
MongoDB

MongoBD
MongoDB:

• Understanding NoSQL and MongoDB,

• Using MongoBD Compass, MongoDB Shell

• Accessing MongoDB from Node.js.

NoSQL

No SQL - Characteristics
 The motivation behind NoSQL is mainly simplified designs, horizontal scaling

(increasing the count of the processing/storage units), and finer control of the availability
of data.

 There are several different NoSQL technologies, such as

HBase’s column structure,

Redis’s key/value structure, and

Neo4j’s graph structure.

 MongoDB and the document model were chosen because of great flexibility and

scalability when it comes to implementing backend storage for web applications and scalability when it comes to implementing backend storage for web applications and
services.

 MongoDB is one of the most popular and well supported NoSQL databases currently
available.

 MongoDB is a NoSQL database based on a document model where data objects are stored
as separate documents inside a collection. The motivation of the MongoDB language is to
implement a data store that provides

 high performance

 high availability

 and automatic scaling

No SQL - Characteristics
• Multi-Model: This feature of NoSQL databases makes them extremely flexible

when it comes to handling data.

• Easily Scalable: This feature of NoSQL databases easy scales to adapt to huge
volumes and complexity of cloud applications. This scalability also improves
performance, allowing for continuous availability and very high read/write speeds.

• Flexible: This feature of NoSQL databases allows you to process all varieties of
data. It can process structured, semi-structured and unstructured data. It
works on many processors—NoSQL systems allow you to store your database on
multiple processors and maintain high-speed performance.

• Less Downtime: The elastic nature of NoSQL allows for the workload to • Less Downtime: The elastic nature of NoSQL allows for the workload to
automatically be spread across any number of servers.

•

SQL dbs
• SQL databases use the ACID database properties to ensure that the database transactions are

reliable.

• ACID stands for

• Atomicity (An “all or nothing” approach for the data that is committed to be saved),

• Consistency (Interrupted changes are rolled back),

• Isolation (Intermediate state of a transaction is not visible to other transactions), and

• Durability (Completed transactions retain their state even in system failure).

SQL VS No SQL
You would choose an SQL database when:

• You need a database with a predefined schema so that applications adhere to that
schema.

• You are designing an application that requires multi-row transactions.

• You require a database that has no room for error and is very consistent, for
example in the case of data warehousing systems.

You would choose an NoSQL database when:

• You need a database that accounts for exponential growth with no clear schema • You need a database that accounts for exponential growth with no clear schema
definitions.

• You require a database which can accommodate variable data structures and
plays well with big data platforms such as Hadoop.

• You need a distributed database system that scales easily and inexpensively.

No SQL

SQL NoSQL

Relational Data Base Management System
(RDBMS)

Non-relational or distributed database
system. (Non – RDBMS)

These databases have fixed or static or
predefined schema

They have dynamic schema

These databases are not suited for These databases are best suited for These databases are not suited for
hierarchical data storage.

These databases are best suited for
hierarchical data storage.

These databases are best suited for complex
queries

These databases are not so good for complex
queries

Vertically Scalable Horizontally scalable

Follows ACID (Automocity, Consistency,
Isolation and Durability) property

Follows CAP(consistency, availability,
partition tolerance)

SQL vs No SQL
1. Type:

 SQL databases are primarily called as Relational Databases (RDBMS); whereas

 NoSQL database are primarily called as non-relational or distributed database.

2. Language difference:

 SQL requires you to use predefined schemas to determine the structure of your data before you work
with it. Also all of your data must follow the same structure. This can require significant up-front
preparation which means that a change in the structure would be both difficult and disruptive to your
whole system.

 A NoSQL database has dynamic schema for unstructured data. Data is stored in many ways which
means it can be document-oriented, column-oriented, graph-based or organized as a KeyValuemeans it can be document-oriented, column-oriented, graph-based or organized as a KeyValue
store. This flexibility means that documents can be created without having defined structure first. Also
each document can have its own unique structure. The syntax varies from database to database, and
you can add fields as you go.

3. The Scalability:

 In almost all situations SQL databases are vertically scalable. This means that you can increase the
load on a single server by increasing things like RAM, CPU or SSD.

 NoSQL databases are horizontally scalable. This means that you handle more traffic by sharing, or
adding more servers in your NoSQL database. It is similar to adding more floors to the same building
versus adding more buildings to the neighbourhood. Thus NoSQL can ultimately become larger and
more powerful, making these databases the preferred choice for large or ever-changing data sets.

SQL vs No SQL

4. The Structure:

 SQL databases are table-based

 NoSQL databases are either key-value pairs, document-based, graph databases or wide-
column stores. This makes relational SQL databases a better option for applications that require
multi-row transactions such as an accounting system or for legacy systems that were built for a
relational structure.

5. Property followed:

 SQL databases follow ACID properties (Atomicity, Consistency, Isolation and Durability)
whereas

 NoSQL database follows the Brewers CAP theorem (Consistency, Availability and Partition NoSQL database follows the Brewers CAP theorem (Consistency, Availability and Partition
tolerance).

6. Support:

 Great support is available for all SQL database from their vendors. Also a lot of independent
consultations are there who can help you with SQL database for a very large scale deployments

 NoSQL database you still have to rely on community support and only limited outside experts
are available for setting up and deploying your large scale NoSQL deployments.

 Some examples of SQL databases include PostgreSQL, MySQL, Oracle and Microsoft SQL
Server.

 NoSQL database examples include Redis, RavenDB Cassandra, MongoDB, BigTable,
HBase, Neo4j and CouchDB, DynamoDB.

MongoBD
 To run the mongo db server, from command prompt give command:

mongod

C:\Users\kbhas>mongod --dbpath “C:\Program Files\MongoDB\Server\7.0\data\bapatla”
specifies the data files path.

 To display the database you are using, type db:

db

 To switch databases, issue the use <db> helper, as in the following example:
use <database>

 To list the databases available to the user, use the helper show dbs.
show dbs

Install Mongodb shell official location:

Using MongoDB Shell

MongoBD Shell
Step 1: start mongo db from command prompt using the command:

mongod
Step2: start mongo db shell from command prompt using the command:

mongosh
Step 3: show databases available

show dbs
Step 4: use a particular data base

use biketrip
Step 5: show tables in a database

show collections
Step 6: to clear the console screen: console.clear()
Step 6: exit from database: exit
__
• use <database>: Changes the current database handle. Database operations are processed on the current

database handle.
• db.help: Displays help options for the database methods.
• show <option>: Shows a list based on the option argument. The value of

option can be:
dbs: Displays a list of databases
collections: Displays a list of collections for the current database.
profile: Displays the five most recent system.profile entries taking more than 1 millisecond.
databases: Displays a list of all available databases.
roles: Displays a list of all roles for the current database, both built-in and user-defined.
users: Displays a list of all users for that database.

• exit: Exits the database.

MongoBD
 To display the database you are using, type db:

db

Creating a new database and collection:

use <newdbName>

Ex: use tempdb creates a new database ‘tempdb’

Creating a Collection:

Using createCollection() method:Using createCollection() method:

db.createCollection(“newCollectionName”, [options]);

db.createCollection(“addresses”); creates a collection named ‘addresses’ in current db.

Using insertOne() method:

db.<collectionName>.insertOne({ attribute:value});

Ex: db.addresses.insertOne({ cof:’xyz’, houseno:’8-555’, village: ‘abcd’}

• If a collection does not exist, MongoDB creates the collection when you first add document
for that collection.
ctrl C terminates the current command execution

Managing collections
• MongoDB provides the functionality in the MongoDB shell to create, view, and manipulate

collections in a database.
• Creating a collection:

db.createCollection(“newCollectionName”, [options]);

db.createCollection(“addresses”); creates a collection named ‘addresses’ in current db.

Retrieving inserted document:

db.test.find({ title: "The Favourite" }) retrieves a document with field title=‘The favourite’

Inserting Multiple documents:

insertMany()

• db.collection.insertMany() can insert multiple documents into a collection. Pass an array of
documents to the method. If the documents do not specify an _id field, MongoDB adds
the _id field with an ObjectId value to each document.

The insertMany() method has the following syntax:
• db.collection.insertMany([<document 1> , <document 2>, ...], { writeConcern:

<document>, ordered: <boolean> })

• ordered: boolean
• A boolean specifying whether the mongod instance should perform an ordered or

unordered insert. Defaults to true.

MongoBD

MongoBD

MongoBD – deleting documents
methods:
• db.collection.deleteOne()

Delete at most a single document that match a specified filter even though multiple
documents may match the specified filter.

• db.collection.deleteMany()

Delete all documents that match a specified filter.

• db.collection.remove()

Delete a single document or all documents that match a specified filter.

Additional methods:Additional methods:
• findOneAndDelete() provides a sort option. The option allows for the deletion of the first

document sorted by the specified order.
• db.collection.findAndModify() provides a sort option. The option allows for the deletion of

the first document sorted by the specified order.
• db.collection.bulkWrite().

Syntax:
deleteOne(filter, options, callback)
The Filter used to select the documents to remove
Ex: db.collection('inventory').deleteOne({ status: 'D' });
Db.test.deleteOne({rated:’R’})

MongoBD – deleting documents
deleteMany() You can specify criteria, or filters, that identify the documents to delete.
The filters use the same syntax as read operations.

Syntax:

• db.collection.deleteMany(<filter>, { writeConcern: <document>, collation: <document> })
• filter Specifies deletion criteria using query operators.

• To delete all documents in a collection, pass in an empty document ({ }).

Example:

db.orders.deleteMany({ "client" : "Crude Traders Inc." });

db.restaurants.deleteMany({ category: "cafe", status: "A" }, { collation: { locale: "fr",
strength: 1 } })

MongoBD – updating documents
• Collection.updateOne() Update a single document in a collection

• Collection.updateMany() Update multiple documents in a collection

• Collection.replaceOne() Replace a document in a collection with another document

updateOne():

Update a single document in a collection

Syntax:

updateOne(filter, update, options, callback)

filter The Filter used to select the document to update

update The update operations to be applied to the documentupdate The update operations to be applied to the document

options optional settings

Ex:

db.collection('inventory').updateOne(

{ item: 'paper' },

{

$set: { 'size.uom': 'cm', status: 'P' },

$currentDate: { lastModified: true }

}

);

MongoBD – updating documents
updateOne():
Example:
db.collection('inventory').updateOne(
{ item: 'paper' },
{
$set: { 'size.uom': 'cm', status: 'P' },
$currentDate: { lastModified: true }

});

Ex 2:Ex 2:
use sample_mflix
db.movies.updateOne({ title: "Twilight" },
{
$set: {
plot: "A teenage girl risks everything–including her life–when she falls in love with a

vampire."
},
$currentDate: { lastUpdated: true }

})
Uses the $set operator to update the value of the plot field for the movie Twilight. Uses

the $currentDate operator to update the value of the lastUpdated field to the current date.

MongoBD – updating multiple documents
updateMany():

To update all documents in the sample_airbnb.listingsAndReviews collection to update
where security_deposit is less than 100:

Ex:

use sample_airbnb

db.listingsAndReviews.updateMany(

{ security_deposit: { $lt: 100 } },

{

$set: { security_deposit: 100, minimum_nights: 1 }

}

)

The update operation uses the $set operator to update the value of the security_deposit field
to 100 and the value of the minimum_nights field to 1.

MongoBD – Replace documents
• To replace the entire content of a document except for the _id field, pass an entirely new

document as the second argument to db.collection.replaceOne().

• When replacing a document, the replacement document must contain only field/value pairs.
Do not include update operators expressions.

• The replacement document can have different fields from the original document. In the
replacement document, you can omit the _id field since the _id field is immutable; however,
if you do include the _id field, it must have the same value as the current value.

Example:

db.accounts.replaceOne(db.accounts.replaceOne(

{ account_id: 371138 },

{ account_id: 893421, limit: 5000, products: ["Investment", "Brokerage"] }

)

replaces the first document from the accounts collection where account_id: 371138:

MongoBD – Additional Methods
The following methods can also update documents from a collection:

• db.collection.findOneAndReplace().

• db.collection.findOneAndUpdate().

• db.collection.findAndModify().

• db.collection.bulkWrite().

db.collection.findOneAndReplace()

Replaces a single document based on the specified filter.

db.collection.findOneAndReplace(filter, replacement, options)

Ex:

db.collection.findOneAndReplace(

<filter>,

<replacement>,

{

writeConcern: <document>,

projection: <document>,

sort: <document>,

maxTimeMS: <number>,

upsert: <boolean>,

returnDocument: <string>,

returnNewDocument: <boolean>,

collation: <document>

})

MongoBD – findOneAndUpdate
db.collection.findOneAndUpdate(filter, update, options)
• Returns the original document by default. Returns the updated document

if returnNewDocument is set to true or returnDocument is set to after.
Syntax:
db.collection.findOneAndUpdate(
selection_criteria: <document>,
update_data: <document>,
{

projection: <document>,
sort: <document>,sort: <document>,
maxTimeMS: <number>,
upsert: <boolean>,
returnNewDocument: <boolean>,
collation: <document>,
arrayFilters: [<filterdocument1>, …]

})
Parameters: The first parameter is the selection criteria for the update. The type of this

parameter is document.
• The second parameter is a document that to be updated. The type of this parameter is

document.
• The third parameter is optional.

MongoBD –
Example 1:

Example 2:

MongoBD – difference between findOneAndReplace() and findOneAndUpdate()

MongoBD –
• The findAndModify() method in MongoDB modifies and returns a single document that

matches the given criteria. By default, db.collection.findAndModify(document) method
returns a pre-modification document.

• To return the document with the modifications made on the update, use the new option and
set its value to true. It takes a document as a parameter.

• If you want to find fields of the embedded document, then use the following syntax:
“field.nestedfieldname”: <value>
or
{field: {nestedfieldname: <value>}}

• The document returned by this method always contains the _id field. If you don’t want the • The document returned by this method always contains the _id field. If you don’t want the
_id field, then set _id:0 in the projection.

• You can use this method in multi-document transactions.

MongoBD – findAndModify()
Ex:
db.Collection_name.findAndModify(
{

selection_criteria:<document>,
sort: <document>,
remove: <boolean>,
update: <document>,
new: <boolean>,
fields: <document>,
upsert: <boolean>,
bypassDocumentValidation: <boolean>,bypassDocumentValidation: <boolean>,
writeConcern: <document>,
collation: <document>,
arrayFilters: [<filterdocument1>, ...]

})
• Parameters:
• remove: It is a must if the update field does not exist. If it is true, removes the selected document.

The default value is false.
• update: It is a must if the remove field does not exist. Performs an update of the selected

document. The update field employs the same update operators or field: value specifications to
modify the selected document.

• Others are optional.

MongoBD – findAndModify()
Optional parameters:
• selection_criteria: It specifies the selection criteria for the modification. The query field employs

the same query selectors as used in the db.collection.find() method. Although the query may
match multiple documents, findAndModify() will only select one document to modify.

• sort: Determines which document the operation will modify if the query selects multiple
documents. findAndModify() will modify the first document in the sort order specified by this
argument.

• new: When true, returns the modified document rather than the original. The findAndModify()
method ignores the new option for remove operations. The default is false.

• fields: A subset of fields to return. The fields document specifies an inclusion of a field with 1, as
in the following:in the following:
– fields: { <field1>: 1, <field2>: 1, … }

• Upsert: The default value of this parameter is false. When it is true it will make a new document in
the collection when no document matches the given condition in the update method.

• writeConcern: It is only used when you do not want to use the default write concern. The type of
this parameter is a document.

• Collation: It specifies the use of the collation for operations. It allows users to specify the
language-specific rules for string comparison like rules for lettercase and accent marks. The type
of this parameter is a document.

• arrayFilters: It is an array of filter documents that indicates which array elements to modify for an
update operation on an array field. The type of this parameter is an array.

MongoBD – findAndModify()
• MongoDB is a versatile document-based NoSQL database and can perform DB write

operations efficiently using its bulkWrite() method.
• The db.collection.bulkWrite() method allows multiple documents to

be inserted/updated/deleted at once.
• db.collection.bulkWrite() method can be used in multi-document transactions.
• If this method encounters an error in the transaction, then it will throw a

BulkWriteException.
• By default, this method executes operations in order.
Syntax:

db.collection.bulkWrite(
[<opr1>, <opr2>, ...,<oprn>],
{

writeConcern : <your document and this is optional>,
ordered : <true/false, defaults to true and this is optional>

}
)

bulkWrite() --

• Parameters:
• [<opr1>, <opr2>, …,<oprn>]: It is an array of write operations, i.e., insertOne, updateOne,

updateMany, deleteOne, deleteMany, replaceOne.
• writeConcern: It is a document that expresses write concern. If you want to use the default

write concern then remove this parameter, It is an optional parameter.
• ordered: As multiple operations can be performed when ordered (default to true) is not

provided, all the operations are proceeded one by one and if given as ordered : false, results
of the operation differ as sometimes insertOne will be the first followed by the rest and
sometimes deleteOne is followed first and if it is the case, without any document existence, sometimes deleteOne is followed first and if it is the case, without any document existence,
it cannot be completed. Hence providing the “ordered” parameter to false should be taken
into consideration whether required or not

• Return:
• This method will return a document that contains a boolean acknowledged as true (if the

write concern is enabled) or false (if the write concern is disabled), count for every write
operation, and an array that contains an _id for every successfully inserted or upserted
document.

Accessing MongoDB from
Node.js application

mongodb access from Node.js application

