UNIT 4 PART 1

The Internet Transport Protocol (UDP):
Introduction to UDP, Remote Procedure
Call, The Real-Time Transport Protocol.

The Internet Transport Protocols: UDP

* The Internet has two main protocols in the

transport layer, a connectionless protocol and
a connection-oriented protocol.

* The connectionless protocol is UDP.
 The connection-oriented protocol is TCP.

 Because UDP is basically just IP with a short
header added.

Introduction to UDP

* The Internet protocol suite supports a
connectionless transport protocol, UDP (User
Datagram Protocol).

 UDP provides a way for applications to send
encapsulated IP datagrams and send them
without having to establish a connection.

Introduction to UDP

e UDP transmits segments consisting of an 8-byte
header followed by the payload. The header is
shown in below figure.

 The two ports serve to identify the end points within
the source and destination machines.

* When a UDP packet arrives, its payload is handed to
the process attached to the destination port.

0 15 16 31
Source Port Destination Port

UDP Length UDP Checksum :

(Data Z

Introduction to UDP

The UDP datagram contains a source port number and
destination port number.

Source port number identifies the port of the sending
application process.

Destination port number identifies the receiving
process on the destination host machine

The source port is primarily needed when a reply must
be sent back to the source. By copying the source port
field from the incoming segment into the destination
port field of the outgoing segment, the process sending

the reply can specify which process on the sending
machine is to get it.

Introduction to UDP

The UDP length field includes the 8-byte header and
the data.

The UDP checksum is optional and stored as O if not
computed (a true computed O is stored as all 1s).

Turning it off is foolish unless the quality of the data
does not matter (e.g., digitized speech).

UDP checksum covers the UDP header and the UDP
data.

UDP checksum is end-to-end checksum. It is calculated
by the sender, and then verified by receiver. It is
designed to catch any modification of the UDP header
or data anywhere between sender and receiver.

Remote Procedure Call

When a process on machine 1 calls a procedure on
machine 2, the calling process on 1 is suspended and
execution of the called procedure takes place on 2.

Information can be transported from the caller to the
callee in the parameters and can come back in the
procedure result.

No message passing is visible to the programmer.

This technique is known as RPC (Remote Procedure
Call).

The calling procedure is known as the client and the
called procedure is known as the server.

Remote Procedure Call

The idea behind RPC is to make a remote procedure
call look as much as possible like a local one.

To call a remote procedure, the client program must be
bound with a small library procedure, called the client
stub, that represents the server procedure in the
client's address space.

Similarly, the server is bound with a procedure called
the server stub.

These procedures hide the fact that the procedure call
from the client to the server is not local.

The actual steps in making an RPC are shown in below
figure.

Remote Procedure Call

Client CPU Server CPU
1/\ Client Server.
stub
@ stub {@
2 4
Operating system Y A Operating system
L 3 W,
Network

Figure: Steps in making a remote procedure call. The stubs are shaded

Remote Procedure Call

Step 1 is the client calling the client stub. This call is a local
procedure call, with the parameters pushed onto the stack
in the normal way.

Step 2 is the client stub packing the parameters into a
message and making a system call to send the message.
Packing the parameters is called marshaling.

Step 3 is the kernel sending the message from the client
machine to the server machine.

Step 4 is the kernel passing the incoming packet to the
server stub.

Finally, step 5 is the server stub calling the server
procedure with the unmarshaled parameters. The reply
traces the same path in the other direction.

Remote Procedure Call

* Disadvantages of RPC:
— A First problem is the use of pointer parameters.

— A second problem is that in weakly-typed languages,
like C, it is perfectly legal to write a procedure that
computes the inner product of two vectors (arrays),
without specifying how large either one is.

— A third problem is that it is not always possible to
deduce the types of the parameters, not even from a
formal specification or the code itself.

— A fourth problem relates to the use of global
variables.

The Real-Time Transport Protocol

Client-server RPC is one area in which UDP is widely used.

Real-time Transport Protocol run over user datagram
protocol.

Real-time Transport Protocol used in multimedia
applications such as Internet radio, Internet telephony,
music-on-demand, videoconferencing, video-on-demand.
Audio, video and text are the content of the multimedia.

Multimedia application also contains other types of data
streams. All these data is stored into the RTP library in user
space along with the application. This library then
multiplexes the streams and encodes them in RTP packets,
which it then stuffs into a socket.

The Real-Time Transport Protocol

Below figure(b) shows the RTP and packet
nesting.

Socket means communication end points.

At the other sides of socket, UDP packets are
generated and it is embedded in the IP packets.
RTP uses user space and linked with the
application program.

So that it look like an application protocol.

RTP is a generic and application independent
protocol.

The Real-Time Transport Protocol

Ethemet P UDP RTP

Iti | licati header header header header
User, || Multinects spplication il i

2 i RTP :

Socket interface RTP payload
08 UDP
Kernel IP ~——— UDP payload -
Ethernet - IP payload -
- Ethernet payload -

(a) (b)

Figure: (a) The position of RTP in the protocol stack. (b) Packet nesting

The Real-Time Transport Protocol

The basic function of RTP is to multiplex several
real-time data streams onto a single stream of
UDP packets.

The UDP stream can be sent to a single
destination (unicasting) or to multiple
destinations (multicasting).

Because RTP just uses normal UDP, its packets are
not treated specially by the routers unless some
normal IP quality-of-service features are enabled.

In particular, there are no special guarantees
about delivery, jitter, etc.

The Real-Time Transport Protocol

Each packet sent in an RTP stream is given a number one
higher than its predecessor.

This numbering allows the destination to determine if any
packets are missing.

If a packet is missing, the best action for the destination to
take is to approximate the missing value by interpolation.

Retransmission is not a practical option since the
retransmitted packet would probably arrive too late to be
useful.

As a consequence, RTP has no flow control, no error
control, no acknowledgements, and no mechanism to
request retransmissions.

The Real-Time Transport Protocol

The RTP header is illustrated in below figure.

It consists of three 32-bit words and potentially
some extensions.

The P
padded
byte te

The first word contains the Version field, which is
already at 2.

bit indicates that the packet has been
to a multiple of 4 bytes. The last padding
Is how many bytes were added.

The X

nit indicates that an extension header is

present.

The Real-Time Transport Protocol

- 32 bits -
| [T 1 I I I I O O
‘MlF‘ayinacltypa

|
cC

20

Sequence number

Timeastamp

synchronization source identifier

Figure: The RTP header

The Real-Time Transport Protocol

The CC field tells how many contributing sources are
present, from 0 to 15.

The M bit is an application-specific marker bit. It can be
used to mark the start of a video frame, the start of a word
in an audio channel, or something else that the application
understands.

The Payload type field tells which encoding algorithm has
been used (e.g., uncompressed 8-bit audio, MP3, etc.).
Since every packet carries this field, the encoding can
change during transmission.

The Sequence number is just a counter that is incremented
on each RTP packet sent. It is used to detect lost packets.

The Real-Time Transport Protocol

 The timestamp is produced by the stream's source to
note when the first sample in the packet was made.
This value can help reduce jitter at the receiver by
decoupling the playback from the packet arrival time.

* The Synchronization source identifier tells which
stream the packet belongs to. It is the method used to
multiplex and demultiplex multiple data streams onto a
single stream of UDP packets.

* The Contributing source identifiers, if any, are used
when mixers are present in the studio. In that case, the
mixer is the synchronizing source, and the streams
being mixed are listed here.

UNIT 4 PART 2

The Internet Transport Protocol (TCP): Introduction to
TCP, The TCP Service Model, The TCP Protocol, The TCP
Segment Header, TCP Connection Establishment, TCP
Connection Release, Modeling TCP Connection
Management, TCP Transmission Policy, TCP Congestion
Control, TCP Timer Management.

The Internet Transport Protocol (TCP)

 UDP is a simple protocol and it has some niche
uses, such as client-server interactions and
multimedia, but for most Internet
applications, reliable, sequenced delivery is
needed.

* UDP cannot provide this, so another protocol
IS required.

e |t is called TCP and is the main workhorse of
the Internet.

Introduction to TCP

e TCP (Transmission Control Protocol) was
specifically designed to provide a reliable end-to-
end byte stream over an unreliable internetwork.

* An internetwork differs from a single network
because different parts may have wildly different
topologies, bandwidths, delays, packet sizes, and
other parameters.

e TCP was designed to dynamically adapt to
properties of the internetwork and to be robust
in the face of many kinds of failures.

Introduction to TCP

Each machine supporting TCP has a TCP transport
entity, either a library procedure, a user process, or
part of the kernel.

In all cases, it manages TCP streams and interfaces to
the IP layer.

A TCP entity accepts user data streams from local
processes, breaks them up into pieces not exceeding
64 KB and sends each piece as a separate IP datagram.

When datagrams containing TCP data arrive at a
machine, they are given to the TCP entity, which
reconstructs the original byte streams.

Introduction to TCP

* For simplicity, we will sometimes use just
"TCP" to mean the TCP transport entity (a
piece of software) or the TCP protocol (a set of
rules). From the context it will be clear which
iIs meant. For example, in "The user gives TCP
the data," the TCP transport entity is clearly
intended.

Introduction to TCP

* The IP layer gives no guarantee that
datagrams will be delivered properly, so it is
up to TCP to time out and retransmit them as
need be.

 Datagrams that do arrive may well do so in the
wrong order; it is also up to TCP to reassemble
them into messages in the proper sequence.

* In short, TCP must furnish the reliability that
most users want and that IP does not provide.

The TCP Service Model

TCP service is obtained by both the sender and
receiver creating end points, called sockets.

Each socket has a socket number (address)
consisting of the IP address of the host and a 16-
bit number local to that host, called a port.

A port is the TCP name for a TSAP.

For TCP service to be obtained, a connection
must be explicitly established between a socket
on the sending machine and a socket on the
receiving machine.

The TCP Service Model

A socket may be used for multiple connections
at the same time.

In other words, two or more connections may
terminate at the same socket.

Connections are identified by the socket
identifiers at both ends, that is, (socketl,
socket?).

No virtual circuit numbers or other identifiers
are used.

The TCP Service Model

* Port numbers below 1024 are called well-
known ports and are reserved for standard
services.

* For example, any process wishing to establish
a connection to a host to transfer a file using
FTP can connect to the destination host's port
21 to contact its FTP daemon.

The TCP Service Model

Port | Protocol Use

21 | FTP - File transfer

23 | Telnet Remote login

25 | SMTP | E-mail

69 | TFTP | Trivial file transfer protocol

79 | Finger Lookup information about a user
80 | HTTP | World WideWeb
110 | POP-3 Remote e-mail access

119 | NNTP = USENET news

The TCP Service Model

* All TCP connections are full duplex and point-
to-point.
— Full duplex means that traffic can go in both
directions at the same time.

— Point-to-point means that each connection has
exactly two end points. TCP does not support
multicasting or broadcasting.

The TCP Service Model

A TCP connection is a byte stream, not a message
stream. Message boundaries are not preserved

end to

end.

* For example, if the sending process does four
512-byte writes to a TCP stream, these data may

oyte ¢
oyte c
way. T

oe delivered to the receiving process as four 512-

nunks, two 1024-byte chunks, one 2048-
nunk (see below figure), or some other
nere is no way for the receiver to detect

the unit(s) in which the data were written.

The TCP Service Model

IP header / TCP header
\

1 A 18 ¢ /o ABCOD

(a) (b)

Figure: (a) Four 512-byte segments sent as separate IP datagrams.
(b) The 2048 bytes of data delivered to the application in a single READ call.

The TCP Service Model

* When an application passes data to TCP, TCP
may send it immediately or buffer it (in order
to collect a larger amount to send at once), at
its discretion. Sometimes, the application
really wants the data to be sent immediately.

* To force data out, applications can use the
PUSH flag, which tells TCP not to delay the
transmission.

The TCP Service Model

e One last feature of the TCP service that is worth
mentioning here is urgent data.

* When an interactive user hits the DEL or CTRL-C
key to break off a remote computation that has
already begun, the sending application puts some
control information in the data stream and gives
it to TCP along with the URGENT flag.

* This event causes TCP to stop accumulating data
and transmit everything it has for that connection
immediately.

The TCP Service Model

 The TCP (Transmission Control Protocol) Service
Model provides reliable, ordered, and error-
checked delivery of data over a network.

* |t operates at the Transport Layer of the OSI and
TCP/IP models and is a cornerstone of internet
communication, particularly for applications that
require accuracy and dependability, like web
browsing, file transfers, and email.

 Here are some key features of the TCP Service
Model:

1. Connection-Oriented
Communication

e TCP establishes a connection between the
sender and receiver before data s
transmitted.

* This connection is created through a three-
way handshake (SYN, SYN-ACK, ACK) that
synchronizes the sender and receiver and
establishes initial sequence numbers for
tracking data packets.

2. Reliable Data Transfer

* TCP ensures that data is delivered accurately
and in the correct order.

* |t uses acknowledgments (ACKs) to confirm
the receipt of data segments, and if any

segment is lost or corrupted, TCP will
retransmit it.

* Error-checking is done through checksums to
verify the integrity of data.

3. Flow Control

* TCP controls the rate of data transmission to
avoid overwhelming the receiver, using a
sliding window mechanism.

e The receiver specifies a window size to
indicate how much data it can handle at once.
This allows TCP to adjust the sending rate to
match the receiver’s capacity.

4. Congestion Control

* TCP includes mechanisms to manage network
congestion. It adjusts the data transmission
rate based on network conditions.

* Congestion control algorithms like Slow Start,
Congestion Avoidance, Fast Retransmit, and
Fast Recovery help optimize data flow,
reducing the likelihood of congestion and
maintaining smooth network performance.

5. Ordered Data Delivery

* TCP numbers each byte of data and ensures
that data arrives at the receiver in the correct
order.

* |f packets arrive out of sequence, TCP will
reorder them before delivering the data to the
application layer.

6. Full-Duplex Communication

* TCP supports bi-directional communication,
allowing data to be sent and received

simultaneously between the sender and
receiver.

Summary

e The TCP Service Model is essential for applications
where data integrity, order, and reliability are critical.

* While TCP provides these robust features, it comes
with added overhead and complexity, which can make
it less efficient for real-time or lightweight applications
(such as video calls or online gaming).

* |n such cases, UDP (User Datagram Protocol), which is
connectionless and does not guarantee reliability, may
be preferred for faster data transfer.

The TCP Protocol

* A key feature of TCP is that every byte on a

TCP connection has its own 32-bit sequence
number.

e Separate 32-bit sequence numbers are used
for acknowledgements and for the window
mechanism.

The TCP Protocol

1. Segments

* The sending and receiving TCP entities
exchange data in the form of segments.

e A TCP segment consists of a fixed 20-byte

header (plus an optional part) followed by
zero or more data bytes.

The TCP Protocol

2. Segment Size

The TCP software decides how big segments should be.

It can accumulate data from several writes into one
segment or can split data from one write over multiple
segments.

Two limits restrict the segment size.

— First, each segment, including the TCP header, must fit in
the 65,515-byte IP payload.

— Second, each network has a maximum transfer unit, or
MTU, and each segment must fit in the MTU. In practice,
the MTU is generally 1500 bytes (the Ethernet payload
size) and thus defines the upper bound on segment size.

The TCP Protocol

3. Fragmentation

* |f a segment is too large, then it should be
taken into small segments.

* Using fragmentation by a router, each new
segment gets a new IP header.

 Therefore, the fragmentation by router will
increase the overhead.

The TCP Protocol

4. Timer

e The basic protocol used by TCP entities is the sliding
window protocol.

* When a sender transmits a segment, it also starts a timer.

* When the segment arrives at the destination, the receiving
TCP entity sends back a segment (with data if any exist,
otherwise without data) bearing an acknowledgement

number equal to the next sequence number it expects to
receive.

* |f the sender's timer goes off before the acknowledgement
is received, the sender transmits the segment again.

5.

The TCP Protocol

Possible Problems

As the segments can be fragmented, a part of the transmitted
segment only may reach the destination with the remaining part
lost.

Segments can arrive out of order. For example, bytes 3072—-4095
can arrive but cannot be acknowledged because bytes 2048-3071
have not turned up yet.

Segments can also be delayed so long in transit that the sender
times out and retransmits them.

The retransmissions may include different byte ranges than the
original transmission, requiring a careful administration to keep
track of which bytes have been correctly received so far. However,
since each byte in the stream has its own unique offset, it can be
done.

There is possibility of congestion or broken network along the path.
TCP Should be able to solve these problems in an efficient manner.

The TCP Segment Header

Below figure shows the layout of a TCP segment.

Every segment begins with a fixed-format, 20-byte
header.

The fixed header may be followed by header options.

After the options, if any, up to 65,535 - 20 - 20 = 65,495
data bytes may follow, where the first 20 refer to the IP
header and the second to the TCP header.

Segments without any data are legal and are
commonly used for acknowledgements and control
messages.

1
1)

The TCP Segment Header

- 32 Bits -
l 1 L 1 1 1 1 L l] 1 L L L 1] l L L i) _— 1 1 l By | 1 1 1 1 1]
Source port Destination port
Sequence number
Acknowledgement number

TCP U/ AP R S| F
header RIC|S|{S|Y|I Window size
length G K/H TININ

Checksum Urgent pointer

Options (0 or more 32-bit words)

13

{{

)i

Data (optional)

(f

)i

Figure: The TCP header

The TCP Segment Header

* The Source port and Destination port fields
identify the local end points of the connection. A
port plus its host's IP address forms a 48-bit
uniqgue end point. The source and destination end
points together identify the connection.

* The Sequence number and Acknowledgement
number fields perform their usual functions. Both
are 32 bits long because every byte of data is
numbered in a TCP stream.

The TCP Segment Header

e The TCP header length tells how many 32-bit
words are contained in the TCP header. This
information is needed because the Options field
is of variable length, so the header is, too.

e Next comes a 6-bit field that is not used.

* Now come six 1-bit flags.

— URG is set to 1 if the Urgent pointer is in use. The
Urgent pointer is used to indicate a byte offset from
the current sequence number at which urgent data
are to be found.

The TCP Segment Header

— The ACK bit is set to 1 to indicate that the

Acknowledgement number is valid. If ACK is 0, the
segment does not contain an acknowledgement so the
Acknowledgement number field is ignored.

The PSH bit indicates PUSHed data. The receiver is hereby
kindly requested to deliver the data to the application
upon arrival and not buffer it until a full buffer has been
received (which it might otherwise do for efficiency).

The RST bit is used to reset a connection that has become
confused due to a host crash or some other reason. It is
also used to reject an invalid segment or refuse an attempt
to open a connection. In general, if you get a segment with
the RST bit on, you have a problem on your hands.

The TCP Segment Header

— The SYN bit is used to establish connections. The
connection request has SYN = 1 and ACK = 0 to
indicate that the piggyback acknowledgement
field is not in use. The connection reply does bear
an acknowledgement, so it has SYN = 1 and ACK =
1.

— The FIN bit is used to release a connection. It
specifies that the sender has no more data to
transmit.

The TCP Segment Header

* The Window size field tells how many bytes may
be sent starting at the byte acknowledged. A
Window size field of O is legal and says that the
bytes up to and including Acknowledgement
number - 1 have been received, but that the
receiver is currently badly in need of a rest and
would like no more data for the moment, thank
you. The receiver can later grant permission to
send by transmitting a segment with the same
Acknowledgement number and a nonzero
Window size field.

The TCP Segment Header

A Checksum is also provided for extra reliability. It
checksums the header, the data, and the conceptual
pseudoheader shown in below figure.

When performing this computation, the TCP Checksum
field is set to zero and the data field is padded out with
an additional zero byte if its length is an odd number.

The checksum algorithm is simply to add up all the 16-
bit words in one's complement and then to take the
one's complement of the sum.

As a consequence, when the receiver performs the
calculation on the entire segment, including the
Checksum field, the result should be 0.

The TCP Segment Header

32 Bils -

Source address

Destination address

QOO00Q0O00 Protocol = 6 TCP segment length

Figure: The pseudoheader included in the TCP checksum

The TCP Segment Header

 The pseudoheader contains the 32-bit IP addresses of
the source and destination machines, the protocol
number for TCP (6), and the byte count for the TCP
segment (including the header).

* Including the pseudoheader in the TCP checksum
computation helps detect misdelivered packets, but
including it also violates the protocol hierarchy since
the IP addresses in it belong to the IP layer, not to the
TCP layer.

 UDP uses the same pseudoheader for its checksum.

The TCP Segment Header

The Options field provides a way to add extra facilities not covered
by the regular header.

The most important option is the one that allows each host to
specify the maximum TCP payload it is willing to accept.

Using large segments is more efficient than using small ones
because the 20-byte header can then be amortized over more data,
but small hosts may not be able to handle big segments.

During connection setup, each side can announce its maximum and
see its partner's.

If 2 host does not use this option, it defaults to a 536-byte payload.

All Internet hosts are required to accept TCP segments of 536 + 20 =
556 bytes.

The maximum segment size in the two directions need not be the
same.

TCP Connection Establishment

Connection establishment in a TCP session is initialized
through a three-way handshake.

To establish a connection, one side (server) passively
waits for an incoming connection by executing the
LISTEN and ACCEPT primitives, either specifying a
specific source.

The other side (client) executes a CONNECT primitive,
specifying the IP address and port to which it wants to
connect, the maximum TCP segment size it is willing to
accept, and optionally some wuser data (e.g., a
password).

The CONNECT primitive sends a TCP segment with the
SYN bit on and ACK bit off and waits for a response.

TCP Connection Establishment

* When this segment arrives at the destination, the
TCP entity there checks to see if there is a process
that has done a LISTEN on the port given in the
Destination port field. If not, it sends a reply with
the RST bit on to reject the connection.

* |If some process is listening to the port, that
process is given the incoming TCP segment. It can
then either accept or reject the connection. If it

accepts, an acknowledgement segment is sent
back.

TCP Connection Establishment

* The sequence of TCP segments sent in the
normal case is shown in figure(a).

* Note that a SYN segment consumes 1 byte of
sequence space so that it can be
acknowledged unambiguously.

TCP Connection Establishment

Host 1 Host 2 Host 1 Host 2
SYN
- SYN (sg —_ (SEQ =
———J N Q = X
gYN (SEQ=X
g =x+1 =%x%*)X
= CR=rY _ — pCR =2~
(o a=y.A =Y
smEECT e
Sy e
N(SEQ\
-~ x‘ 4
Cr
(SEQ - Y
221 ACK=y, g
\s
| (a) (b)

Figure: (a) TCP connection establishment in the normal case (b) Call collision

TCP Connection Establishment

* In the event that two hosts simultaneously
attempt to establish a connection between the
same two sockets, the sequence of events is as
illustrated in figure(b).

* The result of these events is that just one
connection is established, not two because
connections are identified by their end points.

* If the first setup results in a connection identified
by (X, y) and the second one does too, only one
table entry is made, namely, for (x, y).

TCP Connection Establishment

* The initial sequence number on a connection
Is not O.

* A clock-based scheme is used, with a clock tick
every 4 usec.

* For additional safety, when a host crashes, it
may not reboot for the maximum packet
lifetime to make sure that no packets from
previous connections are still roaming around
the Internet somewhere.

TCP Connection Release

* Although TCP connections are full duplex, to
understand how connections are released it is

best to think of them as a pair of simplex
connections.

* Each simplex connection is released
independently of its sibling.

TCP Connection Release

To release a connection, either party can send a TCP
segment with the FIN bit set, which means that it has no
more data to transmit.

When the FIN is acknowledged, that direction is shut down
for new data.

Data may continue to flow indefinitely in the other
direction, however.

When both directions have been shut down, the
connection is released.

Normally, four TCP segments are needed to release a
connection, one FIN and one ACK for each direction.

However, it is possible for the first ACK and the second FIN
to be contained in the same segment, reducing the total
count to three.

TCP Connection Release

* Just as with telephone calls in which both
people say goodbye and hang up the phone
simultaneously, both ends of a TCP connection
may send FIN segments at the same time.

e These are each acknowledged in the usual
way, and the connection is shut down.

* There is, in fact, no essential difference
between the two hosts releasing sequentially
or simultaneously.

TCP Connection Release

* To avoid the two-army problem, timers are
used.

 If a response to a FIN is not forthcoming
within two maximum packet lifetimes, the
sender of the FIN releases the connection.

* The other side will eventually notice that
nobody seems to be listening to it any more
and will time out as well.

-TCP Connection Release

Client

Segment 1: FIN
Seq =20 ack =-

Segment 2 : ACK
Seq = 50 ack =21

Segment : FIN
Seq =51 ack =21

Segment : ACK

Seq =21 ack =52

Time Time

Figure: Four steps connection termination

TCP Connection Management
Modeling

The steps required to establish and release
connections can be represented in a finite
state machine with the 11 states listed in
below figure.

In each state, certain events are legal.

When a legal event happens, some action may
be taken.

If some other event happens, an error is
reported.

TCP Connection Management

Modeling

State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIMED WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

Figure: The states used in the TCP connection management finite state machine

TCP Connection Management
Modeling

Each connection starts in the CLOSED state.

It leaves that state when it does either a passive
open (LISTEN), or an active open (CONNECT).

If the other side does the opposite one, a
connection is established and the state becomes
ESTABLISHED.

Connection release can be initiated by either
side.

When it is complete, the state returns to CLOSED.

(Start)

CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED |_ \
o CLOSE-~)
LISTEN/- ! | CLOSE/-
SYN/SYN + ACK .
(Step 2 ,of the 3-way handshake) | LISTEN
'
: I\
e RST/ SENDISYN oo
ECYD : SYN/SYN + ACK (simultaneous open) SENT
]
1
1
; (Data transfer state)
A ACKJ- SYN + ACKIACK __/
------------------ o EERASLERED (Step 3 of the 3-way handshake)
CLOSE/FIN 5
CLOSEFIN \. FIN/ACK
((Active close) (Passiv?g close)
| Qudeda brtaind g adad s AACAAA AL st d adndadotal sdat ol do ot ododud cind b bedninte Aok o budciadog b dnd 1 ohetriatndae bednaosedal [ibatmiedndatstmdnd ot)
' | 5 M t
E — FINJACK 5 ; CL(J) = :
5 s CLOSING 5 : ahe f
- ! - H '
| ACK/- ACK/~ | : i CLOSE/FIN!
| 1 ' ! :
|] | : ' '
| FIN + ACK/ACK . ; ,
|} I) '
5 WAIT 2 —r WAIT | : : i
R N—— j H— R J
(Timeout/) !
1
ACK/- ;
CLOSED |w=mmmmmmmmmmm—emme—- -

(Go back to start)

TCP Connection Management
Modeling

The finite state machine itself is shown in below figure.

The common case of a client actively connecting to a
passive server is shown with heavy lines—solid for the
client, dotted for the server.

The lightface lines are unusual event sequences. Each line
in below figure is marked by an event/action pair.

The event can either be a user-initiated system call
(CONNECT, LISTEN, SEND, or CLOSE), a segment arrival
(SYN, FIN, ACK, or RST), or, in one case, a timeout of twice
the maximum packet lifetime.

The action is the sending of a control segment (SYN, FIN, or
RST) or nothing, indicated by —.

Comments are shown in parentheses.

TCP Connection Management
Modeling

* One can best understand the diagram by first
following the path of a client (the heavy solid
line), then later following the path of a server
(the heavy dashed line).

* When an application program on the client
machine issues a CONNECT request, the local
TCP entity creates a connection record, marks
it as being in the SYN SENT state, and sends a
SYN segment.

TCP Connection Management
Modeling

* Note that many connections may be open (or
being opened) at the same time on behalf of
multiple applications, so the state is per
connection and recorded in the connection
record.

* When the SYN+ACK arrives, TCP sends the
final ACK of the three-way handshake and
switches into the ESTABLISHED state.

e Data can now be sent and received.

TCP Connection Management
Modeling

When an application is finished, it executes a CLOSE
primitive, which causes the local TCP entity to send a FIN
segment and wait for the corresponding ACK (dashed box
marked active close).

When the ACK arrives, a transition is made to state FIN
WAIT 2 and one direction of the connection is now closed.

When the other side closes, too, a FIN comes in, which is
acknowledged.

Now both sides are closed, but TCP waits a time equal to
the maximum packet lifetime to guarantee that all packets
from the connection have died off, just in case the
acknowledgement was lost.

When the timer goes off, TCP deletes the connection
record.

TCP Connection Management
Modeling

Now let us examine connection management
from the server's viewpoint.

The server does a LISTEN and settles down to see
who turns up.

When a SYN comes in, it is acknowledged and the
server goes to the SYN RCVD state.

When the server's SYN is itself acknowledged, the
three-way handshake is complete and the server
goes to the ESTABLISHED state.

Data transfer can now occur.

TCP Connection Management
Modeling

* When the client is done, it does a CLOSE,
which causes a FIN to arrive at the server
(dashed box marked passive close).

* The server is then signaled. When it, too, does
a CLOSE, a FIN is sent to the client.

* When the client's acknowledgement shows
up, the server releases the connection and
deletes the connection record.

TCP Transmission Policy

* As mentioned earlier, window management in

TCP is not directly tied to acknowledgements
as it is in most data link protocols.

* For example, suppose the receiver has a 4096-
byte buffer, as shown in below figure.

TCP Transmission Policy

Sender
Application
doesa2k ——»
write
\\\
\@-'S\E‘Q@-\
—
——
o i st
o [ACK=2048 WIN = 2048]
Application

does a 2K ——
write

Sender is

blocked

Sender may
send up to 2K —

r——

(X [SEorme

Receiver

Receiver's
buffer

0 4K

Empty

2K

Full

Application
reads 2K

2K

w

2K

Figure: Window management in TCP

TCP Transmission Policy

* |f the sender transmits a 2048-byte segment
that is correctly received, the receiver will
acknowledge the segment.

 However, since it now has only 2048 bytes of
buffer space (until the application removes
some data from the buffer), it will advertise a
window of 2048 starting at the next byte
expected.

TCP Transmission Policy

* Now the sender transmits another 2048 bytes,
which are acknowledged, but the advertised
window is O.

* The sender must stop until the application
process on the receiving host has removed
some data from the buffer, at which time TCP
can advertise a larger window.

TCP Transmission Policy

* When the window is 0, the sender may not
normally send segments, with two exceptions.

— First, urgent data may be sent, for example, to
allow the user to kill the process running on the
remote machine.

— Second, the sender may send a 1-byte segment to
make the receiver reannounce the next byte
expected and window size. The TCP standard
explicitly provides this option to prevent deadlock
if a window announcement ever gets lost.

TCP Transmission Policy

* Problem that can degrade TCP performance is
the silly window syndrome.

* This problem occurs when data are passed to
the sending TCP entity in large blocks, but an
interactive application on the receiving side
reads data 1 byte at a time.

* To see the problem, look at below figure.

TCP Transmission Policy

.

Receiver's buffer is full

1
Application reads 1 byte

-——— Room for one more byte

|

~—— Header Window update segment sent
1
Header New byte arrives
1 Byte 1

Receiver's buffer is full

_

Figure: Silly window syndrome

TCP Transmission Policy

Initially, the TCP buffer on the receiving side is full and
the sender knows this (i.e., has a window of size 0).

Then the interactive application reads one character
from the TCP stream.

This action makes the receiving TCP happy, so it sends
a window update to the sender saying that it is all right
to send 1 byte.

The sender obliges and sends 1 byte.

The buffer is now full, so the receiver acknowledges
the 1-byte segment but sets the window to 0.

This behavior can go on forever.

TCP Transmission Policy

Solution for this problem : Nagle’s Algorithm (Sender side)

when data come into the sender one byte at a time, just
send the first byte and buffer all the rest until the
outstanding byte is acknowledged.

Then send all the buffered characters in one TCP segment
and start buffering again until they are all acknowledged.

If the user is typing quickly and the network is slow, a
substantial number of characters may go in each segment,
greatly reducing the bandwidth used.

The algorithm additionally allows a new packet to be sent if
enough data have trickled in to fill half the window or a
maximum segment.

TCP Transmission Policy

Clark's solution (Receiver Side)

Clark's solution is to prevent the receiver from sending a window
update for 1 byte.

Instead it is forced to wait until it has a decent amount of space
available and advertise that instead.

Specifically, the receiver should not send a window update until it
can handle the maximum segment size it advertised when the
connection was established or until its buffer is half empty,
whichever is smaller.

Furthermore, the sender can also help by not sending tiny
segments.

Instead, it should try to wait until it has accumulated enough space
in the window to send a full segment or at least one containing half
of the receiver's buffer size (which it must estimate from the
pattern of window updates it has received in the past).

TCP Transmission Policy

Nagle's algorithm and Clark's solution to the silly
window syndrome are complementary.

Nagle was trying to solve the problem caused by
the sending application delivering data to TCP a
byte at a time.

Clark was trying to solve the problem of the
receiving application sucking the data up from
TCP a byte at a time.

Both solutions are valid and can work together.

The goal is for the sender not to send small
segments and the receiver not to ask for them.

TCP Congestion Control

* When the load offered to any network is more
than it can handle, congestion builds up.

* The Internet is no exception.

* Although the network layer also tries to
manage congestion, most of the heavy lifting
is done by TCP because the real solution to
congestion is to slow down the data rate.

TCP Congestion Control

The first step in managing congestion is
detecting it.

In the old days, detecting congestion was
difficult.

A timeout caused by a lost packet could have
been caused by either (1) noise on a
transmission line or (2) packet discard at a
congested router.

Telling the difference was difficult.

TCP Congestion Control

* Before discussing how TCP reacts to congestion,
let us first describe what it does to try to prevent
congestion from occurring in the first place.

 When a connection is established, a suitable
window size has to be chosen. The receiver can
specify a window based on its buffer size. If the
sender sticks to this window size, problems will
not occur due to buffer overflow at the receiving
end, but they may still occur due to internal
congestion within the network.

TCP Congestion Control

In the below figure, we see this problem
illustrated hydraulically.

In figure(a), we see a thick pipe leading to a
small-capacity receiver. As long as the sender
does not send more water than the bucket can
contain, no water will be lost.

In figure(b), the limiting factor is not the bucket
capacity, but the internal carrying capacity of the
network. If too much water comes in too fast, it
will back up and some will be lost (in this case by
overflowing the funnel).

TCP Congestion Control

afe (i
AN ek
— S Transmission —
X W o B rate adjustment —\h

Transmission
network Internal

congestion

/ “‘\\ “‘\\
|) |)
_’/ A ~
Small-capacity Large-capacity @
receiver o @ receiver
(a) (b)

Figure:(a) A fast network feeding a low-capacity receiver
(b) A slow network feeding a high-capacity receiver

TCP Congestion Control

* When a connection is established, the sender initializes the
congestion window to the size of the maximum segment in
use on the connection.

* |t then sends one maximum segment. If this segment is
acknowledged before the timer goes off, it adds one
segment's worth of bytes to the congestion window to
make it two maximum size segments and sends two
segments. As each of these segments is acknowledged, the
congestion window is increased by one maximum segment
size.

* When the congestion window is n segments, if all n are
acknowledged on time, the congestion window is increased
by the byte count corresponding to n segments. In effect,
each burst acknowledged doubles the congestion window.

TCP Congestion Control

The congestion window keeps growing exponentially until
either a timeout occurs or the receiver's window is
reached.

The idea is that if bursts of size, say, 1024, 2048, and 4096
bytes work fine but a burst of 8192 bytes gives a timeout,
the congestion window should be set to 4096 to avoid
congestion.

As long as the congestion window remains at 4096, no
bursts longer than that will be sent, no matter how much
window space the receiver grants.

This algorithm is called slow start, but it is not slow at all. It
is exponential. All TCP implementations are required to
support it.

TCP Congestion Control

Now let us look at the Internet congestion control algorithm.

It uses a third parameter, the threshold, initially 64 KB, in addition
to the receiver and congestion windows.

When a timeout occurs, the threshold is set to half of the current
congestion window, and the congestion window is reset to one
maximum segment.

Slow start is then used to determine what the network can handle,
except that exponential growth stops when the threshold is hit.

From that point on, successful transmissions grow the congestion
window linearly (by one maximum segment for each burst) instead
of one per segment.

In effect, this algorithm is guessing that it is probably acceptable to
cut the congestion window in half, and then it gradually works its
way up from there.

TCP Congestion Control

* As an illustration of how the congestion algorithm
works, see below figure.

* The maximum segment size here is 1024 bytes.
Initially, the congestion window was 64 KB, but a
timeout occurred, so the threshold is set to 32 KB
and the congestion window to 1 KB for
transmission O (zero) here.

* The congestion window then grows exponentially
until it hits the threshold (32 KB). Starting then, it
grows linearly.

TCP Congestion Control

44
Timeout

s

40

Threshold

'

28 -

Threshold

24 —

20 |-

16 |~

Congestion window (kilobytes)

12 -

1

| N (NN N NN NN [N SN NN S N N O S N S —
8 10 12 14 16 18 20 22 24

Transmission number

Figure: An example of the Internet congestion algorithm

| |
0 2 4 6

TCP Congestion Control

 Transmission 13 is unlucky (it should have
known) and a timeout occurs.

e The threshold is set to half the current

window (by now 40 KB, so half is 20 KB), and
slow start is initiated all over again.

 When the acknowledgements from
transmission 14 start coming in, the first four
each double the congestion window, but after
that, growth becomes linear again.

TCP Congestion Control

* If no more timeouts occur, the congestion
window will continue to grow up to the size of
the receiver's window.

At that point, it will stop growing and remain
constant as long as there are no more timeouts
and the receiver's window does not change size.

* As an aside, if an ICMP SOURCE QUENCH packet
comes in and is passed to TCP, this event is
treated the same way as a timeout.

TCP Timer Management

TCP uses multiple timers (at least conceptually) to
do its work.

The most important of these is the
retransmission timer.

When a segment is sent, a retransmission timer is
started.

If the segment is acknowledged before the timer
expires, the timer is stopped.

If, on the other hand, the timer goes off before
the acknowledgement comes in, the segment is
retransmitted and the timer started again.

TCP Timer Management

e The algorithm that constantly adjusts the time-out
interval, based on continuous measurements of n/w

performance was proposed by JACOBSON and works as
follows:

— for each connection, TCP maintains a variable RTT, that is
the best current estimate of the round trip time to the
destination inn question.

— When a segment is sent, a timer is started, both to see
how long the acknowledgement takes and to trigger a
retransmission if it takes too long.

— If the acknowledgement gets back before the timer
expires, TCP measures how long the measurements took
say M It then updates RTT according to the formula:

TCP Timer Management

RTT = oRTT+(1l-a)M
Where o = asmoothing factor that determines how much weight is given to
the old value. Tvpically, a=7/8

Retransmission timeout 1s calculated as

D = aD+ (1la)|RIT-M|
Where D = another smoothed variable, Mean Deviation
RIT = expected acknowledgement value
M = obseived acknowledgement value

Timeout = RTT+(4*D)

TCP Timer Management

03 T 0.3 T Tz
0.2+ 0.2 - :

= =

3 3 :

o o) '

L £

& & :

o o |
0.1 - ' 0.1 =] |

0)) -kll % A - 0 /—1\ L
0 10 20 30 40 50 0 10 20 30 40 50
Round-trip time (msec) Round-trip time (msec)

(a) (b)

Figure: (a) Probability density of acknowledgement arrival times in the data link layer
(b) Probability density of acknowledgement arrival times for TCP.

TCP Timer Management

* One problem that occurs with the dynamic
estimation of RTT is what to do when a
segment times out and is sent again.

* When the acknowledgement comes in, it is
unclear whether the acknowledgement refers
to the first transmission or a later one.

e Guessing wrong can seriously contaminate the
estimate of RTT.

TCP Timer Management

Phil Karn discovered this problem the hard way.

He is an amateur radio enthusiast interested in
transmitting TCP/IP packets by ham radio, a
notoriously unreliable medium (on a good day,
half the packets get through).

He made a simple proposal: do not update RTT
on any segments that have been retransmitted.
Instead, the timeout is doubled on each failure
until the segments get through the first time.

This fix is called Karn's algorithm. Most TCP
implementations use it.

TCP Timer Management

A second timer is the persistence timer. It is designed to
prevent the following deadlock.

The receiver sends an acknowledgement with a window
size of 0, telling the sender to wait. Later, the receiver
updates the window, but the packet with the update is lost.

Now both the sender and the receiver are waiting for each
other to do something.

When the persistence timer goes off, the sender transmits
a probe to the receiver.

The response to the probe gives the window size. If it is still
zero, the persistence timer is set again and the cycle
repeats. If it is nonzero, data can now be sent.

TCP Timer Management

A third timer that some implementations use is
the keepalive timer.

When a connection has been idle for a long time,
the keepalive timer may go off to cause one side
to check whether the other side is still there.

If it fails to respond, the connection is
terminated.

This feature is controversial because it adds
overhead and may terminate an otherwise
healthy connection due to a transient network
partition.

TCP Timer Management

e The last timer used on each TCP connection is
the one used in the TIMED WAIT state while
closing.

* |t runs for twice the maximum packet lifetime
to make sure that when a connection is
closed, all packets created by it have died off.

UNIT 4 PART 3

The Domain Name System(DNS):
The DNS Name Space, Resource
Records, Name Servers.

The Domain Name System (DNS)

e The Domain Name System (DNS) is a critical
component of the internet that translates
human-friendly domain names (like
example.com) into IP addresses (like 192.0.2.1)

that computers use to identify each other on the
network.

* |t functions like a phone book for the internet,
enabling users to access websites and services
without needing to memorize complex numerical
addresses.

The Domain Name System (DNS)

* The essence of DNS is the invention of a
hierarchical, domain-based naming scheme
and a distributed database system for
implementing this naming scheme.

* It is primarily used for mapping host names
and e-mail destinations to IP addresses but
can also be used for other purposes.

The Domain Name System (DNS)

Very briefly, the way DNS is used is as follows.

To map a hame onto an IP address, an application
program calls a library procedure called the
resolver, passing it the name as a parameter.

The resolver sends a UDP packet to a local DNS
server, which then looks up the name and returns
the IP address to the resolver, which then returns
it to the caller.

Armed with the IP address, the program can then
establish a TCP connection with the destination
or send it UDP packets.

The DNS Name Space

The Internet is divided into over 200 top-level domains,
where each domain covers many hosts.

Each domain is partitioned into subdomains, and these
are further partitioned, and so on.

All these domains can be represented by a tree, as
shown in below figure.

The leaves of the tree represent domains that have no
subdomains (but do contain machines, of course).

A leaf domain may contain a single host, or it may
represent a company and contain thousands of hosts.

The DNS Name Space

|< Generic "I |< Countries - .

| I / "\ / "\ /
sun yale acm ieee ac co oce vu

| N 7N | |
eng cs eng jack pil kelo nec cS

| N\
elli linda cs csl flits fluit

robot pc24

Figure: A portion of the Internet domain name space

The DNS Name Space

The top-level domains come in two flavors: generic and countries.

The original generic domains were com (commercial), edu
(educational institutions), gov (the U.S. Federal Government), int
(certain international organizations), mil (the U.S. armed forces),
net (network providers), and org (nonprofit organizations).

The country domains include one entry for every country.

In November 2000, ICANN approved four new, general-purpose,
top-level domains, namely, biz (businesses), info (information),
name (people's names), and pro (professions, such as doctors and
lawyers).

In addition, three more specialized top-level domains were
introduced at the request of certain industries.

These are aero (aerospace industry), coop (co-operatives), and
museum (museums).

Other top-level domains will be added in the future.

The DNS Name Space

In general, getting a second-level domain, such as
name-of-company.com, is easy.

It merely requires going to a registrar for the
corresponding top-level domain (com in this case) to
check if the desired name is available and not
somebody else's trademark.

If there are no problems, the requester pays a small
annual fee and gets the name.

By now, virtually every common (English) word has
been taken in the com domain.

Try household articles, animals, plants, body parts, etc.
Nearly all are taken.

The DNS Name Space

Each domain is named by the path upward from
it to the (unnamed) root.

The components are separated by periods
(pronounced "dot"").

Thus, the engineering department at Sun
Microsystems might be eng.sun.com., rather than
a UNIX-style name such as /com/sun/eng.

Notice that this hierarchical naming means that
eng.sun.com. does not conflict with a potential
use of eng in eng.yale.edu., which might be used
by the Yale English department.

The DNS Name Space

Domain hames can be either absolute or relative.

An absolute domain name always ends with a period
(e.g., eng.sun.com.), whereas a relative one does not.

Relative names have to be interpreted in some context
to uniquely determine their true meaning.

In both cases, a named domain refers to a specific
node in the tree and all the nodes under it.

Domain names are case insensitive, so edu, Edu, and
EDU mean the same thing.

Component names can be up to 63 characters long,
and full path names must not exceed 255 characters.

The DNS Name Space

In principle, domains can be inserted into the tree in
two different ways.

For example, cs.yale.edu could equally well be listed
under the us country domain as cs.yale.ct.us.

In practice, however, most organizations in the United
States are under a generic domain, and most outside
the United States are under the domain of their
country.

There is no rule against registering under two top-level
domains, but few organizations except multinationals
do it (e.g., sony.com and sony.nl).

1.
2.
3.

The DNS Name Space

Each domain controls how it allocates the domains
under it.

For example, Japan has domains ac.jp and co.jp that
mirror edu and com.

The Netherlands does not make this distinction and
puts all organizations directly under nl.

Thus, all three of the following are university computer
science departments:

cs.yale.edu (Yale University, in the United States)
cs.vu.nl (Vrije Universiteit, in The Netherlands)
cs.keio.ac.jp (Keio University, in Japan)

The DNS Name Space

To create a new domain, permission is required of the
domain in which it will be included.

For example, if a VLS| group is started at Yale and wants to
be known as vlsi.cs.yale.edu, it has to get permission from
whoever manages cs.yale.edu.

Similarly, if a new university is chartered, say, the University
of Northern South Dakota, it must ask the manager of the
edu domain to assign it unsd.edu.

In this way, name conflicts are avoided and each domain
can keep track of all its subdomains.

Once a new domain has been created and registered, it can
create subdomains, such as cs.unsd.edu, without getting
permission from anybody higher up the tree.

The DNS Name Space

* Naming follows organizational boundaries, not
physical networks.

* For example, if the computer science and
electrical engineering departments are located in
the same building and share the same LAN, they
can nevertheless have distinct domains.

* Similarly, even if computer science is split over
Babbage Hall and Turing Hall, the hosts in both
buildings will normally belong to the same
domain.

Resource Records

Every domain, whether it is a single host or a top-
level domain, can have a set of resource records
associated with it.

For a single host, the most common resource
record is just its IP address, but many other kinds
of resource records also exist.

When a resolver gives a domain hame to DNS,
what it gets back are the resource records
associated with that name.

Thus, the primary function of DNS is to map
domain names onto resource records.

Resource Records

* Aresource record is a five-tuple.

 Although they are encoded in binary for
efficiency, in most expositions, resource records
are presented as ASCII text, one line per resource

record.
 The format we will use is as follows:
— Domain_name
— Time_to_live
— Class
— Type
— Value

Resource Records

The Domain_name tells the domain to which
this record applies.

Normally, many records exist for each domain
and each copy of the database holds
information about multiple domains.

This field is thus the primary search key used
to satisfy queries.

The order of the records in the database is not
significant.

Resource Records

* The Time_to _live field gives an indication of
now stable the record is.

* Information that is highly stable is assigned a
arge value, such as 86400 (the number of
seconds in 1 day).

* Information that is highly volatile is assigned a
small value, such as 60 (1 minute).

Resource Records

* The third field of every resource record is the
Class.

* For Internet information, it is always IN.

 For non-Internet information, other codes can
be used, but in practice, these are rarely seen.

Resource Records

* The Type field tells what kind of record this is.
The most important types are listed in below
figure.

Type | Meaning | Value
SOA - Start of Authority - Paramelers for this zone
A IP address of a host = 32-Bit integer
MX Mail exchange Priority, domain willing to accept e-mail
NS ~ Name Server ~ Name of a server for this domain
CNAME @ Canonical name Domain name
PTR | Pointer | Alias for an IP address
HINFO - Host description - CPU and OS in ASCII
TXT Text Uninterpreted ASCII text

Figure: The principal DNS resource record types for IPv4

Resource Records

e An SOA record provides the name of the
primary source of information about the name
server's zone (described below), the e-mail
address of its administrator, a unique serial
number, and various flags and timeouts.

Resource Records

The most important record type is the A (Address)
record.

It holds a 32-bit IP address for some host.

Every Internet host must have at least one IP address
so that other machines can communicate with it.

Some hosts have two or more network connections, in
which case they will have one type A resource record
per network connection (and thus per IP address).

DNS can be configured to cycle through these,
returning the first record on the first request, the
second record on the second request, and so on.

Resource Records

The next most important record type is the MX
record.

It specifies the name of the host prepared to
accept e-mail for the specified domain.

It is used because not every machine is prepared
to accept e-mail.

If someone wants to send e-mail to, for example,
bill@microsoft.com, the sending host needs to
find a mail server at microsoft.com that is willing

to accept e-mail.
The MX record can provide this information.

Resource Records

 The NS records specify name servers.

* For example, every DNS database normally
has an NS record for each of the top-level
domains, so, for example, e-mail can be sent
to distant parts of the naming tree.

Resource Records

CNAME records allow aliases to be created. For
example, a person familiar with Internet naming in
general and wanting to send a message to someone
whose login name is paul in the computer science
department at M.L.T. might guess that paul@cs.mit.edu
will work.

Actually, this address will not work, because the
domain for M.IT.'s computer science department is
lcs.mit.edu.

However, as a service to people who do not know this,
M.I.T. could create a CNAME entry to point people and
programs in the right direction.

An entry like this one might do the job:

— c¢s.mit.edu 86400 IN CNAME Ics.mit.edu

Resource Records

Like CNAME, PTR points to another name.

However, unlike CNAME, which is really just a
macro definition, PTR is a regular DNS datatype
whose interpretation depends on the context in
which it is found.

In practice, it is nearly always used to associate a
name with an IP address to allow lookups of the
IP address and return the name of the
corresponding machine.

These are called reverse lookups.

Resource Records

* HINFO records allow people to find out what
kind of machine and operating system a
domain corresponds to.

* Finally, TXT records allow domains to identify
themselves in arbitrary ways.

* Both of these record types are for user
convenience. Neither is required, so programs
cannot count on getting them (and probably
cannot deal with them if they do get them).

Resource Records

Finally, we have the Value field.

This field can be a number, a domain name, or
an ASCII string.

The semantics depend on the record type.

A short description of the Value fields for each

of the principal record types is given in above
table.

Name Servers

* In theory at least, a single name server could
contain the entire DNS database and respond
to all queries about it.

* |n practice, this server would be so overloaded
as to be useless.

 Furthermore, if it ever went down, the entire
Internet would be crippled.

Name Servers

To avoid the problems associated with having only a single
source of information, the DNS name space is divided into
nonoverlapping zones.

One possible way to divide the name space of (Figure: DNS)
shown in below figure.

Each zone contains some part of the tree and also contains
name servers holding the information about that zone.

Normally, a zone will have one primary name server, which
gets its information from a file on its disk, and one or more
secondary name servers, which get their information from
the primary name server.

To improve reliability, some servers for a zone can be
located outside the zone.

Name Servers

-

I > Generic - { |'- Countries

Cmi> Corg> Cnetd Cjp> (usd> Cnid ...
acm \(ieee) Coce) Cwu

Caco
SR -
jack jifl Kelo cS
D &%
cs flits fluit
B

Figure: Part of the DNS name space showing the division into zones.

Name Servers

Where the zone boundaries are placed within a zone is up
to that zone's administrator.

This decision is made in large part based on how many
name servers are desired, and where.

For example, in above figure, Yale has a server for yale.edu
that handles eng.yale.edu but not cs.yale.edu, which is a
separate zone with its own name servers.

Such a decision might be made when a department such as
English does not wish to run its own name server, but a
department such as computer science does.

Consequently, cs.yale.edu is a separate zone but
eng.yale.edu is not.

Name Servers

When a resolver has a query about a domain name, it
passes the query to one of the local name servers.

If the domain being sought falls under the jurisdiction
of the name server, such as ai.cs.yale.edu falling under
cs.yale.edu, it returns the authoritative resource
records.

An authoritative record is one that comes from the
authority that manages the record and is thus always
correct.

Authoritative records are in contrast to cached records,
which may be out of date.

Name Servers

 |f, however, the domain is remote and no
information about the requested domain is available
locally, the name server sends a query message to
the top-level name server for the domain requested.

To make this process clearer, consider the example of

below figure.
VUCS Edu Yale Yale CS
Originator , hameserver , nameserver , namesewver . name server
‘ ' |
flits.cs.vu.nl | cswvunl | edu-server.net | yale.edu ¢s.yale.edu
g - Z: - g | 5

Figure: How a resolver looks up a remote name in eight steps.

Name Servers

Here, a resolver on flits.cs.vu.nl wants to know the IP
address of the host linda.cs.yale.edu.

In step 1, it sends a query to the local name server,
cs.vu.nl. This query contains the domain name sought,
the type (A) and the class (IN).

Let us suppose the local name server has never had a
query for this domain before and knows nothing about
it.

It may ask a few other nearby name servers, but if
none of them know, it sends a UDP packet to the
server for edu given in its database (see above figure),
edu-server.net.

Name Servers

* It is unlikely that this server knows the address of
linda.cs.yale.edu, and probably does not know
cs.yale.edu either, but it must know all of its own
children, so it forwards the request to the name
server for yale.edu (step 3).

* In turn, this one forwards the request to
cs.yale.edu (step 4), which must have the
authoritative resource records.

* Since each request is from a client to a server, the
resource record requested works its way back in
steps 5 through 8.

