
UNIT – II (DBMS)

1

The Relational Algebra and Relational Calculus

Relational Algebra:

 The basic set of operations for the relational model is the relational algebra.

 A sequence of relational algebra operations forms a relational algebra expression, whose result will also

be a relation that represents the result of a database query (or retrieval request).

 The relational algebra is very important for several reasons.

1. It provides a formal foundation for relational model operations.

2. It is used as a basis for implementing and optimizing queries in the query processing and

optimization modules that are integral parts of relational database management systems (RDBMSs).

3. Third, some of its concepts are incorporated into the SQL standard query language for RDBMSs.

 The relational algebra operations can be divided into two groups.

 One group includes set operations from mathematical set theory. Set operations include UNION,

INTERSECTION, SET DIFFERENCE, and CARTESIAN PRODUCT (also known as CROSS

PRODUCT).

 The other group consists of operations developed specifically for relational databases—these

include SELECT, PROJECT, and JOIN, among others

Tables:

SYLLABUS
The Relational Algebra and Relational Calculus:

Unary Relational Operations: SELECT and PROJECT - Relational Algebra Operations from Set Theory -

Binary Relational Operations: JOIN and DIVISION – Additional Relational Operations - The Tuple

Relational Calculus - The Domain Relational Calculus

SQL-99:

Schema Definition, Constraints, Queries, and Views: SQL Data Definition and Data Types -

Specifying Constraints in SQL - Schema Change Statements in SQL - Basic Queries in SQL - More Complex

SQL Queries - INSERT, DELETE, and UPDATE Statements in SQL - Views (Virtual Tables) in SQL

UNIT – II (DBMS)

2

1.1 Unary Relational Operations: SELECT and PROJECT

 The SELECT and PROJECT operator are unary; that is, it is applied to a single relation (table).

1.1.1 SELECT Operation:

 The SELECT operation is used to retrieve a subset of the tuples from a relation that satisfies a

selection condition.

 Syntax:

σ < selection condition> (R)

 Where the symbol σ (sigma) is used to denote the SELECT operator,

selection condition is a Boolean expression (condition) specified on the attributes of relation R.

 For example, to select the EMPLOYEE tuples whose department is 4, SELECT operation as follows:

σ Dno= 4 (EMPLOYEE)

 The SELECT operation can also be visualized as a horizontal partition of the relation into two sets of

tuples:

 Tuples that satisfy the condition and are selected.

 Tuples that do not satisfy the condition and are discarded.

 The <selection condition> is applied independently to each individual tuple t in R.

 The Boolean expression specified in <selection condition> is made up of a number of clauses of the

form.

<attribute name> <comparison op> <constant value>

Or

<attribute name> <comparison op> <attribute name>

 Where <attribute name> is the name of an attribute of R

<comparison op> is normally one of the operators {=, <, ≤, >, ≥, ≠}

For ordered values (numeric or date), the comparison operators are {=, <, ≤, >, ≥, ≠}

For unordered values (names, colors), the comparison operators are {=, ≠}

<constant value> is a constant value from the attribute domain.

 Example:

σ (Dno= 4 AND Salary> 25000) OR (Dno= 5 AND Salary> 30000) (EMPLOYEE)

 The number of tuples in the resulting relation is always less than or equal to the number of tuples in R.

That is, |σc (R)| ≤ |R| for any condition C.

 The degree of the relation is the number of attributes in a relation.

 Notice that the SELECT operation is commutative; that is,

σ < cond1> (σ < cond2> (R)) = σ < cond2> (σ < cond1> (R))

 we can always combine a cascade (or sequence) of SELECT operations into a single SELECT

operation with a conjunctive (AND) condition; that is,

σ < cond1> (σ < cond2> (...(σ < condn> (R)) ...)) = σ < cond1> AND< cond2> AND...AND < condn> (R)

 In SQL, the SELECT condition is typically specified in the WHERE clause of a query.

 For example, the following operation:

σ Dno= 4 AND Salary> 25000 (EMPLOYEE)

 would correspond to the following SQL query:

SELECT *

FROM EMPLOYEE

WHERE Dno=4 AND Salary>25000;

UNIT – II (DBMS)

3

1.1.2 PROJECT Operation:

 The PROJECT operation is used to retrieve only certain attributes (columns) in a relation (table).

 The PROJECT operation is display the attributes in the same order as they appear in the list.

 Syntax:

π < attribute list> (R)

 Where π (pi) is the symbol used to represent the PROJECT operation,

<attribute list> is the desired sub-list of attributes from the relation R.

 For example, to list each employee’s first and last name and salary, we can use the PROJECT operation

as follows:

π Lname, Fname, Salary(EMPLOYEE)

 The PROJECT operation can be visualized as a vertical partition of the relation into two relations:

 One has the needed columns (attributes) and contains the result of the operation.

 The other contains the discarded columns.

 Degree is equal to the number of attributes in <attribute list>.

 If the attribute list includes only non-key attributes of R, duplicate tuples are likely to occur.

 The PROJECT operation removes any duplicate tuples from relation and retrieve a valid set of distinct

tuples is known as duplicate elimination.

 For example, consider the following PROJECT operation:

π Sex, Salary(EMPLOYEE)

 Notice that the tuple <‘F’, 25000> appears only once in above Figure, even though this combination of

values appears twice in the EMPLOYEE relation.

π < list1> (π < list2> (R)) = π < list1> (R)

 As long as <list2> contains the attributes in <list1>; otherwise, the left-hand side is an incorrect

expression.

 It is also noteworthy that commutativity does not hold on PROJECT.

 In SQL, the PROJECT attribute list is specified in the SELECT clause of a query.

 For example, the following operation:

π Sex, Salary(EMPLOYEE)

 would correspond to the following SQL query:

SELECT DISTINCT Sex, Salary

FROM EMPLOYEE

Write a relational algebra expression in single line known as an in-line expression.

Example: π Fname, Lname, Salary(σ Dno= 5 (EMPLOYEE))

UNIT – II (DBMS)

4

1.1.3 RENAME Operation

 To rename the attributes in a relation, we simply list the new attribute names in parentheses.

 Rename operation is denoted with the symbol ρ (rho)

 Example:

TEMP ← σ Dno= 5 (EMPLOYEE)

R (First_name, Last_name, Salary) ← π Fname, Lname, Salary(TEMP)

 If no renaming is applied, the names of the attributes in the resulting relation of a SELECT operation are

the same as those in the original relation and in the same order.

 We can rename either the relation name or the attribute names, or both—as a unary operator.

 The general RENAME operation when applied to a relation R of degree n is denoted by any of the

following three forms:

ρS (R) or ρ(B 1, B 2, ..., Bn)(R) or ρ S (B 1, B 2, ..., Bn)(R)

 Where the symbol ρ (rho) is used to denote the RENAME operator, S is the new relation name, and B1 ,

B2 , ..., Bn are the new attribute names.

 The first expression renames the relation only, the second renames the attributes only, and the third

renames both the relation and its attributes.

 Renaming in SQL is accomplished by aliasing using AS, as in the following example:

SELECT E.Fname AS First_name, E.Lname AS Last_name, E.Salary AS Salary

FROM EMPLOYEE AS E

WHERE E.Dno=5;

UNIT – II (DBMS)

5

1.2 Relational Algebra Operations from Set Theory

1.2.1 The UNION, INTERSECTION, and MINUS Operations

 Set theoretic operations are used to merge the elements of two sets in various ways, including UNION,

INTERSECTION, and SET DIFFERENCE (also called MINUS or EXCEPT).

 These are binary operations; that is, each is applied to two relations.

 The two relations on which any of these three operations are applied must follow two rules.

 Two relations must have the same number of attributes.

 Two relations must have union compatibility or type compatibility (i.e., same type of tuples).

 Two relations R(A1 , A2 , ..., An) and S(B1 , B2 , ..., Bn) are said to be union compatible (or type

compatible) if they have the same degree n and if dom(Ai) = dom(Bi).

 We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE on two

union-compatible relations R and S as follows:

 UNION: The result of this operation, denoted by R ∪ S, is a relation that includes all tuples that

are either in R or in S or in both R and S. Duplicate tuples are eliminated.

 INTERSECTION: The result of this operation, denoted by R ∩ S, is a relation that includes all

tuples that are in both R and S.

 SET DIFFERENCE (or MINUS): The result of this operation, denoted by R – S, is a relation that

includes all tuples that are in R but not in S.

Figure: The set operations UNION, INTERSECTION, and MINUS.

(a) Two union-compatible relations. (b) STUDENT ∪ INSTRUCTOR.

(c) STUDENT ∩ INSTRUCTOR. (d) STUDENT − INSTRUCTOR.

(e) INSTRUCTOR − STUDENT

 Notice that both UNION and INTERSECTION are commutative operations.

R ∪ S = S ∪ R and R ∩ S = S ∩ R

 The MINUS operation is not commutative.

R − S ≠ S – R

 Note that INTERSECTION can be expressed in terms of union and set difference as follows:

R ∩ S = ((R ∪ S) − (R − S)) − (S − R)

 There are multiset operations (UNION ALL, INTERSECT ALL, and EXCEPT ALL) that do not

eliminate duplicates.

UNIT – II (DBMS)

6

1.2.2 The CARTESIAN PRODUCT (CROSS PRODUCT) Operation:

 CROSS PRODUCT or CROSS JOIN—which is denoted by ×.

 This is also a binary set operation, but the relations on which it is applied do not have to be union

compatible or type compatibility.

 The CARTESIAN PRODUCT creates tuples with the combined attributes of two relations.

 CROSS PRODUCT operation produces a new element by combining every member (tuple) from one

relation (set) with every member (tuple) from the other relation (set).

 The result of R(A1 , A2 , ..., An) × S(B1 , B2 , ..., Bm) is a relation Q with degree n + m attributes

Q(A1 , A2 , ..., An , B1 , B2 , ..., Bm), in that order.

Example:

Dept

Deptno Dname Loc

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

Salgrade

Losal Hisal Grade

700 1200 1

1201 1400 2

1401 2000 3

2001 3000 4

3001 9999 5

Dept X Salgrade

Deptno Dname Loc Losal Hisal Grade

10 ACCOUNTING NEW

YORK

700 1200 1

10 ACCOUNTING NEW

YORK

1201 1400 2

10 ACCOUNTING NEW

YORK

1401 2000 3

10 ACCOUNTING NEW

YORK

2001 3000 4

10 ACCOUNTING NEW

YORK

3001 9999 5

20 RESEARCH DALLAS 700 1200 1

20 RESEARCH DALLAS 1201 1400 2

20 RESEARCH DALLAS 1401 2000 3

20 RESEARCH DALLAS 2001 3000 4

20 RESEARCH DALLAS 3001 9999 5

30 SALES CHICAGO 700 1200 1

30 SALES CHICAGO 1201 1400 2

30 SALES CHICAGO 1401 2000 3

30 SALES CHICAGO 2001 3000 4

30 SALES CHICAGO 3001 9999 5

40 OPERATIONS BOSTON 700 1200 1

40 OPERATIONS BOSTON 1201 1400 2

40 OPERATIONS BOSTON 1401 2000 3

40 OPERATIONS BOSTON 2001 3000 4

40 OPERATIONS BOSTON 3001 9999 5

UNIT – II (DBMS)

7

1.3 Binary Relational Operations: JOIN and DIVISION

6.3.1 The JOIN Operation

 The JOIN operation, denoted by , is used to combine related tuples from two relations into single

“longer” tuples.

 There are several join operations: THETA JOIN, EQUIJOIN, NATURAL JOIN

THETA JOIN:

 A JOIN operation with general join condition is called a THETA JOIN.

 Syntax:

R <join condition>S or R ɵ S

 Where R and S are two relations R (A1 , A2 , ..., An) and S(B1 , B2 , ..., Bm).

 where each <condition> is of the form Ai θ Bj, Ai is an attribute of R, Bj is an attribute of S, Ai and

Bj have the same domain, and θ (theta) is one of the comparison operators {=, <, ≤, >, ≥, ≠}.

 Example: to retrieve the employee names and their grades

 π Ename , Grade(Emp emp.sal>=salgrade.losal AND emp.sal>=salgrade.hisal Salgrade Salgrade)

 Tuples whose join attributes are NULL or for which the join condition is FALSE do not appear in

the result.

EQUIJOIN:

 A JOIN, where the only comparison operator used is =, is called an EQUIJOIN.

 EQUIJOIN we always have one or more pairs of attributes that have identical values in every

tuple.

 Example: π Ename , Deptno, Dname(Emp emp.deptno=dept.deptno Dept)

NATURAL JOIN:

 NATURAL JOIN denoted by *.

 A NATURAL JOIN requires that the two join attributes (or each pair of join attributes) have the

same name in both relations.

 NATURAL JOIN was created to get rid of the second (superfluous) attribute in an EQUIJOIN

condition.

 Example: π Ename , Deptno, Dname(Emp emp.deptno=dept.deptno Dept)

 If this is not the case, a renaming operation is applied first.

 Example: e1EMP e2EMP mgre2.Empno

π e1.Ename , e2.Ename (e1 e1.mgr=mgr e2)

 Join attribute: an attribute is used to join the both relations is called join attribute.

 In JOIN, only combinations of tuples satisfying the join condition appear in the result, whereas in the

CARTESIAN PRODUCT all combinations of tuples are included in the result.

 The expected size of the join result divided by the maximum size nR * nS leads to a ratio called join

selectivity, which is a property of each join condition.

1.3.2 The DIVISION Operation

 The DIVISION operation, denoted by ÷

 The DIVISION include the tuples appear in R in combination with every tuple in S.

 Note that in the formulation of the DIVISION operation, the tuples in the denominator relation S restrict

the numerator relation R by selecting those tuples in the result that match all values present in the

denominator.

 The DIVISION operation is applied to two relations R(Z) ÷ S(X), where the attributes of R are a subset

of the attributes of S.

 Example is Retrieve the names of employees who work on all the projects that ‘John Smith’ works on.

SMITH ← σFname= ‘John’ AND Lname= ‘Smith’(EMPLOYEE)

SMITH_PNOS ← πPno(WORKS_ON Essn= SsnSMITH)

SSN_PNOS ← πEssn, Pno(WORKS_ON)

UNIT – II (DBMS)

8

 Apply the DIVISION operation to the two relations, which gives the desired employees’ Social Security

numbers:

SSNS(Ssn) ← SSN_PNOS ÷ SMITH_PNOS

RESULT ← πFname, Lname(SSNS * EMPLOYEE)

Figure 1.8 The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) T ← R ÷ S

 The DIVISION operation can be expressed as a sequence of π, ×, and – operations as follows:

T1 ← πY (R)

T2 ← πY ((S × T1) – R)

T ← T 1 – T2

1.3.3 Notation for Query Trees

 Query tree is a tree data structure that corresponds to a relational algebra expression.

 It represents the input relations of the query as leaf nodes of the tree, and rep-resents the relational

algebra operations as internal nodes.

 An execution of the query tree consists of executing an internal node operation whenever its operands

(represented by its child nodes) are available, and then replacing that internal node by the relation that

results from executing the operation. The execution terminates when the root node is executed and

produces the result relation for the query.

 Example:

For every project located in ‘Stafford’, list the project number, the controlling department number, and

the department manager’s last name, address, and birth date.

π Pnumber, Dnum, Lname, Address, Bdate((

(σ Plocation= ‘Stafford’(PROJECT)) Dnum= Dnumber (DEPARTMENT)) Mgr_ssn= Ssn(EMPLOYEE))

UNIT – II (DBMS)

9

1.4 Additional Relational Operations

1.4.1 Generalized Projection

 The generalized projection operation extends the projection operation by allowing functions of attributes

to be included in the projection list.

 Syntax:

πF 1, F2, ..., Fn (R)

 Where F1 , F2 , ..., Fn are functions over the attributes in relation R and may involve arithmetic

operations and constant values.

 As an example, consider the relation

EMPLOYEE (Ssn, Salary, Deduction, Years_service)

 A report may be required to show

Net Salary = Salary – Deduction,

Bonus = 2000 * Years_service, and

Tax = 0.25 * Salary.

 Then a generalized projection combined with renaming may be used as follows:

REPORT ← ρ(Ssn, Net_salary, Bonus, Tax) (π Ssn, Salary – Deduction, 2000 * Years_service, 0.25 * Salary(EMPLOYEE)).

1.4.2 Aggregate Functions and Grouping

 Aggregate functions are SUM, AVERAGE, MAXIMUM, MINIMUM, and COUNT.

 SUM: function is used to find sum of tuples or values.

 AVERAGE: function is used to find average of tuples or values.

 MAXIMUM: function is used to find maximum value from the tuples or values.

 MINIMUM: function is used to find minimum value from the tuples or values.

 COUNT: function is used for counting tuples or values.

 GROUP: grouping the tuples in a relation by the value of some of their attributes and then applying an

aggregate function independently to each group.

 We can define an AGGREGATE FUNCTION operation, using the symbol ℑ (pronounced script F)

 Syntax:

<grouping attributes> ℑ <function list> (R)

 Where <grouping attributes> is a list of attributes of the relation specified in R, <function list> is a list

of (<function> <attribute>) pairs.

 Example: List Count of employees in each department and their average salary.

(Dno ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE))

 If no renaming is applied, then the attribute names be the concatenation of the function name with

the attribute name in the form <function>_<attribute>.

 If rename is applied then corresponding rename attributes are displayed.

ρ R (Dno, No_of_employees, Average_sal) (Dno ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE))

UNIT – II (DBMS)

10

 If no grouping attributes are specified, the functions are applied to all the tuples in the relation, so the

resulting relation has a single tuple only.

 Example:

ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE)

 Note: duplicates are not eliminated when an aggregate function is applied.

1.4.3 OUTER JOIN Operations

 Outer joins were developed for the case where the user wants to keep all the tuples in R, or all those

in S, or all those in both relations in the result of the JOIN, regardless of whether or not they have

matching tuples in the other relation.

 This satisfies the need of queries in which tuples from two tables are to be combined by matching

corresponding rows, but without losing any tuples for lack of matching values.

 There are three type of outer joins are there

1. LEFT OUTER JOIN The LEFT OUTER JOIN operation keeps every tuple in the first, or left,

relation R in R S.

2. RIGHT OUTER JOIN The RIGHT OUTER JOIN operation keeps every tuple in the second, or

right, relation S in R S.

3. FULL OUTER JOIN The FULL OUTER JOIN operation keeps both tuple in the left and right,

relations in R S.

 If no matching tuple is found in relations then filled or padded with NULL values.

 For example, list of all employee names as well as the name of the departments they manage.

 If employee manage a department then department name will be result; if they do not manage placed

with NULL value. We can apply an operation LEFT OUTER JOIN

TEMP ← (EMPLOYEE Ssn= Mgr_ssnDEPARTMENT)

RESULT ← πFname, Minit, Lname, Dname(TEMP)

1.4.4 The OUTER UNION Operation

 The OUTER UNION operation was developed to take the union of tuples from two relations that have

some common attributes, but are not union (type) compatible.

 This operation will take the UNION of tuples in two relations R(X, Y) and S(X, Z) that are partially

compatible, meaning that only some of their attributes, say X, are union compatible.

 The attributes that are union compatible are represented only once in the result, and those attributes that

are not union compatible from either relation are also kept in the result relation T(X, Y, Z).

 It is therefore the same as a FULL OUTER JOIN on the common attributes.

UNIT – II (DBMS)

11

1.5 Examples of Queries in Relational Algebra

Query 1. Retrieve the name and address of all employees who work for the ‘Research’ department.

Ans: RESEARCH_DEPT ← σDname= ‘Research’(DEPARTMENT)

RESEARCH_EMPS ← (RESEARCH_DEPT Dnumber= Dno EMPLOYEE)

RESULT ← πFname, Lname, Address(RESEARCH_EMPS)

As a single in-line expression, this query becomes:

π Fname, Lname, Address (σ Dname= ‘Research’(DEPARTMENT Dnumber= Dno(EMPLOYEE))

Query 2. For every project located in ‘Stafford’, list the project number, the controlling department number,

and the department manager’s last name, address, and birth date.

Ans: STAFFORD_PROJS ← σPlocation= ‘Stafford’(PROJECT)

CONTR_DEPTS ← (STAFFORD_PROJS Dnum= DnumberDEPARTMENT)

PROJ_DEPT_MGRS ← (CONTR_DEPTS Mgr_ssn= SsnEMPLOYEE)

RESULT ← πPnumber, Dnum, Lname, Address, Bdate(PROJ_DEPT_MGRS)

Query 3. Find the names of employees who work on all the projects controlled by department number 5.

Ans: DEPT5_PROJS ← ρ(Pno) (π Pnumber(σ Dnum= 5 (PROJECT)))

EMP_PROJ ← ρ(Ssn, Pno) (π Essn, Pno(WORKS_ON))

RESULT_EMP_SSNS ← EMP_PROJ ÷ DEPT5_PROJS

RESULT ← πLname, Fname(RESULT_EMP_SSNS * EMPLOYEE)

Query 4. Make a list of project numbers for projects that involve an employee whose last name is ‘Smith’,

either as a worker or as a manager of the department that controls the project.

Ans: SMITHS(Essn) ← πSsn (σ Lname= ‘Smith’(EMPLOYEE))

SMITH_WORKER_PROJS ← πPno(WORKS_ON * SMITHS)

MGRS ← πLname, Dnumber(EMPLOYEE Ssn= Mgr_ssnDEPARTMENT)

SMITH_MANAGED_DEPTS(Dnum) ← πDnumber (σ Lname= ‘Smith’(MGRS))

SMITH_MGR_PROJS(Pno) ← πPnumber(SMITH_MANAGED_DEPTS * PROJECT)

RESULT ← (SMITH_WORKER_PROJS ∪ SMITH_MGR_PROJS)

π Pno (WORKS_ON Essn= Ssn(π Ssn (σ Lname= ‘Smith’(EMPLOYEE))) ∪

π Pno ((π Dnumber (σ Lname= ‘Smith’(π Lname, Dnumber(EMPLOYEE))) Ssn= mgr_ssn DEPARTMENT)) Dnumber=

DnumPROJECT)

Query 5. List the names of all employees with two or more dependents.

Ans: T1(Ssn, No_of_dependents) ← Essn ℑ COUNT Dependent_name(DEPENDENT)

T2 ← σNo_of_dependents> 2 (T1)

RESULT ← πLname, Fname(T2 * EMPLOYEE)

UNIT – II (DBMS)

12

Query 6. Retrieve the names of employees who have no dependents.

This is an example of the type of query that uses the MINUS (SET DIFFERENCE) operation.

Ans: ALL_EMPS ← πSsn(EMPLOYEE)

EMPS_WITH_DEPS(Ssn) ← πEssn(DEPENDENT)

EMPS_WITHOUT_DEPS ← (ALL_EMPS – EMPS_WITH_DEPS)

RESULT ← πLname, Fname(EMPS_WITHOUT_DEPS * EMPLOYEE)

As a single in-line expression, this query becomes:

π Lname, Fname((π Ssn(EMPLOYEE) – ρ Ssn(π Essn(DEPENDENT))) * EMPLOYEE)

Query 7. List the names of managers who have at least one dependent.

Ans: MGRS(Ssn) ← πMgr_ssn(DEPARTMENT)

EMPS_WITH_DEPS(Ssn) ← πEssn(DEPENDENT)

MGRS_WITH_DEPS ← (MGRS ∩ EMPS_WITH_DEPS)

RESULT ← πLname, Fname(MGRS_WITH_DEPS * EMPLOYEE)

UNIT – II (DBMS)

13

Relational Calculus:

 The relational calculus is a formal language, based on the branch of mathematical logic called predicate

calculus.

 The relational calculus provides a higher-level declarative language for specifying relational queries.

 In a relational calculus expression, there is no order of operations to specify how to retrieve the query

result—only what information the result should contain.

 This is the main distinguishing feature between relational algebra and relational calculus.

 There are two variations of relational calculus-tuple relational calculus and domain relational calculus.

1.6 The Tuple Relational Calculus

 The relational calculus is considered to be a nonprocedural language i.e., no need to write a sequence

of operations to specify a retrieval request in a particular order of applying the operations.

 A calculus expression specifies what is to be retrieved rather than how to retrieve it.

 Relational calculus is important for two reasons-

 First, it has a firm basis in mathematical logic.

 Second, the standard query language (SQL) for RDBMSs has some of its foundations in the tuple

relational calculus.

1.6.1 Tuple Variables and Range Relations

 The tuple relational calculus is based on specifying a number of tuple variables.

 Each tuple variable usually ranges over a particular database relation, meaning that the variable may

take as its value any individual tuple from that relation.

 Syntax:

{t | COND(t)}

 Where t is a tuple variable and COND(t) is a conditional (Boolean) expression involving t that evaluates

to either TRUE or FALSE for different assignments of tuples to the variable t.

 For example, to find all employees whose salary is above $50,000, we can write the following tuple

calculus expression:

{t | EMPLOYEE(t) AND t .Salary>50000}

 We can also retrieve only some of the attributes(say the first and last names) as

{t.Fname, t.Lname | EMPLOYEE(t) AND t .Salary>50000}

 we need to specify the following information in a tuple relational calculus expression:

 For each tuple variable t, the range relation R of t means R(t). If we do not specify a range relation,

then the variable t will range over all possible tuples “in the universe” as it is not restricted to any

one relation.

 A condition to select particular combinations of tuples from range relations, the condition is evaluated

for every possible combination of tuples to identify the selected combinations for which the condition

evaluates to TRUE.

 A set of attributes to be retrieved, the requested attributes. The values of these attributes are

retrieved for each selected combination of tuples.

1.6.2 Expressions and Formulas in Tuple Relational Calculus

 A general expression of the tuple relational calculus is of the form

{t1 . Aj, t2 . Ak , ..., tn .Am | COND(t1 , t2 , ..., tn , tn +1, tn +2, ..., tn+m)}

 where t1 , t2 , ..., tn , tn +1, ..., tn +m are tuple variables, each Ai is an attribute of the relation on which ti

ranges, and COND is a condition or formula.

 A formula is made up of predicate calculus atoms, which can be one of the following:

1. An atom of the form R(ti), where R is a relation name and ti is a tuple variable.

2. An atom of the form ti. A op tj. B.

Where op is one of the comparison operators in the set {=, <, ≤, >, ≥, ≠},

ti and tj are tuple variables,

UNIT – II (DBMS)

14

A is an attribute of the relation on which ti ranges, and

B is an attribute of the relation on which tj ranges.

3. An atom of the form ti. A op c or c op tj. B, where c is a constant value.

 A formula (Boolean condition) is made up of one or more atoms connected via the logical operators

AND, OR, and NOT and is defined recursively by Rules 1 and 2 as follows:

 Rule 1: Every atom is a formula.

 Rule 2: If F1 and F2 are formulas, then so are (F1 AND F 2), (F1 OR F 2), NOT (F1).

a. (F1 AND F 2) is TRUE if both F1 and F2 are TRUE; otherwise, it is FALSE.

b. (F1 OR F 2) is FALSE if both F1 and F2 are FALSE; otherwise, it is TRUE.

c. NOT (F1) is TRUE if F1 is FALSE; it is FALSE if F1 is TRUE.

d. NOT (F2) is TRUE if F2 is FALSE; it is FALSE if F2 is TRUE.

1.6.3 The Existential and Universal Quantifiers

 Quantifiers are two types, they are the universal quantifier (∀) and the existential quantifier (∃).

 We need to define the concepts of free and bound tuple variables in a formula.

 Informally, a tuple variable t is bound if it is quantified, meaning that it appears in an (∃t) or (∀t)

clause; otherwise, it is free.

 we define a tuple variable in a formula as free or bound according to the following rules:

 An occurrence of a tuple variable in a formula F that is an atom is free in F.

 An occurrence of a tuple variable t is free or bound in a formula made up of logical connectives —

(F1 AND F 2), (F1 OR F 2), NOT(F1), and NOT(F2) -- depending on whether it is free or

bound in F1 or F2 (if it occurs in either).

 Truth values for formulas with quantifiers are described below-

 The formula (∃t)(F) is TRUE if the formula F evaluates to TRUE for some (at least one) tuple

assigned to free occurrences of t in F; otherwise, (∃t)(F) is FALSE.

 The formula (∀t)(F) is TRUE if the formula F evaluates to TRUE for every tuple (in the universe)

assigned to free occurrences of t in F; otherwise, (∀t)(F) is FALSE.

1.6.4 Sample Queries in Tuple Relational Calculus

Query 1. List the name and address of all employees who work for the ‘Research’ department.

Ans: { t.Fname, t.Lname, t.Address | EMPLOYEE(t) AND (∃d)(DEPARTMENT(d) AND

d .Dname=‘Research’ AND d .Dnumber= t.Dno)}

Query 2. For every project located in ‘Stafford’, list the project number, the controlling department number,

and the department manager’s last name, birth date, and address.

Ans: { p.Pnumber, p.Dnum, m.Lname, m.Bdate, m.Address | PROJECT(p) AND EMPLOYEE(m) AND

p .Plocation=‘Stafford’ AND ((∃d)(DEPARTMENT(d) AND p .Dnum= d.Dnumber AND

d .Mgr_ssn= m.Ssn))}

Query 3. List the name of each employee who works on some project controlled by department number 5.

This is a variation of Q3 in which all is changed to some. In this case we need two join conditions

and two existential quantifiers.

Ans: { e. Lname, e. Fname | EMPLOYEE(e) AND ((∃x)(∃w)(PROJECT(x) AND

WORKS_ON(w) AND x.Dnum=5 AND w .Essn= e.Ssn AND x.Pnumber= w.Pno))}

UNIT – II (DBMS)

15

Query 4. Make a list of project numbers for projects that involve an employee whose last name is ‘Smith’,

either as a worker or as manager of the controlling department for the project.

{ p.Pnumber | PROJECT(p) AND (((∃e)(∃w)(EMPLOYEE(e)

AND WORKS_ON(w) AND w .Pno= p.Pnumber

AND e.Lname=‘Smith’ AND e.Ssn= w.Essn))

OR

((∃m)(∃d)(EMPLOYEE(m) AND DEPARTMENT(d)

AND p .Dnum= d.Dnumber AND d .Mgr_ssn= m.Ssn

AND m .Lname=‘Smith’)))}

1.6.5 Notation for Query Graphs

 Graphical representation of a query is called a query graph.

 F Relations in the query are represented by relation nodes, which are displayed as single circles.

 Constant values, typically from the query selection conditions, are represented by constant nodes,

which are displayed as double circles or ovals.

 Selection and join conditions are represented by the graph edges (the lines that connect the nodes),

as shown in below figure.

 The attributes to be retrieved from each relation are displayed in square brackets above each relation.

 Example: For every project located in ‘Stafford’, list the project number, the controlling department

number, and the department manager’s last name, birth date, and address.

Ans: { p.Pnumber, p.Dnum, m.Lname, m.Bdate, m.Address | PROJECT(p) AND EMPLOYEE(m) AND

p .Plocation=‘Stafford’ AND ((∃d)(DEPARTMENT(d) AND p .Dnum= d.Dnumber AND

d .Mgr_ssn= m.Ssn))}

1.6.6 Transforming the Universal and Existential Quantifiers

 It is possible to transform a universal quantifier into an existential quantifier, and vice versa, to get an

equivalent expression.

 One general transformation can be described informally as follows:

 Transform one type of quantifier into the other with negation (preceded by NOT); AND and OR replace

one another; a negated formula becomes unnegated; and an unnegated formula becomes negated.

 Some special cases of this transformation can be stated as follows, where the ≡ symbol stands for

equivalent to:

(∀x) (P(x)) ≡ NOT (∃x) (NOT (P(x)))

(∃x) (P(x)) ≡ NOT (∀x) (NOT (P(x)))

(∀x) (P(x) AND Q (x)) ≡ NOT (∃x) (NOT (P(x)) OR NOT (Q(x)))

(∀x) (P(x) OR Q (x)) ≡ NOT (∃x) (NOT (P(x)) AND NOT (Q(x)))

(∃x) (P(x)) OR Q (x)) ≡ NOT (∀x) (NOT (P(x)) AND NOT (Q(x)))

(∃x) (P(x) AND Q (x)) ≡ NOT (∀x) (NOT (P(x)) OR NOT (Q(x)))

Notice also that the following is TRUE, where the ⇒ symbol stands for implies:

(∀x)(P(x)) ⇒ (∃x)(P(x))

NOT (∃x)(P(x)) ⇒ NOT (∀x)(P(x))

UNIT – II (DBMS)

16

1.6.7 Using the Universal Quantifier in Queries

Query 3. List the names of employees who work on all the projects controlled by department number 5.

One way to specify this query is to use the universal quantifier as shown:

Ans: { e. Lname, e. Fname | EMPLOYEE(e) AND ((∀x)(NOT(PROJECT(x)) OR NOT

(x. Dnum=5) OR ((∃w)(WORKS_ON(w) AND w .Essn= e.Ssn AND x .Pnumber= w. Pno))))}

Query 6. List the names of employees who have no dependents.

Ans: { e.Fname, e.Lname | EMPLOYEE(e) AND (NOT (∃d)(DEPENDENT(d) AND e .Ssn= d.Essn))}

Using the general transformation rule, we can rephrase Q6 as follows:

Ans: { e.Fname, e.Lname | EMPLOYEE(e) AND ((∀d)(NOT(DEPENDENT(d)) OR NOT(e.Ssn=

d.Essn)))}

Query 7. List the names of managers who have at least one dependent.

Ans: { e.Fname, e.Lname | EMPLOYEE(e) AND ((∃d)(∃ρ)(DEPARTMENT(d) AND DEPENDENT(ρ)

AND e .Ssn= d.Mgr_ssn AND ρ.Essn= e.Ssn))}

This query is handled by interpreting managers who have at least one dependent as managers for whom

there exists some dependent.

1.6.8 Safe Expressions

 A safe expression in relational calculus is one that is guaranteed to yield a finite number of tuples as its

result; otherwise, the expression is called unsafe.

 For example, the expression

{t | NOT (EMPLOYEE(t))}

 Above expression is unsafe because it yields all tuples in the universe that are not EMPLOYEE

tuples, which are infinitely numerous.

