
11/1/2024

1

SYLLABUSSYLLABUS

UNIT - II
Implementing standard Program Structures in 8086 Assembly language:
Simple sequence programs, jumps flags and conditional jumps, if-then if-
then-else multiple if-then-else programs, while do programs, repeat-until
programs, instruction timing and delay loops
Strings and procedures: The 8086 string instructions, writing and using
procedures; assembler directives.

Chapter 4 Chapter 4 -- Implementing Standard Program Implementing Standard Program
Structures in 8086 Assembly LanguageStructures in 8086 Assembly Language

11/1/2024

2

OutlineOutline
• Simple sequence programs

• Finding the average of two numbers
• Converting two ASCII codes to packed BCDs
• Debugging assembly language programs

• Jumps, flags and conditional jumps
• The 8086 unconditional jump instructions
• The 8086 conditional jump instructions

• If-then, if-then-else, multiple if-then-else programs
• While-do programs
• Repeat-until programs
• 8086 addressing modes
• The 8086 Loop instructions
• Instruction timing and delay loops

Simple sequence programsSimple sequence programs

• There two programs that we will discuss:

1. Finding the average of two numbers

2. Converting two ASCII codes to packed BCDs

11/1/2024

3

Finding the average of two numbers(contd.)Finding the average of two numbers(contd.)
• Some common steps that can be followed are:
• Defining the problem and writing the algorithm

• problem definition is simple find average of two numbers

• Setting up the data structure
You need to ask the following questions:
• Will the data be in memory or register?
• Is the data of type byte, word or double word?
• How many data items are there?
• Does the data represents only positive numbers, or does it represents positive and

negative numbers?
• How the data is structured?
• Let's assume for this example that the data is all in memory, that the data Is of type

byte, and that the data represents only positive numbers in the range 0 to OFFH.

Finding the average of two numbers(contd.)Finding the average of two numbers(contd.)
Initialization checklist

• initialize the data segment register
• Do this using MOV AX, DATA and MOV DS, AX instructions.

Choosing instructions to implement the Algorithm
• choose which instructions are needed to implement the

algorithm
• For this problem ADD will be used to add two numbers
• DIV will be used to divide the addition by 2

11/1/2024

4

Finding the average of two numbersFinding the average of two numbers

• Defining the problem and writing the algorithm
• The data structure and initialization list
• Masking with the AND instruction
• Moving a nibble with the ROTATE instruction
• Combining bytes or words with the ADD or the OR instruction

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs

11/1/2024

5

Defining the problem and writing the algorithm
• The ASCII codes for the numbers 0 through 9 are 30H through 39H. The lower nibble of

the ASCII codes contains the 4-bit BCD code for the decimal number represented by the
ASCII code.

• For many applications, we want to convert the ASCII code to its simple BCD equivalent. We
can do this by Simply replacing the 3 in the upper nibble of the byte with four 0's.

• For example, suppose we read in 00111001 binary or 39H, the ASCII code for 9. If we
replace the upper 4 bits with 0 s. we are left with 00001001 binary or 09H. The lower 4
bits then contain 1001 binary, the BCD code for 9. Numbers represented as one BCD digit
per byte are called unpacked BCD.

• For applications in which we are going to perform mathematical operations on the BCD
numbers, we usually combine two BCD digits in a single byte. This form is called packed
BCD, Figure 4-2 shows examples of ASCII, unpacked BCD and packed BCD,.

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs
Defining the problem and writing the algorithm

11/1/2024

6

The data structure and initialization list
• For this example program, let's assume that the ASCII code for 5 was

received and put In the BL register, and the second ASCII code was
received and left in the AL register, Since we are not using memory for
data in this program.

• We do not need to declare a data segment or initialize the data segment
register.

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs

Masking with the AND instruction
• The first operation in the algorithm is to convert a number in ASCII form to

Its unpacked BCD equivalent.
• This is done by replacing the upper 4 bits of the ASCII byte with four 0's.
• The 8086 AND instruction can be used to do this operation,when a 1 or a 0

is ANDed with a 0, the result is always a 0.
• ANDing a bit with a 0 is called masking that bit because the previous state

of the bit is hidden or masked.
• To mask 4 bits in a word, then, all you do is AND each bit you want to mask

with a 0. A bit ANDed with a 1, remember is not changed.

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs

11/1/2024

7

Masking with the AND instruction
• For this example the first ASCII number is in the BL register. So we can just

AND an immediate number with this register to mask the desired bits.
• The upper 4 bits of the immediate number should be 0's because these

correspond to the bits we want to mask in BL.
• The lower 4 bits of the immediate number should be 1s because we want to

leave these bits unchanged. The immediate number, then, should be
00001111 binary or OFH.

• The instruction to convert the first ASCII number is AND BL,OFH. When this
instruction executes, it will leave the desired unpacked BCD in BL.

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs

• The next action in the algorithm is to move the 4 BCD bits in the first
unpacked BCD byte to the upper nibble position in the byte. We need to
do this so that the 4 BCD bits are in the correct position for packing with
the second BCD nibble.

• We are effectively doing here is swapping or exchanging the top nibble
with the bottom nibble of the byte.

• The 8086 has a wide variety of rotate and shift instructions, For now, let's
look at the rotate instructions, There are two Instructions, ROL and RCL,
which rotate the bits of a specified Operand to the left.

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs
Moving a nibble with the ROTATE instruction

11/1/2024

8

• For ROL Instruction, each bit in the specified register or memory location is
rotated 1 bit position to the left.

• The bit that was the MSB is rotated around into the LSB position, The old
MSB is also copied to the carry flag.

• For the RCL Instruction, each bit of the specified register or memory
location is also rotated 1 bit position to the left.

• However, the bit that was in the MSB position is moved to the carry flag
and the bit that was in the carry flag is moved into the LSB position.

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs
Moving a nibble with the ROTATE instruction

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs
Moving a nibble with the ROTATE instruction

11/1/2024

9

• The ADD instruction adds the contents of a specified source to the contents of
a specified destination and leaves the result in the specified destination.

• For the example program here, the instruction ADD AL,BL can be used to
combine the two BCD nibbles.

• Another way to combine the two nibbles is with the OR instruction.
• This instruction ORs each bit in the specified source with the corresponding bit

in the specified destination.
• The result of the ORing is left in the specified destination.
• ORing a bit with a 0 leaves the bit unchanged. To set a bit in a word to a 1.

then, all you have to do is OR that bit with a word which has a 1 in that bit
position and 0's in all the other bit positions.

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs
Combining bytes or words with the ADD or the OR instruction

Converting two ASCII codes to packed BCDsConverting two ASCII codes to packed BCDs
• Similar steps can be performed to solve the given problem.

11/1/2024

10

Debugging Assembly Language ProgramsDebugging Assembly Language Programs
• Very carefully define the problem you are trying to solve with the program and

workout the best algorithm you can.
• Write and test each sections of the program as you go, instead of writing the

larger program all at once.
• If a program or program section does not work, first recheck the algorithm to

make sure that it really does what you want it to.
• If the algorithm seems correct, check to make sure that you have used the

correct instructions to implement the algorithm.
• If you are hand coding the program this is the next place to check. It is very easy

to get bit wrong when you are constructing the instruction codes.
• If you are not finding the problem in algorithm, instruction codes or coding then

now it’s the time to use debugger.
• For longer programs single step approach is tedious rather put breakpoints at

the victim functions you want to check.

• The real power of a computer comes from its ability to choose between two
or more sequences of actions based on some condition, repeat a sequence
of Instructions as long as some condition exists, or repeat a sequence of
instructions until some condition exists.

• Flags indicate whether some condition is present or not.
• Jump Instructions are used to tell the computer the address to fetch its next

instruction from.
• Jump instructions are used to tell the computer the address of the next

instruction to be executed. They change the flow of the program in the
desired direction.

• Two types of jump instructions
• Conditional instructions
• Unconditional instructions

Jumps, Flags and Conditional jumpsJumps, Flags and Conditional jumps

11/1/2024

11

Jumps, Flags and Conditional jumpsJumps, Flags and Conditional jumps
When the 8086 fetches and decodes an
Unconditional Jump instruction, it always goes
to the specified jump destination. You might use
this type of Jump Instruction at the end of a
program so that the entire program runs over
and over, as shown In Figure 4-6.
When the 8086 fetches and decodes a
Conditional Jump instruction, It evaluates the -
state of a specified flag to determine whether
to fetch its next instruction from the jump
destination location or to fetch its next
instruction from the next sequential memory
location.

The 8086 Unconditional Jump Instructions(contd.)The 8086 Unconditional Jump Instructions(contd.)

• Jumps to the desired location without any condition

• JMP instruction is used for this purpose.

• When 8086 executes JMP instruction, it loads new number into instruction

pointer register and in some cases it also loads the number into code

segment register.

11/1/2024

12

The 8086 Unconditional Jump Instructions(contd.)The 8086 Unconditional Jump Instructions(contd.)

Program for Backward JMP

The 8086 Unconditional Jump Instructions(contd.)The 8086 Unconditional Jump Instructions(contd.)

Program for Forward JMP

11/1/2024

13

The 8086 Unconditional Jump InstructionsThe 8086 Unconditional Jump Instructions
• Unconditional Jump instruction – Type Overview

• Jump within segments – direct
• Jump within segments - indirect
• Inter segment or group – direct
• Inter segment or group - indirect

• The direct near and short type jump instructions
• It can cause the next instruction to be fetched from anywhere

in the current code segment.
• It adds 16-bit signed displacement contained in the instruction

to the instruction pointer register.

• If the JMP destination is in the same code segment, the 8086 only has to change the
contents of the instruction pointer. This type of jump is referred to as a near, or
intrasegment, jump.

• If the JMP destination is in a code segment which has a different name from the
segment in which the JMP instruction is located, the 8086 has to change the contents
of both CS and IP to make the jump. This type of jump Is referred to as a Far, or
intersegment, jump.

• Near and far jumps are further described as either direct or indirect.
• If the destination address for the jump is specified directly as part of the instruction,

then the jump is described as direct. You can have a direct near jump or a direct far
jump.

• If the destination address for the jump is contained in a register or memory location,
the jump Is referred to as indirect, because the 8086 has to go to the specified register
or memory location to get the required destination address.

The 8086 Unconditional Jump InstructionsThe 8086 Unconditional Jump Instructions

11/1/2024

14

11/1/2024

15

The 8086 Conditional FlagsThe 8086 Conditional Flags
• The carry flag: if addition of two 8-bit numbers is greater than 8-bits then

the carry flag will be set to 1 to indicate the final carry produced by the
addition.

• The parity flag: indicates whether the word has even number of 1s or odd
number of 1s. The flag is set as 1 if the lower 8 bits of the destination
address contains even number of 1s which is known as even parity.

• The Auxiliary Carry Flag: it is used in BCD Addition and Subtraction. If the
carry is produced then lower 2 bytes are added.

• The Zero Flag: set if the result of arithmetic operation is zero.
• The sign Flag: used to indicate the sign of the number. MSB 0 means +ve

and 1 means –ve
• The overflow Flag: if the result of signed operation is too large to fit in

then it will set.

The 8086 Conditional Jump instructionsThe 8086 Conditional Jump instructions
• These are the instruction that will change the flow only when some conditions are met.

11/1/2024

16

IfIf--then, ifthen, if--thenthen--else, multiple ifelse, multiple if--thenthen--else programs(contd.)else programs(contd.)
• IF-THEN PROGRAMS

Structure:
IF Condition THEN

Action.

• This structure says that IF the stated condition is found to be true, the series of actions
following THEN-will be executed, If the condition is false, execution will skip over the actions
after the THEN and proceed with the next mainline instruction.
• The Simple IF-THEN is Implemented with a Conditional Jump instruction. In some cases an
instruction to set flags is needed before the Conditional Jump instruction.
• Conditional jump can only be to a location in the range of — 128 bytes to + 127 bytes from
the address after the Conditional Jump instruction.
• If you are not sure whether the destination will be in range, the Instruction sequence shown
in Figure 4-1 b will always work. In this sequence, the Conditional Jump instruction only has to
jump over the JMP instruction. The JMP Instruction used to get to the label THERE can jump to
anywhere in the code segment.or even to another code segment.

IfIf--then, ifthen, if--thenthen--else, multiple ifelse, multiple if--thenthen--else programs(contd.)else programs(contd.)

11/1/2024

17

The 8086 IN and OUT InstructionsThe 8086 IN and OUT Instructions
• The 8086 has two types of input instruction, fixed-port and variable-port.
• The fixed-port instruction has the format IN AL, port or IN AX, port. The term port in

these Instructions represents an 8-bit port address to be put directly in the instruction.
The instruction IN AX,04H., for example, will copy a word from port 04H to the AX
register.

• The variable-port input instruction has the format IN AL,DX or IN AX,DX. When using the
variable-port Input Instruction, you must first put the address of the desired port in the
DX register. If, for example, you load DX with FFF8H and then do an IN AL,DX, the 8086
will copy a byte of data from port FFF8H to the AL register.

• The variable-port input instruction has two major advantages.
First, up to 65,536 different Input ports can be specified with the 16-bit port address In

DX.
Second, the port address can be changed as a program executes by simply putting a

different number in DX

• The 8086 also has a fixed-port output Instruction and a variable-port output instruction.
• The device used for parallel input and output ports on the SDK-86 board and in many

microcomputers is the Intel 8255.
• As shown in the block diagram in Figure 4-13, the 8255 basically contains three 8-bit ports

and a control register.
• Each of the ports and the control register will have a separate address, so you can write to

them or read from them.
• The addresses for the ports and control registers for the two 8255s on an SDK-86 board,

for example, are as follows:

The 8086 IN and OUT InstructionsThe 8086 IN and OUT Instructions

11/1/2024

18

FIGURE 4-13 Block diagram of
SDK-86 board's 8255A port.

• IF-THEN-ELSE PROGRAMS
Structure:

IF Condition THEN
Action

ELSE
Action.

IfIf--then, ifthen, if--thenthen--else, multiple ifelse, multiple if--thenthen--else programs(contd.)else programs(contd.)

Figure 3-3b shows the flowchart and pseudocode for this structure.

11/1/2024

19

FIGURE 4-14 List file
for printed-circuit-
board-making
machine program.
(a) Below 30°
version.

11/1/2024

20

FIGURE 4-14 List file for printed-circuit-board-making machine program.
(b) Program section for above 30° version.

IfIf--then, ifthen, if--thenthen--else, multiple ifelse, multiple if--thenthen--else programselse programs

• MULTIPLE IF-THEN-ELSE ASSEMBLY PROGRAMS
• Structure:

IF Condition THEN

Action.
ELSE IF Condition THEN

Action.
ELSE

Action.

11/1/2024

21

11/1/2024

22

WHILEWHILE--DO ProgramsDO Programs
• This structure is useful in executing a number of instructions repeatedly

till some condition is satisfied.
• WHILE-DO PROGRAMS

• Structure:
WHILE some condition is present DO

Action.
Action.

11/1/2024

23

11/1/2024

24

REPEATREPEAT--UNTIL ProgramsUNTIL Programs
• This structure can be used to loop through number of instructions until

some condition is met. If the condition in the until is true then the loop
will break and the immediate instruction will be executed.

• REPEAT-UNTIL PROGRAMS
• Structure:

REPEAT

Action
UNTIL some condition is present.

11/1/2024

25

11/1/2024

26

11/1/2024

27

8086 Addressing Modes8086 Addressing Modes
• Single Index: Contents of BX, BP, SI, DI is added directly to displacement to

generate effective address.
• Double Index: Contents of BX or BP register is first added with SI or DI and

then the result is added to Displacement to generate the effective address.

11/1/2024

28

The 8086 Loop instructionsThe 8086 Loop instructions
• These are the instructions that are used to do some sequence specific

number of times.
• They are basically conditional jumps which have format LOOP Label.
• LOOP instructions decrements the CX register but do not affect the ZF.
• The LOOPNE/LOOPNZ Label instruction decrements the CX by 1 and if CX !=

0 and ZF = 0 the instruction will cause a jump on the specified label.

Instruction Timing and Delay Loops(contd.)Instruction Timing and Delay Loops(contd.)
• The rate at which 8086 instructions are executed is determined by a crystal-

controlled clock with a frequency of a few megahertz.
• Each instruction takes a certain number of clock cycles to execute. The MOV

register, register instruction, for example, requires 2 clock cycles to execute,
and the DAA instruction requires 4 clock cycles. The JNZ instruction requires
16 clock cycles if it does the Jump, but it requires only 4 clock cycles tilt
doesn't do the Jump.

• With this, you can calculate how long it takes to execute an instruction or
series of instructions.

• For example, if you are running an 8086 with a 5-MHz clock, then each clock
cycle takes (5 MHz) or 0.2 µs.

• An instruction which takes 4 clock cycles, then, will take 4 clock cycles x 0.2
µs/clock cycle or 0.8 µs to execute.

11/1/2024

29

• Program loops introduce the delay between instructions.
• Calculate number of clock cycles to produce the delay. E.g. 8086 with 5

MHz clock the time for one clock cycle is 1/5 micro seconds or 0.2 micro
seconds.

• Next determine how many clock cycles needed in the loop.
• Now, suppose that you want to create a delay of 1 ms or 1000 µs with a

delay loop.
• If you divide the 1000 µs desired by the 0.2 µs per clock cycle, you get the

number of clock cycles required to produce the desired delay.
• For this example you need a total of 1000/0.2 or 5000 processor clock

cycles to produce the desired delay. We will call this number CT.

Instruction Timing and Delay Loops(contd.)Instruction Timing and Delay Loops(contd.)

• The next step is to write the number of clock cycles required for each
instruction next to that instruction as shown in Figure 4-27a.

• The number of clock cycles for the instructions which execute Only Once
will only contribute to the total once. Instructions which only enter, the
calculation once are often called overhead. We will represent the number
of cycles of overhead with the symbol C0 .

• Next you determine how many clock cycles required for the loop. The two
NOPs in the loop require a total of 6 clock cycles.

• The LOOP instruction requires 17 clock cycles If it does the Jump back to
KILL_TIME, but it requires only 5 clock cycles when it exits the loop.

Instruction Timing and Delay Loops(contd.)Instruction Timing and Delay Loops(contd.)

11/1/2024

30

Instruction Timing and Delay Loops(contd.)Instruction Timing and Delay Loops(contd.)

Instruction Timing and Delay LoopsInstruction Timing and Delay Loops
Note about using delay loops for timing:
• The BIU and the EU are asynchronous, so for some instruction sequences

an extra clock cycle may be required.
• The no of clock cycles required to read a word from memory or write a

word on memory depends on whether the first byte of the word is at even
address or at odd address.

• The no of clock cycles required to read a byte from memory or write a byte
on memory depends on the addressing mode used to address the byte.

• If a given microcomputer system is designed to insert WAIT states during
each memory access, this will increase the no of clock cycles required for
each memory access.

11/1/2024

31

•Strings and Procedures
The 8086 string instructions
Writing and using procedures
•Assembler Directives

8086 String Instructions8086 String Instructions
• A string is a series of bytes or words stored in successive memory

locations. Often a string consists of a series of ASCII character codes.
• When you use a word processor or text editor program, you are actually

creating a string of this sort as you type in a series of characters.
• One important feature of a word processor is the ability to move a

sentence or group of sentences from one place in the text to another.
• Doing this involves moving a siring of ASCII characters from one place in

memory to another.
• The 8086 Move String instruction, MOVS allows you to do operations such

as this very easily.

11/1/2024

32

• Another important feature of most word processors is the ability to
search through the text looking for a given word or phrase.

• The 8086 Compare String instruction, CMPS, can be used to do
operations of this type. In a similar manner, the 8086 SCAS instruction can
be used to search a string to see whether it contains a specified character.

8086 String Instructions8086 String Instructions

• Suppose that you have a string of ASCII characters in successive memory
locations in the data segment and you want to move the string to some new
sequence of locations in the data segment.

• To help you visualize this, take a look at the strings we Set up in the data
segment in Figure 5.1b, p. 96. to test our program.

• The statement TEST_MESS DB 'TIS TIME FOR A NEW HOME' sets side 23
bytes of memory and gives the first memory location the name TEST_MESS.

8086 String Instructions8086 String Instructions-- Moving a StringMoving a String

11/1/2024

33

ALP with
MOVS

11/1/2024

34

ALP with
CMPS

writing and using Procedureswriting and using Procedures
• Often when writing programs we will find that we need to use a particular

sequence of instructions at several different points in a program.
• To avoid writing the sequence of instructions in the program each time you

need them, you can write the sequence as a separate subprogram called a
procedure.

• Each time you need to execute the sequence of instructions contained in the
procedure, you use the CALL instruction to send the 8086 to the starting
address of the procedure in memory.

11/1/2024

35

writing and using Procedureswriting and using Procedures

The 8086 CALL and RET InstructionsThe 8086 CALL and RET Instructions
• A CALL Instruction in the mainline program loads the instruction pointer

and in some cases also the code segment register with the starting address
of the procedure.

• The next instruction fetched will be the first instruction of the procedure.
• At the end of the procedure, a RET instruction sends execution back to the

next instruction after the CALL in the mainline program.
• The RET instruction does this by loading the Instruction pointer and If

necessary, the code segment register with the address of the next
instruction after the CALL instruction.

• The 8086 CALL Instruction performs two operations when it executes.
• First, it stores the address of the Instruction after the CALL instruction on

the stack. This address is called the return address because it is the
address that execution will return to after the procedure executes.

11/1/2024

36

• If the CALL is to a procedure in the same code segment, then the call is
near, and only the Instruction pointer contents will be saved on the stack.

• If the CALL is to a procedure in another code segment, the call is far. In this
case, both the instruction pointer and the code segment register contents
will be saved on the stack.

• The second operation of the CALL instruction is to change the contents of
the instruction pointer and, in some cases, the contents of the code
segment register to contain the starting address of the procedure.

• This function of the CALL instruction is very similar to the operation of the
JMP instructions .

The 8086 CALL and RET InstructionsThe 8086 CALL and RET Instructions

• Similar to JMP instruction here also we have
DIRECT WITHIN-SEGMENT NEAR CALL
THE INDIRECT WITHIN-SEGMENT NEAR CALL
THE DIRECT/INDIRECT INTERSEGMENT FAR CALL

The 8086 CALL and RET InstructionsThe 8086 CALL and RET Instructions

11/1/2024

37

The 8086 CALL and RET InstructionsThe 8086 CALL and RET Instructions

The 8086 StackThe 8086 Stack
• The stack is a section of memory you set aside for storing return addresses.
• The stack is also used to save the contents of registers for the calling

program while a procedure executes.
• A third use of the stack is to hold data or addresses that will be acted upon

by a procedure.
• The 8086 lets you set aside up to an entire 64-Kbyte segment of memory as

a stack.
• The stack pointer register is used to hold the offset of the last word written

on the stack. The 8086 produces the physical address for a stack location by
adding the offset contained in the SP register to the stack segment base
address represented by the 16-bit number in the SS register.

11/1/2024

38

• An important point about the
operation of the stack is that the
SP register is automatically
decremented by 2 before a
word is written to the stack.

• This means that at the start of
your program you must
initialize the SP register to
point to the top of the memory
you set aside as a stack, rather
than initializing it to point to the
bottom location.

The 8086 StackThe 8086 Stack

UsingUsing PUSHPUSH andand POPPOP toto SaveSave RegisterRegister ContentsContents
• It is very common to want to use registers both in the mainline program and in a

procedure without the two uses Interfering with each other.
• The PUSH and POP instructions make this very easy to do.
• The PUSH register/memory Instruction decrements the stack pointer by 2 and

copies the contents of the specified 16-bit register or memory location to memory
at the new top-of-stack location.

• This will decrement the stack pointer by 2 and copy the Contents of the CX register
to the stack where the stack pointer now points

• The POP register/memory instruction copies a word from the top of the stack to
the specified 16-bit register or memory location and increments the stack pointer
by 2.

• This will copy a word from the top of the stack to the CX register and increment the
stack pointer by 2.

• After a POP, the stack pointer will point to the next word on the stack.

11/1/2024

39

Passing Parameters to and from ProceduresPassing Parameters to and from Procedures
• Often when we call a procedure, we want to make some data values or

addresses available to the procedure.
• Likewise, we often want a procedure to make some processed data values

or addresses available to the main program.
• These addresses or data values passed back and forth between the

mainline and the procedure are commonly called parameters.
• The four major ways of passing parameters to and from a procedure are:
1. In registers
2. In dedicated memory locations accessed by name
3. With pointers passed in registers
4. With the stack

Passing Parameters to and from ProceduresPassing Parameters to and from Procedures

•The units position has a value of 1 in hex, so multiplying this by 6 units gives 0006H.
•The tens position has a value of 1010 binary. or OAI-l. Multiplying this value by 9. the number of tens, gives
005AH.
•The value of the hundreds position in the BCD number is 01100100 binary, or 64H. When you multiply this
value by 5, the number of hundreds, you get 01F4H.
•When you multiply the hex value of the thousands position, O3E8H, by 4 (the number of thousands), you get
0FA0H.
•Adding up the results for the four digits gives 11F4H or 0001000111110100, which is the binary equivalent of
4596 BCD

PASSING PARAMETERS IN REGISTERS

11/1/2024

40

• The algorithm for this program is the simple sequence of operations
Separate nibbles
Save lower nibble (don't need to multiply by 1)
Multiply upper nibble by OAH
Add lower nibble to result of multiplication
• Figure 5-14, p. 110, shows our first version of a procedure to Convert a two-

digit packed BCE) number to its binary equivalent. The BCD number is copied
from memory to the AL register and then passed to the procedure in the AL
register.

• We start the procedure by pushing the flag register and the other registers
we use in the procedure.

Passing Parameters to and from ProceduresPassing Parameters to and from Procedures
PASSING PARAMETERS IN REGISTERS

• Example Program FIGURE 5-14 Page No 110

Passing Parameters to and from ProceduresPassing Parameters to and from Procedures

PASSING PARAMETERS IN REGISTERS

11/1/2024

41

Passing Parameters to and from ProceduresPassing Parameters to and from Procedures
PASSING PARAMETERS IN MEMORY

• In this procedure we first push the flags and all the registers used in the
procedure.
• We then copy the BCD number into AL with the MOV AL, BCD_INPUT
Instruction.
• From here on, the procedure is the same as the previous version until we
reach the point where we want to pass the binary result back to the calling
program.
• Here we use the MOV BINVALUE, AL instruction to copy the result directly
to the dedicated memory location we set aside for it.
• To complete the procedure, we pop the flags and registers and return to
the main program.

• Example Program FIGURE 5-15 Page No 111

Passing Parameters to and from ProceduresPassing Parameters to and from Procedures

PASSING PARAMETERS IN MEMORY

11/1/2024

42

• A parameter-passing method which overcomes the disadvantage of using data item
names directly in a procedure is to use registers to pass the procedure pointers to
the desired data.

• In the main program, before we call the procedure, we use the MOV SI,OFFSET
BCD_INPUT instruction to set up the SI register as a pointer to the memory location
BCD_INPUT.

• We also use the MOV DI,OFFSET BIN_VALUE Instruction to set up the DI register as a
pointer to the memory location named BIN_VALUE.

• In the procedure, the MOV AL,[SI] Instruction will copy the byte pointed to by SI Into
AL.

• Likewise, the MOV [DI],AL Instruction later In the procedure will copy the byte from
AL to the memory location pointed to by Dl.

Passing Parameters to and from ProceduresPassing Parameters to and from Procedures
PASSING PARAMETERS USING POINTERS

• Example Program FIGURE 5-16 Page No 112

Passing Parameters to and from ProceduresPassing Parameters to and from Procedures

PASSING PARAMETERS USING POINTERS

11/1/2024

43

• To pass parameters to a procedure using the stack, we push the parameters on the stack
somewhere In the mainline program before we call the procedure.

• Instructions in the procedure then read the parameters from the stack as needed.
• Likewise, parameters to be passed back to the calling program are written to the stack by

instructions in the procedure and read off the stack by instructions In the mainline
program.

• A simple example will best show you how this works.
• Figure 5-17, p. 114, shows a version of our BCD_BIN procedure which uses the stack for

passing the BCD number to the procedure and for passing the binary value back to the
calling program.

• To save space here, we assume that previous instructions in the mainline program set up
a stack segment. Initialized the stack segment register, and initialized the stack pointer.

Passing Parameters to and from ProceduresPassing Parameters to and from Procedures
PASSING PARAMETERS USING THE STACK

• Example Program FIGURE 5-16 Page No 114

Passing Parameters to and from ProceduresPassing Parameters to and from Procedures

PASSING PARAMETERS ON STACK

11/1/2024

44

Reentrant and Recursive ProceduresReentrant and Recursive Procedures
REENTRANT PROCEDURES
• The 8086 has a signal Input which allows a signal from some external device to interrupt

the normal program execution sequence and call a specified procedure.
• In our electronics factory, for example. a temperature sensor in a flow-solder machine

could be connected to the interrupt input.
• If the temperature gets too high. the sensor sends an interrupting signal to the 8086. The

8086 will then stop whatever it is doing and go to a procedure which takes whatever steps
are necessary to cool down the solder bath.

• This procedure is called an Interrupt service procedure.
• When the interrupt occurs, execution goes to the Interrupt service procedure. The interrupt

service procedure then calls the multiply procedure when it needs it.
• The RET Instruction at the end of the multiply procedure returns execution to the interrupt

service procedure. A special return instruction at the end of the interrupt service procedure
returns execution to the multiply procedure where it was executing when the-interrupt
occurred

Reentrant and Recursive ProceduresReentrant and Recursive Procedures
REENTRANT PROCEDURES

11/1/2024

45

• A Recursive procedure is a procedure which calls itself.
• This seems simple enough, but the question you may be thinking is, "Why

would we want a procedure to call itself?'
• The answer is that certain types of problems, such as choosing the next

move in a computer chess program, can best be solved with a recursive
procedure.

• Recursive procedures are often used to work with complex data
structures called trees.

• We usually write recursive procedures in a high-level language such as C or
Pascal, except in those cases where we need the speed gained by writing in
assembly language.

RECURSIVE PROCEDURES

Reentrant and Recursive ProceduresReentrant and Recursive Procedures

11/1/2024

46

Assembler DirectivesAssembler Directives
ASSUME
DB—Define Byte
DD—Define Doubleword
DQ.—Define Quadword
DT—Define Ten Bytes
DW—Define Word
END—End Program
ENDP—End Procedure
EQU—Equate
EVEN—Align on Even Memory Address
EXTRN
GLOBAL—Declare Symbols as PUBLIC
or EXTRN
GROUP—Group-Related Segments

INCLUDE—Include Source Code from
File
LABEL
LENGTH—Not Implemented in IBM
MASM
NAME
OFFSFT
ORG—Originate
PROC—Procedure
PTR—Pointer
Public
SEGMENT
SHORT
TYPE

UNITUNIT--2 ENDS2 ENDS
THANK YOUTHANK YOU

