
Chapter 8Chapter 8

Accessing I/O devices

Bus

Processor Memory

I/O device 1 I/O device n

•Multiple I/O devices may be connected to the processor and the memory via a bus.
•Bus consists of three sets of lines to carry address, data and control signals.
•Each I/O device is assigned an unique address.
•To access an I/O device, the processor places the address on the address lines.
•The device recognizes the address, and responds to the control signals.

Accessing I/O devices (contd..)
 I/O devices and the memory may share the same address

space:
 Memory-mapped I/O.
 Any machine instruction that can access memory can be used to transfer data to

or from an I/O device.

4

or from an I/O device.
 Simpler software.

 I/O devices and the memory may have different address
spaces:
 Special instructions to transfer data to and from I/O devices.
 I/O devices may have to deal with fewer address lines.
 I/O address lines need not be physically separate from memory address lines.
 In fact, address lines may be shared between I/O devices and memory, with a

control signal to indicate whether it is a memory address or an I/O address.

Accessing I/O devices (contd..)

I/O
interfacedecoder

Address Data and
status registers

Control
circuits

Bus

Address lines

Data lines

Control lines

Input device

•I/O device is connected to the bus using an I/O interface circuit which has:
- Address decoder, control circuit, and data and status registers.

•Address decoder decodes the address placed on the address lines thus enabling the
device to recognize its address.
•Data register holds the data being transferred to or from the processor.
•Status register holds information necessary for the operation of the I/O device.
•Data and status registers are connected to the data lines, and have unique addresses.
•I/O interface circuit coordinates I/O transfers.

Accessing I/O devices (contd..)
 Recall that the rate of transfer to and from I/O devices

is slower than the speed of the processor. This creates
the need for mechanisms to synchronize data transfers
between them.

 Program-controlled I/O:
 Processor repeatedly monitors a status flag to achieve the necessary

synchronization.
 Processor polls the I/O device.

 Two other mechanisms used for synchronizing data
transfers between the processor and memory:
 Interrupts.
 Direct Memory Access.

Interrupts
 In program-controlled I/O, when the processor

continuously monitors the status of the device, it does
not perform any useful tasks.

 An alternate approach would be for the I/O device to An alternate approach would be for the I/O device to
alert the processor when it becomes ready.
 Do so by sending a hardware signal called an interrupt to the processor.
 At least one of the bus control lines, called an interrupt-request line is

dedicated for this purpose.

 Processor can perform other useful tasks while it is
waiting for the device to be ready.

Interrupts (contd..)
Interrupt Service routineProgram 1

here

Interrupt
occurs i

2

1

i 1+

M

•Processor is executing the instruction located at address i when an interrupt occurs.
•Routine executed in response to an interrupt request is called the interrupt-service routine.
•When an interrupt occurs, control must be transferred to the interrupt service routine.
•But before transferring control, the current contents of the PC (i+1), must be saved in a known
location.
•This will enable the return-from-interrupt instruction to resume execution at i+1.
•Return address, or the contents of the PC are usually stored on the processor stack.

Interrupts (contd..)
 Treatment of an interrupt-service routine is very

similar to that of a subroutine.
 However there are significant differences:

 A subroutine performs a task that is required by the calling program.A subroutine performs a task that is required by the calling program.
 Interrupt-service routine may not have anything in common with the

program it interrupts.
 Interrupt-service routine and the program that it interrupts may belong to

different users.
 As a result, before branching to the interrupt-service routine, not only the

PC, but other information such as condition code flags, and processor
registers used by both the interrupted program and the interrupt service
routine must be stored.

 This will enable the interrupted program to resume execution upon return
from interrupt service routine.

Interrupts (contd..)
 Saving and restoring information can be done

automatically by the processor or explicitly by program
instructions.

 Saving and restoring registers involves memory transfers:
 Increases the total execution time. Increases the total execution time.
 Increases the delay between the time an interrupt request is received, and the

start of execution of the interrupt-service routine. This delay is called interrupt
latency.

 In order to reduce the interrupt latency, most processors
save only the minimal amount of information:
 This minimal amount of information includes Program Counter and processor

status registers.

 Any additional information that must be saved, must be
saved explicitly by the program instructions at the
beginning of the interrupt service routine.

Interrupts (contd..)
 When a processor receives an interrupt-request, it

must branch to the interrupt service routine.
 It must also inform the device that it has recognized

the interrupt request. the interrupt request.
 This can be accomplished in two ways:

 Some processors have an explicit interrupt-acknowledge control signal for
this purpose.

 In other cases, the data transfer that takes place between the device and the
processor can be used to inform the device.

Interrupts (contd..)
 Interrupt-requests interrupt the execution of a

program, and may alter the intended sequence of
events:
 Sometimes such alterations may be undesirable, and must not be allowed.
 For example, the processor may not want to be interrupted by the same

device while executing its interrupt-service routine.

 Processors generally provide the ability to enable and
disable such interruptions as desired.

 One simple way is to provide machine instructions such
as Interrupt-enable and Interrupt-disable for this purpose.

 To avoid interruption by the same device during the
execution of an interrupt service routine:
 First instruction of an interrupt service routine can be Interrupt-disable.
 Last instruction of an interrupt service routine can be Interrupt-enable.

Interrupts (contd..)
 Multiple I/O devices may be connected to the processor

and the memory via a bus. Some or all of these devices
may be capable of generating interrupt requests.
 Each device operates independently, and hence no definite order can be

imposed on how the devices generate interrupt requests?

 How does the processor know which device has How does the processor know which device has
generated an interrupt?

 How does the processor know which interrupt service
routine needs to be executed?

 When the processor is executing an interrupt service
routine for one device, can other device interrupt the
processor?

 If two interrupt-requests are received simultaneously,
then how to break the tie?

Interrupts (contd..)
 Consider a simple arrangement where all devices send their

interrupt-requests over a single control line in the bus.
 When the processor receives an interrupt request over this

control line, how does it know which device is requesting
an interrupt?an interrupt?

 This information is available in the status register of the
device requesting an interrupt:
 The status register of each device has an IRQ bit which it sets to 1 when it

requests an interrupt.

 Interrupt service routine can poll the I/O devices
connected to the bus. The first device with IRQ equal to 1 is
the one that is serviced.

 Polling mechanism is easy, but time consuming to query
the status bits of all the I/O devices connected to the bus.

Interrupts (contd..)
 The device requesting an interrupt may identify itself

directly to the processor.
 Device can do so by sending a special code (4 to 8 bits) the processor over

the bus.
Code supplied by the device may represent a part of the starting address of Code supplied by the device may represent a part of the starting address of
the interrupt-service routine.

 The remainder of the starting address is obtained by the processor based on
other information such as the range of memory addresses where interrupt
service routines are located.

 Usually the location pointed to by the interrupting
device is used to store the starting address of the
interrupt-service routine.

Interrupts (contd..)
 Multiple I/O devices may be connected to the processor

and the memory via a bus. Some or all of these devices
may be capable of generating interrupt requests.
 Each device operates independently, and hence no definite order can be

imposed on how the devices generate interrupt requests?

 How does the processor know which device has
generated an interrupt?generated an interrupt?

 How does the processor know which interrupt service
routine needs to be executed?

 When the processor is executing an interrupt service
routine for one device, can other device interrupt the
processor?

 If two interrupt-requests are received simultaneously,
then how to break the tie?

Interrupts (contd..)
 Consider a simple arrangement where all devices send their

interrupt-requests over a single control line in the bus.
 When the processor receives an interrupt request over this

control line, how does it know which device is requesting
an interrupt?an interrupt?

 This information is available in the status register of the
device requesting an interrupt:
 The status register of each device has an IRQ bit which it sets to 1 when it

requests an interrupt.

 Interrupt service routine can poll the I/O devices
connected to the bus. The first device with IRQ equal to 1 is
the one that is serviced.

 Polling mechanism is easy, but time consuming to query
the status bits of all the I/O devices connected to the bus.

Interrupts (contd..)
 The device requesting an interrupt may identify itself

directly to the processor.
 Device can do so by sending a special code (4 to 8 bits) the processor over

the bus.
Code supplied by the device may represent a part of the starting address of Code supplied by the device may represent a part of the starting address of
the interrupt-service routine.

 The remainder of the starting address is obtained by the processor based on
other information such as the range of memory addresses where interrupt
service routines are located.

 Usually the location pointed to by the interrupting
device is used to store the starting address of the
interrupt-service routine.

Interrupts (contd..)
 Previously, before the processor started executing the

interrupt service routine for a device, it disabled the
interrupts from the device.

 In general, same arrangement is used when multiple
devices can send interrupt requests to the processor. devices can send interrupt requests to the processor.
 During the execution of an interrupt service routine of device, the processor

does not accept interrupt requests from any other device.
 Since the interrupt service routines are usually short, the delay that this causes

is generally acceptable.

 However, for certain devices this delay may not be
acceptable.
 Which devices can be allowed to interrupt a processor when it is executing an

interrupt service routine of another device?

Interrupts (contd..)
 I/O devices are organized in a priority structure:

 An interrupt request from a high-priority device is accepted while the
processor is executing the interrupt service routine of a low priority device.

 A priority level is assigned to a processor that can be A priority level is assigned to a processor that can be
changed under program control.
 Priority level of a processor is the priority of the program that is currently

being executed.
 When the processor starts executing the interrupt service routine of a

device, its priority is raised to that of the device.
 If the device sending an interrupt request has a higher priority than the

processor, the processor accepts the interrupt request.

Interrupts (contd..)
 Processor’s priority is encoded in a few bits of the

processor status register.
 Priority can be changed by instructions that write into the processor status

register.
Usually, these are privileged instructions, or instructions that can be Usually, these are privileged instructions, or instructions that can be
executed only in the supervisor mode.

 Privileged instructions cannot be executed in the user mode.
 Prevents a user program from accidentally or intentionally changing the

priority of the processor.

 If there is an attempt to execute a privileged
instruction in the user mode, it causes a special type of
interrupt called as privilege exception.

Interrupts (contd..)

Priority arbitration

Device 1 Device 2 Devicep

P
ro

ce
ss

o
r

INTA1

INTR1 I NTRp

INTA p

Priority arbitration

•Each device has a separate interrupt-request and interrupt-acknowledge line.
•Each interrupt-request line is assigned a different priority level.
•Interrupt requests received over these lines are sent to a priority arbitration circuit
in the processor.
•If the interrupt request has a higher priority level than the priority of the processor,
then the request is accepted.

Interrupts (contd..)
 Which interrupt request does the processor accept if it

receives interrupt requests from two or more devices
simultaneously?.

 If the I/O devices are organized in a priority structure, If the I/O devices are organized in a priority structure,
the processor accepts the interrupt request from a
device with higher priority.
 Each device has its own interrupt request and interrupt acknowledge line.
 A different priority level is assigned to the interrupt request line of each

device.

 However, if the devices share an interrupt request line,
then how does the processor decide which interrupt
request to accept?

Interrupts (contd..)

P
ro

ce
ss

or I NTR

Polling scheme:
•If the processor uses a polling mechanism to poll the status registers of I/O devices
to determine which device is requesting an interrupt.
•In this case the priority is determined by the order in which the devices are polled.
•The first device with status bit set to 1 is the device whose interrupt request is
accepted.
Daisy chain scheme:

P
ro

ce
ss

or

Device 2
INTA

Device nDevice 1

•Devices are connected to form a daisy chain.
•Devices share the interrupt-request line, and interrupt-acknowledge line is connected
to form a daisy chain.
•When devices raise an interrupt request, the interrupt-request line is activated.
•The processor in response activates interrupt-acknowledge.
•Received by device 1, if device 1 does not need service, it passes the signal to device 2.
•Device that is electrically closest to the processor has the highest priority.

Interrupts (contd..)
•When I/O devices were organized into a priority structure, each device had its own
interrupt-request and interrupt-acknowledge line.
•When I/O devices were organized in a daisy chain fashion, the devices shared an
interrupt-request line, and the interrupt-acknowledge propagated through the devices.
•A combination of priority structure and daisy chain scheme can also used.

Device Device

I NTR1

Device Device

circuit
Priority arbitration

P
ro

ce
ss

or

Device Device

INTRp

INTA1

INTAp

•Devices are organized into groups.
•Each group is assigned a different priority level.
•All the devices within a single group share an interrupt-request line, and are
connected to form a daisy chain.

Interrupts (contd..)
 Only those devices that are being used in a program should

be allowed to generate interrupt requests.
 To control which devices are allowed to generate interrupt

requests, the interface circuit of each I/O device has an
interrupt-enable bit. interrupt-enable bit.
 If the interrupt-enable bit in the device interface is set to 1, then the device is

allowed to generate an interrupt-request.

 Interrupt-enable bit in the device’s interface circuit
determines whether the device is allowed to generate an
interrupt request.

 Interrupt-enable bit in the processor status register or the
priority structure of the interrupts determines whether a
given interrupt will be accepted.

Exceptions
 Interrupts caused by interrupt-requests sent by I/O

devices.
 Interrupts could be used in many other situations where

the execution of one program needs to be suspended and
execution of another program needs to be started.execution of another program needs to be started.

 In general, the term exception is used to refer to any event
that causes an interruption.
 Interrupt-requests from I/O devices is one type of an exception.

 Other types of exceptions are:
 Recovery from errors
 Debugging
 Privilege exception

Exceptions (contd..)
 Many sources of errors in a processor. For example:

 Error in the data stored.
 Error during the execution of an instruction.

 When such errors are detected, exception
processing is initiated.

Processor takes the same steps as in the case of I/O interrupt-request. Processor takes the same steps as in the case of I/O interrupt-request.
 It suspends the execution of the current program, and starts executing

an exception-service routine.

 Difference between handling I/O interrupt-request
and handling exceptions due to errors:
 In case of I/O interrupt-request, the processor usually completes the

execution of an instruction in progress before branching to the
interrupt-service routine.

 In case of exception processing however, the execution of an
instruction in progress usually cannot be completed.

Exceptions (contd..)
 Debugger uses exceptions to provide important

features:
 Trace,
 Breakpoints.Breakpoints.

 Trace mode:
 Exception occurs after the execution of every instruction.
 Debugging program is used as the exception-service routine.

 Breakpoints:
 Exception occurs only at specific points selected by the user.
 Debugging program is used as the exception-service routine.

Exceptions (contd..)
 Certain instructions can be executed only when the

processor is in the supervisor mode. These are called
privileged instructions.

 If an attempt is made to execute a privileged If an attempt is made to execute a privileged
instruction in the user mode, a privilege exception
occurs.

 Privilege exception causes:
 Processor to switch to the supervisor mode,
 Execution of an appropriate exception-servicing routine.

Direct Memory Access (contd..)
 Direct Memory Access (DMA):

 A special control unit may be provided to transfer a block of data directly
between an I/O device and the main memory, without continuous
intervention by the processor.

 Control unit which performs these transfers is a part of Control unit which performs these transfers is a part of
the I/O device’s interface circuit. This control unit is
called as a DMA controller.

 DMA controller performs functions that would be
normally carried out by the processor:
 For each word, it provides the memory address and all the control signals.
 To transfer a block of data, it increments the memory addresses and keeps

track of the number of transfers.

Direct Memory Access (contd..)
 DMA controller can transfer a block of data from an

external device to the processor, without any intervention
from the processor.
 However, the operation of the DMA controller must be under the control of a

program executed by the processor. That is, the processor must initiate the
DMA transfer.DMA transfer.

 To initiate the DMA transfer, the processor informs the
DMA controller of:
 Starting address,
 Number of words in the block.
 Direction of transfer (I/O device to the memory, or memory to the I/O device).

 Once the DMA controller completes the DMA transfer, it
informs the processor by raising an interrupt signal.

Direct Memory Access
memoryProcessor

System bus

Main

KeyboardDisk/DMA
controller Printer

DMA
controller

DiskDisk

•DMA controller connects a high-speed network to the computer bus.
•Disk controller, which controls two disks also has DMA capability. It provides two
DMA channels.
•It can perform two independent DMA operations, as if each disk has its own DMA
controller. The registers to store the memory address, word count and status and
control information are duplicated.

Network
Interface

Direct Memory Access (contd..)
 Processor and DMA controllers have to use the bus in an

interwoven fashion to access the memory.
 DMA devices are given higher priority than the processor to access the bus.
 Among different DMA devices, high priority is given to high-speed peripherals

such as a disk or a graphics display device.such as a disk or a graphics display device.

 Processor originates most memory access cycles on the bus.
 DMA controller can be said to “steal” memory access cycles from the bus. This

interweaving technique is called as “cycle stealing”.

 An alternate approach is the provide a DMA controller an
exclusive capability to initiate transfers on the bus, and
hence exclusive access to the main memory. This is known
as the block or burst mode.

Bus arbitration
 Processor and DMA controllers both need to initiate data

transfers on the bus and access main memory.
 The device that is allowed to initiate transfers on the bus at

any given time is called the bus master.
When the current bus master relinquishes its status as the When the current bus master relinquishes its status as the
bus master, another device can acquire this status.
 The process by which the next device to become the bus master is selected and

bus mastership is transferred to it is called bus arbitration.

 Centralized arbitration:
 A single bus arbiter performs the arbitration.

 Distributed arbitration:
 All devices participate in the selection of the next bus master.

Centralized Bus Arbitration

B R

B BSY

Processor

DMA

controller

1

DMA

controller

2BG1 BG2

Centralized Bus Arbitration(cont.,)
• Bus arbiter may be the processor or a separate unit connected to

the bus.
• Normally, the processor is the bus master, unless it grants bus

membership to one of the DMA controllers.
• DMA controller requests the control of the bus by asserting the • DMA controller requests the control of the bus by asserting the

Bus Request (BR) line.
• In response, the processor activates the Bus-Grant1 (BG1) line,

indicating that the controller may use the bus when it is free.
• BG1 signal is connected to all DMA controllers in a daisy chain

fashion.
• BBSY signal is 0, it indicates that the bus is busy. When BBSY

becomes 1, the DMA controller which asserted BR can acquire
control of the bus.

Centralized arbitration (contd..)

BG1

BG2

BR

Time

DMA controller 2
asserts the BR signal.

Processor asserts
the BG1 signal

BG1 signal propagates
to DMA#2.

BBSY

BG2

Bus
master

Processor DMA controller 2 Processor

Processor relinquishes control
of the bus by setting BBSY to 1.

Distributed arbitration
 All devices waiting to use the bus share the responsibility of

carrying out the arbitration process.
 Arbitration process does not depend on a central arbiter and hence distributed

arbitration has higher reliability.

 Each device is assigned a 4-bit ID number.
All the devices are connected using 5 lines, 4 arbitration All the devices are connected using 5 lines, 4 arbitration
lines to transmit the ID, and one line for the Start-
Arbitration signal.

 To request the bus a device:
 Asserts the Start-Arbitration signal.
 Places its 4-bit ID number on the arbitration lines.

 The pattern that appears on the arbitration lines is the
logical-OR of all the 4-bit device IDs placed on the
arbitration lines.

Distributed arbitration

Distributed arbitration(Contd.,)
 Arbitration process:

 Each device compares the pattern that appears on the
arbitration lines to its own ID, starting with MSB.

 If it detects a difference, it transmits 0s on the arbitration If it detects a difference, it transmits 0s on the arbitration
lines for that and all lower bit positions.

 The pattern that appears on the arbitration lines is the
logical-OR of all the 4-bit device IDs placed on the
arbitration lines.

Distributed arbitration (contd..)
•Device A has the ID 5 and wants to request the bus:

- Transmits the pattern 0101 on the arbitration lines.
•Device B has the ID 6 and wants to request the bus:

- Transmits the pattern 0110 on the arbitration lines.
•Pattern that appears on the arbitration lines is the logical OR of the patterns:

- Pattern 0111 appears on the arbitration lines.

Arbitration process:
•Each device compares the pattern that appears on the arbitration lines to its own •Each device compares the pattern that appears on the arbitration lines to its own
ID, starting with MSB.
•If it detects a difference, it transmits 0s on the arbitration lines for that and all lower
bit positions.
•Device A compares its ID 5 with a pattern 0101 to pattern 0111.
•It detects a difference at bit position 0, as a result, it transmits a pattern 0100 on the
arbitration lines.
•The pattern that appears on the arbitration lines is the logical-OR of 0100 and 0110,
which is 0110.
•This pattern is the same as the device ID of B, and hence B has won the arbitration.

Buses
 Processor, main memory, and I/O devices are

interconnected by means of a bus.
 Bus provides a communication path for the transfer of

data.data.
 Bus also includes lines to support interrupts and arbitration.

 A bus protocol is the set of rules that govern the
behavior of various devices connected to the bus, as to
when to place information on the bus, when to assert
control signals, etc.

Buses (contd..)
 Bus lines may be grouped into three types:

 Data
 Address
 Control

 Control signals specify: Control signals specify:
 Whether it is a read or a write operation.
 Required size of the data, when several operand sizes (byte, word, long word)

are possible.
 Timing information to indicate when the processor and I/O devices may place

data or receive data from the bus.

 Schemes for timing of data transfers over a bus can be
classified into:
 Synchronous,
 Asynchronous.

Synchronous bus

Bus clock

Bus cycle

Synchronous bus (contd..)

Data

Bus clock

command
Address and

Time

Bus cycle

t0 t1 t2

Master places the
device address and

command on the bus,
and indicates that

it is a Read operation.

Addressed slave places
data on the data lines Master “strobes” the data

on the data lines into its
input buffer, for a Read

operation.
•In case of a Write operation, the master places the data on the bus along with the
address and commands at time t0.
•The slave strobes the data into its input buffer at time t2.

Synchronous bus (contd..)
 Once the master places the device address and

command on the bus, it takes time for this information
to propagate to the devices:
 This time depends on the physical and electrical characteristics of the bus. This time depends on the physical and electrical characteristics of the bus.

 Also, all the devices have to be given enough time to
decode the address and control signals, so that the
addressed slave can place data on the bus.

 Width of the pulse t1 - t0 depends on:
 Maximum propagation delay between two devices connected to the bus.
 Time taken by all the devices to decode the address and control signals, so

that the addressed slave can respond at time t1.

Synchronous bus (contd..)
 At the end of the clock cycle, at time t2, the master

strobes the data on the data lines into its input buffer
if it’s a Read operation.
 “Strobe” means to capture the values of the data and store them into a “Strobe” means to capture the values of the data and store them into a

buffer.

 When data are to be loaded into a storage buffer
register, the data should be available for a period
longer than the setup time of the device.

 Width of the pulse t2 - t1 should be longer than:
 Maximum propagation time of the bus plus
 Set up time of the input buffer register of the master.

Synchronous bus (contd..)
Bus clock

command
Address and

Data

Seen by
master

Seen by slave

tAM

t

tDM

Time

Address &
command

appear on the
bus.

Address &
command reach

the slave.

Data reaches
the master.

Data

t
0 t1 t

2

command
Address and

tAS

tDS

•Signals do not appear on the bus as soon as they are placed on the bus, due to the
propagation delay in the interface circuits.
•Signals reach the devices after a propagation delay which depends on the
characteristics of the bus.
•Data must remain on the bus for some time after t2 equal to the hold time of the buffer.

the slave.
Data appears
on the bus.

Synchronous bus (contd..)
 Data transfer has to be completed within one clock

cycle.
 Clock period t2 - t0 must be such that the longest propagation delay on the

bus and the slowest device interface must be accommodated.
Forces all the devices to operate at the speed of the slowest device. Forces all the devices to operate at the speed of the slowest device.

 Processor just assumes that the data are available at t2
in case of a Read operation, or are read by the device in
case of a Write operation.
 What if the device is actually failed, and never really responded?

Synchronous bus (contd..)
 Most buses have control signals to represent a

response from the slave.
 Control signals serve two purposes:

 Inform the master that the slave has recognized the address, and is ready to Inform the master that the slave has recognized the address, and is ready to
participate in a data transfer operation.

 Enable to adjust the duration of the data transfer operation based on the
speed of the participating slaves.

 High-frequency bus clock is used:
 Data transfer spans several clock cycles instead of just one clock cycle as in

the earlier case.

Synchronous bus (contd..)
1 2 3 4

Clock

Address

TimeAddress & command
requesting a Read

operation appear on
the bus.

Command

Data

Slave-ready

Slave places the data on the bus,
and asserts Slave-ready signal.

Master strobes data
into the input buffer.

Clock changes are seen by all the devices
at the same time.

Asynchronous bus
 Data transfers on the bus is controlled by a handshake

between the master and the slave.
 Common clock in the synchronous bus case is replaced by

two timing control lines:
Master-ready, Master-ready,

 Slave-ready.

 Master-ready signal is asserted by the master to indicate to
the slave that it is ready to participate in a data transfer.

 Slave-ready signal is asserted by the slave in response to the
master-ready from the master, and it indicates to the
master that the slave is ready to participate in a data
transfer.

Asynchronous bus (contd..)
 Data transfer using the handshake protocol:

 Master places the address and command information on the bus.
 Asserts the Master-ready signal to indicate to the slaves that the address

and command information has been placed on the bus.
 All devices on the bus decode the address. All devices on the bus decode the address.
 Address slave performs the required operation, and informs the processor it

has done so by asserting the Slave-ready signal.
 Master removes all the signals from the bus, once Slave-ready is asserted.
 If the operation is a Read operation, Master also strobes the data into its

input buffer.

Asynchronous bus (contd..)

Slave-ready

Data

Master-ready

and command
Address

Time

Data

Bus cycle

t1 t2 t3 t4 t5t0

t0 - Master places the address and command information on the bus.
t1 - Master asserts the Master-ready signal. Master-ready signal is asserted at t1 instead of t0
t2 - Addressed slave places the data on the bus and asserts the Slave-ready signal.
t3 - Slave-ready signal arrives at the master.
t4 - Master removes the address and command information.
t5 - Slave receives the transition of the Master-ready signal from 1 to 0. It removes the data
and the Slave-ready signal from the bus.

Asynchronous vs. Synchronous bus
 Advantages of asynchronous bus:

 Eliminates the need for synchronization between the sender and the
receiver.

 Can accommodate varying delays automatically, using the Slave-ready
signal.signal.

 Disadvantages of asynchronous bus:
 Data transfer rate with full handshake is limited by two-round trip delays.
 Data transfers using a synchronous bus involves only one round trip delay,

and hence a synchronous bus can achieve faster rates.

Interface circuits
 I/O interface consists of the circuitry required to connect

an I/O device to a computer bus.
 Side of the interface which connects to the computer has

bus signals for:
 Address,
 Data
 ControlControl

 Side of the interface which connects to the I/O device has:
 Datapath and associated controls to transfer data between the interface and the

I/O device.
 This side is called as a “port”.

 Ports can be classified into two:
 Parallel port,
 Serial port.

Interface circuits (contd..)
 Parallel port transfers data in the form of a number of

bits, normally 8 or 16 to or from the device.
 Serial port transfers and receives data one bit at a time.
 Processor communicates with the bus in the same way, Processor communicates with the bus in the same way,

whether it is a parallel port or a serial port.
 Conversion from the parallel to serial and vice versa takes place inside the

interface circuit.

Parallel port

Valid

Data

Keyboard
switches

Encoder
and

debouncing
circuit

SIN

Input
interface

Data

Address

R /

Master-ready

Slave-ready

W

DATAIN

Processor

•Keyboard is connected to a processor using a parallel port.
•Processor is 32-bits and uses memory-mapped I/O and the asynchronous bus
protocol.
•On the processor side of the interface we have:

- Data lines.
- Address lines
- Control or R/W line.
- Master-ready signal and
- Slave-ready signal.

Parallel port (contd..)

Valid

Data

Keyboard
switches

Encoder
and

debouncing
circuit

SIN

Input
interface

Data

Address

R /

Master-ready

Slave-ready

W

DATAIN

Processor

•On the keyboard side of the interface:
- Encoder circuit which generates a code for the key pressed.
- Debouncing circuit which eliminates the effect of a key bounce (a single key

stroke may appear as multiple events to a processor).
- Data lines contain the code for the key.
- Valid line changes from 0 to 1 when the key is pressed. This causes the code to

be loaded into DATAIN and SIN to be set to 1.

•Output lines of DATAIN are
are connected to the data lines of
the bus by means of 3 state drivers
•Drivers are turned on when the
processor issues a read signal and
the address selects this register.

•SIN signal is generated using a status flag circuit.
•It is connected to line D of the processor bus

Input Interface Circuit

•It is connected to line D0 of the processor bus
using a three-state driver.
•Address decoder selects the input interface based
on bits A1 through A31.
•Bit A0 determines whether the status or data
register is to be read, when Master-ready is
active.
•In response, the processor activates the Slave-ready
signal, when either the Read-status or Read-data
is equal to 1, which depends on line A0.

Parallel port (contd..)

CPU SOUT

Output
interface

Data

Address

R /

Master-ready

Slave-ready

Valid
W

DataDATAOUT

PrinterProcessor

Idle

interfaceSlave-ready

•Printer is connected to a processor using a parallel port.
•Processor is 32 bits, uses memory-mapped I/O and asynchronous bus protocol.
•On the processor side:

- Data lines.
- Address lines
- Control or R/W line.
- Master-ready signal and
- Slave-ready signal.

Parallel port (contd..)

CPU SOUT

Output
interface

Data

Address

R /

Master-ready

Slave-ready

Valid
W

DataDATAOUT

PrinterProcessor

Idle

interfaceSlave-ready

•On the printer side:
- Idle signal line which the printer asserts when it is ready to accept a character.
This causes the SOUT flag to be set to 1.

- Processor places a new character into a DATAOUT register.
- Valid signal, asserted by the interface circuit when it places a new character

on the data lines.

•Data lines of the processor bus
are connected to the DATAOUT
register of the interface.
•The status flag SOUT is connected
to the data line D1 using a three-state
driver.
•The three-state driver is turned on,
when the control Read-status line is
1.

Output Interface Circuit

1.
•Address decoder selects the output
interface using address lines A1
through A31.
•Address line A0 determines whether
the data is to be loaded into the
DATAOUT register or status flag is
to be read.
•If the Load-data line is 1, then the
Valid line is set to 1.
•If the Idle line is 1, then the status
flag SOUT is set to 1.

DATAIN

1

SIN

D7

D0

DATAOUT

Input
status

Bus
PA7

PA0

CA

PB7

PB0

CB1

CB2

SOUT

D1

Handshake
control

Ready
Slave-

•Combined I/O interface circuit.
•Address bits A2 through A31, that is
30 bits are used to select the overall
interface.
•Address bits A1 through A0, that is, 2
bits select one of the three registers,
namely, DATAIN, DATAOUT, and
the status register.
•Status register contains the flags SIN and

Ready

A31

A1

A0

Address
decoder

R/ W

A2

RS1

RS0

My-address

Master-

Ready •Status register contains the flags SIN and
SOUT in bits 0 and 1.
•Data lines PA0 through PA7 connect the
input device to the DATAIN register.
•DATAOUT register connects the data
lines on the processor bus to lines PB0
through PB7 which connect to the output
device.
•Separate input and output data lines for
connection to an I/O device.

DATAIN

DATAOUT

Data

P7

P0

D7

D0

•Data lines to I/O device are bidirectional.
•Data lines P7 through P0 can be used for
both input, and output.
•In fact, some lines can be used for input &
some for output depending on the pattern
in the Data Direction Register (DDR).
•Processor places an 8-bit pattern into a DDR.
•If a given bit position in the DDR is 1, the
corresponding data line acts as an output
line, otherwise it acts as an input line.
•C1 and C2 control the interaction between
the interface circuit and the I/O devices.

Data
Direction
Register

Register

select

Status
and

control

Accept
Ready

R/W

RS0
RS1
RS2

My-address

INTR

C1

C2

the interface circuit and the I/O devices.
•Ready and Accept lines are the handshake
control lines on the processor bus side, and
are connected to Master-ready & Slave-ready.
•Input signal My-address is connected to the
output of an address decoder.
•Three register select lines that allow up to 8
registers to be selected.

Serial port
 Serial port is used to connect the processor to I/O

devices that require transmission of data one bit at a
time.

 Serial port communicates in a bit-serial fashion on the Serial port communicates in a bit-serial fashion on the
device side and bit parallel fashion on the bus side.
 Transformation between the parallel and serial formats is achieved with

shift registers that have parallel access capability.

D7

D0

DATAIN

Input shift register Serial
input

•Input shift register accepts input one bit
at a time from the I/O device.
•Once all the 8 bits are received, the
contents of the input shift register are
loaded in parallel into DATAIN register.
•Output data in the DATAOUT register
are loaded into the output shift register.
•Bits are shifted out of the output shift
register and sent out to the I/O device one
bit at a time.
•As soon as data from the input shift reg.

I NTR

Chip and
register
select

Status
and

control

Accept

Ready

R/W

RS0

RS1

My-address

Receiving clock

T
ransmission clock

Output shift register

DATAOUT

Serial

•As soon as data from the input shift reg.
are loaded into DATAIN, it can start
accepting another 8 bits of data.
•Input shift register and DATAIN registers
are both used at input so that the input
shift register can start receiving another
set of 8 bits from the input device after
loading the contents to DATAIN, before
the processor reads the contents of
DATAIN. This is called as double-
buffering.

Serial port (contd..)
 Serial interfaces require fewer wires, and hence serial

transmission is convenient for connecting devices that are
physically distant from the computer.

 Speed of transmission of the data over a serial interface is
known as the “bit rate”.known as the “bit rate”.
 Bit rate depends on the nature of the devices connected.

 In order to accommodate devices with a range of speeds, a
serial interface must be able to use a range of clock speeds.

 Several standard serial interfaces have been developed:
 Universal Asynchronous Receiver Transmitter (UART) for low-speed serial

devices.

 RS-232-C for connection to communication links.

Standard I/O interfaces
 I/O device is connected to a computer using an interface

circuit.
 Do we have to design a different interface for every

combination of an I/O device and a computer?
 A practical approach is to develop standard interfaces and A practical approach is to develop standard interfaces and

protocols.
 A personal computer has:

 A motherboard which houses the processor chip, main memory and some I/O
interfaces.

 A few connectors into which additional interfaces can be plugged.

 Processor bus is defined by the signals on the processor
chip.
 Devices which require high-speed connection to the processor are connected

directly to this bus.

Standard I/O interfaces (contd..)
 Because of electrical reasons only a few devices can be

connected directly to the processor bus.
 Motherboard usually provides another bus that can

support more devices.
Processor bus and the other bus (called as expansion bus) are interconnected by Processor bus and the other bus (called as expansion bus) are interconnected by
a circuit called “bridge”.

 Devices connected to the expansion bus experience a small delay in data
transfers.

 Design of a processor bus is closely tied to the architecture
of the processor.
 No uniform standard can be defined.

 Expansion bus however can have uniform standard
defined.

Standard I/O interfaces (contd..)
 A number of standards have been developed for the

expansion bus.
 Some have evolved by default.
 For example, IBM’s Industry Standard Architecture.

76

For example, IBM’s Industry Standard Architecture.

 Three widely used bus standards:
 PCI (Peripheral Component Interconnect)
 SCSI (Small Computer System Interface)
 USB (Universal Serial Bus)

Standard I/O interfaces (contd..)
Main

memoryProcessor

Bridge

Processor bus

PCI bus Expansion bus on
the motherboard

Bridge circuit translates
signals and protocols from
processor bus to PCI bus.

memory
Additional

controller
CD-ROM

controller
Disk

Disk 1 Disk 2 ROM
CD-

SCSI
controller

USB
controller

Video

Keyboard Game

disk
IDE

SCSI bus

ISAEthernet
Interface

Expansion bus on
the motherboard

Interface

PCI Bus
 Peripheral Component Interconnect
 Introduced in 1992
 Low-cost bus
 Processor independent
 Plug-and-play capability
 In today’s computers, most memory transfers involve a burst of data rather In today’s computers, most memory transfers involve a burst of data rather

than just one word. The PCI is designed primarily to support this mode of
operation.

 The bus supports three independent address spaces: memory, I/O, and
configuration.

 we assumed that the master maintains the address information on the bus
until data transfer is completed. But, the address is needed only long enough
for the slave to be selected. Thus, the address is needed on the bus for one clock
cycle only, freeing the address lines to be used for sending data in subsequent
clock cycles. The result is a significant cost reduction.

 A master is called an initiator in PCI terminology. The addressed device that
responds to read and write commands is called a target.

Data transfer signals on the PCI bus.

Name Function

CLK A 33-MHz or 66-MHz clock.

FRAME# Sent by the initiator to indicate the duration of a

transaction.

AD 32 address/data lines, which may be optionallyAD 32 address/data lines, which may be optionally

increased to 64.

C/BE# 4 command/byte-enable lines (8 for a 64-bit bus).

IRD Y#, TRD Y# Initiator-ready and Target-ready signals.

DEVSEL# A response from the device indicating that it has

recognized its address and is ready for a data

transfer transaction.

IDSEL# Initialization Device Select.

1 2 3 4 5 6 7

CLK

Frame#

AD

C/BE#

Adress #1 #4

Cmnd Byte enable

#2 #3

IRDY#

TRDY#

DEVSEL#

A read operation on the PCI bus

Device Configuration
 When an I/O device is connected to a computer, several actions are

needed to configure both the device and the software that
communicates with it.

 PCI incorporates in each I/O device interface a small configuration
ROM memory that stores information about that device.

 The configuration ROMs of all devices are accessible in the
configuration address space. The PCI initialization software reads these
ROMs and determines whether the device is a printer, a keyboard, an
Ethernet interface, or a disk controller. It can further learn bout various Ethernet interface, or a disk controller. It can further learn bout various
device options and characteristics.

 Devices are assigned addresses during the initialization process.
 This means that during the bus configuration operation, devices

cannot be accessed based on their address, as they have not yet been
assigned one.

 Hence, the configuration address space uses a different mechanism.
Each device has an input signal called Initialization Device Select,
IDSEL#

 Electrical characteristics:
 PCI bus has been defined for operation with either a 5 or 3.3 V power

supply

SCSI Bus
 The acronym SCSI stands for Small Computer System Interface.
 It refers to a standard bus defined by the American National

Standards Institute (ANSI) under the designation X3.131 .
 In the original specifications of the standard, devices such as

disks are connected to a computer via a 50-wire cable, which
can be up to 25 meters in length and can transfer data at rates up
disks are connected to a computer via a 50-wire cable, which
can be up to 25 meters in length and can transfer data at rates up
to 5 megabytes/s.

 The SCSI bus standard has undergone many revisions, and its
data transfer capability has increased very rapidly, almost
doubling every two years.

 SCSI-2 and SCSI-3 have been defined, and each has several
options.

 Because of various options SCSI connector may have 50, 68 or 80
pins.

SCSI Bus (Contd.,)
 Devices connected to the SCSI bus are not part of the address space of the

processor
 The SCSI bus is connected to the processor bus through a SCSI controller. This

controller uses DMA to transfer data packets from the main memory to the device,
or vice versa.

 A packet may contain a block of data, commands from the processor to the device,
or status information about the device.or status information about the device.

 A controller connected to a SCSI bus is one of two types – an initiator or a target.
 An initiator has the ability to select a particular target and to send commands

specifying the operations to be performed. The disk controller operates as a target.
It carries out the commands it receives from the initiator.

 The initiator establishes a logical connection with the intended target.
 Once this connection has been established, it can be suspended and restored as

needed to transfer commands and bursts of data.
 While a particular connection is suspended, other device can use the bus to transfer

information.
 This ability to overlap data transfer requests is one of the key features of the SCSI

bus that leads to its high performance.

SCSI Bus (Contd.,)
 Data transfers on the SCSI bus are always controlled by

the target controller.
 To send a command to a target, an initiator requests

control of the bus and, after winning arbitration, control of the bus and, after winning arbitration,
selects the controller it wants to communicate with
and hands control of the bus over to it.

 Then the controller starts a data transfer operation to
receive a command from the initiator.

SCSI Bus (Contd.,)
 Assume that processor needs to read block of data from a disk drive and that

data are stored in disk sectors that are not contiguous.
 The processor sends a command to the SCSI controller, which causes the

following sequence of events to take place:
1. The SCSI controller, acting as an initiator, contends for control of the bus.
2. When the initiator wins the arbitration process, it selects the target

controller and hands over control of the bus to it.
3. The target starts an output operation (from initiator to target); in response

to this, the initiator sends a command specifying the required read
operation.
to this, the initiator sends a command specifying the required read
operation.

4. The target, realizing that it first needs to perform a disk seek operation,
sends a message to the initiator indicating that it will temporarily suspend
the connection between them. Then it releases the bus.

5. The target controller sends a command to the disk drive to move the read
head to the first sector involved in the requested read operation. Then, it
reads the data stored in that sector and stores them in a data buffer. When
it is ready to begin transferring data to the initiator, the target requests
control of the bus. After it wins arbitration, it reselects the initiator
controller, thus restoring the suspended connection.

SCSI Bus (Contd.,)
6. The target transfers the contents of the data buffer to the

initiator and then suspends the connection again
7. The target controller sends a command to the disk drive to

perform another seek operation. Then, it transfers the
contents of the second disk sector to the initiator as before. contents of the second disk sector to the initiator as before.
At the end of this transfers, the logical connection between
the two controllers is terminated.

8. As the initiator controller receives the data, it stores them
into the main memory using the DMA approach.

9. The SCSI controller sends as interrupt to the processor to
inform it that the requested operation has been completed

Category Name Function

Data DB(0) to
DB(7)

Datalines:Carry onebyte of information
duringthe information transfer phase and
iden tify deviceduringarbitration,selection and
reselection phases

DB(P) Paritybit for the data bus

Phase BSY Busy: Asserted when the bus isnotfree

–

–

–

–

Operation of SCSI bus from H/W point of
view

Table 4. The SCSI bus signals.

Phase BSY Busy: Asserted when the bus isnotfree

SEL Selection:Assertedduringselection and
reselection

Information
type

C/D Control/Data: Asserted during transfer of
control information (command,status or
message)

–

–

–

MSG Message:indicates thatthe information being
transferred is a message

–

Handshake REQ Request: Assertedby a targetto requesta data

transfercycle

ACK Acknowledge: Assertedby the initiator when it

hascompleted adata transfer operation

–

–

Category Name Function

Table 4. The SCSI bus signals.(cont.)

hascompleted adata transfer operation

Direction of

transfer

I/O Input/Output: Assertedto indicatean input

operation (relative to the initiator)

Other ATN Attention: Assertedby an initiator when it

wishesto senda messageto a target

RST Reset: Causesall device controls to disconnect

from the bus and assumetheir start-upstate

–

–

–

Main Phases involved
 Arbitration

 A controller requests the bus by asserting BSY and by asserting it’s
associated data line

 When BSY becomes active, all controllers that are requesting bus
examine data lines

 Selection Selection
 Controller that won arbitration selects target by asserting SEL and

data line of target. After that initiator releases BSY line.
 Target responds by asserting BSY line
 Target controller will have control on the bus from then

 Information Transfer
 Handshaking signals are used between initiator and target
 At the end target releases BSY line

 Reselection

Targets examine ID

DB 2

DB 5

DB 6

Free Arbitration Selection

BSY

SEL

Figure 42. Arbitration and selection on the SCSI bus.
Device 6 wins arbitration and selects device 2.

USB
 Universal Serial Bus (USB) is an industry standard

developed through a collaborative effort of several
computer and communication companies, including
Compaq, Hewlett-Packard, Intel, Lucent, Microsoft,
Nortel Networks, and Philips.Nortel Networks, and Philips.

 Speed
 Low-speed(1.5 Mb/s)
 Full-speed(12 Mb/s)
 High-speed(480 Mb/s)

 Port Limitation
 Device Characteristics
 Plug-and-play

Host computer

Root
hub

Universal Serial Bus tree structure

Hub

I/O
device

Hub I/O
device

I/O
device

Hub

I/O
device

I/O
device

I/O
device

Universal Serial Bus tree structure
 To accommodate a large number of devices that can be added or

removed at any time, the USB has the tree structure as shown in the
figure.

 Each node of the tree has a device called a hub, which acts as an
intermediate control point between the host and the I/O devices. At
the root of the tree, a root hub connects the entire tree to the host the root of the tree, a root hub connects the entire tree to the host
computer. The leaves of the tree are the I/O devices being served (for
example, keyboard, Internet connection, speaker, or digital TV)

 In normal operation, a hub copies a message that it receives from its
upstream connection to all its downstream ports. As a result, a message
sent by the host computer is broadcast to all I/O devices, but only the
addressed device will respond to that message. However, a message
from an I/O device is sent only upstream towards the root of the tree
and is not seen by other devices. Hence, the USB enables the host to
communicate with the I/O devices, but it does not enable these devices
to communicate with each other.

Addressing
 When a USB is connected to a host computer, its root hub is attached to the

processor bus, where it appears as a single device. The host software communicates
with individual devices attached to the USB by sending packets of information,
which the root hub forwards to the appropriate device in the USB tree.

 Each device on the USB, whether it is a hub or an I/O device, is assigned a 7-bit
address. This address is local to the USB tree and is not related in any way to the
addresses used on the processor bus.

 A hub may have any number of devices or other hubs connected to it, and
addresses are assigned arbitrarily. When a device is first connected to a hub, or addresses are assigned arbitrarily. When a device is first connected to a hub, or
when it is powered on, it has the address 0. The hardware of the hub to which this
device is connected is capable of detecting that the device has been connected, and
it records this fact as part of its own status information. Periodically, the host polls
each hub to collect status information and learn about new devices that may have
been added or disconnected.

 When the host is informed that a new device has been connected, it uses a
sequence of commands to send a reset signal on the corresponding hub port, read
information from the device about its capabilities, send configuration information
to the device, and assign the device a unique USB address. Once this sequence is
completed the device begins normal operation and responds only to the new
address.

USB Protocols
 All information transferred over the USB is organized in packets, where

a packet consists of one or more bytes of information. There are many
types of packets that perform a variety of control functions.

 The information transferred on the USB can be divided into two broad
categories: control and data.
 Control packets perform such tasks as addressing a device to initiate Control packets perform such tasks as addressing a device to initiate

data transfer, acknowledging that data have been received correctly, or
indicating an error.

 Data packets carry information that is delivered to a device.
 A packet consists of one or more fields containing different kinds of

information. The first field of any packet is called the packet identifier,
PID, which identifies the type of that packet.

 They are transmitted twice. The first time they are sent with their true
values, and the second time with each bit complemented

 The four PID bits identify one of 16 different packet types. Some
control packets, such as ACK (Acknowledge), consist only of the PID
byte.

PID0 PID1 PID2 PID3 PID0PID0 PID1 PID2 PID3

(a) Packet identifier field

PID ADDR ENDP CRC16

8 7 4 5Bits Control packets used for
controlling data transfer
operations are called token

(b) Token packet, IN or OUT

PID DATA CRC16

8 0 to 8192 16Bits

(c) Data packet

Figure 45. USB packet format.

operations are called token
packets.

Token

Data0

Host Hub I/O Device

Token

Data0

ACK

ACK

Time

Figure: An output
transfer

ACK

Token

Data1

Token

Data1

ACK

Isochronous Traffic on USB
 One of the key objectives of the USB is to support the transfer of

isochronous data.
 Devices that generates or receives isochronous data require a time

reference to control the sampling process.
 To provide this reference. Transmission over the USB is divided into frames

of equal length. of equal length.
 A frame is 1ms long for low-and full-speed data.
 The root hub generates a Start of Frame control packet (SOF) precisely

once every 1 ms to mark the beginning of a new frame.
 The arrival of an SOF packet at any device constitutes a regular clock signal

that the device can use for its own purposes.
 To assist devices that may need longer periods of time, the SOF packet

carries an 11-bit frame number.
 Following each SOF packet, the host carries out input and output transfers

for isochronous devices.
 This means that each device will have an opportunity for an input or

output transfer once every 1 ms.

Electrical Characteristics
 The cables used for USB connections consist of four wires.
 Two are used to carry power, +5V and Ground.

 Thus, a hub or an I/O device may be powered directly from
the bus, or it may have its own external power connection. the bus, or it may have its own external power connection.

 The other two wires are used to carry data.
 Different signaling schemes are used for different speeds of

transmission.
 At low speed, 1s and 0s are transmitted by sending a high

voltage state (5V) on one or the other o the two signal wires.
For high-speed links, differential transmission is used.

