
Full Stack Development Full Stack Development
20ITL601/SO0420ITL601/SO04

1

UNIT -1
• Introduction: MERN, MERN Components, Serverless Hello World Application, ES6, DOM,

Virtual DOM, Installation.

• Components in React, using JSX, React Project Structure, State, create-react-app, Props,
State, Component Life Cycle, Handling Events, Component Communication, Data Binding –
One way, two way, SPA.

• Working with Forms & Third Party libraries, Routing.

List of Experiments:List of Experiments:

1. Develop a Calculator React App

2. Develop a News feed application

3. Develop React application using Forms

4. Develop a website to demonstrate React Routing

UNIT – II
React.JS & node.JS:

UNIT -III
• Accessing the File System from Node.js, Implementing HTTP Services in Node.js.

• Express with Node.js, Routes, Request and Response objects, Template engine.

• Understanding middleware, Query middleware, Serving static files, Handling POST body
data, Cookies, Sessions, Authentication.

UNIT – IV

• MongoDB: Understanding NoSQL and MongoDB, Getting Started with MongoDB, Getting• MongoDB: Understanding NoSQL and MongoDB, Getting Started with MongoDB, Getting
Started with MongoDB and Node.js, Manipulating MongoDB Documents from Node.js,
Accessing MongoDB from Node.js.

Full Stack vs MERN vs MEAN Stack

MEAN Mongo DB, Express, Angular.js, Node.js
MERN Mongo DB, Express, React.js, Node.js

Stack:

Stack consists of programming language, software products, and Technologies.
• A website or an app that you see has two aspects to it – the front-end and the back-end.

Both aspects need to be handled professionally and properly to achieve the desired look
and operational functionalities.

Full Stack:
• Full-stack refers to a set of tools and programming languages that a full stack developer

uses to create both, the front-end and the back-end of an app or a website. So, theuses to create both, the front-end and the back-end of an app or a website. So, the
developer is experienced and trained to design the best UX/UI as well as handle multiple
technologies at the back-end.

• A full-stack developer has the flexibility to switch from front-end to back-end, as and
when required.

• A full-stack developer is so experienced that he can work on an entire app or website
design structure and to different levels of involvement.

Adv: Companies do not have to hire separate teams for developing the front-end and the
back-end.

Example: LAMP (Linux, Apache, MySql, PHP) stack.

MEAN Stack
MEAN Stack:

The mean stack is a full-stack JavaScript framework. MEAN is the short form of MongoDB,
Express.js, Angular, and Node.js.
This technology is used by Mean Stack developers to make hybrid mobile apps and web
apps.
• MongoDB is used for storing JavaScript Object Notation documents;
• Express.js is used as a back-end web application framework;
• Angular.js is the front-end web app development framework, and
• Node.js is used for the implementation of the application back-end in JavaScript. Is an

asynchronous event-driven JavaScript runtime. asynchronous event-driven JavaScript runtime.
– Allows JavaScript to be used to write server-side code.
– Node.js is a JavaScript server environment that runs code outside a browser i.e on the server.
– The technology is a perfect fit for many websites like streaming (Netflix, games, time

trackers, social media applications – Twitter, Linkedin, Uber, ebay)
– It provides a scalable and fast solution for real-time applications.

MEAN Stack

MEAN Stack:

• It is one of the rapidly growing open-source development frameworks in stack
technology.

• The availability of several plug-ins accelerates the development work,
• reduces system administration related tasks, and
• helps in the faster deployment of apps and websites.
• The complete web development cycle using JavaScript starting from client-side to server-

side.
• Has a variety of plugin tools, testing tools for faster development and testing.• Has a variety of plugin tools, testing tools for faster development and testing.

MERN Stack:

• MERN is also a full stack of web development, open-source technology.
• MERN stands for MongoDB, Express.js, React, and Node.js.
• This technology too can be used for making hybrid mobile and web apps.
• It is also a JavaScript-based framework for development.
• This stacking technology is growing in popularity because it offers an end-to-end

runtime environment.

MERN Stack:

Benefits of MERN Stack: Benefits of MERN Stack:

• A MERN stack developer uses JavaScript and JSON.
• Works in the Model View Controller architecture.
• There is a range of testing tool suites.
• Helps in the complete web development process, from front-end to back-end

development.
• Is an open-source framework.

Similarities between MEAN & MERN:

• Both are open-source,
• protect against XSS cross-site scripting,
• offer strong documentation support,
• helps in organizing the UI layer,
• supports MVC architecture,
• and have an extensive range of testing tools suite.
• The similarity between the two comes from the use of MongoDB, Express.js, and Node.js
MEAN is a better option for large-scale applications while MERN stack leads the race in the
faster development of smaller applications.faster development of smaller applications.

To become a Full Stack Developer Node.JS along with React or Angular + Database
(MongoDB etc..)

MERN Stack

MERN Stack
MERN Stack:
MongoDB: MongoDB is a NoSQL database component of this full-stack and is used to store data of
any type. It is an open-source, document-oriented database program. The data is stored in JSON
(JavaScript Object Notation) format. MongoDB is a fast element that allows easy indexing of
documents. It is a flexible component and can be integrated with document models such as tables,
schemas, columns & SQL.

Express JS: Express JS is the web framework for Node JS. It helps in the creation of robust web
applications and APIs. This component is responsible for the code reusability characteristic since it has
a built-in router. It is asynchronous, single threaded, reliable, and fast when compared to its contenders.
IT is a Webserver built on Node.js

React JS: React JS is the JavaScript library of MERN. It is used in the development of user interfaces.
React JS supports the creation of Single Page Applications (SPAs) and mobile applications since it
can deal with dynamic data. React JS’s elements that make it a valuable part of MERN are virtual
DOM, components, and JSX. Due to the presence of these elements, React JS is faster than all the other
frameworks. A Front-end technology created by Facebook.
• React is not a full-fledged MVC framework. It is a JavaScript library for building user

interfaces, so in some sense, it’s the View part of the MVC.

Node JS: Node JS is a Server Side JavaScript runtime environment; unlike the others, this
component of MERN allows the code to be run outside the browser, i.e., on the server. It is open-source
and has fast execution speed since it was built on Google chrome’s JavaScript Engine. Node JS is
highly scalable and enables data streaming too.

SPA (Single Page Application)
• An SPA is a web application paradigm that avoids fetching the contents of an entire

web page from the server to display new contents.
• Single page application (SPA) is a single page (hence the name) where a lot of information

stays the same and only a few pieces need to be updated at a time.
• The single page application is a web application or website that interacts with the user by

dynamically rewriting the current page, rather than loading entire new pages from the server.
• This approach voids interruption of the user experience between successive pages, making

the application behave more like a desktop application.
• On most websites there is a lot of repeating content. Some of it stays the same no matter

where the user goes (headers, footers, logos, navigation bar, etc), some of it is constant in just
a certain section (filter bars, banners), and there are many repeating layouts and templates
(blogs, self-service, the google mail setup mentioned above).(blogs, self-service, the google mail setup mentioned above).

• Some Single Page Application examples are like Gmail, Google Maps, AirBNB, Netflix,
Pinterest, Paypal, and many more.

• For example, when you browse through your email you’ll notice that not much changes
during navigation - the sidebar and header remain untouched as you go through your inbox.

• The SPA only sends what you need with each click, and your browser renders that
information. This is different to a traditional page load where the server re-renders a full page
with every click you make and sends it to your browser.

• This piece by piece, client side method makes load time must faster for users and makes the
amount of information a server has to send a lot less and a lot more cost efficient.

SPA (Single Page Application)

VS Code & React

VS Code
• It is a code editor
• Other examples: Atom, Brackets, Sublime Text
Features:
• Has a built in Terminal
• Has built-in Source Control (Git)
• Has a built-in Debugger
• Has smart completions with Intellisense
• Is highly customizable
• Is fast
• Free
• Has lots of Powerful extensions to make your code editing easy and enjoyable.• Has lots of Powerful extensions to make your code editing easy and enjoyable.
• Support for multiple programming languages: C#, Visual Basic, Java-Script, R, XML, Python, CSS
• GO, PERL

• Cross-Platform Support: (Windows, Linux and Mac
• Web support  Comes with built-in support for Web applications. So web applications can be

built and supported in VSC.
• Hierarchy Structure: The code files are located in files and folders. The required code files also

have some files, which may be required for other complex projects. These files can be deleted as
per convenience.

• Multi-Projects: Multiple projects containing multiple files/folders can be opened simultaneously.
These projects/folders might or might not be related to each other.

•

VS Code
• It is a code editor
• Other examples: Atom, Brackets, Sublime Text
Features:
• Has a built in Terminal
• Has built-in Source Control (Git)
• Has a built-in Debugger
• Has smart completions with Intellisense
• Is highly customizable
• Is fast• Is fast
• Has lotsof Powerful extensiosns to make your code editing easy and enjoyable.
VS code Extensions features:

Bracket Pair Colorizer Bracket Pair Colorizer allows matching brackets to be
identified with colors.

Highlight Matching Tag  This extension highlights your opening and closing tags for
you.

LiveServer  Launch a development server and run your code/page in the browser
with live reloading on save!! Works with dynamic and static sites!

VS Code
VS code Extensions features contd..:
Prettier
Properly format your code with a single command. Highlight your text, open your

Command Palette (discussed below) and choose Format Selection.

CSS Peek
This was inspired from the Brackets code editor, being able to peek at the CSS
code from its associated HTML. You can also see the definition by hovering (hold
Ctrl), or choose to Go To the Definition itself. A very useful extension when
working in HTML.

Minify
Everyone should have a good Minifier. This is a good one to minify your JS, CSS,
and HTML. Simply run your Command Palette and choose Minify!

Code Runner
Run your code right in Visual Studio Code and see the results in the Ouput.
Highlight your text to only run specific code.

Regex Previewer
I no longer have to go to RegEx test sites to test my regular expressions.

VS Code
Shortcuts:

Command + /: Comment (and uncomment) out code.
Command + : Split screen
Command + D: Select next occurrence of word (multi-replace)
Ctrl + ' : Show Terminal
Command + , : Show User Settings
Command + F: Find
Option + Up: Move line up
Option + Shift + Up : Copy the line up

CustomizationsCustomizations
Font size: "editor.fontSize": 12,
Tab spacing: "editor.tabSize": 4,
Font family: "editor.fontFamily": "Menlo, Monaco, 'Courier New', monospace",
Word wrap: "editor.wordWrap": "off",

VS Code Terminal
• Visual Studio Code includes a full featured integrated terminal that provides

integration with the editor to support features like links (Follow link, Open file in
editor, Open folder in New window) and error detection and project build, run etc..

• From the Terminal, required packages can be installed.
• The integrated terminal can use various shells installed on your machine, with the

default being pulled from your system defaults.
• Example shells that can be used from the Terminal are:

– Power Shell (ps or pwsh: default one)
– Command Prompt
– Java Script Debug Terminal– Java Script Debug Terminal

– Supported shells:
– Linux/macOS: bash, pwsh, zsh
– Windows: pwsh

Installation & Environment
setup

React Installation & Environment setup
Steps:

1. Install NodeJS and npm (Node Package Manager)

• NodeJS is the platform needed for the ReactJS development.

• NPM is the package manager for the Node JavaScript platform. It puts modules in place so
that node can find them, and manages dependency conflicts intelligently.

• The Node.js interpreter will be used to interpret and execute your javascript code.

• Node.js distribution comes as a binary installable for SunOS , Linux, Mac OS X, and
Windows operating systems with the 32-bit (386) and 64-bit (amd64) x86 processor
architectures.

• https://nodejs.org/en/ -- install the latest version of Node.js (16.8.0)• https://nodejs.org/en/ -- install the latest version of Node.js (16.8.0)

• Check installation of node and npm by running command from power shell/command
prompt:

node –v

npm –v

To install npm: from command prompt, or VS Code terminal command prompt, use command:

npm install –g npm

2. Installing React:

we can install React in two ways:

1. Using Webpack and Babel

2. Using create-react-app command

React installation using ‘create-react-app’

Step 1: use command ‘npx create-react-app <appname> to install React app.
npx create-react-app reactapp1

Step 2: Delete all the source files
go to src folder and give command:

del *
Step 3: Add index.js and index.css files to the \src folder

> type nul >index.css
> type nul > index.js

Step 4: in index.js, add the following:Step 4: in index.js, add the following:

Step 5: run the project from command prompt /terminal using:
npm start

Step 6: use npm update to update the current app to latest version.
Use npm install  to install required node packages. (after deleting node_modules folder)

import React from 'react’;
import ReactDOM from 'react-dom’;
import './index.css';

MERN Components,
Libraries & Tools

codepen

MERN Components

1. React
2. Node.js
3. Express
4. Mongo DB

1. React:
• This is the main Component of the MERN stack.
• ReactJS is one of the most popular JavaScript front-end libraries which has a strong

foundation and a large community.
• ReactJS is a declarative, efficient, and flexible JavaScript library for building reusable UI

components. It is an open-source, component-based front end library which is responsible components. It is an open-source, component-based front end library which is responsible
only for the view layer of the application. It was initially developed and maintained by
Facebook and later used in its products like WhatsApp & Instagram.

• React is an open-source JavaScript library maintained by Facebook that can be
used for creating views rendered in HTML.

• Unlike AngularJS, React is not a framework. It is a library. Thus, it does not, by itself,
dictate a framework pattern such as the MVC pattern.

• You use React to render a view (the V in MVC), but how to tie the rest of the
application together is completely up to you.

• Example companies using React are: Instagram, Facebook, Skype, Pinterest, Uber
Eats, Bloomberg etc…

• ReactJS Tutorial – javatpoint

React
Features:
 Open Source
React Application:
• A React application is made of multiple components, each responsible for rendering a small,

reusable piece of HTML.
• Components can be nested within other components to allow complex applications to be built

out of simple building blocks.
• A component may also maintain an internal state – for example, a TabList component may

store a variable corresponding to the currently open tab.
• The main objective of ReactJS is to develop User Interfaces (UI) that improves the speed of

the apps. It uses virtual DOM (JavaScript object), which improves the performance of the the apps. It uses virtual DOM (JavaScript object), which improves the performance of the
app.

• The JavaScript virtual DOM is faster than the regular DOM. We can use ReactJS on the client
and server-side as well as with other frameworks. It uses component and data patterns that
improve readability and helps to maintain larger apps.

Creating a React Project:
At command prompt: npx create-react-app myapp

Running: npm start

it can even produce a mobile application’s UI using React Native.

React Project structure
reactapp1 project contains the following files and folders:

node_modules: All the "dependencies" and "devDependencies" required by our React app in
node_modules.
This directory gets added to .gitignore so it does not really get uploaded/published as such.
Public: static files are located in the public directory. Files in this directory will retain the same
name when deployed to production. Thus, they can be cached at the client-side and improve the
overall download times.

• contains index.html main html file
• manifest.json  It's a Web App Manifest that describes your application (name, author,
icon, and description) and it's used by e.g. mobile phones if a shortcut is added to the home screen
• logos & icons

src: All of the dynamic components will be located in the src.

React Project structure
src: All of the dynamic components will be located in the src.

App.jsMain JS component. Is the container of the app and serves as an application.
App.cssMain JS component css styles file
App.test.js contains unit test code for the component.
Index.js  It is the default entry point of every react application. There are no changes in this
file at all.

React Project structure
/assets :

• As the name suggests, all the static assets should reside here.

• Each asset should be registered and exported from the /index.js

• Thus, all assets will be accessible and imported from ‘/assets’

• This can include but not limited to images, logos, vector icons, fonts, etc.

/components:

• Only shared components used across features are placed here.

• All the components should be registered and exported from /index.js for a single access point.

• All the components should bear named export. This will avoid any conflicts.

React Project structure
package.json: The overall configuration for the React project is outlined in the package.json

Contains:

name - Represents the app name which was passed to create-react-app.

version - Shows the current version.

dependencies - List of all the required modules/versions for our app. By default, npm would
install the most recent major version.

devDependencies - Lists all the modules/versions for running the app in a development
environment.

scripts - List of all the aliases that can be used to access react-scripts commands in an efficient
manner.

• For example, if we run npm build in the command line, it would run "react-scripts build"
internally.

JSX (JavaScript XML)
• React is a declarative, efficient, and flexible JavaScript library for building user interfaces. But
instead of using regular JavaScript, React code should be written in something called JSX.
• JSX stands for JavaScript XML. It is simply a syntax extension of JavaScript. It allows us to
directly write HTML in React (within JavaScript code). It is easy to create a template using JSX in
React, but it is not a simple template language instead it comes with the full power of JavaScript.

Let us see a sample JSX code:
const ele = <h1>This is sample JSX</h1>;

• The above code snippet somewhat looks like HTML and it also uses a JavaScript-like variable
but is neither HTML nor JavaScript, it is JSX.
JSX is basically a syntax extension of regular JavaScript and is used to create React • JSX is basically a syntax extension of regular JavaScript and is used to create React
elements. These elements are then rendered to the React DOM.

Why JSX?
• It is faster than normal JavaScript as it performs optimizations while translating to regular

JavaScript.
• It makes it easier for us to create templates.
• Instead of separating the markup and logic in separated files, React uses components for this

purpose.

JSX
Characteristics of JSX:
• JSX is not mandatory to use there are other ways to achieve the same thing but using JSX

makes it easier to develop react application.
• JSX allows writing expression in { }. The expression can be any JS expression or React

variable.
• To insert a large block of HTML we have to write it in a parenthesis i.e, ().
• JSX produces react elements.
• JSX follows XML rule.
• After compilation, JSX expressions become regular JavaScript function calls.
• JSX uses camelcase notation for naming HTML attributes. For example, tabindex in HTML is • JSX uses camelcase notation for naming HTML attributes. For example, tabindex in HTML is

used as tabIndex in JSX.

JSX
Advantages of JSX:
• JSX makes it easier to write or add HTML in React.
• JSX can easily convert HTML tags to react elements.
• It is faster than regular JavaScript.
• JSX allows us to put HTML elements in DOM without

using appendChild() or createElement() method.
• As JSX is an expression, we can use it inside of if statements and for loops, assign it to

variables, accept it as arguments, or return it from functions.
• JSX prevents XSS (cross-site-scripting) attacks popularly known as injection attacks.
• It is type-safe, and most of the errors can be found at compilation time. • It is type-safe, and most of the errors can be found at compilation time.
Disadvantages of JSX:
• JSX throws an error if the HTML is not correct.
• In JSX HTML code must be wrapped in one top-level element otherwise it will give an error.
• If HTML elements are not properly closed JSX will give an error.

JSX
Using JavaScript expressions in JSX: In React we are allowed to use normal JavaScript
expressions with JSX.
• To embed any JavaScript expression in a piece of code written in JSX we will have to

wrap that expression in curly braces {}.
Example: .js file

import React from 'react';

import ReactDOM from 'react-dom';

const name = “Students";

const element = <h1>Hello,

{ name }.Welcome to BEC.< /h1>;

ReactDOM.render(

element,

document.getElementById("root")

);

ES5 & ES6
• ECMAScript is a trademarked scripting language specification that is defined by ECMA

International. It was created to standardize JavaScript.

• The ES scripting language has many implementations, and the popular one is JavaScript.
Generally, ECMAScript is used for client-side scripting of the World Wide Web.

• ES5 is an abbreviation of ECMAScript 5 and also known as ECMAScript 2009.

• The sixth edition of the ECMAScript standard is ES6 or ECMAScript 6. It is also known as
ECMAScript 2015. ES6 is a major enhancement in the JavaScript language that allows us to
write programs for complex applications.

• Although ES5 and ES6 have some similarities in their nature, there are also so many
differences between them.

• React uses ES6, and you should be familiar with some of the new features like:

• Classes

• Arrow Functions

• Variables (let, const, var)

ES5 & ES6
•

ES6 - class
classes:
class Car {
constructor(name) {

this.brand = name;
}

}
mycar = new Car("Ford");

Methods:

class Car {class Car {
constructor(name) {

this.brand = name;
}

present() {
return 'I have a ' + this.brand;

}
}

mycar = new Car("Ford");
mycar.present();

ES6 class example
<!DOCTYPE html>

<html>

<body>

<script>

class Car {

constructor(name) {

this.brand = name;

}

present() {

return 'I have a ' + this.brand;

} }} }

class Model extends Car {

constructor(name, mod) {

super(name);

this.model = mod;

}

show() {

return this.present() + ', it is a ' + this.model

} }

mycar = new Model("Ford", "Mustang");

document.write(mycar.show());

</script></body></html>

ES6 Arrow Functions
• Arrow functions allow us to write shorter function syntax

• Arrow functions were introduced in ES6.

Function:

hello = function() {

return "Hello World!";

}

Can be written as:

hello = () => {

return "Hello World!";return "Hello World!";

}

ES6 Arrow Functions with parameters
hello = (val) => "Hello " + val;

Example:

<!DOCTYPE html>

<html>

<body>

<h1>Arrow Function</h1>

<p>A demonstration of an arrow function in one line, with parameters.</p>

<p id="demo"></p>

<script>

hello = (val) => "Hello " + val;hello = (val) => "Hello " + val;

document.getElementById("demo").innerHTML = hello("World");

</script>

</body>

</html>

React render()

React's goal is in many ways to render HTML in a web page.

React renders html to the webpage using ReactDOM.render()

Render() function:

• The ReactDOM.render() function takes two arguments, HTML code and an HTML element.

• The purpose of the function is to display the specified HTML code inside the specified
HTML element.

Example: index.js:

Index.html:

<!DOCTYPE html>
import React from 'react';
import ReactDOM from 'react-dom';<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8" />

<meta name="viewport"

content="width=device-width, initial-scale=1" />

<title>React App</title>

</head> <body>

<div id="root"></div>

</body></html>

import ReactDOM from 'react-dom';

ReactDOM.render(<p>Hello</p>,document.getElementById('root'));

Using browser in VS Code

Step 1: First pick ‘View’ ‘Layout Editor’  ‘Two Columns’ layout

Step 2: press Ctrl + Shift + p to open Command Palette. Search for the ‘ Simple Browser’ and
add.

In the browser give url: http://localhost:3000 to get rendered page

React.JS Components

Component
• Class components

• Function components

Class Component
• React classes are created by extending React.Component, the base class from

which all custom classes must be derived.

• Within the class definition, at the minimum, a render() method is needed. This
method is

what React calls when it needs to display the component in the UI.

• There are other methods with special meaning to React that can be implemented,
called the Lifecycle methods. These provide hooks into various stages of the
component formation and other events.

• But render() is one that must be present, otherwise the component will have no
screen presence. The render() function is supposed to return an element (which canscreen presence. The render() function is supposed to return an element (which can
be either a native HT ML element such as a <div> or an instance of another React
component).

render() {
return (

<div title="Outer div">

<h1>{message}</h1>

</div>

);

Class Component – Example 1
Creating a class component is pretty simple; just
define a class that extends Component and has
a render function.
// MyComponent.js
import React, { Component } from 'react‘;
class MyComponent extends Component {

render() {
return (

<div>This is my component.</div>
);

// MyOtherComponent.js
import React, { Component } from 'react';
import MyComponent from
'./MyComponent';

class MyOtherComponent extends
Component {

render() {
return (

<div>
<div>This is my other);

}
}
export default MyComponent;

<div>This is my other
component.</div>

<MyComponent />
</div>

);
}

}

export default MyOtherComponent;

Class Component – Example 2
class TestComponent extends Component {
render()
{

return (<div>This is my TestComponent.</div>); }
}
export default TestComponent;

import TestComponent from './TestComponent ';import TestComponent from './TestComponent ';
class OtherComponent extends Component {
render() {
return (
<div>
<div>Here is other component.</div>
<TestComponent />
</div>
);
}
}
export default OtherComponent;

Class Component – Example 3
import React from "react“;

class Sample extends React.Component {
render() {

return <h1>A Computer Science Portal
For Geeks</h1>;
}
}
class App extends React.Component {
render() {render() {

return <Sample />;
}
}
export default App;

Function Component– Example 1
Welcome.js:

import React from 'react';

import ReactDOM from 'react-dom/client';

function Welcome() {

const greeting = 'Hello Function Component!‘;

return <h1>{greeting}</h1>;

}

export default Welcome;

In Index.js:

import Welcome from './Welcome‘
const root =
ReactDOM.createRoot(document.getElementBy

In Index.js:
ReactDOM.createRoot(document.getElementBy
Id('root'));
root.render(
<React.StrictMode>
<Welcome />

</React.StrictMode>
);

Component
• Components are independent and reusable bits of code. They serve the same purpose as

JavaScript functions, but work in isolation and return HTML via a render() function.

• Components let you split the UI into independent, reusable pieces, and think about each piece
in isolation.

• Components are the fundamental unit of a clientside application written in React.

• Components come in two types, Class components and Function components.

Class Component:

Example 1: Example 2:

class Welcome extends React.Component {

render() {

return <h1> Hello World </h1>;

}

}

• When creating a React component, the component's name must start with an upper case
letter.

• The component has to include the extends React.Component statement, this statement
creates an inheritance to React.Component, and gives your component access to
React.Component's functions.

• The component also requires a render() method, this method returns HTML.

class Car extends React.Component {
render() {

return <h2>Hi, I am a Car!</h2>;
}

}

Components

• you should prefer to use functional components over class components as they are
simpler,

– testable,

– better in terms of performance,

– requires less code,

– and allow the use of best practices.

• But class components have their own advantages.

• Use named exports to export multiple functions in React, e.g. export function A() • Use named exports to export multiple functions in React, e.g. export function A()
{} and export function B() {} (in defining the function use export keyword)

• The exported components can be imported by using a named import as import {A,
B} from './another-file'. You can have as many named exports as necessary in a
single file.

•

props

props
• The term 'props' is an abbreviation for 'properties' which refers to the properties of an

object.
• It is an object which stores the value of attributes of a tag and work similar to the HTML

attributes.

• It gives a way to pass data from one component to other components to get dynamic and
unique outputs.

• It is similar to function arguments.

• Props are passed to the component in the same way as arguments passed in a function.

• Props are immutable so we cannot modify the props from inside the component.

• When you need immutable data in the component, you have to add props to• When you need immutable data in the component, you have to add props to
reactDom.render() method in the main.js/index.js file as an attribute (in the component tag)
of your ReactJS project and used it inside the component in which you need using
this.props.<PropName>

• Websites built with React like Facebook, Twitter, and Netflix use the same design patterns
across many sections that just have different data. One of the main ways developers can
achieve this functionality is by using props.

Default Props: You can also set default property values directly on the component constructor
instead of adding it to the reactDom.render() element.

ComponentName.defaultProps = {
msg: "World!"
}

Ex: App.defaultProps = {
msg: "World!"
}

props
• The props enable the component to access customized data, values, and pieces of

information that the inputs hold.
• The term 'props' is an abbreviation for 'properties' which refers to the properties of an

object.

Props – example 1
App.js:

import React, { Component } from 'react';

class App extends React.Component {

render() {

return (<div> <h1> Welcome to { this.props.name } </h1>

<p> <h4> BEC Bapatla. </h4> </p>

</div>

); } }

export default App;export default App;

Index.js:

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App.js';

ReactDOM.render(<App name = “myappcomp”/>, document.getElementById('app'));

Props – example 2
propex1.js

import React, { Component } from 'react';
class PropEx1 extends React.Component {
render() {
return (
<div>
<h2> Hello { this.props.msg } </h2>
<p> Have a Great day. </p>
</div>

Index.js

import React from 'react';
import ReactDOM from 'react-dom/client‘;
import PropEx1 from './propex1‘;

const root =
ReactDOM.createRoot(document.getElementById('</div>

);
}
}

PropEx1.defaultProps = {
msg: "World!"
}

export default PropEx1;

ReactDOM.createRoot(document.getElementById('
root'));
root.render(

<React.StrictMode>
<PropEx1 msg="BEC Students" />
<PropEx1 />

</React.StrictMode>

Output Hello BEC Students
Have a Great day.
Hello World!
Have a Great day.

State

State
• A State is an object that stores the values of properties belonging to a component

that could change over a period of time either by event handlers, server responses,
or prop changes.

• React components has a built in state object.

• Every time the state of an object changes, React re-renders the component to the
browser.

Example: Time Display in a page

• The state object can store multiple properties

• this.setState() is used to change the value of the state object.• this.setState() is used to change the value of the state object.

• Use ‘rce’ template to add skeleton code in a .js file

• Use ‘rconst’ template to add constructor snippet.

State object creation
class Car extends React.Component {

constructor(props) {

super(props);

this.state = {brand: "Ford"};

}

render() {

return (

<div><div>

<h1>My Car</h1>

</div>

);

}

}

State object with multiple properties
class Car extends React.Component {

constructor(props) {

super(props);

this.state = {

brand: "Ford",

model: "Mustang",

color: "red",

year: 1964year: 1964

};

}

render() {

return (

<div>

<h1>My Car</h1>

</div>

);

}

}

Changing state object
class Car extends React.Component {

constructor(props) {

super(props);

this.state = {

brand: "Ford",

model: "Mustang",

color: "red",

year: 1964

render() {
return (

<div>
<h1>My {this.state.brand}</h1>
<p>

It is a {this.state.color}
{this.state.model}
from {this.state.year}.

</p>year: 1964

};

}

changeColor = () => {

this.setState({color: "blue"});

}

</p>
<button

type="button"
onClick={this.changeColor}

>Change color</button>
</div>

);
}

The setState() Method
• State can be updated in response to event handlers, server responses, or prop

changes. This is done using the setState() method.

• The setState() method enqueues all of the updates made to the component state and
instructs React to re-render the component and its children with the updated state.

props vs state

area Props State

Usecase Props are used to pass data and
event handlers to its child
components

State is used to store the data of the
components that has to be rendered to
the view

Mutability Props are immutable – once set,
props cannot be changed

State holds the data and can change
over time

Component Props can be used in both
functional and class components

State can only be used in class
componentsfunctional and class components components

Updation Props are set by the parent
component for the children
components

State is generally updated by the event
handlers.

ownership props are immutable and owned
by a component’s parent

state is owned by the component.
this.state is private to the component

Data binding in React.js
(one-way, two-way)

Data binding
• Data Binding is the process of connecting the view element or user interface, with the data

which populates it.

• In ReactJS, components are rendered to the user interface and the component’s logic contains
the data to be displayed in the view(UI). The connection between the data to be displayed in
the view and the component’s logic is called data binding in ReactJS.

• One-way Data Binding: ReactJS uses one-way data binding. In one-way data binding one of
the following conditions can be followed:
– Component to View: Any change in component data would get reflected in the view.
– View to Component: Any change in View would get reflected in the component’s data.

••

Component to View Data binding
Any change in component data would get reflected in the view.
Example:
import React, { Component } from 'react';
class App extends Component {

constructor() {
super();
this.state = {

subject: "ReactJS"
}; };

}
render() {

return (
<div style={{ textAlign: "center" }}>

<h4 style={{ color: "#68cf48" }}>BEC</h4>
<p>{this.state.subject} Bapatla</p>

</div>
) } }

export default App;

View to Component Data binding
Any change in View would get reflected in the component’s data.
import React, { Component } from 'react';
class App extends Component {
constructor() {

super();
this.state = {

subject: ""
}; }

handleChange = event => {
this.setState({

subject: event.target.valuesubject: event.target.value
}) }

render() {
return (

<div>
<h4 style={{ color: "#68cf48" }}>BEC</h4>
<input placeholder="Enter Subject"
onChange={this.handleChange}></input>
<p>{this.state.subject} Bapatla</p>

</div>
) } }

export default App;

Two Way Data binding
Two way data binding means
• The data we changed in the view will be updated in the state and the data in the state will

be refected in the view automatically.

Two Way Data binding
Example:
class Twoway extends React.Component{

state = {
name:"reactgo"

}
handleChange = (e) =>{

this.setState({
name: e.target.value

}) }}) }
render(){
return(

<div>
<h1>{this.state.name}</h1>
<input type="text"

onChange={this.handleChange}
value={this.state.name} />

</div>
) }}

export default Twoway;

How data is Rendered in UI
• To render anything on the screen, we use the ReactDOM.render method in React.

• It has the following syntax:

ReactDOM.render(element, container[, callback])

Here:

• element can be any HTML element, JSX or a component that returns JSX

• container  is the element on the UI inside which we want to render the data

• callback  is the optional function we can pass which gets called once something
is rendered or re-rendered on the screen

Rendering using JSX if large content need to be rendered:
import React from "react";

import ReactDOM from "react-dom“;

const rootElement = document.getElementById("root");

const content = (

<div>

<h1>Welcome to React!</h1>

<p>React is awesome.</p>

</div>

);

ReactDOM.render(content, rootElement);

Component Lifecycle

Component Lifecycle
• lifecycle of a component can be defined as the series of methods that are invoked in

different stages of the component’s existence.

• React provides the developers a set of predefined functions that if present is invoked
around specific events in the lifetime of the component. Developers are supposed to
override the functions with desired logic to execute accordingly.

• Each component in React has a lifecycle which you can monitor and manipulate
during its Four main stages.

– The three phases are: Initializing, Mounting, Updating, and Unmounting.

• Initialization: This is the stage where the component is constructed with the given
Props and default state. This is done in the constructor of a Component Class.Props and default state. This is done in the constructor of a Component Class.

• Mounting: Mounting is the stage of rendering the JSX returned by the render
method itself.

• Updating: Updating is the stage when the state of a component is updated and the
application is repainted.

• Unmounting: As the name suggests Unmounting is the final step of the component
lifecycle where the component is removed from the page.

Component Lifecycle
• Mounting Updating Unmounting stages

Mounting stage methods:

• constructor()
• getDerivedStateFromProps()
• render()
• componentDidMount()

Updating Stage:

• getDerivedStateFromProps()• getDerivedStateFromProps()
• shouldComponentUpdate()
• render()
• getSnapshotBeforeUpdate()
• componentDidUpdate()

Unmounting stage:

componentWillUnmount()

Component Lifecycle

Component Lifecycle
• lifecycle of a component can be defined as the series of methods that are invoked in

different stages of the component’s existence.

• Each component in React has a lifecycle which you can monitor and manipulate
during its three main phases.

– The three phases are: Mounting, Updating, and Unmounting.

Component Lifecycle
• lifecycle of a component can be defined as the series of methods that are invoked in

different stages of the component’s existence.

• Each component in React has a lifecycle which you can monitor and manipulate
during its three main phases.

– The three phases are: Mounting, Updating, and Unmounting.

Component Lifecycle

Component Lifecycle - Initialization
class Clock extends React.Component {

constructor(props)

{

// Calling the constructor of Parent Class React.Component

super(props);

// Setting the initial state

this.state = { date : new Date() };this.state = { date : new Date() };

}

}

Component Lifecycle – Mounting stage
• Mounting is the phase of the component lifecycle when the initialization of the

component is completed and the component is mounted on the DOM and rendered
for the first time on the webpage. Now React follows a default procedure in the
Naming Conventions of these predefined functions where the functions containing
“Will” represents before some specific phase and “Did” represents after the
completion of that phase.

• The mounting phase consists of two such predefined functions as described below.

• componentWillMount() Function: As the name clearly suggests, this function is • componentWillMount() Function: As the name clearly suggests, this function is
invoked right before the component is mounted on the DOM i.e. this function gets
invoked once before the render() function is executed for the first time.

• componentDidMount() Function: Similarly as the previous one this function is
invoked right after the component is mounted on the DOM i.e. this function gets
invoked once after the render() function is executed for the first time

Component Lifecycle
Mounting phase: Mounting means putting elements into the DOM.

React has four built-in methods that gets called, in this order, when mounting a
component:

1. constructor()
2. getDerivedStateFromProps()
3. render()
4. componentDidMount()

Updating phase: five built-in methods Updating phase: five built-in methods

• A component is updated whenever there is a change in the component's state or
props.

• React has five built-in methods that gets called, in this order, when a component is
updated:

1. getDerivedStateFromProps()

2. shouldComponentUpdate()

3. render()

4. getSnapshotBeforeUpdate()

5. componentDidUpdate()

Component Lifecycle – unmounting phase
Unmounting phase: one built in method

• The next phase in the lifecycle is when a component is removed from the DOM,
or unmounting as React likes to call it.

• React has only one built-in method that gets called when a component is
unmounted. i.e componentWillUnmount()

componentWillUnmount():

• The componentWillUnmount method is called when the component is about to be
removed from the DOM.removed from the DOM.

Component Lifecycle
• Each component in React has a lifecycle which you can monitor and manipulate

during its three main phases.
– The three phases are: Mounting, Updating, and Unmounting.

Mounting: Mounting means putting elements into the DOM.

React has four built-in methods that gets called, in this order, when mounting a
component:

1. constructor()
2. getDerivedStateFromProps()
3. render() 3. render()
4. componentDidMount()

The render() method is required and will always be called, the others are optional and
will be called if you define them.

constructor():

• The constructor() method is called before anything else, when the component is
initiated, and it is the natural place to set up the initial state and other initial values.

• The constructor() method is called with the props, as arguments, and you should
always start by calling the super(props) before anything else, this will initiate the
parent's constructor method and allows the component to inherit methods from its
parent (React.Component).

Mounting phase

Mounting – constructor() method
Example:

class Header extends React.Component {

constructor(props) {

super(props); //calling base class

this.state = {favoritecolor: "red"}; //setting initial state

}

render() {

return (return (

<h1>My Favorite Color is {this.state.favoritecolor}</h1>

);

}

}

ReactDOM.render(<Header />, document.getElementById('root'));

Mounting - getDerivedStateFromProps()
getDerivedStateFromProps():

• The getDerivedStateFromProps() method is called right before rendering the
element(s) in the DOM.

• This is the natural place to set the state object based on the initial props.

• It takes state as an argument, and returns an object with changes to the state.

• The getDerivedStateFromProps method is called right before the render method

The example below starts with the favorite color being "red", but the
getDerivedStateFromProps() method updates the favorite color based on the favcolgetDerivedStateFromProps() method updates the favorite color based on the favcol
attribute:

Mounting - getDerivedStateFromProps()
The example below starts with the favorite color being "red", but the
getDerivedStateFromProps() method updates the favorite color based on the favcol
attribute:

class Header extends React.Component {

constructor(props) {

super(props);

this.state = {favoritecolor: "red"};

}

static getDerivedStateFromProps(props, state) {static getDerivedStateFromProps(props, state) {

return {favoritecolor: props.favcol };

}

render() {

return (

<h1>My Favorite Color is {this.state.favoritecolor}</h1>

); }}

ReactDOM.render(<Header favcol="yellow"/>, document.getElementById('root'));

Mounting – render() method
• The render() method is required, and is the method that actually outputs the HTML

to the DOM.

A simple component with a simple render() method:

class Header extends React.Component {

render() {

return (

<h1>This is the content of the Header component</h1>

);

}

}

ReactDOM.render(<Header />, document.getElementById('root'));

Mounting – componentDidMount() method
• The componentDidMount() method is called after the component is rendered.

• This is where you run statements that requires that the component is already placed
in the DOM .

• At first my favorite color is red, but give me a second, and it is yellow instead:

class Header extends React.Component {

constructor(props) {

super(props);

this.state = {favoritecolor: "red"};

}

componentDidMount() {

setTimeout(() => {

this.setState({favoritecolor: "yellow"})

}, 1000) }

render() {

return (<h1>My Favorite Color is {this.state.favoritecolor}</h1>

); }}

ReactDOM.render(<Header />, document.getElementById('root'));

Update phase

Updating Phase
• Updation: React is a JS library that helps create Active web pages easily. Now

active web pages are specific pages that behave according to their user. For
example, let’s take the GeeksforGeeks {IDE} webpage, the webpage acts differently
with each user. User A might write some code in C in the Light Theme while
another User may write a Python code in the Dark Theme all at the same time. This
dynamic behavior that partially depends upon the user itself makes the webpage
an Active webpage. Now how can this be related to Updation? Updation is the
phase where the states and props of a component are updated followed by some
user events such as clicking, pressing a key on the keyboard, etc. The following are
the descriptions of functions that are invoked at different points of Updationthe descriptions of functions that are invoked at different points of Updation
phase.

• componentWillReceiveProps() Function: This is a Props exclusive Function and is
independent of States. This function is invoked before a mounted component gets
its props reassigned. The function is passed the new set of Props which may or may
not be identical to the original Props. Thus checking is a mandatory step in this
regard. The following code snippet shows a sample use-case.

Updating Phase
• setState() Function: This is not particularly a Lifecycle function and can be invoked

explicitly at any instant. This function is used to update the state of a component.
You may refer to this article for detailed information.

• shouldComponentUpdate() Function: By default, every state or props update re-
render the page but this may not always be the desired outcome, sometimes it is
desired that updating the page will not be repainted. The
shouldComponentUpdate() Function fulfills the requirement by letting React know
whether the component’s output will be affected by the update or not.
shouldComponentUpdate() is invoked before rendering an already mounted
component when new props or state are being received. If returned false then the component when new props or state are being received. If returned false then the
subsequent steps of rendering will not be carried out. This function can’t be used in
the case of forceUpdate(). The Function takes the new Props and new State as the
arguments and returns whether to re-render or not.

• componentWillUpdate() Function: As the name clearly suggests, this function is
invoked before the component is rerendered i.e. this function gets invoked once
before the render() function is executed after the updation of State or Props.

• componentDidUpdate() Function: Similarly this function is invoked after the
component is rerendered i.e. this function gets invoked once after the render()
function is executed after the updation of State or Props.

Updating Phase
• The next phase in the lifecycle is when a component is updated.

• A component is updated whenever there is a change in the component's state or
props.

• React has five built-in methods that gets called, in this order, when a component is
updated:

1. getDerivedStateFromProps()

2. shouldComponentUpdate()

3. render()

4. getSnapshotBeforeUpdate()4. getSnapshotBeforeUpdate()

5. componentDidUpdate()

• The render() method is required and will always be called, the others are optional
and will be called if you define them.

Updating Phase - getDerivedStateFromProps()
1. getDerivedStateFromProps()

• Also at updates the getDerivedStateFromProps method is called.

• This is the first method that is called when a component gets updated.

• This is still the natural place to set the state object based on the initial props.

Updating Phase - getDerivedStateFromProps()
• The example below has a button that changes the favorite color to blue, but since

the getDerivedStateFromProps() method is called, which updates the state with the
color from the favcol attribute, the favorite color is still rendered as yellow:

class Header extends React.Component {

constructor(props) {

super(props); this.state = {favoritecolor: "red"};

}

static getDerivedStateFromProps(props, state) {

return {favoritecolor: props.favcol }; }return {favoritecolor: props.favcol }; }

changeColor = () => {

this.setState({favoritecolor: "blue"}); }

render() { return (<div><h1>My Favorite Color is {this.state.favoritecolor}</h1>

<button type="button" onClick={this.changeColor}>Change color</button>

</div>

); }}

ReactDOM.render(<Header favcol="yellow"/>, document.getElementById('root'));

Updating Phase - shouldComponentUpdate()
2. shouldComponentUpdate()

 In the shouldComponentUpdate() method you can return a Boolean value that
specifies whether React should continue with the rendering or not. The default value
is true.

Stop the component from rendering at any update:

Updating Phase - shouldComponentUpdate()
Stop the component from rendering at any update:

class Header extends React.Component {

constructor(props) {

super(props);

this.state = {favoritecolor: "red"}; }

shouldComponentUpdate() {

return false; }

changeColor = () => {changeColor = () => {

this.setState({favoritecolor: "blue"}); }

render() {

return (

<div> <h1>My Favorite Color is {this.state.favoritecolor}</h1>

<button type="button" onClick={this.changeColor}>Change color</button>

</div>); }}

ReactDOM.render(<Header />, document.getElementById('root'));

Updating Phase - render()
render():

class Header extends React.Component {

constructor(props) {

super(props);

this.state = {favoritecolor: "red"};

}

changeColor = () => {

this.setState({favoritecolor: "blue"});this.setState({favoritecolor: "blue"});

}

render() {

return (

<div>

<h1>My Favorite Color is {this.state.favoritecolor}</h1>

<button type="button" onClick={this.changeColor}>Change color</button>

</div>

); }}

ReactDOM.render(<Header />, document.getElementById('root'));

Updating Phase - getSnapshotBeforeUpdate()

1. getSnapshotBeforeUpdate():

2. n the getSnapshotBeforeUpdate() method you have access to the props and state
before the update, meaning that even after the update, you can check what the
values were before the update.

3. If the getSnapshotBeforeUpdate() method is present, you should also include the
componentDidUpdate() method, otherwise you will get an error.componentDidUpdate() method, otherwise you will get an error.

Updating Phase - getSnapshotBeforeUpdate()
1. getSnapshotBeforeUpdate():

2. n the getSnapshotBeforeUpdate() method you have access to the props and state
before the update, meaning that even after the update, you can check what the
values were before the update.

3. If the getSnapshotBeforeUpdate() method is present, you should also include the
componentDidUpdate() method, otherwise you will get an error.

Updating Phase - getSnapshotBeforeUpdate()
class Header extends React.Component {

constructor(props) {

super(props);

this.state = {favoritecolor: "red"}; }

componentDidMount() {

setTimeout(() => {

this.setState({favoritecolor: "yellow"})

}, 1000) }}, 1000) }

getSnapshotBeforeUpdate(prevProps, prevState) {

document.getElementById("div1").innerHTML =

"Before the update, the favorite was " + prevState.favoritecolor; }

componentDidUpdate() {

document.getElementById("div2").innerHTML =

"The updated favorite is " + this.state.favoritecolor;

}

Contd….

Updating Phase - getSnapshotBeforeUpdate()
contd….

render() {

return (

<div>

<h1>My Favorite Color is {this.state.favoritecolor}</h1>

<div id="div1"></div>

<div id="div2"></div>

</div>

););

}

Updating Phase - componentDidUpdate()
The componentDidUpdate method is called after the component is updated in the
DOM.

Example:

The example below might seem complicated, but all it does is this:

When the component is mounting it is rendered with the favorite color "red".

When the component has been mounted, a timer changes the state, and the color
becomes "yellow".

This action triggers the update phase, and since this component has a
componentDidUpdate method, this method is executed and writes a message in thecomponentDidUpdate method, this method is executed and writes a message in the
empty DIV element:

Updating Phase - componentDidUpdate()
class Header extends React.Component {

constructor(props) { super(props); this.state = {favoritecolor: "red"};

}

componentDidMount() {

setTimeout(() => {

this.setState({favoritecolor: "yellow"}) }, 1000) }

componentDidUpdate() {

document.getElementById("mydiv").innerHTML =document.getElementById("mydiv").innerHTML =

"The updated favorite is " + this.state.favoritecolor;

}

render() {

return (<div> <h1>My Favorite Color is {this.state.favoritecolor}</h1>
<div id="mydiv"></div> </div>); }

}

ReactDOM.render(<Header />, document.getElementById('root'));

Unmounting phase

Unmounting phase
• Unmounting: This is the final phase of the lifecycle of the component that is the

phase of unmounting the component from the DOM. The following function is the
sole member of this phase.

• componentWillUnmount() Function: This function is invoked before the
component is finally unmounted from the DOM i.e. this function gets invoked once
before the component is removed from the page and this denotes the end of the
lifecycle.

Unmounting phase - componentWillUnmount() method
• The next phase in the lifecycle is when a component is removed from the DOM,

or unmounting as React likes to call it.

• React has only one built-in method that gets called when a component is
unmounted.

componentWillUnmount():

• The componentWillUnmount method is called when the component is about to be
removed from the DOM.

Unmounting phase - componentWillUnmount() method
Example:

class Container extends React.Component {

constructor(props) { super(props); this.state = {show: true};

}

delHeader = () => { this.setState({show: false});

}

render() {

let myheader;

if (this.state.show) {if (this.state.show) {

myheader = <Child />;

};

return (<div> {myheader} <button type="button" onClick={this.delHeader}>Delete
Header</button> </div>); } }

class Child extends React.Component {

componentWillUnmount() {

alert("The component named Header is about to be unmounted.");

}

render() { return (<h1>Hello World!</h1>); }}

ReactDOM.render(<Container />, document.getElementById('root'));

Example
import React from 'react';

import ReactDOM from 'react-dom';
class Test extends React.Component {

constructor(props)
{

super(props);
this.state = { hello : "World!" };

}
componentWillMount()componentWillMount()
{

console.log("componentWillMount()");
}
componentDidMount()
{

console.log("componentDidMount()");
}

Example
changeState()

{
this.setState({ hello : "Geek!" });

}
render()
{

return (
<div>
<h1>GeeksForGeeks.org, Hello{ this.state.hello }</h1><h1>GeeksForGeeks.org, Hello{ this.state.hello }</h1>
<h2>
Press Here!
</h2>
</div>);

}

Example
shouldComponentUpdate(nextProps, nextState)
{

console.log("shouldComponentUpdate()");
return true;

}
componentWillUpdate()
{

console.log("componentWillUpdate()");
}}
componentDidUpdate()
{

console.log("componentDidUpdate()");
}

}
ReactDOM.render(

<Test />,
document.getElementById('root'));

Data & Data flow in React

• Mutable and immutable state

• Stateful and stateless components

• Component communication

• One-way data flow

State: All the information a program has access to at a given instant in time.

Example:

const letters = 'Letters’;

const splitLetters = letters.split(‘’); const splitLetters = letters.split(‘’);

console.log("Let's spell a word!");

splitLetters.forEach(letter => console.log(letter));

Mutable and immutable state:

• In React applications, there are two primary ways that you can work with state in

components: through state that you can change, and through state that you
shouldn’t.

• state and props are mutable and immutable respectively.

• In React components, state is generally mutable. props will not change.

• we call state mutable we mean we can overwrite or update that data (for example, a
variable that you can overwrite). Immutable state, on the other hand, can’t be
changed.

• There are also immutable data structures, which can be changed but only in
controlled ways (this is sort of how the state API works in React).

Immutable— An immutable, persistent data structure supports multiple versions

over time but can’t be directly overwritten; immutable data structures are generally

persistent.

Mutable— A mutable, ephemeral data structure supports only a single version over Mutable— A mutable, ephemeral data structure supports only a single version over
time; mutable data structures are overwritten when they change and don’t support
additional versions.

Persistence and ephemerality in immutable and mutable data
structures.

• Ephemeral (volatile) data structures only have the capacity to store a moment’s
worth of data, whereas persistent data structures can keep track of changes over
time. This is where the immutability of immutable data structures becomes clearer:
only copies of state are made—they’re not replaced

Handling changes with mutable and immutable data
• Immutable or persistent data structures usually record a history and don’t change

but rather make versions of what changed over time.

• Mutable (Ephemeral data structures), on the other hand, usually don’t record history
and get wiped out with each update.

Parent Child components
communication

Communication between components
 React is a component-based UI library.

 In order to build up a system into something that can accomplish an interesting task,
multiple components are needed. These components often need to work in
coordination together and, thus, must be able to communicate with each other. Data
must flow between them.

 Types: From parent to child  using props

 From child to parent  using callbacks

Parent to Child communication
• When you need to pass data from a parent to child class component, you do this by using

props.

• For example, let’s say you have two class components, Parent and Child, and you want to
pass a state in the parent to the child. You would do something like this:

import React from 'react';

class Parent extends React.Component{

constructor(props){ super(props);

this.state = { data: 'Data from parent' } }

render(){

const {data} = this.state;

return(<div> <Child dataParentToChild = {data}/> </div>) }}

class Child extends React.Component{ constructor(props){ super(props);

this.state = { data: this.props.dataParentToChild } }

render(){

const {data} = this.state;

return(<div> {data} </div>) }}

export default Parent;

Parent to Child communication
Parent:

function BookList() {

const list = [

{ title: 'A Christmas Carol', author: 'Charles Dickens' },

{ title: 'The Mansion', author: 'Henry Van Dyke' },

// …

]

return (

{list.map((book, i) => <Book title={book.title} author={book.author} key={i} />)}

)}

Child:

function Book(props) {

return (

<h2>{props.title</h2>

<div>{props.author}</div>

)

}

Child to Parent communication
Steps:

1. Create a callback function in the parent component. This callback function will get the data
from the child component.

2. Pass the callback function in the parent as a prop to the child component.

3. The child component calls the parent callback function using props.

• When the Child component is triggered, it will call the Parent component’s callback function
with data it wants to pass to the parent. The Parent’s callback function will handle the data it
received from the child.

Child to Parent communication
class Parent extends React.Component{

constructor(props){

super(props);

this.state = {

data: null

} }

handleCallback = (childData) =>{

this.setState({data: childData})

}

render(){render(){

const {data} = this.state;

return(<div> <Child parentCallback = {this.handleCallback}/> {data} </div>

) }}

class Child extends React.Component{

onTrigger = (event) => {

this.props.parentCallback("Data from child");

event.preventDefault(); }

render(){return(<div> <form onSubmit = {this.onTrigger}>

<input type = "submit" value = "Submit"/> </form> </div>) }}

export default Parent;

Child to Parent communication

Forms

Forms
• Just like in HTML, React uses forms to allow users to interact with the web page.

• Handling forms is about how you handle the data when it changes value or gets submitted.

• In HTML, form data is usually handled by the DOM. In React, form data is usually handled
by the components.

• When the data is handled by the components, all the data is stored in the component state.

• You can control changes by adding event handlers in the onChange attribute

Forms
class MyForm extends React.Component {

constructor(props) {

super(props);

this.state = { username: '' };

}

myChangeHandler = (event) => {

this.setState({username: event.target.value});

}

render() { return (

<form> <form>

<h1>Hello {this.state.username}</h1>

<p>Enter your name:</p>

<input type='text’ onChange={this.myChangeHandler} />

</form>

); }

}

ReactDOM.render(<MyForm />, document.getElementById('root'));

• You must initialize the state in the constructor method before you can use it. You get access to the field
value by using the event.target.value syntax.

Forms – Multiple Input fields
• You can control the values of more than one input field by adding a name attribute to each

element.

• When you initialize the state in the constructor, use the field names.

• To access the fields in the event handler use the event.target.name and event.target.value
syntax.

• To update the state in the this.setState method, use square brackets [bracket notation] around
the property name.

useState hook
• The React useState Hook allows us to track state in a function component.

• State generally refers to data or properties that need to be tracking in an application.

• To use useState, first import it into the application

import { useState } from "react";

Initialize the useState:

useState accepts an initial state and returns two values:

 The current state.

 A function that updates the state.

import { useState } from "react";
function FavoriteColor()

{
const [color, setColor] = useState("");

}
• The first value, color, is our current state.

• The second value, setColor, is the function that is used to update our state.

useState("")  set the initial state to an empty string:

useState hook
 Hooks allow function components to have access to state and other React features. Because

of this, class components are generally no longer needed.

import { useState } from "react";

import ReactDOM from "react-dom/client";

function FavoriteColor() {

const [color, setColor] = useState("red");const [color, setColor] = useState("red");

const [color2, setColor2] = useState(“");

const [color3, setColor3] = useState(“");

return <h1>My favorite color is {color}!</h1>

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<FavoriteColor />);

Update state -- useState
To update our state, we use our state updater function.
import { useState } from "react";

import ReactDOM from "react-dom/client";

function FavoriteColor() {

const [color, setColor] = useState("red");

return (

<><>

<h1>My favorite color is {color}!</h1>

<button

type="button"

onClick={() => setColor("blue")}

>Blue</button>

</>

)

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(<FavoriteColor />);

Integrating Third Party Libraries

Integrating Third Party Libraries
• At their core, third-party libraries and plugins are pieces of code developed outside

the primary React team but designed to work within the React ecosystem. Examples
include Redux for state management, React Router for routing, and Styled
Components for styling.

• there are libraries like Chart.js or Recharts

• Managing these third-party integrations requires a package manager. The most
common in the React ecosystem is npm (Node Package Manager). Using commands
like npm install <library-name>, developers can quickly add, update, or remove
third-party code from their projects. third-party code from their projects.

Benefits:

• Rapid Development: Instead of building functionality from scratch, third-party
integrations allow developers to stand on the shoulders of giants, speeding up the
development process.

• Community Support: Popular third-party libraries often come with robust
community support. This means plenty of tutorials, resources, and an active
community to help troubleshoot issues.

• Optimized Performance: These libraries and plugins are often optimized for
performance and regularly updated to remain in sync with the latest web standards
and best practices.

Integrating Third Party Libraries
Drawbacks:

• Overhead: Not all third-party solutions are lightweight. Incorporating hefty libraries can
increase your application’s bundle size, affecting page load times.

• Learning Curve: Every library or plugin has its API and way of doing things. Developers
might need to invest time in learning these before they can effectively integrate them.

• Dependence on External Code: Using third-party solutions means relying on external code,
which can be a concern if that library is deprecated or isn’t regularly maintained.

Guidelines to use third party library:

1. Research the Library/Plugin: Before integrating any third-party library, ensure that it’s well-
maintained, has good community support, and is compatible with your React version. You maintained, has good community support, and is compatible with your React version. You
can check for the number of downloads, last update, and issues on its GitHub repository.

2. Installation: Use npm or yarn to install the library.
npm install <library-name>

3. Import the installed library from the package
I mport {package-name} from ‘file-name’;

Integrating Third Party Libraries
4. Consult the Documentation: Every library/plugin usually comes with its set of configurations

and props. Always refer to the official documentation for setup and usage guidelines.
5. Test the Implementation: After integrating, test to ensure that there are no conflicts or issues

in the app. This includes visual rendering, functionality, and performance
Examples:
1. Ant Design (antd)  Ant Design is a popular design system with a set of high-quality React

components.
npm install antd
Import {Button} from ‘antd’;

2. Chart.js:2. Chart.js:
Chart.js is a powerful data visualization library. You can use the react-chartjs-2 wrapper to use

Chart.js in your React applications.
npm install react-chartjs-2 chart.js
import { Bar } from 'react-chartjs-2';

3. Redux:
Redux is a popular state management library. You can install it with the react-redux package:

npm install redux react-redux
import { createStore } from 'redux';

import { Provider } from 'react-redux';

Integrating Third Party Libraries
Pagination:

A long list can be divided into several pages using Pagination, and only one page will be
loaded at a time.

AutoComplete:

AutoComplete is an input box with text hints, and users can type freely.

Integrating Third Party Libraries
• The good part of using this third party library is it boost the application development process

and helps to gain the goal.

• You’ll build React applications in a context that involves nonReact libraries that

also work with the DOM. These might include things like jQuery, jQuery plugins, or

even other frontend frameworks.

• We’ve seen that React manages the DOM for you and that this can simplify how you think
about user interfaces.

• There are many libraries that are written in plain Javascript or as a JQuery plugin, an
example is Datatable.js. There is no need to reinvent the wheel, consume a lot of time and
energy, and re-create those libraries. energy, and re-create those libraries.

• Third-party libraries can be integrated with class components, also with functional
components using Hooks.

• A React.js component may update the DOM elements multiple times during its lifecycle after
component props or states update.

• Some libraries need to know when the DOM is updated. Some other libraries need to prevent
the DOM elements from updating.

• Datatables.js is a free JQuery plugin that adds advanced controls to HTML tables like
searching, sorting, and pagination.

• Refs: React provides a way for developers to access DOM elements or other React elements.
Refs are very handy when integrating with third-party libraries.

Integrating Third Party Libraries
• We need to know some lifecycle methods. These lifecycle methods are important for

initializing other libraries, destroying components, subscribing and unsubscribing events.

React Lifecycle methods required to know:

We need to know some lifecycle methods. These lifecycle methods are important for initializing
other libraries, destroying components, subscribing and unsubscribing events

1. componentDidMount

it is fired when the element is mounted on the DOM. It is like jquery's
$(document).ready().

Usage:

 fetching data from the server. fetching data from the server.

 initializing third-party libraries.

Example:

componentDidMount() {

this.$el = $(this.el);

this.currentTable = this.$el.DataTable({});

}

Integrating Third Party Libraries
2. componentDidUpdate

it is fired when the props passed to the component are updated or the method this.setState is
called to change the state of the component. This method is not called for the initial render().

Usage:

 reload third-party library if props is updated.

Example:

componentDidUpdate(prevProps) {

if (prevProps.children !== this.props.children) {

// update third-party library based on prop change// update third-party library based on prop change

}

}

3. componentWillUnmount: it is fired before the React component is destroyed and unmounted
on the DOM.

Usage:

 Unsubscribing from events

 Destroying third-party library

Integrating Third Party Libraries
4. shouldComponentUpdate: it is used to avoid the React component from re-rendering. It
prevents to update the DOM even if the state or props are updated.

Usage:

Some libraries require an un-changeable DOM.

Example:

shouldComponentUpdate() {

return false;return false;

}

Integrating Third Party Libraries - Jquery Datatables
• Datatables.js is a free JQuery plugin that adds advanced controls to HTML tables like

searching, sorting, and pagination.

Steps:

1. Need to install a couple of dependencies from npm: jquery and datatables.net

npm i -S jquery datatables.net

2. Add a link to DataTable.css file in index.html.

<link rel="stylesheet" href="https://cdn.datatables.net/1.10.23/css/jquery.dataTables.min.css" />

3. Create a class component named DataTable inside

components/DataTable.js.components/DataTable.js.

4. Import the libraries:

var $ = require("jquery");

$.DataTable = require("datatables.net");

5. Inside the render() method, we need to have a table element with a ref. It looks like an html ID,
we use it for selecting (referencing) it.

Integrating Third Party Libraries - Jquery Datatables
6. We need to render children props inisde the tbody which is passed by the parent element.

render() {

return (

<table ref={(el) => (this.el = el)}>

<thead>

<tr>

<th>#</th>

<th>Title</th>

<th>Completed</th><th>Completed</th>

<th></th>

</tr>

</thead>

<tbody>{this.props.children}</tbody>

</table>

);

}

Integrating Third Party Libraries
7. Inside the componentDidMount() method, we need to get the ref and call jquery method
DataTable()

componentDidMount() {

this.$el = $(this.el);

this.currentTable = this.$el.DataTable();

}

8. Inside the componentDidUpdate(prevProps), we refresh the datatable by calling ajax.reload()
when the props are updated. According to datatable.js, this method refreshes the table.

componentDidUpdate(prevProps) {

// It means that only when props are updated

if (prevProps.children !== this.props.children) {

this.currentTable.ajax.reload();

}

}

9. Finally, inside componentWillUnmount() we destroy the table.

componentWillUnmount() {

this.currentTable.destroy();

}

Integrating Third Party Libraries
10. Using the DataTable component in our react application.

import React from "react";

import DataTable from "./components/DataTable";

class App extends React.Component {

state = {

todos: [],

};

componentDidMount() {componentDidMount() {

fetch("https://jsonplaceholder.typicode.com/todos")

.then((res) => res.json())

.then((data) =>

this.setState({

todos: data,

})

);

}

Integrating Third Party Libraries
render() {

return (

<DataTable>

{this.state.todos.map((todo) => (

<tr key={todo.id}>

<td>{todo.id}</td>

<td>{todo.title}</td>

<td>{todo.completed ? "Yes" : "No"}</td>

<td><td>

<button>Edit</button>

<button>Delete</button>

</td>

</tr>

))}

</DataTable>

);

}

}

export default App;

Integrating Third Party Libraries
•

Routing

Routing
• Routing is a process in which a user is directed to different pages based on their action or

request. ReactJS Router is mainly used for developing Single Page Web Applications.

• Routing is the ability to move between different parts of an application when a user enters a
URL or clicks an element (link, button, icon, image etc) within the application.

• To add routing capabilities, you will use the popular React-Router library. It’s worth noting
that this library has three variants:

1. react-router: the core library

2. react-router-dom: a variant of the core library meant to be used for web applications

3. react-router-native: a variant of the core library used with react native in the
development of Android and iOS applications.development of Android and iOS applications.

• Both react-router-dom and react-router-native import all the functionality of the core react-
router library.

• To install react-router-dom as part of the current project:

npm install --save react-router-dom @6

•

Routing
• The react-router package includes a number of routers that we can take advantage of

depending on the platform we are targeting. These include

• BrowserRouter,

• HashRouter, and

• MemoryRouter.

• For the browser-based applications we are building, the BrowserRouter and HashRouter are a
good fit.

• The BrowserRouter is used for applications which have a dynamic server that knows how
to handle any type of URL to handle any type of URL

• The HashRouter is used for static websites with a server that only responds to requests for
files that it knows about.

Router components
• The Main Components of React Router are:

• BrowserRouter: BrowserRouter is a router implementation that uses the HTML5
history API(pushState, replaceState, and the popstate event) to keep your UI in sync
with the URL. It is the parent component that is used to store all of the other
components.

• Routes: Used to specify the routes i.e for a given path what is the element to be
selected.

• It’s a new component introduced in the v6 and an upgrade of the component. The
main advantages of Routes over Switch are:

– Relative s and s

– Routes are chosen based on the best match instead of being traversed in order.

• Route: Route is the conditionally shown component that renders some UI when its
path matches the current URL.

• Link: The link component is used to create links to different routes and implement
navigation in the application. It works like an HTML anchor tag.

Routing
Example using BrowserRouter: In this example, the <App/> component is the child to the
<BrowserRouter> and should be the only child. Now, the routing can happen anywhere within
the <App/> component.

ReactDOM.render(

<BrowserRouter>

<App/>

</BrowserRouter>,

document.getElementById(‘root’));

BrowserRouter
<BrowserRouter>

<div>

<Link to="/">Home</Link>

<Link to="/About“> About Us </Link>

<Link to="/Contact“> Contact Us </Link>

<Routes>

<Route path="/" element={<Home />}> </Route>
<Route path="/About" element={<About />}> </Route>
<Route path="/Contact" element={<Contact />}> </Route>

</Routes>
</div>

</ BrowserRouter >

React router
Steps:

1. Install react-router in the project folder
C:\Users\username\Desktop\reactApp>npm install –save react-router-dom@6

2. Create Components

In this step, we will create four components. The App component will be used as a tab menu. The
other three components (Home), (About) and (Contact) are rendered once the route has changed

import React from 'react';

import ReactDOM from 'react-dom';

import { Router, Route, Link, browserHistory, IndexRoute } from 'react-router'

class App extends React.Component {class App extends React.Component {

render() {

return (<div> Home About Contact

{this.props.children}

</div>

)

}

}

export default App;

React router
Step2: contd…

class Home extends React.Component {

render() { return (

<div> <h1>Home...</h1> </div>

) }}

export default Home;

class About extends React.Component {

render() {

return (<div> <h1>About...</h1> </div>

) }}

export default About;

class Contact extends React.Component {

render() {

return (<div> <h1>Contact...</h1> </div>

) }

}

export default Contact;

https://www.geeksforgeeks.org/reactjs-router/

React Router – Example 2

{this.props.children}  means that render my children here.

<IndexRoute>  If you want a child route to be used as the default when no other child
matches, this special route is used.

• To avoid error:03000086:digital envelope routines::initialization error'

in package.json, add

• "start": "react-scripts --openssl-legacy-provider start",• "start": "react-scripts --openssl-legacy-provider start",
• "build": "react-scripts --openssl-legacy-provider build",

Old & New Web Appl. Architecture
• In the old way, dynamic content would be generated on the server. The server would

usually fetch data from a database and use it to populate an HTML view that

would be sent down to the client.

• Now there is more application logic on the client that gets managed by JavaScript (in this
case, React). The server initially sends down the HTML, JavaScript, and CSS assets, but after
that, the client React app takes over. From there, unless a user manually refreshes the page,
the server will only have to send down raw JSON data.

React Router

Router - Route
• The Router has Route components as its children. Each of these components uses

two props: a path string and a component. The <Router/> will use each
<Route/> to match a URL and render the right component.

Router – Route Components working

Node.js

Node.js
2. Node.js:
• Node is a “a platform built on Chrome’s JavaScript runtime for easily building fast, scalable

network applications. Node.js uses an event-driven, non-blocking I/O ,single threaded,
asynchronous model that makes it lightweight and efficient, perfect for data-intensive real-
time applications that run across distributed devices.”

• It is a runtime which runs the java script programs outside the browser.
• The creators of Node.js just took Chrome’s V8 JavaScript engine and made it run

independently as a JavaScript runtime.
• Node.js has a set of built-in modules which you can use without any further installation.
• Node.js has single-threaded, event driven, non-blocking I/O, asynchronous model which is

very memory efficient.
• Uses events and callback functions to achieve asynchronous mode of operation.
Node.js tasks:
• Node.js can generate dynamic page content
• Node.js can create, open, read, write, delete, and close files on the server
• Node.js can collect form data
• Node.js can add, delete, modify data in your database

Node.js modules:
• Module is a set of functions.
• Node.js ships with a bunch of core modules compiled into the binary. These modules provide

access to the operating system elements such as the fThey also provide some utility functions
that are commonly required by most programsile system, networking, input/output, etc..

Node.js
Event-Driven, Non Blocking-I/O Asynchronous, single-threaded Model
of node.js:

Traditional thread based model:

In a traditional thread-based model when the server receives a connection, it holds
the connection open until it has performed the request which can either be a page
request or a costly transaction like writing something to a database.

Node.js
Node.js single thread based model:

In this model, the web server does not have to wait for the completion of read or
write operations of previous requests. Its only task is to continuously listen for
incoming requests, thereby making the model highly efficient and scalable.

Node.js
Installation:

Node.js: https://nodejs.org

Node documentation: https://nodejs.org/en/docs/

Express.js

Express
3. Express:

• Express is a Web Server framework for Node.js

• Node.js is just a runtime environment that can run JavaScript. To write a full-
fledged web server by hand on Node.js directly is not easy, neither is it necessary.

• Express is a framework that simplifies the task of writing the server code.

• Express

– parses the request URL, headers, and parameters for you.

– On the response side, it has, as expected, all functionality required by web applications.
This includes determining response codes, setting cookies, sending custom headers,
etc. etc.

– Further, you can write Express middleware, custom pieces of code that can be inserted in
any request/response processing path to achieve common functionality such as logging,
authentication, etc.

Installation: npm install express --save

NPM (Node Package Manager): npm is the default package manager for Node.js.

• You can use npm to install third-party libraries (packages) and manage
dependencies between them.

Express

Mongo DB

MongoDB
• MongoDB is the database used in the MERN stack. It is a NoSQL document-oriented

database, with a flexible schema and a JSON-based query language.

• Not only do many modern companies (including Facebook and Google) use
MongoDB in production, but some older established companies such as SAP and
Royal Bank of Scotland have adopted MongoDB.

NOSQL:

• NoSQL stands for “non-relational,” no matter what the acronym expands to.

• It’s essentially not a conventional database where you have tables with columns and
rows and strict relationships among them.

• The first is their ability to horizontally scale by distributing the load over multiple • The first is their ability to horizontally scale by distributing the load over multiple
servers.

Document – Oriented:

• Compared to relational databases where data is stored in the form of relations, or
tables, MongoDB is a document-oriented database.

• The unit of storage (comparable to a row) is a document, or an object,

• multiple documents are stored in collections (comparable to a table). Every
document in a collection has a unique identifier, using which it can be accessed. The
identifier is indexed automatically.

• data is stored de-normalized. This means that data is sometimes duplicated,
requiring more storage space

MongoDB
Schema-Less:

• Storing an object in a MongoDB database does not have to follow a prescribed
schema. All documents in a collection need not have the same set of fields.

–

JavaScript Based:

– MongoDB’s language is JavaScript.

• For relational databases, we had a query language called SQL. For MongoDB, the
query language is based on JSON.

• You create, search for, make changes, and delete documents by specifying the
operation inoperation in

a JSON object. The query language is not English-like (you don’t SELECT or say
WHERE), and therefore much easier to construct programmatically.

Tools & Libraries

Tools & Libraries
Tools:

• React-Router

• Webpack

• Npm (node package manager)

Libraries:

• React-Bootstrap

• Redux

• Mongoose

• Jest

React-Router:

• To perform transitioning between different views of the component and keeping the
browser URL in sync with the current state of the view. This managing URLs and
history is called routing.

• Managing Browser’s Back button.

• It is a very easy-to-use library

React-Bootstrap:

• Bootstrap, the most popular CSS framework, has been adapted to React and the
project is called React-Bootstrap. This library gives us most of the Bootstrap
functionality

Tools & Libraries
• There are other component/CSS libraries built for React (such as Material-UI, MUI,

Elemental UI, etc.) and also individual components (such as react-select, react-
treeview, and react-date-picker).

Webpack:
• Used For modularizing the code, building & compiling the client-side code into a

bundle to deliver to the browser.

Other Libraries:
Body-parser, ESLint  server-side library
Body-parser: to parse POST data in the form of JSON, or form data
ESLint: for ensuring code follows conventions
React-select  client-side libraryReact-select  client-side library
Other Popular Libraries:
Redux: This is a state management library that also combines the Flux programming
pattern.
It’s typically used in larger projects where even for a single screen, managing the state
becomes complex.
Mongoose: If you are familiar with Object Relational Mapping layers, you may find
Mongoose somewhat similar. This library adds a level of abstraction over the
MongoDB database layer and lets the developer see objects as such. The library
also provides other useful conveniences when dealing with the MongoDB database.
Jest: This is a testing library that can be used to test React applications easily.

Versions

Why MERN?

Why MERN?
• MERN is ideally suited for web applications that have a large amount of interactivity

built into the front-end.

MERN features:

1. JavaScript Everywhere

2. JSON Everywhere

3. Node.js Performance

4. The npm Ecosystem

5. Isomorphic

6. It’s not a Framework

JavaScript Everywhere:JavaScript Everywhere:

• The best part about MERN that I like is that there is a single language used
everywhere. We use JavaScript for client-side code as well as server-side code.

• Even if you have database scripts (in MongoDB), you write them in JavaScript. So,
the only language you need to know and be comfortable with is JavaScript.

• You don’t even need to know a template language that generates pages.

• Only you will need to know is HTML and CSS and Java Script.

• Having a single language across tiers also lets you share code between these tiers.

Why MERN?
JSON Everywhere:

• When using the MERN stack, object representation is JSON (JavaScript Object
Notation) everywhere—in the database, in the application server and on the client,
and even on the wire.

• Saves time because of no object transformations.

• No Object Relational Mapping (ORM), not having to force fit an object model into
rows and columns

• No special serializing and de-serializing code.

• You save a lot of data transformation code.

Node.js Performance:Node.js Performance:

• Due to its event-driven architecture and non-blocking I/O, the claim is that Node.js is
very fast and a resilient web server.

• When your application starts scaling and receiving a lot of traffic, this will play an
important role in cutting costs and savings in terms of time spent in trouble-shooting
server CPU and I/O problems.

Why MERN?
The npm Ecosystem:

• huge number of npm packages available freely for everyone to use. Most problems that you
face will have an npm package already as a solution. Even if it doesn’t fit your needs exactly,
you can fork it and make your own npm package.

• npm is by far the easiest to use and fastest package manager.

• Most npm packages are so small, due to the compact nature of JavaScript code.

Isomorphic:

• SPAs are not SEO (Search Engine Optimization) friendly ecause a search engine would not
make Ajax calls to fetch data or run JavaScript code to render the page. PhantomJS is used onmake Ajax calls to fetch data or run JavaScript code to render the page. PhantomJS is used on
the server to pseudo-generate HTML pages.

• With the MERN stack, serving complete pages out of the server is natural and doesn’t require
tools that are after-thoughts. This is possible because React runs on JavaScript, which is the
same on the client or the server. When React-based code runs on the browser, it gets data
from the server and constructs the page (DOM) in the browser. This is the SPA way of
rendering the UI. If we wanted to generate the same page in the server for search engine bots,
the same React-based code can be used to get the data from an API server and construct the
page (this time, as an HTML) and stream that back to the client. This is called server-side
rendering (SSR).

• The same language is used to run the UI construction code in the server and the
browser: JavaScript. This is what is meant by the term isomorphic: the same code
can be run on the browser or the server.

Why MERN?
Isomorphic:

Why MERN?
It’s not a Framework:

• React is a library, not a framework.

• A framework helps a lot by getting most of the standard stuff out of the way. A library,
on the other hand, gives you tools to construct your application.

• With a library, experienced architects can design their own applications with
complete freedom to pick and choose from the library’s functions and build their own
frameworks that fit their application’s unique needs and vagaries. So, for an
experienced architect or very unique application needs, a library is better, even
though a framework can get you started quickly.

const, let, var
const:

• Const variables are cannot be updated or redeclared. This way is used to declare constants

const, let, var

let
• This is the improved version of var declarations. Variables declaration using this way

eliminates all the issues that we discussed earlier. let creates variables that are block-scoped.

• Also, they can not be redeclared and can be updated. The below example shows it is the best
choice to use let than var.

Var
• Variables declared using var keyword scoped to the current execution context. This means If

they are inside a function we only can access them inside the function. and If they are not
they are part of the global scope which we can access anywhere

Component Constructor
• If there is a constructor() function in your component, this function will be called when the

component gets initiated.

• The constructor function is where you initiate the component's properties.

• In React, component properties should be kept in an object called state.

• The constructor function is also where you honor the inheritance of the parent component by
including the super() statement, which executes the parent component's constructor function,
and your component has access to all the functions of the parent component
(React.Component).

Example:

class Car extends React.Component {class Car extends React.Component {

constructor() {

super();

this.state = {color: "red"};

}

render() {

return <h2>I am a {this.state.color} Car!</h2>;

}

}

DOM, VDOM & JSON

DOM
• When a web page is loaded, the browser creates a Document Object Model of the page.

• With the HTML DOM, JavaScript can access and change all the elements of an HTML
document.

• The HTML DOM model is constructed as a tree of Objects:

Node.js

DOM
The HTML DOM is a standard object model and programming interface for HTML.

It defines

• The HTML elements as objects

• The properties of all HTML elements

• The methods to access all HTML elements

• The events for all HTML elements

With the object model, JavaScript gets all the power it needs to create dynamic HTML:

• JavaScript can change all the HTML elements in the page

• JavaScript can change all the HTML attributes in the page

• JavaScript can change all the CSS styles in the page

• JavaScript can remove existing HTML elements and attributes

• JavaScript can add new HTML elements and attributes

• JavaScript can react to all existing HTML events in the page

• JavaScript can create new HTML events in the page

In other words: The HTML DOM is a standard for how to get, change, add, or delete HTML
elements.

DOM
Example:

The following example changes the content (the innerHTML) of the <p> element
with id="demo":

<!DOCTYPE html>

<html>

<body>

<h2>My First Page</h2>

<p id="demo"></p><p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "Hello World!";

</script>

</body>

</html>

• to get the content of an element, innerHTML property is used

Html DOM Methods
• HTML DOM methods are actions you can perform (on HTML Elements).

• HTML DOM properties are values (of HTML Elements) that you can set or change.

• The HTML DOM can be accessed with JavaScript (and with other programming languages).

• In the DOM, all HTML elements are defined as objects.

• The programming interface is the properties and methods of each object.

• A property is a value that you can get or set (like changing the content of an HTML
element).

• A method is an action you can do (like add or deleting an HTML element).A is an action you can do (like add or deleting an HTML element).

HTML DOM document object
• The document object represents your web page.

• If you want to access any element in an HTML page, you always start with accessing the
document object.

• Below are some examples of how you can use the document object to access and manipulate
HTML.

Finding HTML Elements:

document.getElementById(id) Find an element by element id

document.getElementsByTagName(name
)

Find elements by tag name
)

document.getElementsByClassName(na
me)

Find elements by class name

HTML DOM document object
Changing HTML Elements:

Property Description

element.innerHTML = new html content Change the inner HTML of an element

element.attribute = new value Change the attribute value of an HTML
element

element.style.property = new style Change the style of an HTML element

Method Description

element.setAttribute(attribute, value) Change the attribute value of an HTML

Adding and Deleting Elements:

element.setAttribute(attribute, value) Change the attribute value of an HTML
element

Method Description

document.createElement(element) Create an HTML element

document.removeChild(element) Remove an HTML element

document.appendChild(element) Add an HTML element

document.replaceChild(new, old) Replace an HTML element

HTML DOM document object
Adding Events Handlers:

Method Description

document.getElementById(id).onclick =
function(){code}

Adding event handler code to an onclick
event

VDOM

VDOM
DOM drawback:

• The DOM is represented as a tree data structure. Because of that, the changes and updates to
the DOM are fast. But after the change, the updated element and it’s children have to be re-
rendered to update the application UI. The re-rendering or re-painting of the UI is what makes
it slow. Therefore, the more UI components you have, the more expensive the DOM updates
could be, since they would need to be re-rendered for every DOM update.

• React creates a VIRTUAL DOM in memory.

• Instead of manipulating the browser's DOM directly, React creates a virtual DOM in memory,
where it does all the necessary manipulating, before making the changes in the browserwhere it does all the necessary manipulating, before making the changes in the browser
DOM.

• React only changes what needs to be changed!

• React finds out what changes have been made, and changes only what needs to be changed.

Virtual DOM is fast:

How VDOM is faster?
• When new elements are added to the UI, a virtual DOM, which is represented as a tree is

created. Each element is a node on this tree. If the state of any of these elements changes, a
new virtual DOM tree is created. This tree is then compared or “diffed” with the previous
virtual DOM tree.

• Once this is done, the virtual DOM calculates the best possible method to make these changes
to the real DOM. This ensures that there are minimal operations on the real DOM. Hence,
reducing the performance cost vof updating the real DOM.

VDOM
• The red circles represent the nodes that have changed. These nodes represent the UI elements

that have had their state changed. The difference between the previous version of the virtual
DOM tree and the current virtual DOM tree is then calculated. The whole parent subtree then
gets re-rendered to give the updated UI. This updated tree is then batch updated to the real
DOM.

• In React every UI piece is a component, and each component has a state. React follows the
observable pattern and listens for state changes. When the state of a component changes,
React updates the virtual DOM tree. Once the virtual DOM has been updated, React then
compares the current version of the virtual DOM with the previous version of the virtualcompares the current version of the virtual DOM with the previous version of the virtual
DOM. This process is called “diffing”.

• Once React knows which virtual DOM objects have changed, then React updates only those
objects, in the real DOM. This makes the performance far better when compared to
manipulating the real DOM directly. This makes React standout as a high performance
JavaScript library.

VDOM -- React render() function
• render() is where the UI gets updated and rendered.

• render() function is the point of entry where the tree of React elements are created. When a
state or prop within the component is updated, the render() will return a different tree of React
elements. If you use setState() within the component, React immediately detects the state
change and re-renders the component.

• React then figures out how to efficiently update the UI to match the most recent tree changes.

• This is when React updates its virtual DOM first and updates only the object that have
changed in the real DOM.

Batch Update:Batch Update:

• React follows a batch update mechanism to update the real DOM. Hence, leading to increased
performance. This means that updates to the real DOM are sent in batches, instead of sending
updates for every single change in state.

• The repainting of the UI is the most expensive part, and React efficiently ensures that the real
DOM receives only batched updates to repaint the UI.

JSON

JSON (Java Script Object Notation)
• JSON (JavaScript Object Notation) is a lightweight data-interchange format.

• It is easy for humans to read and write. It is easy for machines to parse and generate.

• It is based on a subset of the JavaScript Programming Language Standard ECMA-262 3rd
Edition - December 1999.

• JSON is a string format.

• JSON is a text format that is completely language independent but uses conventions that are
familiar to programmers of the C-family of languages, including C, C++, C#, Java,
JavaScript, Perl, Python, and many others.

• These properties make JSON an ideal data-interchange language.

JSON string:JSON string:

'{"name":"John", "age":30, "car":null}’

Keys and values are separated by a colon.

Keys must be strings, and values must be a valid JSON data type:

• string

• number

• object

• array

• boolean

• Null

JavaScript objects can be created from JSON string: myObj = {"name":"John", "age":30,

JSON values cannot be one of the
following data types:
•a function
•a date
•undefined

JSON
• Json strings: Strings in JSON must be written in double quotes.

{"name":"John"}

• Numbers in JSON must be an integer or a floating point.

{"age":30}

• Values in JSON can be objects.

{

"employee":{"name":"John", "age":30, "city":"New York"}

}

Json Arrays:Json Arrays:

{

"employee":{"name":"John", "age":30, "city":"New York"}

}

Json Booleans: Values in JSON can be true/false.

{"sale":true}

Json null: Values in JSON can be null.

{"middlename":null}

JSON (Java Script Object Notation)
JavaScript objects can be created from JSON string:

myObj = {"name":"John", "age":30, "car":null};

(OR)

myJSON = '{"name":"John", "age":30, "car":null}';

myObj = JSON.Parse(myJSON);

Accessing Object Values: using either . or []

const myJSON = '{"name":"John", "age":30, "car":null}';

const myObj = JSON.parse(myJSON);

x = myObj.name;

Using [] accessing object values:

const myJSON = '{"name":"John", "age":30, "car":null}';

const myObj = JSON.parse(myJSON);

x = myObj["name"];

Parsing JSON:

const obj = JSON.parse('{"name":"John", "age":30, "city":"New York"}’);

Array as JSON:

const text = '["Ford", "BMW", "Audi", "Fiat"]’;

const myArr = JSON.parse(text);

JSON vs XML
• Both JSON and XML can be used to receive data from a web server.

• The following JSON and XML examples both define an employees object, with an array of 3
employees:

JSON example:

{"employees":[

{ "firstName":"John", "lastName":"Doe" },

{ "firstName":"Anna", "lastName":"Smith" },

{ "firstName":"Peter", "lastName":"Jones" }

]}

XML example:XML example:
<employees>

<employee>

<firstName>John</firstName> <lastName>Doe</lastName>

</employee>

<employee>

<firstName>Anna</firstName> <lastName>Smith</lastName>

</employee>

<employee>

<firstName>Peter</firstName> <lastName>Jones</lastName>

</employee>

</employees>

JSON vs XML
• Both JSON and XML are "self describing" (human readable)

• Both JSON and XML are hierarchical (values within values)

• Both JSON and XML can be parsed and used by lots of programming languages

• Both JSON and XML can be fetched with an XMLHttpRequest

JSON is Unlike XML Because:

• JSON doesn't use end tag

• JSON is shorter

• JSON is quicker to read and write

• JSON can use arrays• JSON can use arrays

 XML is much more difficult to parse than JSON.

 JSON is parsed into a ready-to-use JavaScript object.

Component Lifecycle

Component Lifecycle
• lifecycle of a component can be defined as the series of methods that are invoked in

different stages of the component’s existence.

• Each component in React has a lifecycle which you can monitor and manipulate
during its three main phases.

– The three phases are: Mounting, Updating, and Unmounting.

Component Lifecycle

Component Lifecycle
Mounting phase: Mounting means putting elements into the DOM.

React has four built-in methods that gets called, in this order, when mounting a
component:

1. constructor()
2. getDerivedStateFromProps()
3. render()
4. componentDidMount()

Updating phase: five built-in methods Updating phase: five built-in methods

• A component is updated whenever there is a change in the component's state or
props.

• React has five built-in methods that gets called, in this order, when a component is
updated:

1. getDerivedStateFromProps()

2. shouldComponentUpdate()

3. render()

4. getSnapshotBeforeUpdate()

5. componentDidUpdate()

Component Lifecycle – unmounting phase
Unmounting phase: one built in method

• The next phase in the lifecycle is when a component is removed from the DOM,
or unmounting as React likes to call it.

• React has only one built-in method that gets called when a component is
unmounted.

componentWillUnmount():

• The componentWillUnmount method is called when the component is about to be
removed from the DOM.removed from the DOM.

Component Lifecycle
• Each component in React has a lifecycle which you can monitor and manipulate

during its three main phases.
– The three phases are: Mounting, Updating, and Unmounting.

Mounting: Mounting means putting elements into the DOM.

React has four built-in methods that gets called, in this order, when mounting a
component:

1. constructor()
2. getDerivedStateFromProps()
3. render() 3. render()
4. componentDidMount()

The render() method is required and will always be called, the others are optional and
will be called if you define them.

constructor():

• The constructor() method is called before anything else, when the component is
initiated, and it is the natural place to set up the initial state and other initial values.

• The constructor() method is called with the props, as arguments, and you should
always start by calling the super(props) before anything else, this will initiate the
parent's constructor method and allows the component to inherit methods from its
parent (React.Component).

Mounting – constructor() method
Example:

class Header extends React.Component {

constructor(props) {

super(props); //calling base class

this.state = {favoritecolor: "red"}; //setting initial state

}

render() {

return (return (

<h1>My Favorite Color is {this.state.favoritecolor}</h1>

);

}

}

ReactDOM.render(<Header />, document.getElementById('root'));

Mounting - getDerivedStateFromProps()
getDerivedStateFromProps():

• The getDerivedStateFromProps() method is called right before rendering the
element(s) in the DOM.

• This is the natural place to set the state object based on the initial props.

• It takes state as an argument, and returns an object with changes to the state.

• The getDerivedStateFromProps method is called right before the render method

The example below starts with the favorite color being "red", but the
getDerivedStateFromProps() method updates the favorite color based on the favcolgetDerivedStateFromProps() method updates the favorite color based on the favcol
attribute:

Mounting - getDerivedStateFromProps()
The example below starts with the favorite color being "red", but the
getDerivedStateFromProps() method updates the favorite color based on the favcol
attribute:

class Header extends React.Component {

constructor(props) {

super(props);

this.state = {favoritecolor: "red"};

}

static getDerivedStateFromProps(props, state) {static getDerivedStateFromProps(props, state) {

return {favoritecolor: props.favcol };

}

render() {

return (

<h1>My Favorite Color is {this.state.favoritecolor}</h1>

); }}

ReactDOM.render(<Header favcol="yellow"/>, document.getElementById('root'));

Mounting – render() method
• The render() method is required, and is the method that actually outputs the HTML

to the DOM.

A simple component with a simple render() method:

class Header extends React.Component {

render() {

return (

<h1>This is the content of the Header component</h1>

);

}

}

ReactDOM.render(<Header />, document.getElementById('root'));

Mounting – componentDidMount() method
• The componentDidMount() method is called after the component is rendered.

• This is where you run statements that requires that the component is already placed
in the DOM .

• At first my favorite color is red, but give me a second, and it is yellow instead:

class Header extends React.Component {

constructor(props) {

super(props);

this.state = {favoritecolor: "red"};

}

componentDidMount() {

setTimeout(() => {

this.setState({favoritecolor: "yellow"})

}, 1000) }

render() {

return (<h1>My Favorite Color is {this.state.favoritecolor}</h1>

); }}

ReactDOM.render(<Header />, document.getElementById('root'));

Updating Phase
• The next phase in the lifecycle is when a component is updated.

• A component is updated whenever there is a change in the component's state or
props.

• React has five built-in methods that gets called, in this order, when a component is
updated:

1. getDerivedStateFromProps()

2. shouldComponentUpdate()

3. render()

4. getSnapshotBeforeUpdate()4. getSnapshotBeforeUpdate()

5. componentDidUpdate()

• The render() method is required and will always be called, the others are optional
and will be called if you define them.

Updating Phase - getDerivedStateFromProps()
1. getDerivedStateFromProps()

• Also at updates the getDerivedStateFromProps method is called.

• This is the first method that is called when a component gets updated.

• This is still the natural place to set the state object based on the initial props.

Updating Phase - getDerivedStateFromProps()
• The example below has a button that changes the favorite color to blue, but since

the getDerivedStateFromProps() method is called, which updates the state with the
color from the favcol attribute, the favorite color is still rendered as yellow:

class Header extends React.Component {

constructor(props) {

super(props); this.state = {favoritecolor: "red"};

}

static getDerivedStateFromProps(props, state) {

return {favoritecolor: props.favcol }; }return {favoritecolor: props.favcol }; }

changeColor = () => {

this.setState({favoritecolor: "blue"}); }

render() { return (<div><h1>My Favorite Color is {this.state.favoritecolor}</h1>

<button type="button" onClick={this.changeColor}>Change color</button>

</div>

); }}

ReactDOM.render(<Header favcol="yellow"/>, document.getElementById('root'));

Updating Phase - shouldComponentUpdate()
2. shouldComponentUpdate()

 In the shouldComponentUpdate() method you can return a Boolean value that
specifies whether React should continue with the rendering or not. The default value
is true.

Stop the component from rendering at any update:

Updating Phase - shouldComponentUpdate()
Stop the component from rendering at any update:

class Header extends React.Component {

constructor(props) {

super(props);

this.state = {favoritecolor: "red"}; }

shouldComponentUpdate() {

return false; }

changeColor = () => {changeColor = () => {

this.setState({favoritecolor: "blue"}); }

render() {

return (

<div> <h1>My Favorite Color is {this.state.favoritecolor}</h1>

<button type="button" onClick={this.changeColor}>Change color</button>

</div>); }}

ReactDOM.render(<Header />, document.getElementById('root'));

Updating Phase - render()
render():

class Header extends React.Component {

constructor(props) {

super(props);

this.state = {favoritecolor: "red"};

}

changeColor = () => {

this.setState({favoritecolor: "blue"});this.setState({favoritecolor: "blue"});

}

render() {

return (

<div>

<h1>My Favorite Color is {this.state.favoritecolor}</h1>

<button type="button" onClick={this.changeColor}>Change color</button>

</div>

); }}

ReactDOM.render(<Header />, document.getElementById('root'));

Updating Phase - getSnapshotBeforeUpdate()
1. getSnapshotBeforeUpdate()

2. in the getSnapshotBeforeUpdate() method you have access to the props and state before the
update, meaning that even after the update, you can check what the values were before the
update.

3. If the getSnapshotBeforeUpdate() method is present, you should also include the
componentDidUpdate() method, otherwise you will get an error.

4. getSnapshotBeforeUpdate(prevProps, prevState)

Parameters: It accepts two parameters, they are prevProps and prevState which are just the Parameters: It accepts two parameters, they are prevProps and prevState which are just the
props or state before the component in question is re-rendered.

Updating Phase - getSnapshotBeforeUpdate()
class Header extends React.Component {

constructor(props) {

super(props);

this.state = {favoritecolor: "red"}; }

componentDidMount() {

setTimeout(() => {

this.setState({favoritecolor: "yellow"})

}, 1000) }

getSnapshotBeforeUpdate(prevProps, prevState)getSnapshotBeforeUpdate(prevProps, prevState)

{

document.getElementById("div1").innerHTML =

"Before the update, the favorite was " + prevState.favoritecolor;

}

componentDidUpdate() {

document.getElementById("div2").innerHTML =

"The updated favorite is " + this.state.favoritecolor;

}

Contd….

Updating Phase - getSnapshotBeforeUpdate()
contd….

render() {

return (

<div>

<h1>My Favorite Color is {this.state.favoritecolor}</h1>

<div id="div1"></div>

<div id="div2"></div>

</div>

););

}

Updating Phase - componentDidUpdate()
The componentDidUpdate method is called after the component is updated in the
DOM.

Example:

The example below might seem complicated, but all it does is this:

When the component is mounting it is rendered with the favorite color "red".

When the component has been mounted, a timer changes the state, and the color
becomes "yellow".

This action triggers the update phase, and since this component has a
componentDidUpdate method, this method is executed and writes a message in thecomponentDidUpdate method, this method is executed and writes a message in the
empty DIV element:

Updating Phase - componentDidUpdate()
class Header extends React.Component {

constructor(props) { super(props); this.state = {favoritecolor: "red"};

}

componentDidMount() {

setTimeout(() => {

this.setState({favoritecolor: "yellow"}) }, 1000) }

componentDidUpdate() {

document.getElementById("mydiv").innerHTML =document.getElementById("mydiv").innerHTML =

"The updated favorite is " + this.state.favoritecolor;

}

render() {

return (<div> <h1>My Favorite Color is {this.state.favoritecolor}</h1>
<div id="mydiv"></div> </div>); }

}

ReactDOM.render(<Header />, document.getElementById('root'));

Unmounting phase - componentWillUnmount() method
• The next phase in the lifecycle is when a component is removed from the DOM,

or unmounting as React likes to call it.

• React has only one built-in method that gets called when a component is
unmounted.

componentWillUnmount():

• The componentWillUnmount method is called when the component is about to be
removed from the DOM.

Unmounting phase - componentWillUnmount() method
Example:

class Container extends React.Component {

constructor(props) { super(props); this.state = {show: true};

}

delHeader = () => { this.setState({show: false});

}

render() {

let myheader;

if (this.state.show) {if (this.state.show) {

myheader = <Child />;

};

return (<div> {myheader} <button type="button" onClick={this.delHeader}>Delete
Header</button> </div>); } }

class Child extends React.Component {

componentWillUnmount() {

alert("The component named Header is about to be unmounted.");

}

render() { return (<h1>Hello World!</h1>); }}

ReactDOM.render(<Container />, document.getElementById('root'));

Data & Data flow in React

• Mutable and immutable state

• Stateful and stateless components

• Component communication

• One-way data flow

State: All the information a program has access to at a given instant in time.

Example:

const letters = 'Letters’;

const splitLetters = letters.split(‘’); const splitLetters = letters.split(‘’);

console.log("Let's spell a word!");

splitLetters.forEach(letter => console.log(letter));

Mutable and immutable state:

• In React applications, there are two primary ways that you can work with state in

components: through state that you can change, and through state that you
shouldn’t.

• state and props are mutable and immutable respectively.

• In React components, state is generally mutable. props will not change.

• we call state mutable we mean we can overwrite or update that data (for example, a
variable that you can overwrite). Immutable state, on the other hand, can’t be
changed.

• There are also immutable data structures, which can be changed but only in
controlled ways (this is sort of how the state API works in React).

Immutable— An immutable, persistent data structure supports multiple versions

over time but can’t be directly overwritten; immutable data structures are generally

persistent.

Mutable— A mutable, ephemeral data structure supports only a single version over Mutable— A mutable, ephemeral data structure supports only a single version over
time; mutable data structures are overwritten when they change and don’t support
additional versions.

Persistence and ephemerality in immutable and mutable data
structures.

• Ephemeral (volatile) data structures only have the capacity to store a moment’s
worth of data, whereas persistent data structures can keep track of changes over
time. This is where the immutability of immutable data structures becomes clearer:
only copies of state are made—they’re not replaced

Handling changes with mutable and immutable data
• Immutable or persistent data structures usually record a history and don’t change

but rather make versions of what changed over time.

• Mutable (Ephemeral data structures), on the other hand, usually don’t record history
and get wiped out with each update.

defaultProps

defaultProps
• The defaultProps is a React component property that allows you to set default values

for the props argument.

• If the prop property is passed, it will be changed.

• The defaultProps can be defined as a property on the component class itself, to set
the default props for the class.

import React, { Component } from 'react';

class App extends Component {

render() {

return (

<div >

<Person name="kapil" eyeColor="blue" age="23"></Person>

<Person name="Sachin" eyeColor="blue" ></Person>

<Person name="Nikhil" age="23"></Person>

<Person eyeColor="green" age="23"></Person>

</div>

);

}

}

defaultProps
class Person extends Component {

render() {

return (

<div>

<p> Name: {this.props.name} </p>

<p>EyeColor: {this.props.eyeColor}</p>

<p>Age : {this.props.age} </p>

</div>

))

}

}

Person.defaultProps = {

name: "Rahul",

eyeColor: "deepblue",

age: "45"

}

export default App;

defaultProps with function component
import React from 'react';

function App(props) {

return (

<div >

<Person name="kapil" eyeColor="blue" age="23"></Person>

<Person name="Sachin" eyeColor="blue" ></Person>

<Person name="Nikhil" age="23"></Person>

<Person eyeColor="green" age="23"></Person><Person eyeColor="green" age="23"></Person>

</div>

);

}

defaultProps with function component
function Person(props) {

return (

<div>

<p> Name: {props.name} </p>

<p>EyeColor: {props.eyeColor}</p>

<p>Age : {props.age} </p>

<hr></hr>

</div>

))

}

Person.defaultProps = {

name: "Rahul",

eyeColor: "deepblue",

age: "45"

}

export default App;

PropTypes

PropTypes
• You can catch a lot of bugs with typechecking

• React has some built-in typechecking abilities. To run typechecking on the props for a
component, you can assign the special propTypes property.

• PropTypes is React’s internal mechanism for adding type checking to components.

• React components use a special property named propTypes to set up type checking.

• If default props are set for the React component, the values are first resolved before type
checking against propTypes. Therefore, default values are also subject to the prop type
definitions.

• propTypes type checking only happens in development mode, enabling you to catch bugs in
your React application while developing. For performance reasons, it is not triggered in the your React application while developing. For performance reasons, it is not triggered in the
production environment.

• npm install prop-types --save  to install prop-types package

Example:

import PropTypes from 'prop-types';

class Greeting extends React.Component {

render() { return (

<h1>Hello, {this.props.name}</h1>

); } }

Greeting.propTypes = {

name: PropTypes.string

PropTypes - example
class People extends React.Component {

// ...component class body here

}

People.propTypes = {

label: Proptypes.string,

score: Proptypes.number

}

PropTypes Validators
The PropTypes utility exports a wide range of validators for configuring type definitions.

Different types of validators are:

• Basic types

• Renderable types

• instance types

• Multiple types

• Collection types

• required prop types.

PropTypes Validators
Basic types:

 PropTypes.any The prop can be of any data type

 PropTypes.bool The prop should be a Boolean

 PropTypes.number The prop should be a number

 PropTypes.string The prop should be a string

 PropTypes.func The prop should be a function

 PropTypes.array The prop should be an array

 PropTypes.object The prop should be an object PropTypes.object The prop should be an object

 PropTypes.symbol The prop should be a symbol

Renderable Types:

PropTypes also exports the following validators for ensuring that the value passed to a
prop can be rendered by React.

PropTypes.node: The prop should be anything that can be rendered by React — a
number, string, element, or array (or fragment) containing these types

PropTypes.element: The prop should be a React element

PropTypes Validators
Component.propTypes = {

nodeProp: PropTypes.node,

elementProp: PropTypes.element

}

 One common usage of the PropTypes.element validator is in ensuring that a
component has a single child. If the component has no children or multiple children,
a warning is displayed on the JavaScript console.

 Component.propTypes = {

children: PropTypes.element.isRequired

}

Prop validators
PropTypes – InstanceTypes:

In cases where you require a prop to be an instance of a particular JavaScript class, you
can use the PropTypes.instanceOf validator.

Component.propTypes = {

personProp: PropTypes.instanceOf(Person)

}

Multiple types:

PropTypes.oneOf: The prop is limited to a specified set of values, treating it like an
enum

PropTypes.oneOfType: The prop should be one of a specified set of types, behaving
like a union of types

Component.propTypes = {

enumProp: PropTypes.oneOf([true, false, 0, 'Unknown']),

unionProp: PropTypes.oneOfType([PropType.bool,

PropType.number,

PropType.string,

PropType.instanceOf(Person)

])

}

Prop validators – collection types
PropTypes – CollectionTypes:

Besides thePropTypes.array and PropTypes.object validators, PropTypes also provides
validators for more fine-tuned validation of arrays and objects.

PropTypes.arrayOf

PropTypes.arrayOf ensures that the prop is an array in which all items match the
specified type.

Component.propTypes = {

peopleArrayProp: PropTypes.arrayOf(

PropTypes.instanceOf(Person)

),

multipleArrayProp: PropTypes.arrayOf(

PropTypes.oneOfType([

PropType.number,

PropType.string

])

) }

Prop validators – collection types
PropTypes.objectOf

PropTypes.objectOf ensures that the prop is an object in which all property values match
the specified type.

Component.propTypes = {

booleanObjectProp: PropTypes.objectOf(

PropTypes.bool

),

multipleObjectProp: PropTypes.objectOf(multipleObjectProp: PropTypes.objectOf(

PropTypes.oneOfType([

PropType.func,

PropType.number,

PropType.string,

PropType.instanceOf(Person)

])

)

}

Prop validators – collection types
PropTypes.shape:

You can use PropTypes.shape when a more detailed validation of an object prop is required. It
ensures that the prop is an object that contains a set of specified keys with values of the specified
types.

Component.propTypes = {

profileProp: PropTypes.shape({

id: PropTypes.number,

fullname: PropTypes.string,

gender: PropTypes.oneOf(['M', 'F']),

birthdate: PropTypes.instanceOf(Date),

isAuthor: PropTypes.bool

})

}

PropTypes.exact:

For strict (or exact) object matching, you can use PropTypes.exact as follows:

Component.propTypes = {

subjectScoreProp: PropTypes.exact({

subject: PropTypes.oneOf(['Maths', 'Arts', 'Science']),

score: PropTypes.number

}) }

Prop validators – collection types
Required types:
you can chain isRequired to any prop validator to ensure that a warning is shown
whenever the prop is not provided.

Component.propTypes = {

requiredAnyProp: PropTypes.any.isRequired,

requiredFunctionProp: PropTypes.func.isRequired,

requiredSingleElementProp: PropTypes.element.isRequired,

requiredPersonProp: PropTypes.instanceOf(Person).isRequired,

requiredEnumProp: PropTypes.oneOf(['Read', 'Write']).isRequired,requiredEnumProp: PropTypes.oneOf(['Read', 'Write']).isRequired,

requiredShapeObjectProp: PropTypes.shape({

title: PropTypes.string.isRequired,

date: PropTypes.instanceOf(Date).isRequired,

isRecent: PropTypes.bool

}).isRequired

}

Parent Child components
communication

Parent to Child communication
• When you need to pass data from a parent to child class component, you do this by using props.

• For example, let’s say you have two class components, Parent and Child, and you want to pass a state in the
parent to the child. You would do something like this:

import React from 'react';

class Parent extends React.Component{

constructor(props){ super(props);

this.state = { data: 'Data from parent' }

}

render(){

const {data} = this.state;const {data} = this.state;

return(<div> <Child dataParentToChild = {data}/> </div>) }}

class Child extends React.Component{

constructor(props){ super(props);

this.state = { data: this.props.dataParentToChild } }

render(){

const {data} = this.state;

return(<div> {data} </div>) }}

export default Parent;

Child to Parent communication
Steps:

1. Create a callback function in the parent component. This callback function will get the data
from the child component.

2. Pass the callback function in the parent as a prop to the child component.

3. The child component calls the parent callback function using props.

• When the Child component is triggered, it will call the Parent component’s callback function
with data it wants to pass to the parent. The Parent’s callback function will handle the data it
received from the child.

Child to Parent communication
class Parent extends React.Component{

constructor(props){

super(props);

this.state = {

data: null

} }

handleCallback = (childData) =>{

this.setState({data: childData})

}

render(){render(){

const {data} = this.state;

return(<div> <Child parentCallback = {this.handleCallback}/> {data} </div>

) }}

class Child extends React.Component{

onTrigger = (event) => {

this.props.parentCallback("Data from child");

event.preventDefault(); }

render(){return(<div> <form onSubmit = {this.onTrigger}>

<input type = "submit" value = "Submit"/> </form> </div>) }}

export default Parent;

Data Binding –
One Way, Two way

Data Binding in React.js applications
 Data Binding is the process of connecting the view element or user interface, with the data

which populates it.

 In ReactJS, components are rendered to the user interface and the component’s logic contains
the data to be displayed in the view(UI). The connection between the data to be displayed in
the view and the component’s logic is called data binding in ReactJS.

• One-way Data Binding: ReactJS uses one-way data binding. In one-way data binding one
of the following conditions can be followed:

Component to View: Any change in component data would get reflected in the view.

View to Component: Any change in View would get reflected in the component’s data.

useState()

 The useState hook is a special function that takes the initial state as an argument and returns
an array of two entries. UseState encapsulate only singular value from the state, for multiple
state need to have useState calls.

const [state, setState] = useState(initialstate)

• Syntax: The first element is the initial state and the second one is a function that is used for
updating the state.

• const [state, setState] = useState(initialstate)We can also pass a function as an argument if the
initial state has to be computed. And the value returned by the function will be used as the
initial state.initial state.

• const [sum, setsum] = useState(function generateRandomInteger(){5+7);})The above
function is one line function which computes the sum of two numbers and will be set as the
initial state.

Forms

Forms
• Just like in HTML, React uses forms to allow users to interact with the web page.

• Handling forms is about how you handle the data when it changes value or gets submitted.

• In HTML, form data is usually handled by the DOM. In React, form data is usually handled
by the components.

• When the data is handled by the components, all the data is stored in the component state.

• You can control changes by adding event handlers in the onChange attribute

Forms
class MyForm extends React.Component {

constructor(props) {

super(props);

this.state = { username: '' };

}

myChangeHandler = (event) => {

this.setState({username: event.target.value});

}

render() { return (

<form> <form>

<h1>Hello {this.state.username}</h1>

<p>Enter your name:</p>

<input type='text’ onChange={this.myChangeHandler} />

</form>

); }

}

ReactDOM.render(<MyForm />, document.getElementById('root'));

• You must initialize the state in the constructor method before you can use it. You get access to the field
value by using the event.target.value syntax.

Forms – Multiple Input fields
• You can control the values of more than one input field by adding a name attribute to each

element.

• When you initialize the state in the constructor, use the field names.

• To access the fields in the event handler use the event.target.name and event.target.value
syntax.

• To update the state in the this.setState method, use square brackets [bracket notation] around
the property name.

Integrating Third Party Libraries

Integrating Third Party Libraries
• The good part of using this third party library is it boost the application development process

and helps to gain the goal.

• You’ll build React applications in a context that involves nonReact libraries that

also work with the DOM. These might include things like jQuery, jQuery plugins, or

even other frontend frameworks.

• We’ve seen that React manages the DOM for you and that this can simplify how you think
about user interfaces.

• There are many libraries that are written in plain Javascript or as a JQuery plugin, an
example is Datatable.js. There is no need to reinvent the wheel, consume a lot of time and
energy, and re-create those libraries. energy, and re-create those libraries.

• Third-party libraries can be integrated with class components, also with functional
components using Hooks.

• A React.js component may update the DOM elements multiple times during its lifecycle after
component props or states update.

• Some libraries need to know when the DOM is updated. Some other libraries need to prevent
the DOM elements from updating.

• Datatables.js is a free JQuery plugin that adds advanced controls to HTML tables like
searching, sorting, and pagination.

• Refs: React provides a way for developers to access DOM elements or other React elements.
Refs are very handy when integrating with third-party libraries.

Integrating Third Party Libraries
• We need to know some lifecycle methods. These lifecycle methods are important for

initializing other libraries, destroying components, subscribing and unsubscribing events.

React Lifecycle methods required to know:

We need to know some lifecycle methods. These lifecycle methods are important for initializing
other libraries, destroying components, subscribing and unsubscribing events

1. componentDidMount

it is fired when the element is mounted on the DOM. It is like jquery's
$(document).ready().

Usage:

 fetching data from the server. fetching data from the server.

 initializing third-party libraries.

Example:

componentDidMount() {

this.$el = $(this.el);

this.currentTable = this.$el.DataTable({});

}

Integrating Third Party Libraries
2. componentDidUpdate

it is fired when the props passed to the component are updated or the method this.setState is
called to change the state of the component. This method is not called for the initial render().

Usage:

 reload third-party library if props is updated.

Example:

componentDidUpdate(prevProps) {

if (prevProps.children !== this.props.children) {

// update third-party library based on prop change// update third-party library based on prop change

}

}

3. componentWillUnmount: it is fired before the React component is destroyed and unmounted
on the DOM.

Usage:

 Unsubscribing from events

 Destroying third-party library

Integrating Third Party Libraries
4. shouldComponentUpdate: it is used to avoid the React component from re-rendering. It
prevents to update the DOM even if the state or props are updated.

Usage:

Some libraries require an un-changeable DOM.

Example:

shouldComponentUpdate() {

return false;return false;

}

Integrating Third Party Libraries - Jquery Datatables
• Datatables.js is a free JQuery plugin that adds advanced controls to HTML tables like

searching, sorting, and pagination.

Steps:

1. Need to install a couple of dependencies from npm: jquery and datatables.net

npm i -S jquery datatables.net

2. Add a link to DataTable.css file in index.html.

<link rel="stylesheet" href="https://cdn.datatables.net/1.10.23/css/jquery.dataTables.min.css" />

3. Create a class component named DataTable inside

components/DataTable.js.components/DataTable.js.

4. Import the libraries:

var $ = require("jquery");

$.DataTable = require("datatables.net");

5. Inside the render() method, we need to have a table element with a ref. It looks like an html ID,
we use it for selecting (referencing) it.

Integrating Third Party Libraries - Jquery Datatables
6. We need to render children props inisde the tbody which is passed by the parent element.

render() {

return (

<table ref={(el) => (this.el = el)}>

<thead>

<tr>

<th>#</th>

<th>Title</th>

<th>Completed</th><th>Completed</th>

<th></th>

</tr>

</thead>

<tbody>{this.props.children}</tbody>

</table>

);

}

Integrating Third Party Libraries
7. Inside the componentDidMount() method, we need to get the ref and call jquery method
DataTable()

componentDidMount() {

this.$el = $(this.el);

this.currentTable = this.$el.DataTable();

}

8. Inside the componentDidUpdate(prevProps), we refresh the datatable by calling ajax.reload()
when the props are updated. According to datatable.js, this method refreshes the table.

componentDidUpdate(prevProps) {

// It means that only when props are updated

if (prevProps.children !== this.props.children) {

this.currentTable.ajax.reload();

}

}

9. Finally, inside componentWillUnmount() we destroy the table.

componentWillUnmount() {

this.currentTable.destroy();

}

Integrating Third Party Libraries
10. Using the DataTable component in our react application.

import React from "react";

import DataTable from "./components/DataTable";

class App extends React.Component {

state = {

todos: [],

};

componentDidMount() {componentDidMount() {

fetch("https://jsonplaceholder.typicode.com/todos")

.then((res) => res.json())

.then((data) =>

this.setState({

todos: data,

})

);

}

Integrating Third Party Libraries
render() {

return (

<DataTable>

{this.state.todos.map((todo) => (

<tr key={todo.id}>

<td>{todo.id}</td>

<td>{todo.title}</td>

<td>{todo.completed ? "Yes" : "No"}</td>

<td><td>

<button>Edit</button>

<button>Delete</button>

</td>

</tr>

))}

</DataTable>

);

}

}

export default App;

Integrating Third Party Libraries
•

Routing

Routing
• Routing is a process in which a user is directed to different pages based on their action or

request. ReactJS Router is mainly used for developing Single Page Web Applications.

• Routing is the ability to move between different parts of an application when a user enters a
URL or clicks an element (link, button, icon, image etc) within the application.

• To add routing capabilities, you will use the popular React-Router library. It’s worth noting
that this library has three variants:

1. react-router: the core library

2. react-router-dom: a variant of the core library meant to be used for web applications

3. react-router-native: a variant of the core library used with react native in the development
of Android and iOS applications.of Android and iOS applications.

• Both react-router-dom and react-router-native import all the functionality of the core react-
router library.

• To install react-router-dom as part of the current project:

npm install --save react-router-dom

•

Routing
• The react-router package includes a number of routers that we can take advantage of

depending on the platform we are targeting. These include BrowserRouter, HashRouter, and
MemoryRouter.

• For the browser-based applications we are building, the BrowserRouter and HashRouter are a
good fit.

• The BrowserRouter is used for applications which have a dynamic server that knows how
to handle any type of URL

• The HashRouter is used for static websites with a server that only responds to requests for
files that it knows about.

Routing
Example using BrowserRouter: In this example, the <App/> component is the child to the
<BrowserRouter> and should be the only child. Now, the routing can happen anywhere within
the <App/> component.

ReactDOM.render(

<BrowserRouter>

<App/>

</BrowserRouter>,

document.getElementById(‘root’));

React router
Steps:

1. Install react-router in the project folder
C:\Users\username\Desktop\reactApp>npm install react-router

2. Create Components

In this step, we will create four components. The App component will be used as a tab menu. The
other three components (Home), (About) and (Contact) are rendered once the route has changed

import React from 'react';

import ReactDOM from 'react-dom';

import { Router, Route, Link, browserHistory, IndexRoute } from 'react-router'

class App extends React.Component {class App extends React.Component {

render() {

return (<div> Home About Contact

{this.props.children}

</div>

)

}

}

export default App;

React router
Step2: contd…

class Home extends React.Component {

render() { return (

<div> <h1>Home...</h1> </div>

) }}

export default Home;

class About extends React.Component {

render() {

return (<div> <h1>About...</h1> </div>

) }}

export default About;

class Contact extends React.Component {

render() {

return (<div> <h1>Contact...</h1> </div>

) }

}

export default Contact;

React router
Step 3: Add a Router

Now, we will add routes to the app. Instead of rendering App element like in the previous
example, this time the Router will be rendered. We will also set components for each route.

ReactDOM.render((

<Router history = {browserHistory}>

<Route path = "/" component = {App}>

<IndexRoute component = {Home} />

<Route path = "home" component = {Home} />

<Route path = "about" component = {About} /><Route path = "about" component = {About} />

<Route path = "contact" component = {Contact} />

</Route>

</Router>

), document.getElementById('app’))

When the app is started, we will see three clickable links that can be used to change the route

<Link> component
• Sometimes, we want to need multiple links on a single page. When we click on any of that

particular Link, it should load that page which is associated with that path without reloading
the web page. To do this, we need to import <Link> component in the index js file.

• This component is used to create links which allow to navigate on different URLs and render
its content without reloading the webpage.

• to add some styles to the Link, react router provides a new trick NavLink and style
activeStyle. The activeStyle properties mean when we click on the Link, it should have a
specific style so that we can differentiate which one is currently active.

• Use NavLink instead of Link.

React Router – Example 2
{this.props.children}  means that render my children here.

<IndexRoute>  If you want a child route to be used as the default when no other child
matches, this special route is used.

Old & New Web Appl. Architecture
• In the old way, dynamic content would be generated on the server. The server would

usually fetch data from a database and use it to populate an HTML view that

would be sent down to the client.

• Now there is more application logic on the client that gets managed by JavaScript (in this
case, React). The server initially sends down the HTML, JavaScript, and CSS assets, but after
that, the client React app takes over. From there, unless a user manually refreshes the page,
the server will only have to send down raw JSON data.

React Router

Router - Route
• The Router has Route components as its children. Each of these components uses

two props: a path string and a component. The <Router/> will use each
<Route/> to match a URL and render the right component.

Router – Route Components working

