

 UNIT-III

Databases are stored in file formats, which contain records. At physical level, the actual data is
stored in electromagnetic format on some device. These storage devices can be broadly
categorized into three types −

 Primary Storage − The memory storage that is directly accessible to the CPU comes
under this category. CPU's internal memory (registers), fast memory (cache), and main
memory (RAM) are directly accessible to the CPU, as they are all placed on the
motherboard or CPU chipset. This storage is typically very small, ultra-fast, and volatile.
Primary storage requires continuous power supply in order to maintain its state. In case
of a power failure, all its data is lost.

 Secondary Storage − Secondary storage devices are used to store data for future use
or as backup. Secondary storage includes memory devices that are not a part of the CPU
chipset or motherboard, for example, magnetic disks, optical disks (DVD, CD, etc.), hard
disks, flash drives, and magnetic tapes.

 Tertiary Storage − Tertiary storage is used to store huge volumes of data. Since such
storage devices are external to the computer system, they are the slowest in speed.
These storage devices are mostly used to take the back up of an entire system. Optical
disks and magnetic tapes are widely used as tertiary storage.

Memory Hierarchy
A computer system has a well-defined hierarchy of memory. A CPU has direct access to it main
memory as well as its inbuilt registers. The access time of the main memory is obviously less
than the CPU speed. To minimize this speed mismatch, cache memory is introduced. Cache
memory provides the fastest access time and it contains data that is most frequently accessed
by the CPU.

The memory with the fastest access is the costliest one. Larger storage devices offer slow
speed and they are less expensive, however they can store huge volumes of data as compared
to CPU registers or cache memory.

Magnetic Disks
Hard disk drives are the most common secondary storage devices in present computer
systems. These are called magnetic disks because they use the concept of magnetization to
store information. Hard disks consist of metal disks coated with magnetizable material. These
disks are placed vertically on a spindle. A read/write head moves in between the disks and is
used to magnetize or de-magnetize the spot under it. A magnetized spot can be recognized as
0 (zero) or 1 (one).

Hard disks are formatted in a well-defined order to store data efficiently. A hard disk plate has
many concentric circles on it, called tracks. Every track is further divided into sectors. A sector
on a hard disk typically stores 512 bytes of data.

Redundant Array of Independent Disks
RAID or Redundant Array of Independent Disks, is a technology to connect multiple secondary
storage devices and use them as a single storage media.

RAID consists of an array of disks in which multiple disks are connected together to achieve
different goals. RAID levels define the use of disk arrays.

Storage System in DBMS
A database system provides an ultimate view of the stored data. However, data in the form of
bits, bytes get stored in different storage devices.

In this section, we will take an overview of various types of storage devices that are used for
accessing and storing data.

Types of Data Storage
For storing the data, there are different types of storage options available. These storage types
differ from one another as per the speed and accessibility. There are the following types of
storage devices used for storing the data:

o Primary Storage

o Secondary Storage

o Tertiary Storage

Primary Storage

It is the primary area that offers quick access to the stored data. We also know the
primary storage as volatile storage. It is because this type of memory does not
permanently store the data. As soon as the system leads to a power cut or a crash, the
data also get lost. Main memory and cache are the types of primary storage.

 Main Memory: It is the one that is responsible for operating the data that is available by
the storage medium. The main memory handles each instruction of a computer machine.
This type of memory can store gigabytes of data on a system but is small enough to
carry the entire database. At last, the main memory loses the whole content if the system
shuts down because of power failure or other reasons.

1. Cache: It is one of the costly storage media. On the other hand, it is the fastest one. A cache is a
tiny storage media which is maintained by the computer hardware usually. While designing the
algorithms and query processors for the data structures, the designers keep concern on the
cache effects.

Secondary Storage

Secondary storage is also called as Online storage. It is the storage area that allows the user to
save and store data permanently. This type of memory does not lose the data due to any power
failure or system crash. That's why we also call it non-volatile storage.

There are some commonly described secondary storage media which are available in almost
every type of computer system:

o Flash Memory: A flash memory stores data in USB (Universal Serial Bus) keys which are further
plugged into the USB slots of a computer system. These USB keys help transfer data to a
computer system, but it varies in size limits. Unlike the main memory, it is possible to get back
the stored data which may be lost due to a power cut or other reasons. This type of memory
storage is most commonly used in the server systems for caching the frequently used data. This
leads the systems towards high performance and is capable of storing large amounts of
databases than the main memory.

o Magnetic Disk Storage: This type of storage media is also known as online storage media. A
magnetic disk is used for storing the data for a long time. It is capable of storing an entire
database. It is the responsibility of the computer system to make availability of the data from a
disk to the main memory for further accessing. Also, if the system performs any operation over
the data, the modified data should be written back to the disk. The tremendous capability of a
magnetic disk is that it does not affect the data due to a system crash or failure, but a disk failure
can easily ruin as well as destroy the stored data.

Tertiary Storage

It is the storage type that is external from the computer system. It has the slowest speed. But it
is capable of storing a large amount of data. It is also known as Offline storage. Tertiary storage
is generally used for data backup. There are following tertiary storage devices available:

o Optical Storage: An optical storage can store megabytes or gigabytes of data. A Compact Disk
(CD) can store 700 megabytes of data with a playtime of around 80 minutes. On the other hand,
a Digital Video Disk or a DVD can store 4.7 or 8.5 gigabytes of data on each side of the disk.

o Tape Storage: It is the cheapest storage medium than disks. Generally, tapes are used for
archiving or backing up the data. It provides slow access to data as it accesses data sequentially
from the start. Thus, tape storage is also known as sequential-access storage. Disk storage is
known as direct-access storage as we can directly access the data from any location on disk.

Storage Hierarchy
Besides the above, various other storage devices reside in the computer system. These storage
media are organized on the basis of data accessing speed, cost per unit of data to buy the
medium, and by medium's reliability. Thus, we can create a hierarchy of storage media on the
basis of its cost and speed.

Thus, on arranging the above-described storage media in a hierarchy according to its speed and
cost, we conclude the below-described image:

In the image, the higher levels are expensive but fast. On moving down, the cost per bit is
decreasing, and the access time is increasing. Also, the storage media from the main memory to
up represents the volatile nature, and below the main memory, all are non-volatile devices.

Indexing in DBMS
o Indexing is used to optimize the performance of a database by minimizing the number of disk

accesses required when a query is processed.

o The index is a type of data structure. It is used to locate and access the data in a database table
quickly.

Index structure:
Indexes can be created using some database columns.

Indexing improves database performance by minimizing the number of disc visits
required to fulfil a query. It is a data structure technique used to locate and quickly
access data in databases. Several database fields are used to generate indexes. The
main key or candidate key of the table is duplicated in the first column, which is the
Search key. To speed up data retrieval, the values are also kept in sorted order. It
should be highlighted that sorting the data is not required.

The second column is the Data Reference or Pointer which contains a set of pointers
holding the address of the disk block where that particular key value can be found.

Attributes of Indexing
 Access Types: This refers to the type of access such as value based search, range

access, etc.
 Access Time: It refers to the time needed to find particular data element or set of

elements.

 Insertion Time: It refers to the time taken to find the appropriate space and insert a
new data.

 Deletion Time: Time taken to find an item and delete it as well as update the index
structure.

 Space Overhead: It refers to the additional space required by the index.

In general, there are two types of file organization mechanism which are followed by
the indexing methods to store the data:

Sequential File Organization or Ordered Index File
In this, the indices are based on a sorted ordering of the values. These are generally
fast and a more traditional type of storing mechanism. These Ordered or Sequential
file organization might store the data in a dense or sparse format:

 Dense Index

 For every search key value in the data file, there is an index record.
 This record contains the search key and also a reference to the first data

record with that search key value.

 Sparse Index
 The index record appears only for a few items in the data file. Each item

points to a block as shown.
 To locate a record, we find the index record with the largest search key

value less than or equal to the search key value we are looking for.
 We start at that record pointed to by the index record, and proceed along

with the pointers in the file (that is, sequentially) until we find the desired
record.

 Number of Accesses required=log₂(n)+1, (here n=number of blocks
acquired by index file)

Hash File organization
Indices are based on the values being distributed uniformly across a range of buckets.
The buckets to which a value is assigned is determined by a function called a hash
function. There are primarily three methods of indexing:
 ClusteredIndexing

When more than two records are stored in the same file these types of storing
known as cluster indexing.

 By using the cluster indexing we can reduce the cost of searching reason being
multiple records related to the same thing are stored at one place and it also gives
the frequent joining of more than two tables (records).

 Clustering index is defined on an ordered data file. The data file is ordered on a
non-key field. In some cases, the index is created on non-primary key columns
which may not be unique for each record. In such cases, in order to identify the
records faster, we will group two or more columns together to get the unique values
and create index out of them.

 This method is known as the clustering index. Essentially, records with similar
properties are grouped together, and indexes for these groupings are formed.

 Students studying in each semester, for example, are grouped together. First
semester students, second semester students, third semester students, and so on
are categorized.

 PrimaryIndexing
This is a type of Clustered Indexing wherein the data is sorted according to the
search key and the primary key of the database table is used to create the index. It
is a default format of indexing where it induces sequential file organization. As
primary keys are unique and are stored in a sorted manner, the performance of the
searching operation is quite efficient.

 Non-clusteredorSecondaryIndexing
A non clustered index just tells us where the data lies, i.e. it gives us a list of virtual
pointers or references to the location where the data is actually stored. Data is not
physically stored in the order of the index. Instead, data is present in leaf nodes.
For eg. the contents page of a book. Each entry gives us the page number or
location of the information stored. The actual data here(information on each page of
the book) is not organized but we have an ordered reference(contents page) to
where the data points actually lie. We can have only dense ordering in the non-
clustered index as sparse ordering is not possible because data is not physically
organized accordingly.
It requires more time as compared to the clustered index because some amount of
extra work is done in order to extract the data by further following the pointer. In the
case of a clustered index, data is directly present in front of the index.

 MultilevelIndexing
With the growth of the size of the database, indices also grow. As the index is
stored in the main memory, a single-level index might become too large a size to
store with multiple disk accesses. The multilevel indexing segregates the main
block into various smaller blocks so that the same can stored in a single block.
The outer blocks are divided into inner blocks which in turn are pointed to the data
blocks. This can be easily stored in the main memory with fewer overheads.

Advantages of Indexing
 Improved Query Performance: Indexing enables faster data retrieval from the

database. The database may rapidly discover rows that match a specific value or
collection of values by generating an index on a column, minimising the amount of
time it takes to perform a query.

 Efficient Data Access: Indexing can enhance data access efficiency by lowering the
amount of disk I/O required to retrieve data. The database can maintain the data
pages for frequently visited columns in memory by generating an index on those
columns, decreasing the requirement to read from disk.

 Optimized Data Sorting: Indexing can also improve the performance of sorting
operations. By creating an index on the columns used for sorting, the database can
avoid sorting the entire table and instead sort only the relevant rows.

 Consistent Data Performance: Indexing can assist ensure that the database performs
consistently even as the amount of data in the database rises. Without indexing,
queries may take longer to run as the number of rows in the table grows, while
indexing maintains roughly consistent speed.

 By ensuring that only unique values are inserted into columns that have been
indexed as unique, indexing can also be utilized to ensure the integrity of data. This
avoids storing duplicate data in the database, which might lead to issues when
performing queries or reports.

Overall, indexing in databases provides significant benefits for improving query
performance, efficient data access, optimized data sorting, consistent data
performance, and enforced data integrity
Disadvantages of Indexing
 Indexing necessitates more storage space to hold the index data structure, which

might increase the total size of the database.
 Increased database maintenance overhead: Indexes must be maintained as data is

added, destroyed, or modified in the table, which might raise database maintenance
overhead.

 Indexing can reduce insert and update performance since the index data structure
must be updated each time data is modified.

 Choosing an index can be difficult: It can be challenging to choose the right indexes
for a specific query or application and may call for a detailed examination of the
data and access patterns.

Conclusion

Indexing is a very useful technique which helps in optimizing the search time in
database query.Table of database indexing consist of search key and pointer.There
are four type pf indexing: Primary, Secondary and Clustering, Multivalued Indexing.
Primary indexing is divided into two types, dense and sparse. Dense indexing is used
when index table contains records for every search key.Sparse indexing is used when
index table does not use search key for every record.Multilevel indexing uses B+
Tree.The main purpose of indexing is to provide better performance for data retrieval.

B Tree

B tree is a self-balancing tree, and it is a m-way tree where m defines the order of the
tree. Btree is a generalization of the Binary Search tree in which a node can have more
than one key and more than two children depending upon the value of m. In the B tree, the

data is specified in a sorted order having lower values on the left subtree and higher values
in the right subtree.

B Tree is a specialized m-way tree that can be widely used for disk access. A B-Tree of
order m can have at most m-1 keys and m children. One of the main reasons of using B
tree is its capability to store large number of keys in a single node and large key values by
keeping the height of the tree relatively small.

A B tree of order m contains all the properties of an M way tree. In addition, it contains
the following properties.

1. Every node in a B-Tree contains at most m children.
2. Every node in a B-Tree except the root node and the leaf node contain at least m/2

children.
3. The root nodes must have at least 2 nodes.
4. All leaf nodes must be at the same level.

It is not necessary that, all the nodes contain the same number of children but, each node
must have m/2 number of nodes.

A B tree of order 4 is shown in the following image.

While performing some operations on B Tree, any property of B Tree may violate such
as number of minimum children a node can have. To maintain the properties of B Tree,
the tree may split or join.

Operations

Searching: Searching in B Trees is similar to that in Binary search tree. For example, if
we search for an item 49 in the following B Tree. The process will something like
following:

Compare item 49 with root node 78. Since 49 < 78 hence, move to its left sub-tree.

Since, 40<49<56, traverse right sub-tree of 40.

49>45, move to right. Compare 49.

Match found, return.

Searching in a B tree depends upon the height of the tree. The search algorithm takes
O(log n) time to search any element in a B tree.

Inserting

Insertions are done at the leaf node level. The following algorithm needs to be followed in
order to insert an item into B Tree.

1. Traverse the B Tree in order to find the appropriate leaf node at which the node can
be inserted.

2. If the leaf node contain less than m-1 keys then insert the element in the increasing
order.

3. Else, if the leaf node contains m-1 keys, then follow the following steps.
o Insert the new element in the increasing order of elements.
o Split the node into the two nodes at the median.
o Push the median element upto its parent node.
o If the parent node also contains m-1 number of keys, then split it too by

following the same steps.

Example:
Insert the node 8 into the B Tree of order 5 shown in the following image.

8 will be inserted to the right of 5, therefore insert 8.

Deletion

Deletion is also performed at the leaf nodes. The node which is to be deleted can either be
a leaf node or an internal node. Following algorithm needs to be followed in order to
delete a node from a B tree.

1. Locate the leaf node.
2. If there are more than m/2 keys in the leaf node then delete the desired key from the

node.
3. If the leaf node doesn't contain m/2 keys then complete the keys by taking the

element from right or left sibling.
o If the left sibling contains more than m/2 elements then push its largest

element up to its parent and move the intervening element down to the node
where the key is deleted.

o If the right sibling contains more than m/2 elements then push its smallest
element up to the parent and move intervening element down to the node
where the key is deleted.

4. If neither of the sibling contain more than m/2 elements then create a new leaf node
by joining two leaf nodes and the intervening element of the parent node.

5. If parent is left with less than m/2 nodes then, apply the above process on the parent
too.

If the the node which is to be deleted is an internal node, then replace the node with its in-
order successor or predecessor. Since, successor or predecessor will always be on the leaf
node hence, the process will be similar as the node is being deleted from the leaf node.

Example 1

Delete the node 53 from the B Tree of order 5 shown in the following figure.

Now, 57 is the only element which is left in the node, the minimum number of elements
that must be present in a B tree of order 5, is 2. it is less than that, the elements in its left
and right sub-tree are also not sufficient therefore, merge it with the left sibling and
intervening element of parent i.e. 49.

The final B tree is shown as follows.

Applications of B-Trees:
 It is used in large databases to access data stored on the disk
 Searching for data in a data set can be achieved in significantly less time using the

B-Tree
 With the indexing feature, multilevel indexing can be achieved.
 Most of the servers also use the B-tree approach.
 B-Trees are used in CAD systems to organize and search geometric data.
 B-Trees are also used in other areas such as natural language processing,

computer networks, and cryptography.
Advantages of B-Trees:
 B-Trees have a guaranteed time complexity of O(log n) for basic operations like

insertion, deletion, and searching, which makes them suitable for large data sets
and real-time applications.

 B-Trees are self-balancing.
 High-concurrency and high-throughput.
 Efficient storage utilization.
Disadvantages of B-Trees:
 B-Trees are based on disk-based data structures and can have a high disk usage.
 Not the best for all cases.
 Slow in comparison to other data structures.

B+ Trees

o The B+ tree is a balanced binary search tree. It follows a multi-level index format.

o In the B+ tree, leaf nodes denote actual data pointers. B+ tree ensures that all leaf nodes
remain at the same height.

o In the B+ tree, the leaf nodes are linked using a link list. Therefore, a B+ tree can support
random access as well as sequential access.

Structure of B+ Tree
o In the B+ tree, every leaf node is at equal distance from the root node. The B+ tree is of the order

n where n is fixed for every B+ tree.

o It contains an internal node and leaf node.

Internal node
o An internal node of the B+ tree can contain at least n/2 record pointers except the root node.

o At most, an internal node of the tree contains n pointers.

Leaf node
o The leaf node of the B+ tree can contain at least n/2 record pointers and n/2 key values.

o At most, a leaf node contains n record pointer and n key values.

o Every leaf node of the B+ tree contains one block pointer P to point to next leaf node.

Searching a record in B+ Tree
Suppose we have to search 55 in the below B+ tree structure. First, we will fetch for the
intermediary node which will direct to the leaf node that can contain a record for 55.

So, in the intermediary node, we will find a branch between 50 and 75 nodes. Then at the end,
we will be redirected to the third leaf node. Here DBMS will perform a sequential search to find
55.

B+ Tree Insertion
Suppose we want to insert a record 60 in the below structure. It will go to the 3rd leaf node
after 55. It is a balanced tree, and a leaf node of this tree is already full, so we cannot insert 60
there.

In this case, we have to split the leaf node, so that it can be inserted into tree without affecting
the fill factor, balance and order.

The 3rd leaf node has the values (50, 55, 60, 65, 70) and its current root node is 50. We will split
the leaf node of the tree in the middle so that its balance is not altered. So we can group (50,
55) and (60, 65, 70) into 2 leaf nodes.

If these two has to be leaf nodes, the intermediate node cannot branch from 50. It should have
60 added to it, and then we can have pointers to a new leaf node.

This is how we can insert an entry when there is overflow. In a normal scenario, it is very easy to
find the node where it fits and then place it in that leaf node.

B+ Tree Deletion
Suppose we want to delete 60 from the above example. In this case, we have to remove 60 from
the intermediate node as well as from the 4th leaf node too. If we remove it from the
intermediate node, then the tree will not satisfy the rule of the B+ tree. So we need to modify it
to have a balanced tree.

After deleting node 60 from above B+ tree and re-arranging the nodes, it will show as follows:

Advantages of B+ Trees
 A B+ tree with ‘l’ levels can store more entries in its internal nodes compared to a

B-tree having the same ‘l’ levels. This accentuates the significant improvement
made to the search time for any given key. Having lesser levels and the presence
of Pnext pointers imply that the B+ trees is very quick and efficient in accessing
records from disks.

 Data stored in a B+ tree can be accessed both sequentially and directly.
 It takes an equal number of disk accesses to fetch records.
 B+ trees have redundant search keys, and storing search keys repeatedly is not

possible.

Disadvantages of B+ Trees
 The major drawback of B-tree is the difficulty of traversing the keys sequentially.

The B+ tree retains the rapid random access property of the B-tree while also
allowing rapid sequential access.

Application of B+ Trees
 Multilevel Indexing
 Faster operations on the tree (insertion, deletion, search)
 Database indexing

The following are the differences between the B tree and B+ tree:

Functional Dependency

The functional dependency is a relationship that exists between two attributes. It typically exists
between the primary key and non-key attribute within a table.

X → Y

The left side of FD is known as a determinant, the right side of the production is known as a
dependent.

 In a relational database management, functional dependency is a concept that
specifies the relationship between two sets of attributes where one attribute
determines the value of another attribute. It is denoted as X → Y, where the attribute
set on the left side of the arrow, X is called Determinant, and Y is called
the Dependent.
Functional dependencies are used to mathematically express relations among
database entities and are very important to understand advanced concepts in
Relational Database System and understanding problems in competitive exams like
Gate.

From the above table we can conclude some valid functional dependencies:
 roll_no → { name, dept_name, dept_building },→ Here, roll_no can determine

values of fields name, dept_name and dept_building, hence a valid Functional
dependency

 roll_no → dept_name , Since, roll_no can determine whole set of {name,
dept_name, dept_building}, it can determine its subset dept_name also.

 dept_name → dept_building , Dept_name can identify the dept_building
accurately, since departments with different dept_name will also have a different
dept_building

 More valid functional dependencies: roll_no → name, {roll_no, name} ⇢
{dept_name, dept_building}, etc.

Here are some invalid functional dependencies:
 name → dept_name Students with the same name can have different dept_name,

hence this is not a valid functional dependency.
 dept_building → dept_name There can be multiple departments in the same

building. Example, in the above table departments ME and EC are in the same
building B2, hence dept_building → dept_name is an invalid functional dependency.

 More invalid functional dependencies: name → roll_no, {name, dept_name} →
roll_no, dept_building → roll_no, etc.

Armstrong’s axioms/properties of functional dependencies:
1. Reflexivity: If Y is a subset of X, then X→Y holds by reflexivity rule

Example, {roll_no, name} → name is valid.
2. Augmentation: If X → Y is a valid dependency, then XZ → YZ is also valid by the

augmentation rule.
Example, {roll_no, name} → dept_building is valid, hence {roll_no, name,
dept_name} → {dept_building, dept_name} is also valid.

3. Transitivity: If X → Y and Y → Z are both valid dependencies, then X→Z is also
valid by the Transitivity rule.
Example, roll_no → dept_name & dept_name → dept_building, then roll_no →
dept_building is also valid.

Types of Functional Dependencies in DBMS
1. Trivial functional dependency
2. Non-Trivial functional dependency
3. Multivalued functional dependency
4. Transitive functional dependency
1. Trivial Functional Dependency
In Trivial Functional Dependency, a dependent is always a subset of the determinant.
i.e. If X → Y and Y is the subset of X, then it is called trivial functional dependency
Example:

roll_no name age

42 abc 17

roll_no name age

43 pqr 18

44 xyz 18

Here, {roll_no, name} → name is a trivial functional dependency, since the
dependent name is a subset of determinant set {roll_no, name}. Similarly, roll_no →
roll_no is also an example of trivial functional dependency.
2. Non-trivial Functional Dependency
In Non-trivial functional dependency, the dependent is strictly not a subset of the
determinant. i.e. If X → Y and Y is not a subset of X, then it is called Non-trivial
functional dependency.
Example:

roll_no name age

42 abc 17

43 pqr 18

44 xyz 18

Here, roll_no → name is a non-trivial functional dependency, since the
dependent name is not a subset of determinant roll_no. Similarly, {roll_no, name} →
age is also a non-trivial functional dependency, since age is not a subset of {roll_no,
name}
3. Multivalued Functional Dependency
In Multivalued functional dependency, entities of the dependent set are not
dependent on each other. i.e. If a → {b, c} and there exists no functional
dependency between b and c, then it is called a multivalued functional dependency.
For example,

roll_no name age

42 abc 17

roll_no name age

43 pqr 18

44 xyz 18

45 abc 19

Here, roll_no → {name, age} is a multivalued functional dependency, since the
dependents name & age are not dependent on each other(i.e. name → age or age →
name doesn’t exist !)
4. Transitive Functional Dependency
In transitive functional dependency, dependent is indirectly dependent on determinant.
i.e. If a → b & b → c, then according to axiom of transitivity, a → c. This is a transitive
functional dependency.
For example,

enrol_no name dept building_no

42 abc CO 4

43 pqr EC 2

44 xyz IT 1

45 abc EC 2

Here, enrol_no → dept and dept → building_no. Hence, according to the axiom of
transitivity, enrol_no → building_no is a valid functional dependency. This is an indirect
functional dependency, hence called Transitive functional dependency.
5. Fully Functional Dependency
In full functional dependency an attribute or a set of attributes uniquely determines
another attribute or set of attributes. If a relation R has attributes X, Y, Z with the
dependencies X->Y and X->Z which states that those dependencies are fully
functional.

6. Partial Functional Dependency
In partial functional dependency a non key attribute depends on a part of the
composite key, rather than the whole key. If a relation R has attributes X, Y, Z where X
and Y are the composite key and Z is non key attribute. Then X->Z is a partial
functional dependency in RBDMS.

Advantages of Functional Dependencies
Functional dependencies having numerous applications in the field of database
management system. Here are some applications listed below:

1. Data Normalization

Data normalization is the process of organizing data in a database in order to minimize
redundancy and increase data integrity. Functional dependencies play an important
part in data normalization. With the help of functional dependencies we are able to
identify the primary key, candidate key in a table which in turns helps in normalization.

2. Query Optimization

With the help of functional dependencies we are able to decide the connectivity
between the tables and the necessary attributes need to be projected to retrieve the
required data from the tables. This helps in query optimization and improves
performance.

3. Consistency of Data

Functional dependencies ensures the consistency of the data by removing any
redundancies or inconsistencies that may exist in the data. Functional dependency
ensures that the changes made in one attribute does not affect inconsistency in
another set of attributes thus it maintains the consistency of the data in database.

4. Data Quality Improvement

Functional dependencies ensure that the data in the database to be accurate,
complete and updated. This helps to improve the overall quality of the data, as well as
it eliminates errors and inaccuracies that might occur during data analysis and decision
making, thus functional dependency helps in improving the quality of data in database.

Normalization
A large database defined as a single relation may result in data duplication. This repetition of
data may result in:

o Making relations very large.

o It isn't easy to maintain and update data as it would involve searching many records in relation.

o Wastage and poor utilization of disk space and resources.

o The likelihood of errors and inconsistencies increases.

So to handle these problems, we should analyze and decompose the relations with redundant
data into smaller, simpler, and well-structured relations that are satisfy desirable properties.
Normalization is a process of decomposing the relations into relations with fewer attributes.

What is Normalization?
o Normalization is the process of organizing the data in the database.

o Normalization is used to minimize the redundancy from a relation or set of relations. It is also
used to eliminate undesirable characteristics like Insertion, Update, and Deletion Anomalies.

o Normalization divides the larger table into smaller and links them using relationships.

o The normal form is used to reduce redundancy from the database table.

Why do we need Normalization?

The main reason for normalizing the relations is removing these anomalies. Failure to eliminate
anomalies leads to data redundancy and can cause data integrity and other problems as the
database grows. Normalization consists of a series of guidelines that helps to guide you in
creating a good database structure.

Data modification anomalies can be categorized into three types:

o Insertion Anomaly: Insertion Anomaly refers to when one cannot insert a new tuple into a
relationship due to lack of data.

o Deletion Anomaly: The delete anomaly refers to the situation where the deletion of data results
in the unintended loss of some other important data.

o Updatation Anomaly: The update anomaly is when an update of a single data value requires
multiple rows of data to be updated.

Types of Normal Forms:
Normalization works through a series of stages called Normal forms. The normal forms apply to
individual relations. The relation is said to be in particular normal form if it satisfies constraints.

Following are the various types of Normal forms:

Advantages of Normalization
o Normalization helps to minimize data redundancy.

o Greater overall database organization.

o Data consistency within the database.

o Much more flexible database design.

o Enforces the concept of relational integrity.

Disadvantages of Normalization
o You cannot start building the database before knowing what the user needs.

o The performance degrades when normalizing the relations to higher normal forms, i.e., 4NF, 5NF.

o It is very time-consuming and difficult to normalize relations of a higher degree.

o Careless decomposition may lead to a bad database design, leading to serious problems.

Normalization is the process of minimizing redundancy from a relation or set of
relations. Redundancy in relation may cause insertion, deletion, and update
anomalies. So, it helps to minimize the redundancy in relations. Normal forms are
used to eliminate or reduce redundancy in database tables.

Introduction:

In database management systems (DBMS), normal forms are a series of guidelines
that help to ensure that the design of a database is efficient, organized, and free from
data anomalies. There are several levels of normalization, each with its own set of
guidelines, known as normal forms.

Here are the important points regarding normal forms in DBMS:

1. First Normal Form (1NF): This is the most basic level of normalization. In 1NF, each
table cell should contain only a single value, and each column should have a
unique name. The first normal form helps to eliminate duplicate data and simplify
queries.

1. Second Normal Form (2NF): 2NF eliminates redundant data by requiring that each
non-key attribute be dependent on the primary key. This means that each column
should be directly related to the primary key, and not to other columns.

2. Third Normal Form (3NF): 3NF builds on 2NF by requiring that all non-key attributes
are independent of each other. This means that each column should be directly
related to the primary key, and not to any other columns in the same table.

3. Boyce-Codd Normal Form (BCNF): BCNF is a stricter form of 3NF that ensures that
each determinant in a table is a candidate key. In other words, BCNF ensures that
each non-key attribute is dependent only on the candidate key.

4. Fourth Normal Form (4NF): 4NF is a further refinement of BCNF that ensures that a
table does not contain any multi-valued dependencies.

5. Fifth Normal Form (5NF): 5NF is the highest level of normalization and involves
decomposing a table into smaller tables to remove data redundancy and improve
data integrity.

Normal forms help to reduce data redundancy, increase data consistency, and improve
database performance. However, higher levels of normalization can lead to more
complex database designs and queries. It is important to strike a balance between
normalization and practicality when designing a database

The advantages of using normal forms in DBMS include:

 Reduced data redundancy: Normalization helps to eliminate duplicate data in
tables, reducing the amount of storage space needed and improving database
efficiency.

 Improved data consistency: Normalization ensures that data is stored in a
consistent and organized manner, reducing the risk of data inconsistencies and
errors.

 Simplified database design: Normalization provides guidelines for organizing tables
and data relationships, making it easier to design and maintain a database.

 Improved query performance: Normalized tables are typically easier to search and
retrieve data from, resulting in faster query performance.

 Easier database maintenance: Normalization reduces the complexity of a database
by breaking it down into smaller, more manageable tables, making it easier to add,
modify, and delete data.

Overall, using normal forms in DBMS helps to improve data quality, increase database
efficiency, and simplify database design and maintenance.

1. First Normal Form –

If a relation contain composite or multi-valued attribute, it violates first normal form or a
relation is in first normal form if it does not contain any composite or multi-valued
attribute. A relation is in first normal form if every attribute in that relation is singled
valued attribute.

Example 1 – Relation STUDENT in table 1 is not in 1NF because of multi-valued attribute
STUD_PHONE. Its decomposition into 1NF has been shown in table

2.

 Example 2 –

ID Name Courses

1 A c1, c2

2 E c3

3 M C2, c3

 In the above table Course is a multi-valued attribute so it is not in 1NF. Below Table
is in 1NF as there is no multi-valued attribute

ID Name Course

1 A c1

1 A c2

2 E c3

3 M c2

3 M c3

2. Second Normal Form –

To be in second normal form, a relation must be in first normal form and relation must
not contain any partial dependency. A relation is in 2NF if it has No Partial
Dependency, i.e., no non-prime attribute (attributes which are not part of any
candidate key) is dependent on any proper subset of any candidate key of the
table. Partial Dependency – If the proper subset of candidate key determines non-
prime attribute, it is called partial dependency.
 Example 1 – Consider table-3 as following below.

First Normal Form (1NF)
o A relation will be 1NF if it contains an atomic value.

o It states that an attribute of a table cannot hold multiple values. It must hold only single-valued
attribute.

o First normal form disallows the multi-valued attribute, composite attribute, and their
combinations.

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute EMP_PHONE.

Second Normal Form (2NF)
o In the 2NF, relational must be in 1NF.

o In the second normal form, all non-key attributes are fully functional dependent on the primary
key

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In a
school, a teacher can teach more than one subject.

TEACHER table

In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID which is a
proper subset of a candidate key. That's why it violates the rule for 2NF.

To convert the given table into 2NF, we decompose it into two tables:

Third Normal Form (3NF)
o A relation will be in 3NF if it is in 2NF and not contain any transitive partial dependency.

o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.

o If there is no transitive dependency for non-prime attributes, then the relation must be in third
normal form.

A relation is in third normal form if it holds at least one of the following conditions for every
non-trivial function dependency X → Y.

1. X is a super key.

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.

Example:

EMPLOYEE_DETAIL table:

Boyce Codd normal form (BCNF)
o BCNF is the advance version of 3NF. It is stricter than 3NF.

o A table is in BCNF if every functional dependency X → Y, X is the super key of the table.

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key.

Example: Let's assume there is a company where employees work in more than one
department.

EMPLOYEE table:

he table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.

To convert the given table into BCNF, we decompose it into three tables:

EMP_COUNTRY table:

Fourth normal form (4NF)
o A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued dependency.

o For a dependency A → B, if for a single value of A, multiple values of B exists, then the relation
will be a multi-valued dependency.

Example

Fifth normal form (5NF)
o A relation is in 5NF if it is in 4NF and not contains any join dependency and joining should be

lossless.

o 5NF is satisfied when all the tables are broken into as many tables as possible in order to avoid
redundancy.

o 5NF is also known as Project-join normal form (PJ/NF).

