
Express.js

1. Routes, Request and Response objects, Template Engine
2. Understating Middleware, Query Middleware, Serving Static Files, Handling
POST body data, Cookies, Sessions and Authentication

Express.jsExpress.js

POST body data, Cookies, Sessions and Authentication

(chapters 18,19 in Node.js,Mongodb and Anguar Web Dev – by Caleb
Daley , Brad Dayley, and Brendan Dayley text book)

Express.js
Introduction:

 Express is a lightweight module that wraps the functionality of the Node.js http
module in a simple to use interface.

 Express.js is a fast, flexible and minimalist web framework for Node.js. It’s
effectively a tool that simplifies building web applications and APIs using JavaScript
on the server side.

 Express is an open-source that is developed and maintained by the Node.js
foundation.

 Express also extends the functionality of the http module to make it easy for you to  Express also extends the functionality of the http module to make it easy for you to
handle server routes, responses, cookies, and statuses of HTTP requests.

 To use Express in Node.js projects, install ‘express’ from the root dir of the
project.

npm install --save express



Express.js
Key Features:

Middleware and Routing: Express.js makes it easy to organize your application’s
functionality using middleware and routing. Middleware functions allow you to
handle tasks like authentication, logging, and error handling. Routing ensures that
incoming requests are directed to the appropriate handlers.
Minimalistic Design: Express.js follows a simple and minimalistic design philosophy.
This simplicity allows you to quickly set up a server, define routes, and handle HTTP
requests efficiently. It’s an excellent choice for building web applications without
unnecessary complexity.
Flexibility and Customization: Express.js doesn’t impose a strict application Flexibility and Customization: Express.js doesn’t impose a strict application
architecture. You can structure your code according to your preferences. Whether
you’re building a RESTful API or a full-fledged web app, Express.js adapts to your
needs.
Scalability: Designed to be lightweight and scalable, Express.js handles a large
number of requests asynchronously. Its event-driven architecture ensures
responsiveness even under heavy loads.
Active Community Support: With a thriving community, Express.js receives regular
updates and improvements. You’ll find ample documentation, tutorials, and plugins
to enhance your development experience.

Express.js
Key Features:
 Fast server side development
 Middleware
 Routing
 Templating
 Debugging
 Express allows dynamic rendering of HTML Pages based on passing arguments to

templates.
Limitations of Express.js:Limitations of Express.js:
• Sometimes, there is no structural way to organize things, and the code becomes

non-understandable.
• There are so many issues with callbacks.
• The error messages that will come are challenging to understand.
Companies using Express.js:
 Netflix
 eBay
 Uber
 IBM

Express.js
Server:
var express = require('express');
var app = express();
app.get('/', function(req, res){

res.send("Hello world!");
});
app.listen(3000);
Syntax of defining routes: app.METHOD(PATH, HANDLER);

method can be: GET, PUT, POST, DELETE etc.method can be: GET, PUT, POST, DELETE etc.
• app.get(route, callback)
• This function tells what to do when a get request at the given route is called. The

callback function has 2 parameters, request(req) and response(res). The request
object(req) represents the HTTP request and has properties for the request query
string, parameters, body, HTTP headers, etc. Similarly, the response object
represents the HTTP response that the Express app sends when it receives an HTTP
request.

• The express module provides a series of functions that allow you to implement
routes for the Express server. These functions all use the following syntax:
app.(path, [callback . . .], callback)

Express.js
Configuring Express Settings :

var express = require('express') //imports ‘express’ module
var app = express(); //creates instance of ‘express’

The express object provides the set(setting, value) and enable(setting) and
disable(setting) methods to set the value of the application settings.
For example, the following lines of code enable the trust proxy setting and set the view
engine to pug:

app.enable('trust proxy'); app.enable('trust proxy');
app.disable('strict routing');
app.set('view engine', 'pug');

To get the value of a setting, you can use the get(setting)
enabled(setting), and disabled(setting)  enables and disables the setting.

For example: app.enabled('trust proxy'); \\true
app.disabled('strict routing'); \\true
app.get('view engine'); \\pug

express application settings

Sl.
No.

Setting Description

1 Env Defines the environment mode string, such as
development, testing, and production. The default is
the value of process.env.NODE_ENV.

2 trust proxy Enables/disables reverse proxy support. The default is
disabled

3 jsonp callback name Defines the default callback name of JSONP requests.
The default is ?callback=.

4 json replacer Defines the JSON replacer callback function. The
default is null.

5 json spaces Specifies the number of spaces to use when formatting
JSON response. The default is 2 in development, 0 in
production.

6 case sensitivity routing Enables/disables case sensitivity. For example, /home
is not the same as /Home. The default is disabled.

7 strict routing Enables/disables strict routing. For example, /home is
not the same as /home/. The default is disabled.

express application settings

Sl.
No.

Setting Description

8 view cache Enables/disables view template compilation caching,
which keeps the cached version of a compiled
template. The default is enabled.

9 view engine Specifies the default template engine extension that is
used when rendering templates if a file extension is
omitted from the view.

10 views Specifies the path for the template engine to look for
view templates. The default is ./views.view templates. The default is ./views.

Configuring Routes
• Routing refers to how an server side application responds to a client request to a particular

endpoint. This endpoint consists of a URI (a path such as / or /books) and an HTTP method
such as GET, POST, PUT, DELETE, etc.

• Before the server can begin accepting requests, you need to define routes. A route is simply a
definition that describes how to handle the path portion of the URI in the HTTP request to the
Express server.

Implementing Routes:

• There are two parts when defining the route.

– First is the HTTP request method (typically GET or POST). Each of these methods often – First is the HTTP request method (typically GET or POST). Each of these methods often
needs to be handled completely differently.

– Second, is the path specified in the URL—for example, / for the root of the website,
/login for the login page, and /cart to display a shopping cart.

The express module provides a series of functions that allow you to implement routes for the
Express server. These functions all use the following syntax: app.(path, [callback . . .], callback)
The portion of the syntax actually refers to the HTTP request method, such as GET or POST.

For example:

Routing – Express.js
• HTTP methods provide additional functionality to your data using the POST, PUT,

and DELETE requests.
• The POST request method creates new data in your server
• PUT updates existing information.
• The DELETE request method removes the specified data.

Serving static files
• app.use('/static', express.static('assets'));
• With the above code, static files located in the ‘assets’ directory are now served at the

‘/static’ path prefix. For example, ‘assets/css/style.css’ is accessible at ‘/static/css/style.css’.
• Example:

• const express = require('express');
• const app = express();
• const PORT = 3000;
•

app.use('/static', express.static('assets'));
••

app.get('/', (req, res) => {
• res.send('Hello World!');
• });
•

app.listen(PORT, () => console.log(`Server listening on port: ${PORT}`));

• From browser:

• localhost:3000/static/temp.html sends as response ‘temp.html’ stored in assets folder .

Express.js - Sending and Receiving Cookies
•

Express.js - Sending and Receiving Cookies
•

