQL
Time Series Databases:

Time series databases store data in time ordered streams. Data is not sorted by value or ID but by the time
of collection, ingestion, or other timestamps included in the metadata.

These databases enable you to manage and query data based on time intervals. Use cases for time series
databases include industrial telemetry, DevOps, and Internet of things (IoT) applications.

AWS service: Amazon Timestream

Ledger Databases:

Ledger databases are based on logs that record events related to data values. These logs are transparent,
immutable, and can be verified cryptographically to prove the authenticity and integrity of data. Use cases immutable, and can be verified cryptographically to prove the authenticity and integrity of data. Use cases
for ledger databases include banking systems, registrations, supply chains, and systems of record.

AWS service: Amazon Quantum Ledger Database (QLDB)

AWS No SQL DB Services
• AWS NoSQL Databases Services

• Amazon DynamoDB

• Amazon ElastiCache

• Amazon Neptune

• Amazon Timestream

• Amazon QLDB

• Amazon DocumentDB

• Amazon Keyspaces

AWS No SQL db services
Amazon DynamoDB

Amazon DynamoDB is a document and key-value database. It is a fully managed service that includes features for backup
and restore, in-memory caching, security, and multiregion, multimaster distribution. DynamoDB supports atomicity,
consistency, isolation, durability (ACID) transactions and encryption by default.

Amazon ElastiCache

Amazon ElastiCache is an in-memory data store that you can use in place of a disk-based database. It provides fully
managed support for Memcached and Redis, and enables scaling with memory sharding. It is designed to support sub-
millisecond response times and is typically used for queuing, real-time analytics, caching, and session stores.

Amazon NeptuneAmazon Neptune

Amazon Neptune is a graph database service that is fully managed and optimized for storing data on billions of
relationships. It supports a range of graph models and query languages, including W3C’s RDF, Property Graph, SPARQL,
and TinkerPop Gremlin.

Neptune includes features for point-in-time recovery, multi-zone data replication, continuous backups, and read replicas.
It supports ACID transactions and provides encryption in-transit and at-rest.

Amazon Timestream

Amazon Timestream is a fully managed time series database with an adaptive query processing engine. It is a serverless
service and automatically manages hardware and software maintenance and provisioning for you.

Timestream includes features for automated data compression, tiering, retention, and rollups. It also includes built-in
analytics for the approximation, smoothing, and interpolation of data.

AWS No SQL db services
Amazon QLDB

Amazon QLDB is a ledger database that you can use to track data changes. It is fully managed and designed to enable you
to avoid complex setups required for managing ledger data with relational databases or blockchain.

QLDB provides a SQL-like API, full transactional support, and a flexible document data model. It includes features for
automatic scaling, ACID compliant transactions, multizone availability, and data streaming with Kinesis Data Streams.

Amazon DocumentDB

Amazon DocumentDB is a fully managed document database that is compatible with MongoDB. DocumentDB
architecture separates compute and storage resources for greater scalability and flexibility. It also includes support for up
to 15 read replicas, data replication for durability across three availability zones, and free use of the AWS Database
Migration Service.

Amazon Keyspaces

Amazon Keyspaces is a managed wide column database that is compatible with Apache Cassandra. You can use it to
migrate Cassandra workloads and applications and continue to use Cassandra native code and tools. It includes features
for autoscaling and enables you to select between on-demand or provisioned resources.

Amazon DynamoDBAmazon DynamoDB

DynamoDB
• Amazon DynamoDB is a fully managed NoSQL database service that provides fast

and predictable performance with seamless scalability.

• DynamoDB lets you offload the administrative burdens of operating and scaling a
distributed database so that you don't have to worry about hardware
provisioning, setup and configuration, replication, software patching, or
cluster scaling. DynamoDB also offers encryption.

 With DynamoDB, you can create database tables that can store and retrieve any
amount of data and serve any level of request traffic.

 You can use the AWS Management Console to monitor resource utilization and
performance metrics.performance metrics.

 DynamoDB provides on-demand backup capability. It allows you to create full
backups of your tables for long-term retention and archival for regulatory
compliance needs.

 You can create on-demand backups and enable point-in-time recovery for your
Amazon DynamoDB tables. Point-in-time recovery helps protect your tables from
accidental write or delete operations. With point-in-time recovery, you can restore a
table to any point in time during the last 35 days.

 DynamoDB allows you to delete expired items from tables automatically to help
you reduce storage usage and the cost of storing data that is no longer relevant.

No SQL
High Availability and Durability:

 DynamoDB automatically spreads the data and traffic for your tables over a
sufficient number of servers to handle your throughput and storage requirements,
while maintaining consistent and fast performance.

 All of your data is stored on solid-state disks (SSDs) and is automatically replicated
across multiple Availability Zones in an AWS Region, providing built-in high
availability and data durability.

 You can use global tables to keep DynamoDB tables in sync across AWS Regions.

Dynamo DB
 In DynamoDB, tables, items, and attributes

 are the core components that you work with.
 A table is a collection of items, and each item is a collection of attributes.
 DynamoDB uses primary keys to uniquely identify each item in a table and secondary indexes to provide

more querying flexibility.

Tables, Items, and Attributes:

The following are the basic DynamoDB components:

 Tables – Similar to other database systems, DynamoDB stores data in tables. A table
is a collection of data. For example, see the example table called People that you could
use to store personal contact information about friends, family, or anyone else of
interest. You could also have a Cars table to store information about vehicles that
people drive.people drive.

 Items – Each table contains zero or more items. An item is a group of attributes that is
uniquely identifiable among all of the other items. In a People table, each item
represents a person. For a Cars table, each item represents one vehicle. Items in
DynamoDB are similar in many ways to rows, records, or tuples in other database
systems. In DynamoDB, there is no limit to the number of items you can store in a table.

 Attributes – Each item is composed of one or more attributes. An attribute is a
fundamental data element, something that does not need to be broken down any
further. For example, an item in a People table contains attributes called PersonID,
LastName, FirstName, and so on. For a Department table, an item might have attributes
such as DepartmentID, Name, Manager, and so on. Attributes in DynamoDB are similar
in many ways to fields or columns in other database systems.

Dynamo DB

•

•

Dynamo DB
Points:

 Note the following about the People table:

 Each item in the table has a unique identifier, or primary key, that distinguishes the
item from all of the others in the table. In the People table, the primary key consists
of one attribute (PersonID).

 Other than the primary key, the People table is schemaless, which means that
neither the attributes nor their data types need to be defined beforehand. Each item
can have its own distinct attributes.

 Most of the attributes are scalar, which means that they can have only one value.
Strings and numbers are common examples of scalars.Strings and numbers are common examples of scalars.

 Some of the items have a nested attribute (Address). DynamoDB supports nested
attributes up to 32 levels deep.

•

Dynamo DB
Primary Key:

• When you create a table, in addition to the table name, you must specify the primary key of the table.

• The primary key uniquely identifies each item in the table, so that no two items can have the same key.

DynamoDB supports two different kinds of primary keys:

Partition key – A simple primary key, composed of one attribute known as the partition key.

DynamoDB uses the partition key's value as input to an internal hash function. The output from the hash
function determines the partition (physical storage internal to DynamoDB) in which the item will be stored.
In a table that has only a partition key, no two items can have the same partition key value.

Partition key and sort key – Referred to as a composite primary key, this type of key is composed
of

two attributes. The first attribute is the partition key, and the second attribute is the sort key.two attributes. The first attribute is the partition key, and the second attribute is the sort key.

DynamoDB uses the partition key value as input to an internal hash function. The output from the

hash function determines the partition (physical storage internal to DynamoDB) in which the item will

be stored. All items with the same partition key value are stored together, in sorted order by sort key

value.

In a table that has a partition key and a sort key, it's possible for two items to have the same partition

key value. However, those two items must have different sort key values.

