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Addition/subtraction of signed numbers
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Addition logic for a single stage
Sum Carry
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Full Adder (FA): Symbol for the complete circuit 
for a single stage of addition.



n-bit adder
•Cascade n full adder (FA) blocks to form a n-bit adder.
•Carries propagate or ripple through this cascade, n-bit ripple carry adder.
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Carry-in c0 into the LSB position provides a convenient way to
perform subtraction.



K n-bit adder
K n-bit numbers can be added by cascading k n-bit adders.
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Each n-bit adder forms a block, so this is cascading of blocks.
Carries ripple or propagate through blocks, Blocked Ripple Carry Adder



n-bit subtractor
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•Recall X – Y is equivalent to adding 2’s complement of Y to X.
•2’s complement is equivalent to 1’s complement + 1.
•X – Y = X + Y + 1
•2’s complement of positive and negative numbers is computed similarly.
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n-bit adder/subtractor (contd..)
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•Add/sub control = 0, addition.
•Add/sub control = 1, subtraction.



Detecting overflows
 Overflows can only occur when the sign of the two operands is 

the same. 
 Overflow occurs if the sign of the result is different from the 

sign of the operands.
 Recall that the MSB represents the sign.

x , y , s represent the sign of operand x, operand y and result s  xn-1, yn-1, sn-1 represent the sign of operand x, operand y and result s 
respectively.

 Circuit to detect overflow can be implemented by the 
following logic expressions:

111111   nnnnnn syxsyxOverflow

1 nn ccOverflow



Computing the add time
Consider 0th stage:

x0 y0

c0c1 FA

•c1 is available after 2 gate delays.
•s1 is available after 1 gate delay.
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Computing the add time (contd..)

x0 y0

FA

x0 y0x0 y0

FAc2
FAc1c3

c0

x0 y0

FA
c4

Cascade of 4 Full Adders, or a 4-bit adder

s2 s1 s0s3

•s0 available after 1 gate delays, c1 available after 2 gate delays.
•s1 available after 3 gate delays, c2 available after 4 gate delays.
•s2 available after 5 gate delays, c3 available after 6 gate delays.
•s3 available after 7 gate delays, c4 available after 8 gate delays.

For an n-bit adder, sn-1 is available after 2n-1 gate delays
cn is available after 2n gate delays.



Fast addition
Recall the equations:
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Second equation can be written as:
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•Gi is called generate function and Pi is called propagate function
•Gi and Pi are computed only from xi and yi and not ci, thus they can 
be computed in one gate delay after X and Y are applied to the 
inputs of an n-bit adder.



Carry lookahead
ci1  Gi  Pici

ci  Gi1  Pi1ci1

 ci1  Gi  Pi(Gi1  Pi1ci1)

continuing

 ci1  Gi  Pi(Gi1  Pi1(Gi 2  Pi 2ci2 ))i1 i i i1 i1 i 2 i 2 i2

until

ci1  Gi  PiGi1  PiPi1Gi2  ..  PiPi1..P1G0  PiPi1...P0c0

•All carries can be obtained 3 gate delays after X, Y and c0 are applied.
-One gate delay for Pi and Gi

-Two gate delays in the AND-OR circuit for ci+1
•All sums can be obtained 1 gate delay after the carries are computed.
•Independent of n, n-bit addition requires only 4 gate delays.
•This is called Carry Lookahead adder.



Carry-lookahead adder
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Carry lookahead adder (contd..)
 Performing n-bit addition in 4 gate delays independent of n

is good only theoretically because of fan-in constraints.

ci1  Gi  PiGi1  Pi Pi1Gi2  ..  PiPi1..P1G0  Pi Pi1... P0c0

 Last AND gate and OR gate require a fan-in of (n+1) for a n-
bit adder. 
 For a 4-bit adder (n=4) fan-in of 5 is required.
 Practical limit for most gates.  

 In order to add operands longer than 4 bits, we can cascade 
4-bit Carry-Lookahead adders. Cascade of Carry-Lookahead 
adders is called Blocked Carry-Lookahead adder.



4-bit carry-lookahead Adder



Blocked Carry-Lookahead adder
c4  G3  P3G2  P3P2G1  P3P2P1G0  P3P2P1P0c0

Carry-out from a 4-bit block can be given as:

Rewrite this as:

P0
I  P3P2P1P0

G0
I G3  P3G2  P3P2G1  P3P2P1G0

Subscript I denotes the blocked carry lookahead and identifies the block.

Cascade 4 4-bit adders, c16 can be expressed as:
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Blocked Carry-Lookahead adder
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Carry-lookahead logic

After xi, yi and c0 are applied as inputs:
- Gi and Pi for each stage are available after 1 gate delay.
- PI is available after 2  and GI after 3 gate delays.
- All carries are available after 5 gate delays.
- c16 is available after 5 gate delays.
- s15 which depends on c12 is available after 8 (5+3)gate delays 

(Recall that for a 4-bit carry lookahead adder, the last sum bit is
available 3 gate delays after all inputs are available)





Multiplication of unsigned numbers

Product of 2 n-bit numbers is at most a 2n-bit number. 

Unsigned multiplication can be viewed as addition of shifted 
versions of the multiplicand.



Multiplication of unsigned 
numbers (contd..)

 We added the partial products at end.
 Alternative would be to add the partial products at each stage.

 Rules to implement multiplication are: Rules to implement multiplication are:
 If the ith bit of the multiplier is 1, shift the multiplicand and  add the 

shifted multiplicand to the current value of the partial product. 
 Hand over the partial product to the next stage
 Value of the partial product at the start stage is 0.



Multiplication of unsigned numbers

ith multiplier bit

jth multiplicand bit

ith multiplier bit

Bit of incoming partial product (PPi)

Typical multiplication cell

carry incarry out

Bit of outgoing partial product (PP(i+1))

FA



Combinatorial array multiplier
Multiplicand
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Product is:   p7,p6,..p0

Multiplicand is shifted by displacing it through an array of adders.



Combinatorial array multiplier 
(contd..)
 Combinatorial array multipliers are:

 Extremely inefficient.
 Have a high gate count for multiplying numbers of practical size such as 32-

bit or 64-bit numbers. 
 Perform only one function, namely, unsigned integer product. Perform only one function, namely, unsigned integer product.

 Improve gate efficiency by using a mixture of 
combinatorial array techniques and sequential 
techniques requiring less combinational logic. 



Sequential multiplication
 Recall the rule for generating partial products:

 If the ith bit of the multiplier is 1, add the appropriately shifted multiplicand 
to the current partial product. 

 Multiplicand has been shifted left when added to the partial product.

However, adding a left-shifted multiplicand to an  However, adding a left-shifted multiplicand to an 
unshifted partial product is equivalent to adding an 
unshifted multiplicand to a right-shifted partial 
product.



Sequential Circuit Multiplier
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Sequential multiplication (contd..)
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Signed Multiplication
 Considering 2’s-complement signed operands, what will happen to (-

13)(+11) if following the same method of unsigned multiplication? 
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Sign extension of negative multiplicand.
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Signed Multiplication
 For a negative multiplier, a straightforward solution is 

to form the 2’s-complement of both the multiplier and 
the multiplicand and proceed as in the case of a 
positive multiplier.

 This is possible because complementation of both 
operands does not change the value or the sign of the 
product.

 A technique that works equally well for both negative 
and positive multipliers – Booth algorithm.



Booth Algorithm
 Consider in a multiplication, the multiplier is positive 

0011110, how many appropriately shifted versions of 
the multiplicand are added in a standard procedure?
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Booth Algorithm
 Since 0011110 = 0100000 – 0000010, if we use the 

expression to the right, what will happen?
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Booth Algorithm
 In general, in the Booth scheme, -1 times the shifted multiplicand is 

selected when moving from 0 to 1, and +1 times the shifted 
multiplicand is selected when moving from 1 to 0, as the multiplier 
is scanned from right to left.

001101011100110100

Booth recoding of a multiplier.

00000000 1+ 1-1-1+1-1+1-1+1-1+



Booth Algorithm
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Booth Algorithm
Multiplier

Bit i Bit i 1-
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Booth Algorithm
 Best case – a long string of 1’s (skipping over 1s)
 Worst case – 0’s and 1’s are alternating
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Bit-Pair Recoding of Multipliers
 Bit-pair recoding halves the maximum number of 

summands (versions of the multiplicand).
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Bit-Pair Recoding of Multipliers
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Bit-Pair Recoding of Multipliers
1-

0000
1 1 1 1 1 0
0 0 0 0 11
1 1 1 1 10 0
0 0 0 0 0 0

0000 111111

0

1

0 0

1 0

1

0 0

0
0 1

0

0 1

10

0

010
0 1 1 0 1

11

1-

6-( )
13+( )

1+

78-( )´

39

0000 111111

0 1 1 0 1
0

1 010011111
1 1 1 1 0 0 1 1
0 0 0 0 0 0

1 1 1 0 1 1 0 0 1 0

01011 6-( ) 78-( )

1- 2-

´

Figure 6.15. Multiplication requiring only n/2 summands.



Carry-Save Addition of Summands
 CSA speeds up the addition process.

40P7 P6 P5 P4 P3 P2 P1 P0



Carry-Save Addition of Summands(Cont.,)

P3 P2 P1 P0P5 P4P7 P6



Carry-Save Addition of Summands(Cont.,)

 Consider the addition of many summands, we can:
 Group the summands in threes and perform carry-save addition on 

each of these groups in parallel to generate a set of S and C vectors in 
one full-adder delay

 Group all of the S and C vectors into threes, and perform carry-save  Group all of the S and C vectors into threes, and perform carry-save 
addition on them, generating a further set of S and C vectors in one 
more full-adder delay

 Continue with this process until there are only two vectors remaining
 They can be added in a RCA or CLA to produce the desired product



Carry-Save Addition of Summands
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Figure 6.17.  A multiplication example used to illustrate carry-save addition as shown in Figure 6.18.
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Figure 6.18. The multiplication example from Figure 6.17 performed using
carry-save addition.
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Manual Division
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Longhand Division Steps
 Position the divisor appropriately with respect to the 

dividend and performs a subtraction.
 If the remainder is zero or positive, a quotient bit of 1 

is determined, the remainder is extended by another is determined, the remainder is extended by another 
bit of the dividend, the divisor is repositioned, and 
another subtraction is performed.

 If the remainder is negative, a quotient bit of 0 is 
determined, the dividend is restored by adding back 
the divisor, and the divisor is repositioned for another 
subtraction.



Circuit Arrangement
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Figure 6.21. Circuit arrangement for binary division.
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Restoring Division
 Shift A and Q left one binary position
 Subtract M from A, and place the answer back in A
 If the sign of A is 1, set q0 to 0 and add M back to A 

(restore A); otherwise, set q to 1(restore A); otherwise, set q0 to 1
 Repeat these steps n times



Examples
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Figure 6.22. A restoring-division example.
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Nonrestoring Division
Avoid the need for restoring A after an 

unsuccessful subtraction.
Any idea?

Step 1: (Repeat n times) Step 1: (Repeat n times)
 If the sign of A is 0, shift A and Q left one bit position and 

subtract M from A; otherwise, shift A and Q left and add M 
to A.

Now, if the sign of A is 0, set q0 to 1; otherwise, set q0 to 0.

 Step2: If the sign of A is 1, add M to A



Examples
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Fractions
If b is a binary vector, then we have seen that it can be interpreted as 
an unsigned integer by:

V(b) = b31.231 + b30.230 + bn-3.229 + .... + b1.21 + b0.20

This vector has an implicit binary point to its immediate right:

b31b30b29....................b1b0. implicit binary pointb31b30b29....................b1b0. implicit binary point

Suppose if the binary vector is interpreted with the implicit binary point is
just left of the sign bit: 

implicit binary point .b31b30b29....................b1b0

The value of b is then given by:

V(b) = b31.2-1 + b30.2-2 + b29.2-3 + .... + b1.2-31 + b0.2-32



Range of fractions
The value of the unsigned binary fraction is:

V(b) = b31.2-1 + b30.2-2 + b29.2-3 + .... + b1.2-31 + b0.2-32

The range of the numbers represented in this format is:

9999999998.021)(0 32  bV

In general for a n-bit binary fraction (a number with an assumed  binary
point at the immediate left of the vector), then the range of values is:

nbV  21)(0



Scientific notation
•Previous representations have a fixed point. Either the point is to the immediate 
right or it is to the immediate left. This is called  Fixed point representation.
•Fixed point representation suffers from a drawback that the representation can 
only represent a finite range (and quite small) range of numbers.

A more convenient representation is the scientific representation, where 
the numbers are represented in the form:the numbers are represented in the form:

x m1.m2m3m4  be

Components of these numbers are:

Mantissa (m), implied base (b), and exponent (e)



Significant digits
A number such as the following is said to have 7 significant digits

x  0.m1m2m 3m4m 5m6m 7  b e

Fractions in the range 0.0 to 0.9999999 need about 24 bits of precision 
(in binary). For example the binary fraction with 24 1’s:

111111111111111111111111  = 0.9999999404111111111111111111111111  = 0.9999999404

Not every real number between  0 and 0.9999999404 can be represented
by a 24-bit fractional number.
The smallest non-zero number that can be represented is:

000000000000000000000001 = 5.96046 x 10-8 

Every other non-zero number is constructed in increments of this value.



Sign and exponent digits
•In a 32-bit number, suppose we allocate 24 bits to represent a fractional 
mantissa.
•Assume that the mantissa is represented in sign and magnitude format, 
and we have allocated one bit to represent the sign.
•We allocate 7 bits to represent the exponent, and assume that the 
exponent is represented as a 2’s complement integer. 
•There are no bits allocated to represent the base, we assume that the 
base is implied for now, that is the base is 2.base is implied for now, that is the base is 2.
•Since a 7-bit 2’s complement number can represent values in the range 
-64 to 63, the range of numbers that can be represented is:

0.0000001 x 2-64 < =  | x | <=  0.9999999 x 263

•In decimal representation this range is:

0.5421 x 10-20 < =  | x | <=  9.2237 x 1018



A sample representation
1                        7                                                                                          24

Sign            Exponent                                              Fractional mantissa
bit

•24-bit mantissa with an implied binary point to the immediate left
•7-bit exponent in 2’s complement form, and implied base is 2.



Normalization

If the number is to be represented using only 7 significant mantissa digits,
the representation ignoring rounding is:

Consider the number: x =  0.0004056781 x 1012

x = 0.0004056 x 1012

If the number is shifted so that as many significant digits are brought into 
7 available slots: x = 0.4056781 x 109 =  0.0004056 x 1012

Exponent of x was decreased by 1 for every left shift of x.

A number which is brought into a form so that all of the available mantissa 
digits are optimally used (this is different from all occupied which may 
not hold), is called a normalized number.

Same methodology holds in the case of binary mantissas

0001101000(10110) x 28 =  1101000101(10) x 25



Normalization (contd..)
•A floating point number is in normalized form if the most significant 
1 in the mantissa is in the most significant bit of the mantissa.
•All normalized floating point numbers in this system will be of the form:

0.1xxxxx.......xx

Range of numbers representable in this system, if every number must be 
normalized is:normalized is:

0.5 x 2-64 <= | x |  < 1 x 263  



Normalization, overflow and underflow
The procedure for normalizing a floating point number is:

Do (until MSB of mantissa = = 1)
Shift the mantissa left (or right)
Decrement (increment) the exponent by 1

end do

Applying the normalization procedure to: .000111001110....0010  x 2-62  

gives: .111001110........            x 2-65  

But we cannot represent an exponent of –65, in trying to normalize the
number we have underflowed our representation.

Applying the normalization procedure to: 1.00111000............x 263  

gives: 0.100111..............x 264

This overflows the representation.



Changing the implied base
So far we have assumed an implied base of 2, that is our  floating point 
numbers are of the form:

x = m 2e 

If we choose an implied base of 16, then:

x = m 16e 

:Then:

y = (m.16) .16e-1 (m.24) .16e-1 = m . 16e = x

•Thus, every four left shifts of a binary mantissa results in a decrease of 1 
in a base 16 exponent.
•Normalization in this case means shifting the mantissa until there is a 1 in 
the first four bits of the mantissa.



Excess notation
•Rather than representing an exponent in 2’s complement form, it turns out to be 
more beneficial to represent the exponent in excess notation.
•If 7 bits are allocated to the exponent, exponents can be represented in the range of 
-64 to +63, that is:

-64 <= e <= 63

Exponent can also be represented using the following coding called as excess-64:

E’ =  E + 64E’ =  Etrue + 64

In general, excess-p coding is represented as:

E’ =  Etrue + p

True exponent of -64 is represented as 0
0   is represented as 64

63  is represented as 127

This enables efficient comparison of the relative sizes of two floating point numbers.



IEEE notation
IEEE Floating Point notation is the standard representation in use. There are two 
representations:

- Single precision.
- Double precision.

Both have an implied base of 2.
Single precision:

- 32 bits (23-bit mantissa, 8-bit exponent in excess-127 representation)
Double precision:Double precision:

- 64 bits (52-bit mantissa, 11-bit exponent in excess-1023 representation)
Fractional mantissa, with an implied binary point at immediate left.

Sign        Exponent                                               Mantissa
1                  8 or 11                                              23 or 52



Peculiarities of IEEE notation
•Floating point numbers have to be represented in a normalized form to 
maximize the use of available mantissa digits.
•In a base-2 representation, this implies that the MSB of the mantissa is
always equal to 1. 
•If every number is normalized, then the MSB of the mantissa is always 1.
We can do away without storing the MSB. 
•IEEE notation assumes that all numbers are normalized so that the MSB 
of the mantissa is a 1 and does not store this bit. of the mantissa is a 1 and does not store this bit. 
•So the real MSB of a number in the IEEE notation is either a 0 or a 1. 
•The values of the numbers represented in the IEEE single precision 
notation are of the form: 

(+,-) 1.M x 2(E - 127)

•The hidden 1 forms the integer part of the mantissa.
•Note that excess-127 and excess-1023 (not excess-128 or excess-1024)  are used 
to represent the exponent.



Exponent field
In the IEEE representation, the exponent is in excess-127 (excess-1023)
notation. 
The actual exponents represented are:

-126 <= E <= 127   and   -1022 <= E <= 1023
not
-127 <= E <= 128   and   -1023 <= E <= 1024 

This is because the IEEE uses the exponents -127 and 128 (and -1023 and 
1024), that is the actual values 0 and 255 to represent special conditions:

- Exact zero
- Infinity      



Floating point arithmetic
Addition:

3.1415 x 108 + 1.19 x 106 = 3.1415 x 108  + 0.0119 x 108 = 3.1534 x 108

Multiplication:
3.1415 x 108 x 1.19 x 106 = (3.1415 x 1.19 ) x 10(8+6)

Division:
3.1415 x 108 / 1.19 x 106    = (3.1415 / 1.19 ) x 10(8-6)

Biased exponent problem:
If a true exponent e is represented in excess-p notation, that is as e+p.
Then consider what happens under multiplication:

a. 10(x + p) * b. 10(y + p) = (a.b). 10(x + p + y +p) = (a.b). 10(x +y + 2p)

Representing the result in excess-p notation implies that the exponent
should be x+y+p. Instead it is x+y+2p. 
Biases should be handled in floating point arithmetic.  



Floating point arithmetic: ADD/SUB 
rule
 Choose the number with the smaller exponent.
 Shift its mantissa right until the exponents of both the 

numbers are equal. 
 Add or subtract the mantissas.  Add or subtract the mantissas. 
 Determine the sign of the result. 
 Normalize the result if necessary and truncate/round 

to the number of mantissa bits.

Note: This does not consider the possibility of overflow/underflow.



Floating point arithmetic: MUL rule
 Add the exponents.
 Subtract the bias. 
 Multiply the mantissas and determine the sign of the 

result. result. 
 Normalize the result (if necessary). 
 Truncate/round the mantissa of the result. 



Floating point arithmetic: DIV rule
 Subtract the exponents 
 Add the bias. 
 Divide the mantissas and determine the sign of the 

result. result. 
 Normalize the result if necessary. 
 Truncate/round the mantissa of the result. 

Note: Multiplication and division does not require alignment of the 
mantissas the way addition and subtraction does. 



Guard bits
While adding two floating point numbers with 24-bit mantissas, we shift 
the mantissa of the number with the smaller exponent to the right until
the two exponents are equalized. 
This implies that mantissa bits may be lost during the right shift (that is,
bits of precision may be shifted out of the mantissa being shifted). 
To prevent this, floating point operations are implemented by keeping 
guard bits, that is, extra bits of precision at the least significant end 
of the mantissa. of the mantissa. 
The arithmetic on the mantissas is performed with these extra bits of 
precision. 
After an arithmetic operation, the guarded mantissas are:

- Normalized (if necessary)
- Converted back by a process called truncation/rounding to a 24-bit

mantissa.



Truncation/rounding
 Straight chopping:

 The guard bits (excess bits of precision) are dropped.

 Von Neumann rounding:
 If the guard bits are all 0, they are dropped.  If the guard bits are all 0, they are dropped. 
 However, if any bit of the guard bit is a 1, then the LSB of the retained bit is 

set to 1. 

 Rounding:
 If there is a 1 in the MSB of the guard bit then a 1 is added to the LSB of the 

retained bits.



Rounding
 Rounding is evidently the most accurate truncation 

method.
 However,

 Rounding requires an addition operation.  Rounding requires an addition operation. 
 Rounding may require a renormalization, if the addition operation de-

normalizes the truncated number.

 IEEE uses the rounding method.

0.111111100000 rounds to 0.111111 + 0.000001
=1.000000 which must be renormalized to 0.100000



Fundamental Concepts



Some basic concepts
 Maximum size of the Main Memory
 byte-addressable
 CPU-Main Memory Connection

Up to 2kaddressable
MDR

MAR

k-bit
address bus

n-bit
data bus

Control lines
(          , MFC, etc.)

Processor Memory

locations

Word length = n bits

WR /



Some basic concepts(Contd.,)
 Measures for the speed of a memory:

 memory access time.
 memory cycle time.

 An important design issue is to provide a computer 
system with as large and fast a memory as possible, system with as large and fast a memory as possible, 
within a given cost target.

 Several techniques to increase the effective size and 
speed of the memory:
 Cache memory (to increase the effective speed).
 Virtual memory (to increase the effective size).



Semiconductor RAM memories 



Internal organization of memory 
chips
 Each memory cell can hold one bit of information.
 Memory cells are organized in the form of an array. 
 One row is one memory word. 
 All cells of a row are connected to a common line, known as the  All cells of a row are connected to a common line, known as the 

“word line”. 
 Word line is connected to the address decoder.
 Sense/write circuits are connected to the data input/output lines 

of the memory chip.



Internal organization of memory 
chips (Contd.,)

FF

Address
decoder

FF

cells
Memory

A 0

A 1

A 2

W0

W1
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•
•
•

•
•
•

•
•
•

•••

•••
circuit

Sense / Write

CS
circuit

Sense / Write Sense / Write
circuit

Data input /output lines:

2

A3

W15

WR /

b7 b1 b0
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SRAM Cell
 Two transistor inverters are cross connected to implement a basic flip-flop.
 The cell is connected to one word line and two bits lines by transistors T1 and 

T2
 When word line is at ground level, the transistors are turned off and the latch 

retains its stateretains its state
 Read operation: In order to read state of SRAM cell, the word line is activated to 

close switches T1 and T2. Sense/Write circuits at the bottom monitor the state 
of b and b’

YX

Word line

Bit lines

b

T 2T1

b 



Asynchronous DRAMs
 Static RAMs (SRAMs):

 Consist of circuits that are capable of retaining their state as long as the 
power is applied. 

 Volatile memories, because their contents are lost when power is 
interrupted. interrupted. 

 Access times of static RAMs are in the range of few nanoseconds.
 However, the cost is usually high. 

 Dynamic RAMs (DRAMs):
 Do not retain their state indefinitely.
 Contents must be periodically refreshed. 
 Contents may be refreshed while accessing them for reading. 



Asynchronous DRAMs Each row can store 512 bytes. 
12 bits to select a row, and 9 
bits to select a group in a 
row. Total of 21 bits. 

• First apply the row address, 
RAS signal latches the row 
address. Then apply the 

cell arraylatch
address
Row

decoder
Row 4096 512 8( )

RAS

address. Then apply the 
column address, CAS signal 
latches the address.

• Timing of the memory unit is  
controlled by a specialized 
unit which generates RAS and 
CAS.

• This is asynchronous DRAM

Column

CSSense / Write
circuits

Column

latch
decoderaddress

R/W

A20 9- A8 0-

D0D7CAS



Fast Page Mode
 Suppose if we want to access the consecutive bytes in 

the selected row.
 This can be done without having to reselect the row. 

 Add a latch at the output of the sense circuits in each row. 
 All the latches are loaded when the row is selected.  All the latches are loaded when the row is selected. 
 Different column addresses can be applied to select and place different bytes on 

the data lines.
 Consecutive sequence of column addresses can be 

applied under the control signal CAS, without 
reselecting the row.
 Allows a block of data to be transferred at a much faster rate than random 

accesses.
 A small collection/group of bytes is usually referred to as a block. 

 This transfer capability is referred to as the 
fast page mode feature.  



Synchronous DRAMs

Cell array
latch

address
Row

decoder
Row

Row/Column

address

Refresh
counter

•Operation is directly synchronized
with processor clock signal.
•The outputs of the sense circuits are
connected to a latch. 
•During a Read operation, the 
contents of the cells in a row are 
loaded onto the latches.
•During a refresh operation, the 

R/ W

RAS

CAS

CS

Clock

decoder
Column Read/Write

circuits & latchescounter
address
Column

address

Data input
register

Data output
register

Data

Mode register
and

timing control

•During a refresh operation, the 
contents of the cells are refreshed 
without changing the contents of
the latches. 
•Data held in the latches correspond 
to the selected columns are transferred 
to the output.
•For a burst mode of operation, 
successive columns are selected using 
column address counter and clock.
CAS signal need not be generated 
externally. A new data is placed during 
raising edge of the clock



Latency, Bandwidth, and 
DDRSDRAMs
 Memory latency is the time it takes to transfer a word 

of data to or from memory
 Memory bandwidth is the number of bits or bytes that 

can be transferred in one second.can be transferred in one second.
 DDRSDRAMs

 Cell array is organized in two banks                                                                                         



Static memories
19-bit internal chip addressaddresses

21-bit

A0
A1

A19
A20

Implement a memory unit of 2M
words of 32 bits each.
Use 512x8 static memory chips.
Each column consists of 4 chips.
Each chip implements one byte
position. 
A chip is selected by setting its 
chip select control line to 1. 

decoder
2-bit

memory chip
D31-24 D7-0D23-16 D15-8

512K 8

Chip select

memory chip

19-bit
address

512K 8

8-bit data
input/output

chip select control line to 1. 
Selected chip places its data on the 
data output line, outputs of other 
chips are in high impedance state.
21 bits to address a 32-bit word.
High order 2 bits are needed to 
select the row, by activating the 
four Chip Select signals. 
19 bits are used to access specific 
byte locations inside the selected
chip.



Dynamic memories
 Large dynamic memory systems can be implemented using 

DRAM chips in a similar way to static memory systems. 
 Placing large memory systems directly on the motherboard will 

occupy a large amount of space. 
 Also, this arrangement is inflexible since the memory system cannot be expanded easily.

 Packaging considerations have led to the development of larger 
memory units known as SIMMs (Single In-line Memory memory units known as SIMMs (Single In-line Memory 
Modules) and DIMMs (Dual In-line Memory Modules).

 Memory modules are an assembly of memory chips on a small 
board that plugs vertically onto a single socket on the 
motherboard. 
 Occupy less space on the motherboard.

 Allows for easy expansion by replacement.



Memory controller
 Recall that in a dynamic memory chip, to reduce the 

number of pins, multiplexed addresses are used. 
 Address is divided into two parts:

 High-order address bits select a row in the array.
They are provided first, and latched using RAS signal. They are provided first, and latched using RAS signal.

 Low-order address bits select a column in the row. 
 They are provided later, and latched using CAS signal. 

 However, a processor issues all address bits at the 
same time. 

 In order to achieve the multiplexing, memory 
controller circuit is inserted between the processor 
and memory.



Memory controller (contd..)

RAS

CAS

R/ W

Address

Row/Column
address

Memory
controller

R/ W

Request

90

Processor
R/ W

Clock

controller

Clock

Request

CS

Data

Memory



Read-Only Memories (ROMs)



Read-Only Memories (ROMs)
 SRAM and SDRAM chips are volatile:

 Lose the contents when the power is turned off. 
 Many applications need memory devices to retain contents after the power is 

turned off. 
 For example, computer is turned on, the operating system must be loaded from 

the disk into the memory.
 Store instructions which would load the OS from the disk.  Store instructions which would load the OS from the disk. 
 Need to store these instructions so that they will not be lost after the power is 

turned off. 
 We need to store the instructions into a non-volatile memory.

 Non-volatile memory is read in the same manner as volatile memory.
 Separate writing process is needed to place information in this memory. 
 Normal operation involves only reading of data, this type

of memory is called Read-Only memory (ROM).



Read-Only Memories (Contd.,)
 Read-Only Memory:

 Data are written into a ROM when it is manufactured.
 Programmable Read-Only Memory (PROM):

 Allow the data to be loaded by a user.
 Process of inserting the data is irreversible. Process of inserting the data is irreversible.
 Storing information specific to a user in a ROM is expensive. 

 Providing programming capability to a user may be better.

 Erasable Programmable Read-Only Memory (EPROM):
 Stored data to be erased and new data to be loaded.
 Flexibility, useful during the development phase of digital systems.
 Erasable, reprogrammable ROM.
 Erasure requires exposing the ROM to UV light.



Read-Only Memories (Contd.,)
 Electrically Erasable Programmable Read-Only Memory (EEPROM):

 To erase the contents of EPROMs, they have to be exposed to ultraviolet light.
 Physically removed from the circuit.
 EEPROMs the contents can be stored and erased electrically.

 Flash memory:
 Has similar approach to EEPROM.
 Read the contents of a single cell, but write the contents of an entire  Read the contents of a single cell, but write the contents of an entire 

block of cells. 
 Flash devices have greater density.

▪ Higher capacity and low storage cost per bit. 

 Power consumption of flash memory is very low, making it attractive 
for use in equipment that is battery-driven. 

 Single flash chips are not sufficiently large, so 
larger memory modules are implemented using 
flash cards and flash drives.



Speed, Size, and Cost
 A big challenge in the design of a computer system is to 

provide a sufficiently large memory, with a reasonable speed 
at an affordable cost.

 Static RAM:
 Very fast, but expensive, because a basic SRAM cell has a complex circuit making it 

impossible to pack a large number of cells onto a single chip.impossible to pack a large number of cells onto a single chip.
 Dynamic RAM:

 Simpler basic cell circuit, hence are much less expensive, but significantly slower 
than SRAMs.

 Magnetic disks:
 Storage provided by DRAMs is higher than SRAMs, but is still less than what is 

necessary. 
 Secondary storage such as magnetic disks provide a large amount 

of storage, but is much slower than DRAMs.



Memory Hierarchy
Processor

Primary
cache

Increasing
size

Increasing
speed

Increasing
cost per bit

Registers

L1

•Fastest access is to the data held in  
processor registers. Registers are at
the top of the memory hierarchy.
•Relatively small amount of memory that
can be implemented on the processor 
chip. This is processor cache. 
•Two levels of cache. Level 1 (L1) cache 
is on the processor chip. Level 2 (L2) 

Main
memory

Magnetic disk
secondary
memory

Secondary
cache

L2

is on the processor chip. Level 2 (L2) 
cache is in between main memory and 
processor. 
•Next level is main memory, implemented
as SIMMs. Much larger, but much slower
than cache memory.
•Next level is magnetic disks. Huge amount
of inexepensive storage. 
•Speed of memory access is critical, the 
idea is to bring instructions and data 
that will be used in the near future as 
close to the processor as possible.



Cache Memories



Cache Memories
 Processor is much faster than the main memory.

 As a result, the processor has to spend much of its time waiting while 
instructions and data are being fetched from the main memory. 

 Major obstacle towards achieving good performance.
 Speed of the main memory cannot be increased beyond a 

certain point.certain point.
 Cache memory is an architectural arrangement which 

makes the main memory appear faster to the processor 
than it really is. 

 Cache memory is based on the property of computer 
programs known as “locality of reference”.



Locality of Reference
 Analysis of programs indicates that many instructions in 

localized areas of a program are executed repeatedly 
during some period of time, while the others are accessed 
relatively less frequently.
 These instructions may be the ones in a loop, nested loop or few procedures 

calling each other repeatedly. calling each other repeatedly. 
 This is called “locality of reference”.

 Temporal locality of reference:
 Recently executed instruction is likely to be executed again very soon.

 Spatial locality of reference:
 Instructions with addresses close to a recently instruction are likely 

to be executed soon.



Cache memories

Cache Main
memoryProcessor

• Processor issues a Read request, a block of words is transferred from the main memory  to 
the cache, one word at a time.

• Subsequent references to the data in this block of words are found in the cache.
• At any given time, only some blocks in the main memory are held in the cache. Which  

blocks in the main memory are in the cache is determined by a “mapping function”.
• When the cache is full, and a block of words needs to be transferred 

from the main  memory, some block of words in the cache must be 
replaced. This is determined by a “replacement algorithm”.



Cache hit
• Existence of a cache is transparent to the processor. The processor issues Read and 

Write requests in the same manner. 

• If the data is in the cache it is called a Read or Write hit.

• Read hit:
 The data is obtained from the cache.

• Write hit:
 Cache has a replica of the contents of the main memory.
 Contents of the cache and the main memory may be updated simultaneously.       This is the 

write-through protocol. 
 Update the contents of the cache, and mark it as updated by setting a bit known        as the 

dirty bit or modified bit. The contents of the main memory are updated        when this block is 
replaced. This is write-back or copy-back protocol. 



Cache miss
• If the data is not present in the cache, then a Read miss or Write miss occurs.

• Read miss:
 Block of words containing this requested word is transferred from the memory.
 After the block is transferred, the desired word is forwarded to the processor.
 The desired word may also be forwarded to the processor as soon as it is  transferred 

without waiting for the entire block to be transferred. This is called  load-through or 
early-restart.
without waiting for the entire block to be transferred. This is called  load-through or 
early-restart.

• Write-miss:
 Write-through protocol is used, then the contents of the main memory are      updated 

directly.
 If write-back protocol is used, the block containing the 

addressed word is first brought into the cache. The desired word 
is overwritten with new information.



Cache Coherence Problem
• A bit called as “valid bit” is provided for each block.
• If the block contains valid data, then the bit is set to 1, else it is 0. 
• Valid bits are set to 0, when the power is just turned on.
• When a block is loaded into the cache for the first time, the valid bit is set to 1. 

• Data transfers between main memory and disk occur directly bypassing the cache.
• When the data on a disk changes, the main memory block is also updated. 
• However, if the data is also resident in the cache, then the valid bit is set to 0.

• What happens if the data in the disk and main memory changes and the write-back protocol is being 
used?

• In this case, the data in the cache may also have changed and is indicated by the dirty bit. 
• The copies of the data in the cache, and the main memory are different. This is called the cache 

coherence problem. 
• One option is to force a write-back before the main memory is updated from the disk.



Mapping functions
 Mapping functions determine how memory blocks 

are placed in the cache.
 A simple processor example:

 Cache consisting of 128 blocks of 16 words each.
Total size of cache is 2048 (2K) words. Total size of cache is 2048 (2K) words.

 Main memory is addressable by a 16-bit address.
 Main memory has 64K words. 
 Main memory has 4K blocks of 16 words each. 

 Three mapping functions:
 Direct mapping
 Associative mapping
 Set-associative mapping.



Direct mapping
Main

memory Block 0

Block 1

Block 127

Block 128

tag

tag

Cache

Block 0

Block 1

•Block j of the main memory maps to j modulo 128 of 
the cache. 0 maps to 0, 129 maps to 1.
•More than one memory block is mapped onto  the same 
position in the cache.
•May lead to contention for cache blocks even if the 
cache is not full. 
•Resolve the contention by allowing new block to 
replace the old block, leading to a trivial replacement Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

7 4

Main memory address

Tag Block Word

5

tag
Block 127

replace the old block, leading to a trivial replacement 
algorithm. 
•Memory address is divided into three fields:

- Low order 4 bits determine one of the 16
words in a block. 

- When a new block is brought into the cache,
the the next 7 bits determine which cache 

block this new block is placed in.
- High order 5 bits determine which of the possible

32 blocks is currently present in the cache. These
are tag bits.

•Simple to implement but not very flexible.



Associative mapping
•Main memory block can be placed into any cache 
position.
•Memory address is divided into two fields:

- Low order 4 bits identify the word within a block.
- High order 12 bits or tag bits identify a memory 

block when it is resident in the cache. 
•Flexible, and uses cache space efficiently. 

Main
memory Block 0

Block 1

Block 127

Block 128

tag

tag

Cache

Block 0

Block 1

•Flexible, and uses cache space efficiently. 
•Replacement algorithms can be used to replace an
existing block in the cache when the cache is full. 
•Cost is higher than direct-mapped cache because of 
the need to search all 128 patterns to determine 
whether a given block is in the cache.

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

4

Main memory address

Tag Word

12

tag
Block 127



Set-Associative mapping
Blocks of cache are grouped into sets. 
Mapping function allows a block of the main 
memory to reside in any block of a specific set.
Divide the cache into 64 sets, with two blocks per set. 
Memory block 0, 64, 128 etc. map to block 0, and they 
can occupy either of the two positions.
Memory address is divided into three fields:

- 6 bit field determines the set number.

Main
memory Block 0

Block 1

Block 63

Block 64

tag

tag

Cache

Block 1

Block 2

Block  3

Block 0tag

tag

- 6 bit field determines the set number.
- High order 6 bit fields are compared to the tag

fields of the two blocks in a set.
Set-associative mapping combination of direct and 
associative mapping. 
Number of blocks per set is a design parameter. 

- One extreme is to have all the blocks in one set,
requiring no set bits (fully associative mapping).

- Other extreme is to have one block per set, is 
the same as direct mapping. 

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

7 4

Main memory address

Tag Block Word

5

tag
Block 126

Block 127tag



Performance considerations



Performance considerations
 A key design objective of a computer system is to achieve 

the best possible performance at the lowest possible cost.
 Price/performance ratio is a common measure of success.

 Performance of a processor depends on: Performance of a processor depends on:
 How fast machine instructions can be brought into the processor for 

execution.
 How fast the instructions can be executed.



Interleaving 
 Divides the memory system into a number of memory 

modules. Each module has its own address buffer register (ABR) and data 
buffer register (DBR).

 Arranges addressing so that successive words in the 
address space are placed in different modules. 

 When requests for memory access involve consecutive  When requests for memory access involve consecutive 
addresses, the access will be to different modules.

 Since parallel access to these modules is possible, the 
average rate of fetching words from the Main Memory can 
be increased.



Methods of address layouts
mbits

Address in module MM address

k bits

Module

DBRABR DBRABR ABR DBR

k bits

Module MM address

DBRABRABR DBRABR DBR

Address in module

mbits

 Consecutive words are placed in a module.
 High-order k bits of a memory address

determine the module.
 Low-order m bits of a memory address

determine the word within a module.
 When a block of words is transferred from

main memory to cache, only one module is
busy at a time.

i
Module Module Module

0 n 1- i0
ModuleModuleModule
2k 1-

•Consecutive words are located in
consecutive modules.
•Consecutive addresses can be located
in consecutive modules.
•While transferring a block of data,
several memory modules can be kept
busy at the same time.



Hit Rate and Miss Penalty
 Hit rate
 Miss penalty
 Hit rate can be improved by increasing block size, while 

keeping cache size constantkeeping cache size constant
 Block sizes that are neither very small nor very large give 

best results.
 Miss penalty can be reduced if load-through approach is 

used when loading new blocks into cache.



Caches on the processor chip
 In high performance processors 2 levels of caches are 

normally used.
 Avg access time in a system with 2 levels of caches is

T = h1c1+(1-h1)h2c2+(1-h1)(1-h2)MT ave = h1c1+(1-h1)h2c2+(1-h1)(1-h2)M



Other Performance Enhancements
Write buffer

 Write-through:
• Each write operation involves writing to the main memory.
• If the processor has to wait for the write operation to be complete, it slows down the   

processor.
• Processor does not depend on the results of the write operation.
• Write buffer can be included for temporary storage of write requests.
• Processor places each write request into the buffer and continues execution.• Processor places each write request into the buffer and continues execution.
• If a subsequent Read request references data which is still in the write buffer, then  this 

data is referenced in the write buffer.

 Write-back:
• Block is written back to the main memory when it is replaced. 
• If the processor waits for this write to complete, before reading the new block, it is  slowed 

down.
• Fast write buffer can hold the block to be written, and the new 

block can be read first.



Other Performance Enhancements 
(Contd.,)

Prefetching
• New data are brought into the processor when they are first needed. 
• Processor has to wait before the data transfer is complete. 
• Prefetch the data into the cache before they are actually needed, or a 

before a Read  miss occurs. 
• Prefetching can be accomplished through software by including a 

special instruction in the machine language of the processor. special instruction in the machine language of the processor. 
 Inclusion of prefetch instructions increases the length of the 

programs.
• Prefetching can also be accomplished using hardware:

 Circuitry that attempts to discover patterns in 
memory references and then prefetches according
to this pattern.



Other Performance Enhancements 
(Contd.,)

Lockup-Free Cache
• Prefetching scheme does not work if it stops other 

accesses to the cache until the prefetch is completed.
• A cache of this type is said to be “locked” while it 

services a miss.services a miss.
• Cache structure which supports multiple outstanding 

misses is called a lockup free cache.
• Since only one miss can be serviced at a time, a lockup 

free cache must include  circuits that keep track of all 
the outstanding misses.

• Special registers may hold the necessary 
information about these misses.



Virtual Memory



Virtual memories
 Recall that an important challenge in the design of a 

computer system is to provide a large, fast memory 
system at an affordable cost.

 Architectural solutions to increase the effective speed and 
size of the memory system.
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size of the memory system.
 Cache memories were developed to increase the effective 

speed of the memory system.
 Virtual memory is an architectural solution to increase the 

effective size of the memory system.



Virtual memories (contd..)
 Recall that the addressable memory space depends on the 

number of address bits in a computer.
 For example, if a computer issues 32-bit addresses, the addressable memory space is 4G 

bytes.

 Physical main memory in a computer is generally not as large 
as the entire possible addressable space.
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as the entire possible addressable space.
 Physical memory typically ranges from a few hundred megabytes to 1G bytes.

 Large programs that cannot fit completely into the main 
memory have their parts stored on secondary storage devices 
such as magnetic disks.
 Pieces of programs must be transferred to the main memory from secondary storage 

before they can be executed.



Virtual memories (contd..)
 When a new piece of a program is to be transferred to 

the main memory, and the main memory is full, then 
some other piece in the main memory must be 
replaced.
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 Recall this is very similar to what we studied in case of cache memories.
 Operating system automatically transfers data 

between the main memory and secondary storage.
 Application programmer need not be concerned with this transfer.
 Also, application programmer does not need to be aware of the limitations 

imposed by the available physical memory.



Virtual memories (contd..)
 Techniques that automatically move program and data between main 

memory and secondary storage when they are required for execution 
are called virtual-memory techniques.

 Programs and processors reference an instruction or data 
independent of the size of the main memory.

 Processor issues binary addresses for instructions and data.
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 Processor issues binary addresses for instructions and data.
 These binary addresses are called logical or virtual addresses.

 Virtual addresses are translated into physical addresses by a 
combination of hardware and software subsystems. 
 If virtual address refers to a part of the program that is currently in the main memory, it is 

accessed immediately.
 If the address refers to a part of the program that is not currently in the main memory, it is first 

transferred to the main memory before it can be used.



Virtual memory organization

Data

Physical address

Virtual address

MMU

Processor
•Memory management unit (MMU) translates
virtual addresses into physical addresses. 
•If the desired data or instructions are in the
main memory they are fetched as described 
previously.
•If the desired data or instructions are not in 
the main memory, they must be transferred 
from secondary storage to the main memory.
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Data

DMA transfer

Physical address

Disk storage

Main memory

Cache
from secondary storage to the main memory.
•MMU causes the operating system to bring 
the data from the secondary storage into the 
main memory.



Address translation
 Assume that program and data are composed of fixed-

length units called pages.
 A page consists of a block of words that occupy contiguous 

locations in the main memory.
 Page is a basic unit of information that is transferred 

between secondary storage and main memory.
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 Page is a basic unit of information that is transferred 
between secondary storage and main memory.

 Size of a page commonly ranges from 2K to 16K bytes.
 Pages should not be too small, because the access time of a secondary storage 

device is much larger than the main memory. 
 Pages should not be too large, else a large portion of the page may not be used, 

and it will occupy valuable space in the main memory.



Address translation (contd..)
 Concepts of virtual memory are similar to the concepts 

of cache memory. 
 Cache memory:

 Introduced to bridge the speed gap between the processor and the main 
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 Introduced to bridge the speed gap between the processor and the main 
memory.

 Implemented in hardware.

 Virtual memory:
 Introduced to bridge the speed gap between the main memory and 

secondary storage. 
 Implemented in part by software.



Address translation (contd..)
 Each virtual or logical address generated by a processor is 

interpreted as a virtual page number (high-order bits) plus an 
offset (low-order bits) that specifies the location of a particular 
byte within that page.

 Information about the main memory location of each page is 
kept in the page table.
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kept in the page table.
 Main memory address where the page is stored. 

 Current status of the page.
 Area of the main memory that can hold a page is called as page 

frame.
 Starting address of the page table is kept in a page table base 

register.



Address translation (contd..)
 Virtual page number generated by the processor is 

added to the contents of the page table base register.
 This provides the address of the corresponding entry in the page table.

 The contents of this location in the page table give the 
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 The contents of this location in the page table give the 
starting address of the page if the page is currently in 
the main memory.



Address translation (contd..)
Virtual address from processor

OffsetVirtual page numberPage table address

Page table base register

PAGE TABLE

+

Virtual address is
interpreted as page
number and offset.

PTBR holds
the address of 
the page table.

PTBR + virtual
page number provide
the entry of the page 
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Page frame
in memory Offset

Control
bits

Physical address in main memory

Page frame

Page table holds information
about each page. This includes
the starting address of the page 
in the main memory.

the entry of the page 
in the page table.

This entry has the starting location
of the page.



Address translation (contd..)
 Page table entry for a page also includes some control bits

which describe the status of the page while it is in the 
main memory.

 One bit indicates the validity of the page. 
 Indicates whether the page is actually loaded into the main memory. 
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 Indicates whether the page is actually loaded into the main memory. 
 Allows the operating system to invalidate the page without actually removing it. 

 One bit indicates whether the page has been modified 
during its residency in the main memory.
 This bit determines whether the page should be written back to the disk when 

it is removed from the main memory. 
 Similar to the dirty or modified bit in case of cache memory.



Address translation (contd..)
 Other control bits for various other types of 

restrictions that may be imposed.
 For example, a program may only have read permission for a page, but not 

write or modify permissions.
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Address translation (contd..)
 Where should the page table be located?
 Recall that the page table is used by the MMU for every read 

and write access to the memory.
 Ideal location for the page table is within the MMU. 

 Page table is quite large.
MMU is implemented as part of the processor chip.
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 Page table is quite large.
 MMU is implemented as part of the processor chip.
 Impossible to include a complete page table on the chip.
 Page table is kept in the main memory.
 A copy of a small portion of the page table can be 

accommodated within the MMU.
 Portion consists of page table entries that correspond to the most recently accessed 

pages.



Address translation (contd..)
 A small cache called as Translation Lookaside Buffer (TLB) 

is included in the MMU.
 TLB holds page table entries of the most recently accessed pages. 

 Recall that cache memory holds most recently accessed 
blocks from the main memory. 

Operation of the TLB and page table in the main memory is similar to the 
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 Operation of the TLB and page table in the main memory is similar to the 
operation of the cache and main memory.

 Page table entry for a page includes:
 Address of the page frame where the page resides in the main memory.

 Some control bits.
 In addition to the above for each page, TLB must hold the 

virtual page number for each page.



Address translation (contd..)
Virtual address from processor

TLB

OffsetVirtual page number

number
Virtual page Page frame

in memory
Control

bits

Associative-mapped TLB

High-order bits of the virtual address 
generated by the processor select the 
virtual page.
These bits are compared to the virtual 
page numbers in the TLB.
If there is a match, a hit occurs and 
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No

Yes

Hit

Miss

OffsetPage frame

=?

Physical address in main memory

If there is a match, a hit occurs and 
the corresponding address of the page
frame is read. 
If there is no match, a miss occurs 
and the page table within the main 
memory must be consulted.
Set-associative mapped TLBs are 
found in commercial processors.



Address translation (contd..)
 How to keep the entries of the TLB coherent with the 

contents of the page table in the main memory?
 Operating system may change the contents of the page 

table in the main memory.
 Simultaneously it must also invalidate the corresponding entries in the TLB.
A control bit is provided in the TLB to invalidate an entry.
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 Simultaneously it must also invalidate the corresponding entries in the TLB.
 A control bit is provided in the TLB to invalidate an entry.
 If an entry is invalidated, then the TLB gets the 

information for that entry from the page table.
 Follows the same process that it would follow if the entry is not found in the 

TLB or if a “miss” occurs.



Address translation (contd..) What happens if a program generates an access to 
a page that is not in the main memory?

 In this case, a page fault is said to occur.
 Whole page must be brought into the main memory from the disk, 

before the execution can proceed.
 Upon detecting a page fault by the MMU, following 

actions occur:
MMU asks the operating system to intervene by raising an exception. 
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 MMU asks the operating system to intervene by raising an exception. 
 Processing of the active task which caused the page fault is 

interrupted. 
 Control is transferred to the operating system. 
 Operating system copies the requested page from secondary storage 

to the main memory. 
 Once the page is copied, control is returned to the task which was 

interrupted.



Address translation (contd..)
 Servicing of a page fault requires transferring the 

requested page from secondary storage to the main 
memory.

 This transfer may incur a long delay. 
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 This transfer may incur a long delay. 
 While the page is being transferred the operating 

system may:
 Suspend the execution of the task that caused the page fault. 
 Begin execution of another task whose pages are in the main memory.

 Enables efficient use of the processor.



Address translation (contd..)
 How to ensure that the interrupted task can continue 

correctly when it resumes execution?
 There are two possibilities:

 Execution of the interrupted task must continue from the point where it 
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 Execution of the interrupted task must continue from the point where it 
was interrupted. 

 The instruction must be restarted.

 Which specific option is followed depends on the 
design of the processor. 



Address translation (contd..)
 When a new page is to be brought into the main memory from 

secondary storage, the main memory may be full.
 Some page from the main memory must be replaced with this new page. 

 How to choose which page to replace?
 This is similar to the replacement that occurs when the cache is full.
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 This is similar to the replacement that occurs when the cache is full.
 The principle of locality of reference (?) can also be applied here.
 A replacement strategy similar to LRU can be applied.

 Since the size of the main memory is relatively larger compared 
to cache, a relatively large amount of programs and data can be 
held in the main memory.
 Minimizes the frequency of transfers between secondary storage and main memory.



Address translation (contd..)
 A page may be modified during its residency in the main 

memory. 
 When should the page be written back to the secondary 

storage?
 Recall that we encountered a similar problem in the 
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 Recall that we encountered a similar problem in the 
context of cache and main memory:
 Write-through protocol(?)
 Write-back protocol(?)

 Write-through protocol cannot be used, since it will incur 
a long delay each time a small amount of data is written to 
the disk.  



Memory Management



Memory management
 Operating system is concerned with transferring programs 

and data between secondary storage and main memory. 
 Operating system needs memory routines in addition to the 

other routines. other routines. 
 Operating system routines are assembled into a virtual 

address space called system space. 
 System space is separate from the space in which user 

application programs reside. 
 This is user space. 

 Virtual address space is divided into one 
system space + several user spaces.



Memory management (contd..)
 Recall that the Memory Management Unit (MMU) 

translates logical or virtual addresses into physical 
addresses. 

 MMU uses the contents of the page table base register to 
determine the address of the page table to be used in the determine the address of the page table to be used in the 
translation.
 Changing the contents of the page table base register can enable us 

to use a different page table, and switch from one space to another.
 At any given time, the page table base register can point to 

one page table. 
 Thus, only one page table can be used in the translation process at a 

given time.
 Pages belonging to only one space are accessible at any 

given time.



Memory management (contd..)
 When multiple, independent user programs coexist in the 

main memory, how to ensure that one program does not 
modify/destroy the contents of the other?

 Processor usually has two states of operation:
 Supervisor state. Supervisor state.
 User state.

 Supervisor state:
 Operating system routines are executed.

 User state:
 User programs are executed.
 Certain privileged instructions cannot be executed in user state.
 These privileged instructions include the ones which change page 

table base register.
 Prevents one user from accessing the space of other users.



Secondary Storage



Magnetic Hard Disks

Disk

Disk drive

Disk controller



Organization of Data on a Disk

Sector 0, track 0

Sector 3, trackn

Figure 5.30.  Organization of one surface of a disk.

Sector 0, track 1



Access Data on a Disk
 Sector header
 Following the data, there is an error-correction code 

(ECC).
 Formatting process Formatting process
 Difference between inner tracks and outer tracks
 Access time – seek time / rotational delay (latency time)
 Data buffer/cache



Disk Controller
Processor Main memory

System bus

Disk controller

Figure 5.31.  Disks connected to the system bus.

Disk controller

Disk drive Disk drive



Disk Controller
 Seek
 Read
 Write

Error checking Error checking



RAID Disk Arrays
 Redundant Array of Inexpensive Disks
 Using multiple disks makes it cheaper for huge storage, 

and also possible to improve the reliability of the 
overall system.overall system.

 RAID0 – data striping
 RAID1 – identical copies of data on two disks
 RAID2, 3, 4 – increased reliability
 RAID5 – parity-based error-recovery



Optical Disks (a) Cross-section

Reflection Reflection

Pit Land

Source Detector Source Detector Source Detector

No reflection

0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0

(c) Stored binary pattern

Figure 5.32.  Optical disk.

1

(b) Transition from pit to land



Optical Disks
 CD-ROM
 CD-Recordable (CD-R)
 CD-ReWritable (CD-RW)

DVD DVD
 DVD-RAM



Magnetic Tape Systems
File

File

mark
mark

File

7 or 9
bits

•
•
•
•

•
•
•
•

Figure 5.33. Organization of data on magnetic tape.

gap gap
File gap Record RecordRecord Record


