
Chapter 1. Basic
Structure of Computers

Functional Units

Functional Units

Memory

Input and
Arithmetic

logic

Figure 1.1. Basic functional units of a computer.

I/O Processor

Output Control

Information Handled by a
Computer

 Instructions/machine instructions
 Govern the transfer of information within a computer as

well as between the computer and its I/O devices
 Specify the arithmetic and logic operations to be

performedperformed
 Program

 Data
 Used as operands by the instructions
 Source program

 Encoded in binary code – 0 and 1

Memory Unit

 Store programs and data
 Two classes of storage
 Primary storage
 Fast
 Programs must be stored in memory while they are being executed
 Large number of semiconductor storage cells
 Processed in words
 Address
 RAM and memory access time
 Memory hierarchy – cache, main memory

 Secondary storage – larger and cheaper

Arithmetic and Logic Unit
(ALU)

 Most computer operations are executed in
ALU of the processor.

 Load the operands into memory – bring them
to the processor – perform operation in ALU to the processor – perform operation in ALU
– store the result back to memory or retain in
the processor.

 Registers

 Fast control of ALU

Control Unit

 All computer operations are controlled by the control
unit.

 The timing signals that govern the I/O transfers are
also generated by the control unit.

 Control unit is usually distributed throughout the  Control unit is usually distributed throughout the
machine instead of standing alone.

 Operations of a computer:
 Accept information in the form of programs and data through an

input unit and store it in the memory
 Fetch the information stored in the memory, under program control,

into an ALU, where the information is processed
 Output the processed information through an output unit
 Control all activities inside the machine through a control unit

The processor : Data Path and
Control

Two types of functional units:

elements that operate on data values (combinational)

 elements that contain state (state elements)

Five Execution Steps
Step nameStep name Action for RAction for R--type type

instructionsinstructions
Action for MemoryAction for Memory--

reference Instructionsreference Instructions
Action for Action for
branchesbranches

Action for Action for
jumpsjumps

Instruction fetch IR = MEM[PC]

PC = PC + 4

Instruction decode/ register
fetch

A = Reg[IR[25-21]]

B = Reg[IR[20-16]]

ALUOut = PC + (sign extend (IR[15-0])<<2)ALUOut = PC + (sign extend (IR[15-0])<<2)

Execution, address
computation, branch/jump

completion

ALUOut = A op B ALUOut = A+sign
extend(IR[15-0])

IF(A==B) Then
PC=ALUOut

PC=PC[31-
28]||(IR[25-

0]<<2)

Memory access or R-type
completion

Reg[IR[15-11]] =
ALUOut

Load:MDR =Mem[ALUOut]

or

Store:Mem[ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] =
MDR

Basic Operational
Concepts

Review

 Activity in a computer is governed by instructions.

 To perform a task, an appropriate program
consisting of a list of instructions is stored in the
memory.

 Individual instructions are brought from the memory
into the processor, which executes the specified
operations.

 Data to be used as operands are also stored in the
memory.

A Typical Instruction

 Add LOCA, R0
 Add the operand at memory location LOCA to the

operand in a register R0 in the processor.
 Place the sum into register R0.

The original contents of LOCA are preserved. The original contents of LOCA are preserved.
 The original contents of R0 is overwritten.
 Instruction is fetched from the memory into the

processor – the operand at LOCA is fetched and
added to the contents of R0 – the resulting sum is
stored in register R0.

Separate Memory Access and
ALU Operation

 Load LOCA, R1

 Add R1, R0

 Whose contents will be overwritten?

Connection Between the
Processor and the Memory

Memory

MDR

Control

MAR

Figure 1.2. Connections between the processor and the memory.

Processor

PC

IR

Control

ALU
R

n 1-

R1

R0

n general purpose
registers

Registers

 Instruction register (IR)

 Program counter (PC)

 General-purpose register (R0 – Rn-1)

 Memory address register (MAR)

 Memory data register (MDR)

Typical Operating Steps

 Programs reside in the memory through input
devices

 PC is set to point to the first instruction
 The contents of PC are transferred to MAR The contents of PC are transferred to MAR
 A Read signal is sent to the memory
 The first instruction is read out and loaded

into MDR
 The contents of MDR are transferred to IR
 Decode and execute the instruction

Typical Operating Steps
(Cont’)

 Get operands for ALU
 General-purpose register
 Memory (address to MAR – Read – MDR to ALU)

 Perform operation in ALU Perform operation in ALU
 Store the result back
 To general-purpose register
 To memory (address to MAR, result to MDR – Write)

 During the execution, PC is
incremented to the next instruction

Interrupt

 Normal execution of programs may be preempted if
some device requires urgent servicing.

 The normal execution of the current program must
be interrupted – the device raises an interrupt
signal.

 Interrupt-service routine

 Current system information backup and restore (PC,
general-purpose registers, control information,
specific information)

Bus Structures

 There are many ways to connect different
parts inside a computer together.

 A group of lines that serves as a connecting
path for several devices is called a bus.path for several devices is called a bus.

 Address/data/control

Bus Structure

 Single-bus

MemoryInput Output Processor

Figure 1.3. Single-bus structure.

Speed Issue

 Different devices have different
transfer/operate speed.

 If the speed of bus is bounded by the slowest
device connected to it, the efficiency will be device connected to it, the efficiency will be
very low.

 How to solve this?

 A common approach – use buffers.

Performance

Performance

 The most important measure of a computer is
how quickly it can execute programs.

 Three factors affect performance:
 Hardware design Hardware design

 Instruction set

 Compiler

Performance

 Processor time to execute a program depends on the hardware
involved in the execution of individual machine instructions.

Main
memory Processor

Cache
memorymemory

Bus

memory

Figure 1.5. The processor cache.

Performance

 The processor and a relatively small cache
memory can be fabricated on a single
integrated circuit chip.

 Speed Speed

 Cost

 Memory management

Processor Clock

 Clock, clock cycle, and clock rate

 The execution of each instruction is divided
into several steps, each of which completes
in one clock cycle.in one clock cycle.

 Hertz – cycles per second

Basic Performance Equation

 T – processor time required to execute a program that has been
prepared in high-level language

 N – number of actual machine language instructions needed to
complete the execution (note: loop)

 S – average number of basic steps needed to execute one
machine instruction. Each step completes in one clock cycle

 R – clock rate
 Note: these are not independent to each other

R

SN
T




How to improve T?

Pipeline and Superscalar
Operation

 Instructions are not necessarily executed one after
another.

 The value of S doesn’t have to be the number of
clock cycles to execute one instruction.

 Pipelining – overlapping the execution of successive  Pipelining – overlapping the execution of successive
instructions.

 Add R1, R2, R3
 Superscalar operation – multiple instruction

pipelines are implemented in the processor.
 Goal – reduce S (could become <1!)

Clock Rate

 Increase clock rate
 Improve the integrated-circuit (IC) technology to make

the circuits faster
 Reduce the amount of processing done in one basic step

(however, this may increase the number of basic steps (however, this may increase the number of basic steps
needed)

 Increases in R that are entirely caused by
improvements in IC technology affect all
aspects of the processor’s operation equally
except the time to access the main memory.

CISC and RISC

 Tradeoff between N and S

 A key consideration is the use of pipelining
 S is close to 1 even though the number of basic steps

per instruction may be considerably largerper instruction may be considerably larger

 It is much easier to implement efficient pipelining in
processor with simple instruction sets

 Reduced Instruction Set Computers (RISC)

 Complex Instruction Set Computers (CISC)

Compiler

 A compiler translates a high-level language program
into a sequence of machine instructions.

 To reduce N, we need a suitable machine instruction
set and a compiler that makes good use of it.

 Goal – reduce N×S

 A compiler may not be designed for a specific
processor; however, a high-quality compiler is
usually designed for, and with, a specific processor.

Performance Measurement
 T is difficult to compute.
 Measure computer performance using benchmark programs.
 System Performance Evaluation Corporation (SPEC) selects and

publishes representative application programs for different application
domains, together with test results for many commercially available
computers.

 Compile and run (no simulation) Compile and run (no simulation)
 Reference computer








n

i

n
iSPECratingSPEC

ratingSPEC

1

1

)(

under testcomputer on the timeRunning

computer reference on the timeRunning

Multiprocessors and
Multicomputers

 Multiprocessor computer
 Execute a number of different application tasks in parallel

 Execute subtasks of a single large task in parallel

 All processors have access to all of the memory – shared-memory
multiprocessormultiprocessor

 Cost – processors, memory units, complex interconnection networks

 Multicomputers
 Each computer only have access to its own memory

 Exchange message via a communication network – message-
passing multicomputers

Chapter 2. Machine
Instructions and

Programs

Objectives

 Machine instructions and program execution,
including branching and subroutine call and return
operations.

 Number representation and addition/subtraction in
the 2’s-complement system.

 Addressing methods for accessing register and
memory operands.

 Assembly language for representing machine
instructions, data, and programs.

 Program-controlled Input/Output operations.

Number, Arithmetic
Operations, and

Characters

Signed Integer

 3 major representations:
Sign and magnitude

One’s complement

Two’s complementTwo’s complement

 Assumptions:
4-bit machine word

16 different values can be represented

Roughly half are positive, half are negative

Sign and Magnitude
Representation

0000

0011

1111
1110

1101

1100

0010

0001

+0
+1

+2

+3-4

-5

-6

-7

0 100 = + 4

+

0111

1011

1010

1001

1000

0110

0101

0100 +4

+5

+6

+7-0

-1

-2

-3

1 100 = - 4

-

High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits = +/-2n-1 -1
Two representations for 0

One’s Complement
Representation

0000

0011

1111
1110

1101

1100

0010

0001

+0
+1

+2

+3

-4

-3

-2

-1

-0

0 100 = + 4

+

 Subtraction implemented by addition & 1's complement

 Still two representations of 0! This causes some problems

 Some complexities in addition

0111

1011

1010

1001

1000

0110

0101

0100 +4

+5

+6

+7-7

-6

-5

-4

1 011 = - 4

-

Two’s Complement
Representation

0000

0011

1111
1110

1101

1100

0010

0001

+0
+1

+2

+3-4

-3

-2

-1

0 100 = + 4

+
like 1's comp
except shifted
one position

0111

0011

1011

1100

1010

1001

1000

0110

0101

0100 +4

+5

+6

+7-8

-7

-6

-5

0 100 = + 4

1 100 = - 4

-

 Only one representation for 0

 One more negative number than positive
number

one position
clockwise

Binary, Signed-Integer
Representations

0
0
0
0

1
1
1
1

1
1
0
0

1
0
1
0 4+

5+
6+
7+

4+
5+
6+
7+

4+
5+
6+
7+

b3b2b1b0

Sign and
magnitude 1's complement 2's complement

B Values representedPage 28

0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0

1

1
1
1
1

0
1
1
0
0
0
0
1
1
0
0
1
1

0
1
0
1
0
0
1
0
1
0
1
0
1

1+

1-

2+
3+

2-
3-
4-
5-
6-
7-

8-
0+
0-

1+
2+
3+

0+
7-
6-
5-
4-
3-
2-
1-
0-

1+
2+
3+

0+

7-
6-
5-
4-
3-
2-
1-

Figure 2.1. Binary, signed-integer representations.

Addition and Subtraction – 2’s
Complement

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001
If carry-in to the high
order bit =
carry-out then ignore
carry

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

carry

if carry-in differs from
carry-out then overflow

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems

2’s-Complement Add and
Subtract Operations

1 1 0 1
0 1 1 1

0 1 0 0

0 0 1 0
1 1 0 0

4+()

+

+

1 1 1 0

0 1 0 0
1 0 1 0

0 1 1 1
1 1 0 1

0 1 0 0

6-()
2-()

4+()

3-()
4+()

7+()
+

+
(b)

(d)1 0 1 1
1 1 1 0

1 0 0 1

1 1 0 1
1 0 0 1

0 0 1 0
0 1 0 0

0 1 0 1

0 0 1 0
0 0 1 1

5-()

2+()
3+()

5+()

2+()
4+()

2-()
7-()

3-()
7-()

+

+

-

-

(a)

(c)

(e)

(f)

Page 31

1 1 0 0

1 1 1 0

0 1 1 0
1 1 0 1

0 0 1 1

1 0 0 1
0 1 0 1

1 1 1 0

1 0 0 1
1 1 1 1

1 0 0 0

0 0 1 0
0 0 1 1

0 1 0 1

2-()

3+()

2-()

8-()

5+()

+

+

+

+

+0 1 0 0

0 1 1 0
0 0 1 1

1 0 0 1
1 0 1 1

1 0 0 1
0 0 0 1

0 0 1 0
1 1 0 1

4+()

6+()
3+()

1+()

7-()
5-()

7-()

2+()
3-()

-

-

-

-

-

(g)

(h)

(i)

(j)

Figure 2.4. 2's-complement Add and Subtract operations.

Overflow - Add two positive numbers to get a
negative number or two negative numbers to
get a positive number

0000

0001

0010

1100

1101

1110

1111

+0

+1

+2

+3
-4

-3

-2

-1

0000

0001

00101101

1110

1111

+0

+1

+2
-4

-3

-2

-1

5 + 3 = -8 -7 - 2 = +7

0011

1000

0101

0110

0100

1001

1010

1011

1100

0111

+3

+4

+5

+6

+7-8

-7

-6

-5

-4
0011

1000

0101

0110

0100

1001

1010

1011

1100

0111

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

Overflow Conditions

5

3

-8

0 1 1 1
0 1 0 1

0 0 1 1

1 0 0 0

-7

-2

7

1 0 0 0
1 0 0 1

1 1 0 0

1 0 1 1 1

Overflow Overflow

5

2

7

0 0 0 0
0 1 0 1

0 0 1 0

0 1 1 1

-3

-5

-8

1 1 1 1
1 1 0 1

1 0 1 1

1 1 0 0 0

Overflow Overflow

No overflow No overflow

Overflow when carry-in to the high-order bit does not equal carry out

Sign Extension
 Task:

 Given w-bit signed integer x

 Convert it to w+k-bit integer with same value

 Rule:
 Make k copies of sign bit:Make k copies of sign bit:

 X  = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X  • • • • • •

• • •

w

wk

Sign Extension Example

short int x = 15213;
int ix = (int) x;
short int y = -15213;short int y = -15213;
int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Memory Locations,
Addresses, and

Operations

Memory Location, Addresses,
and Operation

 Memory consists
of many millions of
storage cells,
each of which can
store 1 bit.

second word

first word

n bits

•
•
•store 1 bit.

 Data is usually
accessed in n-bit
groups. n is called
word length.

Figure 2.5. Memory words.

last word

i th word

•

•
•
•

Memory Location, Addresses,
and Operation

 32-bit word length example

Sign bit: for positive numbers

32 bits

b31 b30 b1 b0

b 0=

• • •

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers
for negative numbers

ASCIIASCIIASCIIASCII

8 bits 8 bits 8 bits 8 bits

b31 0=

b31 1=

Memory Location, Addresses,
and Operation

 To retrieve information from memory, either for one
word or one byte (8-bit), addresses for each location
are needed.

 A k-bit address memory has 2k memory locations,
namely 0 – 2k-1, called memory space.

 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

 32-bit memory: 232 = 4G (1G=230)

 1K(kilo)=210

 1T(tera)=240

Memory Location, Addresses,
and Operation

 It is impractical to assign distinct addresses
to individual bit locations in the memory.

 The most practical assignment is to have
successive addresses refer to successive successive addresses refer to successive
byte locations in the memory – byte-
addressable memory.

 Byte locations have addresses 0, 1, 2, … If
word length is 32 bits, they successive words
are located at addresses 0, 4, 8,…

Big-Endian and Little-Endian
Assignments

0 1 2 3

4 5 6 7

00

4

3 2 1 0

7 6 5 4

Byte addressByte address

4

Word
address

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant
bytes of the word

2
k

4- 2
k

3- 2
k

2- 2
k

1- 2
k

4-2
k

4-

4 5 6 74

2
k

1- 2
k

2- 2
k

3- 2
k

4-

7 6 5 4

(a) Big-endian assignment (b) Little-endian assignment

4

•
•
•

•
•
•

Figure 2.7. Byte and word addressing.

Memory Location, Addresses,
and Operation

 Address ordering of bytes
 Word alignment
 Words are said to be aligned in memory if they

begin at a byte addr. that is a multiple of the num begin at a byte addr. that is a multiple of the num
of bytes in a word.
 16-bit word: word addresses: 0, 2, 4,….
 32-bit word: word addresses: 0, 4, 8,….
 64-bit word: word addresses: 0, 8,16,….

 Access numbers, characters, and character
strings

Memory Operation

 Load (or Read or Fetch)
 Copy the content. The memory content doesn’t change.

 Address – Load

 Registers can be used Registers can be used

 Store (or Write)
 Overwrite the content in memory

 Address and Data – Store

 Registers can be used

Instruction and
Instruction

Sequencing

“Must-Perform” Operations

 Data transfers between the memory and the
processor registers

 Arithmetic and logic operations on data

Program sequencing and control Program sequencing and control

 I/O transfers

Register Transfer Notation

 Identify a location by a symbolic name
standing for its hardware binary address
(LOC, R0,…)

 Contents of a location are denoted by placing  Contents of a location are denoted by placing
square brackets around the name of the
location (R1←[LOC], R3 ←[R1]+[R2])

 Register Transfer Notation (RTN)

Assembly Language Notation

 Represent machine instructions and
programs.

 Move LOC, R1 = R1←[LOC]

Add R1, R2, R3 = R3 ←[R1]+[R2] Add R1, R2, R3 = R3 ←[R1]+[R2]

CPU Organization

 Single Accumulator
 Result usually goes to the Accumulator

 Accumulator has to be saved to memory quite
oftenoften

 General Register
 Registers hold operands thus reduce memory

traffic

 Register bookkeeping

 Stack
 Operands and result are always in the stack

Instruction Formats

 Three-Address Instructions
 ADD R1, R2, R3 R1 ← R2 + R3

 Two-Address Instructions
 ADD R1, R2 R1 ← R1 + R2

 One-Address Instructions
ADD M AC ← AC + M[AR] ADD M AC ← AC + M[AR]

 Zero-Address Instructions
 ADD TOS ← TOS + (TOS – 1)

 RISC Instructions
 Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)

Instruction Formats

Example: Evaluate (A+B)  (C+D)

 Three-Address
1. ADD R1, A, B ; R1 ← M[A] + M[B]

ADD R2, C, D ; R2 ← M[C] + M[D]2. ADD R2, C, D ; R2 ← M[C] + M[D]

3. MUL X, R1, R2 ; M[X] ← R1  R2

Instruction Formats
Example: Evaluate (A+B)  (C+D)

 Two-Address
1. MOV R1, A ; R1 ← M[A]

2. ADD R1, B ; R1 ← R1 + M[B]ADD R1, B ; R1 ← R1 + M[B]

3. MOV R2, C ; R2 ← M[C]

4. ADD R2, D ; R2 ← R2 + M[D]

5. MUL R1, R2 ; R1 ← R1  R2

6. MOV X, R1 ; M[X] ← R1

Instruction Formats
Example: Evaluate (A+B)  (C+D)

 One-Address
1. LOAD A ; AC ← M[A]

2. ADD B ; AC ← AC + M[B]ADD B ; AC ← AC + M[B]

3. STORET ; M[T] ← AC

4. LOAD C ; AC ← M[C]

5. ADD D ; AC ← AC + M[D]

6. MUL T ; AC ← AC  M[T]

7. STOREX ; M[X] ← AC

Instruction Formats
Example: Evaluate (A+B)  (C+D)

 Zero-Address
1. PUSH A ; TOS ← A

2. PUSH B ; TOS ← B

3. ADD ; TOS ← (A + B)

4. PUSH C ; TOS ← C

5. PUSH D ; TOS ← D

6. ADD ; TOS ← (C + D)

7. MUL ; TOS ←
(C+D)(A+B)

8. POP X ; M[X] ← TOS

Instruction Formats
Example: Evaluate (A+B)  (C+D)

 RISC
1. LOAD R1, A ; R1 ← M[A]

2. LOAD R2, B ; R2 ← M[B]

3. LOAD R3, C ; R3 ← M[C]

4. LOAD R4, D ; R4 ← M[D]

5. ADD R1, R1, R2 ; R1 ← R1 + R2

6. ADD R3, R3, R4 ; R3 ← R3 + R4

7. MUL R1, R1, R3 ; R1 ← R1  R3

8. STOREX, R1 ; M[X] ← R1

Using Registers

 Registers are faster

 Shorter instructions
 The number of registers is smaller (e.g. 32

registers need 5 bits)registers need 5 bits)

 Potential speedup

 Minimize the frequency with which data is
moved back and forth between the memory
and processor registers.

Instruction Execution and
Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

segment
program
3-instruction

Addi + 4

Assumptions:
- One memory operand
per instruction

- 32-bit word length
- Memory is byte
addressable

C

B

A

the program
Data for

Figure 2.8. A program for C  [A] + [B].

addressable
- Full memory address
can be directly specified
in a single-word instruction

Two-phase procedure
-Instruction fetch
-Instruction execute

Page 43

Branching

R0,SUM

NUMn,R0

NUM3,R0

NUM2,R0

NUM1,R0

Add

Add

Movei

Move

Add

i 4n+

i 4n 4-+

i 8+

i 4+

•
•
•

•
•

NUMn

NUM2

NUM1

Figure 2.9. A straight-line program for adding n numbers.

SUM

•
•
•

•
•
•

Branching

N,R1Move

R0,SUM

R1

"Next" number to R0

LOOP

Decrement

Move

LOOP

loop
Program

Determine address of
"Next" number and add

R0Clear

Branch>0

•

Branch target

Conditional branch

NUMn

NUM2

NUM1

Figure 2.10. Using a loop to add n numbers.

N

SUM

n

•
•
•

•
•
•

Condition Codes

 Condition code flags

 Condition code register / status register

 N (negative)

 Z (zero)

 V (overflow)

 C (carry)

 Different instructions affect different flags

Conditional Branch
Instructions

 Example:
 A: 1 1 1 1 0 0 0 0

 B: 0 0 0 1 0 1 0 0

A: 1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

C = 1

S = 1

V = 0

Z = 0

Status Bits

ALUCn

Cn-1 A B

F

V Z S C

Zero Check

Fn-1

F

Addressing
Modes

Generating Memory Addresses

 How to specify the address of branch target?

 Can we give the memory operand address
directly in a single Add instruction in the loop?

Use a register to hold the address of NUM1;  Use a register to hold the address of NUM1;
then increment by 4 on each pass through
the loop.

Addressing Modes

 Implied
 AC is implied in “ADD M[AR]” in “One-Address”

instr.

 TOS is implied in “ADD” in “Zero-Address” instr.

Opcode Mode ...

 TOS is implied in “ADD” in “Zero-Address” instr.

 Immediate
 The use of a constant in “MOV R1, 5”, i.e. R1 ←

5

 Register
 Indicate which register holds the operand

Addressing Modes
 Register Indirect
 Indicate the register that holds the number of the

register that holds the operand

MOV R1, (R2)

Autoincrement / Autodecrement

R1

R2 = 3
 Autoincrement / Autodecrement
 Access & update in 1 instr.

 Direct Address
 Use the given address to access a memory

location

R2 = 3

R3 = 5

Addressing Modes
 Indirect Address
 Indicate the memory location that holds the

address of the memory location that holds the
data

AR = 101

100

101

102

103

104

0 1 0 4

1 1 0 A

0

1

2

Addressing Modes

 Relative Address
 EA = PC + Relative Addr

PC = 2

+

100

101

102

103

104

AR = 100

1 1 0 A

+

Could be Positive or
Negative

(2’s Complement)

Addressing Modes

 Indexed
 EA = Index Register + Relative Addr

XR = 2

+

Useful with
“Autoincrement” or
“Autodecrement”

100

101

102

103

104

AR = 100

1 1 0 A

+

Could be Positive or
Negative

(2’s Complement)

Addressing Modes

 Base Register
 EA = Base Register + Relative Addr

AR = 2

+

Could be Positive or
Negative

(2’s Complement)

100

101

102

103

104

BR = 100

0 0 0 A

+

Usually points to
the beginning of

an array

0 0 0 5

0 0 1 2

0 1 0 7

0 0 5 9

Addressing Modes
 The different

ways in which
the location of
an operand is
specified in
an instruction
are referred
to as

Name Assembler syntax Addressingfunction

Immediate #Value Operand = Value

Register R i EA = Ri

Absolute(Direct) LOC EA = LOC

Indirect (Ri) EA = [Ri]
(LOC) EA = [LOC]to as

addressing
modes.

(LOC) EA = [LOC]

Index X(R i) EA = [Ri] + X

Basewith index (Ri ,Rj) EA = [Ri] + [Rj]

Basewith index X(R i ,Rj) EA = [Ri] + [Rj] + X
and offset

Relative X(PC) EA = [PC] + X

Autoincrement (Ri)+ EA = [Ri] ;
Increment R i

Autodecrement (R i) Decrement R i ;
EA = [Ri]



Indexing and Arrays

 Index mode – the effective address of the operand
is generated by adding a constant value to the
contents of a register.

 Index register

 X(Ri): EA = X + [Ri]

 The constant X may be given either as an explicit
number or as a symbolic name representing a
numerical value.

 If X is shorter than a word, sign-extension is needed.

Indexing and Arrays

 In general, the Index mode facilitates access
to an operand whose location is defined
relative to a reference point within the data
structure in which the operand appears.structure in which the operand appears.

 Several variations:
(Ri, Rj): EA = [Ri] + [Rj]
X(Ri, Rj): EA = X + [Ri] + [Rj]

Relative Addressing

 Relative mode – the effective address is determined
by the Index mode using the program counter in
place of the general-purpose register.

 X(PC) – note that X is a signed number

 Branch>0 LOOP

 This location is computed by specifying it as an
offset from the current value of PC.

 Branch target may be either before or after the
branch instruction, the offset is given as a singed
num.

Additional Modes

 Autoincrement mode – the effective address of the operand is
the contents of a register specified in the instruction. After
accessing the operand, the contents of this register are
automatically incremented to point to the next item in a list.

 (Ri)+. The increment is 1 for byte-sized operands, 2 for 16-bit
operands, and 4 for 32-bit operands.operands, and 4 for 32-bit operands.

 Autodecrement mode: -(Ri) – decrement first

R0Clear

R0,SUM

R1
(R2)+,R0

Figure 2.16. The Autoincrement addressing mode used in the program of Figure 2.12.

Initialization

Move

LOOP Add
Decrement

LOOP

#NUM1,R2
N,R1Move

Move

Branch>0

Assembly
Language

Types of Instructions

 Data Transfer Instructions
Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Data value is
not modified

Input IN

Output OUT

Push PUSH

Pop POP

Data Transfer Instructions

Mode Assembly Register Transfer

Direct address LD ADR AC ← M[ADR]

Indirect address LD @ADR AC ← M[M[ADR]]

Relative address LD $ADR AC ← M[PC+ADR]

Immediate operand LD #NBR AC ← NBRImmediate operand LD #NBR AC ← NBR

Index addressing LD ADR(X) AC ← M[ADR+XR]

Register LD R1 AC ← R1

Register indirect LD (R1) AC ← M[R1]

Autoincrement LD (R1)+ AC ← M[R1], R1 ← R1+1

Data Manipulation Instructions
 Arithmetic

 Logical & Bit Manipulation

 Shift

Name Mnemonic
Increment INC
Decrement DEC

Add ADD
Subtract SUB
Multiply MUL
Divide DIV

Add with carry ADDCName Mnemonic Add with carry ADDC
Subtract with borrow SUBB

Negate NEG

Name Mnemonic
Clear CLR

Complement COM
AND AND
OR OR

Exclusive-OR XOR
Clear carry CLRC
Set carry SETC

Complement carry COMC
Enable interrupt EI
Disable interrupt DI

Name Mnemonic
Logical shift right SHR
Logical shift left SHL

Arithmetic shift right SHRA
Arithmetic shift left SHLA

Rotate right ROR
Rotate left ROL

Rotate right through carry RORC
Rotate left through carry ROLC

Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL
Subtract A – B but

don’t store the resultCall CALL

Return RET

Compare
(Subtract)

CMP

Test (AND) TST
1 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0
Mask

Conditional Branch
Instructions

Mnemonic Branch Condition Tested Condition

BZ Branch if zero Z = 1

BNZ Branch if not zero Z = 0

BC Branch if carry C = 1BC Branch if carry C = 1

BNC Branch if no carry C = 0

BP Branch if plus S = 0

BM Branch if minus S = 1

BV Branch if overflow V = 1

BNV Branch if no overflow V = 0

Basic
Input/Output

Operations

I/O

 The data on which the instructions operate
are not necessarily already stored in memory.

 Data need to be transferred between
processor and outside world (disk, keyboard, processor and outside world (disk, keyboard,
etc.)

 I/O operations are essential, the way they are
performed can have a significant effect on the
performance of the computer.

Program-Controlled I/O
Example

 Read in character input from a keyboard and
produce character output on a display screen.

 Rate of data transfer (keyboard, display, processor)
 Difference in speed between processor and I/O device

creates the need for mechanisms to synchronize the creates the need for mechanisms to synchronize the
transfer of data.

 A solution: on output, the processor sends the first
character and then waits for a signal from the display
that the character has been received. It then sends the
second character. Input is sent from the keyboard in a
similar way.

Program-Controlled I/O
Example

Bus

Processor
DATAIN DATAOUT

SIN SOUT

Keyboard Display

Figure 2.19 Bus connection for processor, keyboard, and display.

Processor

- Registers
- Flags
- Device interface

Program-Controlled I/O
Example

 Machine instructions that can check the state
of the status flags and transfer data:
READWAIT Branch to READWAIT if SIN = 0

Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0
Output from R1 to DATAOUT

Program-Controlled I/O
Example

 Memory-Mapped I/O – some memory
address values are used to refer to peripheral
device buffer registers. No special
instructions are needed. Also use device instructions are needed. Also use device
status registers.

READWAIT Testbit #3, INSTATUS
Branch=0 READWAIT
MoveByte DATAIN, R1

Program-Controlled I/O
Example

 Assumption – the initial state of SIN is 0 and the
initial state of SOUT is 1.

 Any drawback of this mechanism in terms of
efficiency?efficiency?
 Two wait loopsprocessor execution time is wasted

 Alternate solution?
 Interrupt

Stacks

Home Work

 For each Addressing modes mentioned
before, state one example for each
addressing mode stating the specific benefit
for using such addressing mode for such an for using such addressing mode for such an
application.

Stack Organization

Current
Top of Stack

TOS LIFO
Last In First Out

0

1

2

3

SP

Stack Bottom

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

Stack Organization

Current
Top of Stack

TOS PUSH
SP ← SP – 1

M[SP] ← DR

If (SP = 0) then (FULL ← 1)

0

1

2

3

1 6 9 0Current
Top of Stack

TOS

SP

Stack Bottom

If (SP = 0) then (FULL ← 1)

EMPTY ← 0
4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 0

Stack Organization

Current
Top of Stack

TOS POP
DR ← M[SP]

SP ← SP + 1

If (SP = 11) then (EMPTY ← 1)

0

1

2

3

Current
Top of Stack

TOS

SP

Stack Bottom

If (SP = 11) then (EMPTY ← 1)

FULL ← 0
4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 01 6 9 0

0

1

2

100

Stack Organization

 Memory Stack
 PUSH

SP ← SP – 1

M[SP] ← DR
 POP

PC

AR

102

202

201

200

100

101

 POP

DR ← M[SP]

SP ← SP + 1

AR

SP

Reverse Polish Notation

 Infix Notation
A + B

 Prefix or Polish Notation
+ A B

 Postfix or Reverse Polish Notation (RPN) Postfix or Reverse Polish Notation (RPN)
A B +

A  B + C  D A B  C D  +
RPN

(2) (4)  (3) (3)  +

(8) (3) (3)  +

(8) (9) +

17

Reverse Polish Notation

 Example
(A + B)  [C  (D + E) + F]

(A B +) (D E +) C  F +

Reverse Polish Notation

 Stack Operation
(3) (4)  (5) (6)  +

PUSH 3

PUSH 4
6

MULT

PUSH 5

PUSH 6

MULT

ADD

3

4

12

5

6

30

42

Additional
Instructions

Logical Shifts

 Logical shift – shifting left (LShiftL) and shifting right
(LShiftR)

C R0 0

before: 0 0 0 01 1 1 . . . 11

CR00

before:

after:

0

1

0 0 01 1 1 . . . 11

0 0 1 1 1 000

(b) Logical shift right LShiftR #2,R0

(a) Logical shift left LShiftL #2,R0

after: 1 1 10 . . . 00101

. . .

Arithmetic Shifts

CR0

before:

after:

0

1

1 1 00 0 1 . . . 01

1 1 0 0 1 011

(c) Arithmetic shift right AShiftR #2,R0

. . .

Rotate
(a) Rotate left without carry RotateL #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 10101

(b) Rotate left with carry RotateLC #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

Figure 2.32. Rotate instructions.

CR0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 001

(c) Rotate right without carry RotateR #2,R0

C

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 000

(d) Rotate right with carry RotateRC #2,R0

R0

. . .

. . .

Multiplication and Division

 Not very popular (especially division)

 Multiply Ri, Rj

Rj ← [Ri] х [Rj]

2n-bit product case: high-order half in R(j+1) 2n-bit product case: high-order half in R(j+1)

 Divide Ri, Rj

Rj ← [Ri] / [Rj]
Quotient is in Rj, remainder may be placed in R(j+1)

Encoding of
Machine

Instructions

Encoding of Machine
Instructions

 Assembly language program needs to be converted into machine
instructions. (ADD = 0100 in ARM instruction set)

 In the previous section, an assumption was made that all
instructions are one word in length.

 OP code: the type of operation to be performed and the type of
operands used may be specified using an encoded binary pattern
Suppose 32-bit word length, 8-bit OP code (how many instructions  Suppose 32-bit word length, 8-bit OP code (how many instructions
can we have?), 16 registers in total (how many bits?), 3-bit
addressing mode indicator.

 Add R1, R2
 Move 24(R0), R5
 LshiftR #2, R0
 Move #$3A, R1
 Branch>0 LOOP

OP code Source Dest Other info

8 7 7 10

(a) One-word instruction

Encoding of Machine
Instructions

 What happens if we want to specify a memory
operand using the Absolute addressing mode?

 Move R2, LOC

 14-bit for LOC – insufficient 14-bit for LOC – insufficient

 Solution – use two words

(b) Two-word instruction

Memory address/Immediate operand

OP code Source Dest Other info

Encoding of Machine
Instructions

 Then what if an instruction in which two operands
can be specified using the Absolute addressing
mode?

 Move LOC1, LOC2

 Solution – use two additional words

 This approach results in instructions of variable
length. Complex instructions can be implemented,
closely resembling operations in high-level
programming languages – Complex Instruction Set
Computer (CISC)

Encoding of Machine
Instructions

 If we insist that all instructions must fit into a single
32-bit word, it is not possible to provide a 32-bit
address or a 32-bit immediate operand within the
instruction.

 It is still possible to define a highly functional
instruction set, which makes extensive use of the
processor registers.

 Add R1, R2 ----- yes

 Add LOC, R2 ----- no

 Add (R3), R2 ----- yes

Chapter 7. Basic
Processing Unit

Overview

 Instruction Set Processor (ISP)

 Central Processing Unit (CPU)

 A typical computing task consists of a series
of steps specified by a sequence of machine of steps specified by a sequence of machine
instructions that constitute a program.

 An instruction is executed by carrying out a
sequence of more rudimentary operations.

Some Fundamental
Concepts

Fundamental Concepts

 Processor fetches one instruction at a time and
perform the operation specified.

 Instructions are fetched from successive memory
locations until a branch or a jump instruction is
encountered.

 Processor keeps track of the address of the memory
location containing the next instruction to be fetched
using Program Counter (PC).

 Instruction Register (IR)

Executing an Instruction

 Fetch the contents of the memory location pointed
to by the PC. The contents of this location are
loaded into the IR (fetch phase).

IR ← [[PC]]

 Assuming that the memory is byte addressable,
increment the contents of the PC by 4 (fetch phase).

PC ← [PC] + 4

 Carry out the actions specified by the instruction in
the IR (execution phase).

Processor Organization

lines
Data

Address
lines

bus
Memory

PC

MAR

MDR

bus

IR

Control signals

Instruction

decoder and

Internal processor

control logicMDR HAS
TWO INPUTS

AND TWO
OUTPUTS

lines

Carry-in

ALU

Y

Z

Add

XOR

Sub

IR

TEMP

R0

control
ALU

lines

R n 1-()
A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Datapath

Textbook Page 413

Executing an Instruction

 Transfer a word of data from one processor
register to another or to the ALU.

 Perform an arithmetic or a logic operation
and store the result in a processor register.and store the result in a processor register.

 Fetch the contents of a given memory
location and load them into a processor
register.

 Store a word of data from a processor
register into a given memory location.

Register Transfers

Yin

Y

Riin

Ri

Riout

bus
Internal processor

BA

Z

ALU

Zin

Zout

Constant 4

MUX

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Register Transfers
 All operations and data transfers are controlled by the processor clock.

Bus

Figure 7.3. Input and output gating for one register bit.

D Q

Q

Clock

1

0

Riout

Ri in

Figure 7.3. Input and output gating for one register bit.

Performing an Arithmetic or
Logic Operation

 The ALU is a combinational circuit that has no
internal storage.

 ALU gets the two operands from MUX and bus.
The result is temporarily stored in register Z.

 What is the sequence of operations to add the
contents of register R1 to those of R2 and store the
result in R3?

1. R1out, Yin

2. R2out, SelectY, Add, Zin

3. Zout, R3in

Fetching a Word from Memory

 Address into MAR; issue Read operation; data into MDR.

Memory-bus
data lines

Internal processor
busMDRoutMDRoutE

MDR

Figure 7.4. Connection and control signals for register MDR.

MDRinMDR inE

Figure 7.4. Connection and control signals for register MDR.

Fetching a Word from Memory

 The response time of each memory access varies
(cache miss, memory-mapped I/O,…).

 To accommodate this, the processor waits until it
receives an indication that the requested operation
has been completed (Memory-Function-Completed,
MFC).MFC).

 Move (R1), R2
 MAR ← [R1]
 Start a Read operation on the memory bus
 Wait for the MFC response from the memory
 Load MDR from the memory bus
 R2 ← [MDR]

Timing
1 2

Clock

Address

Read

Step 3

MARin

Assume MAR
is always available
on the address lines
of the memory bus.

MAR ← [R1]

Start a Read operation on the memory bus

Figure 7.5. Timing of a memory Read operation.

MR

Data

MFC

MDRinE

MDRout

R2 ← [MDR]

Wait for the MFC response from the memory

Load MDR from the memory bus

Execution of a Complete
Instruction

 Add (R3), R1

 Fetch the instruction

 Fetch the first operand (the contents of the
memory location pointed to by R3)memory location pointed to by R3)

 Perform the addition

 Load the result into R1

Architecture

Yin

Y

Riin

Ri

Riout

bus
Internal processor

BA

Z

ALU

Zin

Zout

Constant 4

MUX

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Execution of a Complete
Instruction

Step Action

1 PCout , MAR in , Read, Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDR , IR lines
Data

Address
lines

bus
Memory

PC

MAR

MDR

bus

IR

Control signals

Instruction

decoder and

Internal processor

control logic

Add (R3), R1

3 MDR out , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDR out , SelectY, Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor execution of the instruction Add (R3),R1.

lines

Carry-in

ALU

Y

Z

Add

XOR

Sub

IR

TEMP

R0

control
ALU

lines

R n 1-()
A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Execution of Branch
Instructions

 A branch instruction replaces the contents of
PC with the branch target address, which is
usually obtained by adding an offset X given
in the branch instruction.in the branch instruction.

 The offset X is usually the difference between
the branch target address and the address
immediately following the branch instruction.

 Conditional branch

Execution of Branch
Instructions

Step Action

1 PCout , MAR in , Read, Select4,Add, Zin

2 Zout, PCin , Yin, WMF C

3 MDRout , IRin

4 Offset-field-of-IRout, Add, Zin

5 Zout, PCin , End

Figure 7.7. Control sequence for an unconditional branch instruction.

Multiple-Bus Organization
Bus A Bus B Bus C

PC

Register
file

Constant 4

M
U

X

Incrementer

Memory bus
data lines

Figure 7.8. Three-bus organization of the datapath.

Instruction
decoder

ALU

MDR

A

B

R

M
U

X

Address
lines

MAR

IR

Multiple-Bus Organization
 Add R4, R5, R6

Step Action

1 PCout, R=B, MAR in , Read, IncPC1 PCout, R=B, MAR in , Read, IncPC

2 WMFC

3 MDRoutB, R=B, IR in

4 R4outA, R5outB, SelectA, Add, R6in, End

Figure 7.9. Control sequence for the instruction. Add R4,R5,R6,

for the three-bus organization in Figure 7.8.

Quiz

 What is the control
sequence for
execution of the
instruction

lines
Data

Address
lines

bus
Memory

PC

MAR

MDR

bus

IR

Control signals

Instruction

decoder and

Internal processor

control logic

Add R1, R2
including the
instruction fetch
phase? (Assume
single bus
architecture)

lines

Carry-in

ALU

Y

Z

Add

XOR

Sub

TEMP

R0

control
ALU

lines

R n 1-()
A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Hardwired Control

Overview

 To execute instructions, the processor must
have some means of generating the control
signals needed in the proper sequence.

 Two categories: hardwired control and  Two categories: hardwired control and
microprogrammed control

 Hardwired system can operate at high speed;
but with little flexibility.

Control Unit Organization
CLK

Clock Control step

Decoder/

counter

inputs
External

Figure 7.10. Control unit organization.

IR
encoder

Decoder/

Control signals

codes
Condition

Detailed Block Description
ResetCLK

Clock
counter

Step decoder

Control step

T1 T2 Tn

External
inputs

Figure 7.11. Separation of the decoding and encoding functions.

Encoder

Control signals

Run End

Condition
codes

decoder

Instruction
IR

INS1

INS2

INSm

Generating Zin

 Zin = T1 + T6 • ADD + T4 • BR + …

AddBranch

T4 T
6

Figure 7.12. Generation of the Zin control signal for the processor in Figure 7.1.

T1

Generating End

 End = T7 • ADD + T5 • BR + (T5 • N + T4 • N) • BRN +…

T7

Add Branch
Branch<0

T5

NN

T4T5

Figure 7.13. Generation of the End control signal.

End

A Complete Processor

Instruction
unit

Integer
unit

Floating-point
unit

Instruction
cache

Data
cache

Bus interface

Main
memory

Input/
Output

System bus

Processor

Figure 7.14. Block diagram of a complete processor.

Microprogrammed
Control

Overview
 Control signals are generated by a program similar to machine

language programs.
 Control Word (CW); microroutine; microinstruction

P
C i

n

P
C o

ut

M
A

R
in

R
ea

d

M
D

R
o

ut

IR
in

Y
in

S
el

ec
t

A
dd

Z
in

Z
o

ut

R
1 o

ut

R
1 i

n

R
3 o

ut

W
M

F
C

E
ndMicro -

instruction P
C

P
C

M
A

R

R
ea

d

M
D

R

IR S
el

ec
t

A
dd

Z R
1

R
1

R
3

W
M

F
C

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

1

2

3

4

5

6

7

Figure 7.15 An example of microinstructions for Figure 7.6.

Overview

Step Action

1 PCout , MAR in , Read, Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDR out , IR in3 MDR out , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDR out , SelectY, Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor execution of the instruction Add (R3),R1.

Overview
 Control store

generator

Starting
addressIR

One function
cannot be carried
out by this simple
organization.

Figure 7.16. Basic organization of a microprogrammed control unit.

store
Control

CW

Clock PC

organization.

Overview
 The previous organization cannot handle the situation when the control

unit is required to check the status of the condition codes or external
inputs to choose between alternative courses of action.

 Use conditional branch microinstruction.

AddressMicroinstruction

0 PCout , MAR in , Read,Select4,Add, Zin

1 Zout , PCin , Yin , WMFC

2 MDRout , IRin

3 Branch to startingaddressof appropriatemicroroutine
. .

25 If N=0, then branch to microinstruction0

26 Offset-field-of-IRout , SelectY, Add, Zin

27 Zout , PCin , End

Figure 7.17. Microroutine for the instruction Branch<0.

Overview

generator

Starting and
branch address Condition

codes

inputs
External

IR

Figure 7.18. Organization of the control unit to allow

conditional branching in the microprogram.

Control
store

Clock

CW

PC

Microinstructions

 A straightforward way to structure
microinstructions is to assign one bit position
to each control signal.

 However, this is very inefficient. However, this is very inefficient.
 The length can be reduced: most signals are

not needed simultaneously, and many signals
are mutually exclusive.

 All mutually exclusive signals are placed in
the same group in binary coding.

Partial Format for the
Microinstructions

F2 (3 bits)

000: No transfer
001: PCin

010: IRin

011: Zin

100: R0in
101: R1in

F1 F2 F3 F4 F5

F1 (4 bits) F3 (3 bits) F4 (4 bits) F5 (2 bits)

0000: No transfer
0001: PCout

0010: MDRout

0011: Zout

0100: R0out

0101: R1out

000: No transfer
001: MARin

010: MDRin

011: TEMPin

100: Yin

0000: Add
0001: Sub

1111: XOR

00: No action
01: Read

10: Write

Microinstruction

101: R1in
110: R2in
111: R3in

0101: R1out

0110: R2out

0111: R3out

1010: TEMPout

1011: Offsetout

16 ALU
functions

F6 F7 F8

F6 (1 bit) F7 (1 bit) F8 (1 bit)

0: SelectY
1: Select4

0: No action
1: WMFC

0: Continue
1: End

Figure 7.19. An example of a partial format for field-encoded microinstructions.

What is the price paid for
this scheme?

Further Improvement

 Enumerate the patterns of required signals in
all possible microinstructions. Each
meaningful combination of active control
signals can then be assigned a distinct code.signals can then be assigned a distinct code.

 Vertical organization

 Horizontal organization

Microprogram Sequencing

 If all microprograms require only straightforward
sequential execution of microinstructions except for
branches, letting a μPC governs the sequencing
would be efficient.

 However, two disadvantages: However, two disadvantages:
 Having a separate microroutine for each machine instruction results

in a large total number of microinstructions and a large control store.
 Longer execution time because it takes more time to carry out the

required branches.

 Example: Add src, Rdst
 Four addressing modes: register, autoincrement,

autodecrement, and indexed (with indirect forms).

- Bit-ORing
- Wide-Branch Addressing
- WMFC

OP code 0 1 0 Rsrc Rdst

Mode

Contents of IR

034781011

Address Microinstruction
(octal)

000 PCout, MARin, Read, Select4, Add, Zin

001 Zout, PCin, Yin, WMFC

002 MDRout, IRin

003 Branch {PC 101 (from Instruction decoder);

PC  [IR]; PC  [IR10]  [IR9]  [IR8]}

Figure 7.21. Microinstruction for Add (Rsrc)+,Rdst.
Note:Microinstruction at location 170 is not executed for this addressing mode.

PC5,4  [IR10,9]; PC3 

121 Rsrcout, MARin, Read, Select4, Add, Zin

122 Zout, Rsrcin
123

170 MDRout, MARin, Read, WMFC

171 MDRout, Yin

172 Rdstout, SelectY, Add, Zin

173 Zout, Rdstin, End

[IR10]  [IR9]  [IR8]}

Branch {PC 170;PC0  [IR8]}, WMFC

Microinstructions with Next-
Address Field

 The microprogram we discussed requires several
branch microinstructions, which perform no useful
operation in the datapath.

 A powerful alternative approach is to include an
address field as a part of every microinstruction to
indicate the location of the next microinstruction to indicate the location of the next microinstruction to
be fetched.

 Pros: separate branch microinstructions are virtually
eliminated; few limitations in assigning addresses to
microinstructions.

 Cons: additional bits for the address field (around
1/6)

Microinstructions with Next-
Address Field

Condition
codes

IR

Decoding circuits

Inputs
External

Figure 7.22. Microinstruction-sequencing organization.

Control store

Next address

Microinstruction decoder

Control signals

AR

I R

F1 (3 bits)

000: No transfer
001: PCout

010: MDRout

011: Zout

100: Rsrcout

101: Rdstout

110: TEMPout

F0 F1 F2 F3

F0 (8 bits) F2 (3 bits) F3 (3 bits)

000: No transfer
001: PCin

010: IRin

011: Zin

100: Rsrcin

000: No transfer
001: MARin

F4 F5 F6 F7

Microinstruction

Address of next
microinstruction

101: Rdstin

010: MDRin

011: TEMPin

100: Yin

F5 (2 bits)F4 (4 bits) F6 (1 bit)

0000: Add
0001: Sub

0: SelectY
1: Select4

00: No action
01: Read

1111: XOR

10: Write

F8 F9 F10

F8 (1 bit)

F7 (1 bit)

F9 (1 bit) F10 (1 bit)

0: No action
1: WMFC

0: No action
1: ORindsrc

0: No action
1: ORmode

0: NextAdrs
1: InstDec

Figure 7.23. Format for microinstructions in the example of Section 7.5.3.

Implementation of the
Microroutine

F9

0

0

0

0

F10

0

0

0

00

0

0

0

F8F7F6F5F4

000 0 0 0 0 0

1

0

0

0

10000

0000

1100000

10

0

0

0

0

1

0 0

0

0

00 01

110

100

10

F2

1

110 0 0 0 0 0

1

1
2

0

21

0

00

address
Octal

111 00000

1 0000000

10000000

F0 F1

0

0 0 10 0

001

110

100

0

1

0

1

F3

011000 0 0 0 0 00 00 00000 0 0 0 0 030 0 00 0 0

(See Figure 7.23 for encoded signals.)
Figure 7.24. Implementation of the microroutine of Figure 7.21 using a

1

0
1

11110
0111110

001

001

1

21 0

00

0

00

0

0

0

0

0

0

0

0

0

0

0 0

0

0

00

0 0

0101

110

37

7

00000000

0 1111

110

0

0

0
17
07 0

0

00

0
0

00

0
0

0

0

0

0
0

0

1
0
0

0

0
0

0

0
0

0

0
0

0 1

1

0

0
0 0

10 10000 0

0

0

0 0

0

0
0000

000

001

110

1
1

221

0
11110

111 00

121 111 00000

010
010

0 11

001

0

0

1

1

 next-microinstruction address field.

Decoder

Decoder

circuits
Decoding

Condition

External

codes

inputs

Rsrc RdstIR

InstDecout

ORmode

ORindsrc

R15in R15out R0in R0out

decoder
Microinstruction

Control store

Next address F1 F2

Other control signals

F10F9F8

Rdstout

Rdstin

Rsrcout

Rsrcin

AR

Figure 7.25. Some details of the control-signal-generating circuitry.

bit-ORing

Further Discussions

 Prefetching

 Emulation

