11/1/2024

SYLLABUS
UNIT -1l

Implementing standard Program Structures in 8086 Assembly language:

Simple sequence programs, jumps flags and conditional jumps, if-then if-
then-else multiple if-then-else programs, while do programs, repeat-until
programs, instruction timing and delay loops

Strings and procedures: The 8086 string instructions, writing and using
procedures; assembler directives.

Chapter 4 - Implementing Standard Program
Structures in 8086 Assembly Language

11/1/2024

Outline

* Simple sequence programs
* Finding the average of two numbers
* Converting two ASCII codes to packed BCDs
* Debugging assembly language programs

* Jumps, flags and conditional jumps
* The 8086 unconditional jump instructions
* The 8086 conditional jump instructions

* |[f-then, if-then-else, multiple if-then-else programs
* While-do programs

* Repeat-until programs

* 8086 addressing modes

* The 8086 Loop instructions

* Instruction timing and delay loops

Simple sequence programs

* There two programs that we will discuss:
1. Finding the average of two numbers

2. Converting two ASCII codes to packed BCDs

11/1/2024

Finding the average of two numbers(contd.)

* Some common steps that can be followed are:

* Defining the problem and writing the algorithm
* problem definition is simple find average of two numbers

* Setting up the data structure
You need to ask the following questions:
* Will the data be in memory or register?
* Is the data of type byte, word or double word?
* How many data items are there?

* Does the data represents only positive numbers, or does it represents positive and
negative numbers?

* How the data is structured?

* Let's assume for this example that the data is all in memory, that the data Is of type
byte, and that the data represents only positive numbers in the range 0 to OFFH.

Finding the average of two numbers(contd.)

Initialization checklist
* initialize the data segment register
* Do this using MOV AX, DATA and MOV DS, AX instructions.

Choosing instructions to implement the Algorithm

* choose which instructions are needed to implement the
algorithm

* For this problem ADD will be used to add two numbers
* DIV will be used to divide the addition by 2

11/1/2024

Finding the average of two numbers

" ; BOBS PROGRAM Fh-D1.ASH s
2 ;ABSTRACT : This program averages [wo Temperatures
3 ; named HI_TEMP and LO_TEMP and puts the
& : result in the menory location AV_TEWP.
5 :REGISTERS : Uses DS, CS, AX, BL
[-} JPORTS : Hone used
T
8 0oo0 DATA SEGMENT
9 0000 W92 HI_TEMP DB 92H ; Hax temp sStorage
10 0001 52 LO_TEMP DB 52H ; Low temp storage
11 0002 77 AV_TEMP DB ? ; Store average here
12 0003 DATA ENDS
13
14 0000 CODE SEGMENT
15 ASSUME C5:CO00E, DS:DATA
16 0000 B8 0000s START: MOV AX, DATA ; Initialize data segment
17 o003 BE DB MOV DS, AX
18 0005 AD 0O000r MOV AL, WI_TEMP : Get first temperature
19 0008 02 05 0001F ADD AL, LO_TEMP : Add second to it
20 DoDC B4 0O MOV AN, OOH i Clear all of AN register
21 0O0E B0 D& 00 ADC AH, OOH ; Put carry in LSB of AH
22 0011 B3 02 MOV BL, O2H : Load divisor in BL register
23 0013 Fé& F3 Div BL ; Divide AX by BL. Quotient in AL,
26 ; and remainder in AN
25 0015 A2 0002r MOV AV_TEMP, AL : Copy result to mesmory
28 0018 CODE ENDS
27 EMD START ,

Converting two ASCII codes to packed BCDs

* Defining the problem and writing the algorithm

* The data structure and initialization list

* Masking with the AND instruction

* Moving a nibble with the ROTATE instruction

* Combining bytes or words with the ADD or the OR instruction

11/1/2024

Converting two ASCII codes to packed BCDs

Defining the problem and writing the algorithm

* The ASCII codes for the numbers 0 through 9 are 30H through 39H. The lower nibble of
the ASCII codes contains the 4-bit BCD code for the decimal number represented by the
ASCII code.

* For many applications, we want to convert the ASCII code to its simple BCD equivalent. We
can do this by Simply replacing the 3 in the upper nibble of the byte with four 0's.

* For example, suppose we read in 00111001 binary or 39H, the ASCIl code for 9. If we
replace the upper 4 bits with 0 s. we are left with 00001001 binary or 09H. The lower 4
bits then contain 1001 binary, the BCD code for 9. Numbers represented as one BCD digit
per byte are called unpacked BCD.

* For applications in which we are going to perform mathematical operations on the BCD
numbers, we usually combine two BCD digits in a single byte. This form is called packed
BCD, Figure 4-2 shows examples of ASCII, unpacked BCD and packed BCD,.

Converting two ASCII codes to packed BCDs

Defining the problem and writing the algorithm

ASCII 5 0C11 0101 = 35H
ASCII 9 0011 1001 = 39H
UNPACKED BCD 5 0000 G101 = 05H
UNPACKED BCD 9 0000 1001 = Q9H
UNPACKED BCD 5 01017 0000 = S0H

MOVED TO UPPER NIBBLE

PACKED BCD 59 0101 1001

59H

FIGURE 4-2 ASCII, unpacked BCD, and packed BCD
examples.

11/1/2024

Converting two ASCII codes to packed BCDs

The data structure and initialization list

* For this example program, let's assume that the ASCIlI code for 5 was
received and put In the BL register, and the second ASCIl code was
received and left in the AL register, Since we are not using memory for
data in this program.

* We do not need to declare a data segment or initialize the data segment
register.

Converting two ASCII codes to packed BCDs

Masking with the AND instruction

* The first operation in the algorithm is to convert a number in ASCIl form to
Its unpacked BCD equivalent.

* This is done by replacing the upper 4 bits of the ASCII byte with four O's.

* The 8086 AND instruction can be used to do this operation,whenalora0
is ANDed with a O, the result is always a 0.

* ANDing a bit with a 0 is called masking that bit because the previous state
of the bit is hidden or masked.

* To mask 4 bits in a word, then, all you do is AND each bit you want to mask
with a 0. A bit ANDed with a 1, remember is not changed.

11/1/2024

Converting two ASCII codes to packed BCDs

Masking with the AND instruction

* For this example the first ASCIl number is in the BL register. So we can just
AND an immediate number with this register to mask the desired bits.

* The upper 4 bits of the immediate number should be 0's because these
correspond to the bits we want to mask in BL.

* The lower 4 bits of the immediate number should be 1s because we want to
leave these bits unchanged. The immediate number, then, should be
00001111 binary or OFH.

* The instruction to convert the first ASCIl number is AND BL,OFH. When this
instruction executes, it will leave the desired unpacked BCD in BL.

ASCII 5 0011 0101
MASK 0000 1M
RESULT 0000 01

FIGURE 4-3 Effects of ANDing with 1's and 0's.

Converting two ASCII codes to packed BCDs

Moving a nibble with the ROTATE instruction

* The next action in the algorithm is to move the 4 BCD bits in the first
unpacked BCD byte to the upper nibble position in the byte. We need to
do this so that the 4 BCD bits are in the correct position for packing with
the second BCD nibble.

* We are effectively doing here is swapping or exchanging the top nibble
with the bottom nibble of the byte.

* The 8086 has a wide variety of rotate and shift instructions, For now, let's
look at the rotate instructions, There are two Instructions, ROL and RCL,
which rotate the bits of a specified Operand to the left.

11/1/2024

Converting two ASCII codes to packed BCDs

Moving a nibble with the ROTATE instruction

* For ROL Instruction, each bit in the specified register or memory location is
rotated 1 bit position to the left.

* The bit that was the MSB is rotated around into the LSB position, The old
MSB is also copied to the carry flag.

* For the RCL Instruction, each bit of the specified register or memory
location is also rotated 1 bit position to the left.

* However, the bit that was in the MSB position is moved to the carry flag
and the bit that was in the carry flag is moved into the LSB position.

Converting two ASCII codes to packed BCDs
Moving a nibble with the ROTATE instruction
ROL
[B0 o
= ' |
CF MSB . LS8
RCL
s iminlewl e
[|
CF MSB _ LS8
FIGURE 44 ROL instruction and RCL instruction
operations for byte operands.

11/1/2024

Converting two ASCII codes to packed BCDs

Combining bytes or words with the ADD or the OR instruction

* The ADD instruction adds the contents of a specified source to the contents of
a specified destination and leaves the result in the specified destination.

* For the example program here, the instruction ADD AL,BL can be used to

combine the two BCD nibbles.

* Another way to combine the two nibbles is with the OR instruction.
* This instruction ORs each bit in the specified source with the corresponding bit

in the specified destination.

* The result of the ORing is left in the specified destination.

* ORing a bit with a 0 leaves the bit unchanged. To set a bit in a word to a 1.
then, all you have to do is OR that bit with a word which has a 1 in that bit
position and 0's in all the other bit positions.

Converting two ASCII codes to packed BCDs

* Similar steps can be performed to solve the given problem.

1 ; BOAS PROGRAM F&-05.ASM
2 ;ABSTRACT : Program produces a packed BCD byte from 2 ASCII-encoded diglits
3 : The first ASCII digit (5) is losded in BL.
& ; The second ASCI] digit (9) is loaded in AL.
5 ; The result (packed BCD) is left in AL
& JREGISTERS ; Uses CS, AL, BL, CL
T sPORTS : None used
8
9 0000 CODE SECMENT
10 ASSUME CS:CODE
11 0000 @3 35 START: MOV BL, 'S’ : Load first ASCII digit into BL
12 0002 B8O 319 WOV AL, ‘9" : Lond second ASCII dipit into AL
13 000& B0 E3 OF AND BL, OFH ; Mask upper & bits of first digit
14 0007 25 OF AND AL, OFH ; Mask upper 4 bits of second digit
1S 0009 B1 D& MOV CL, O4H ; Lond CL for & rotates required
146 0008 D2 C3 ROL BL, CL ; Rotate BL & bit positions
A7 000D Own C3 o] AL, BL ; Combine nibbles, result in AL
18 O0OF CODE ENDS

R . 19 END START

11/1/2024

Debugging Assembly Language Programs
* Very carefully define the problem you are trying to solve with the program and
workout the best algorithm you can.

* Write and test each sections of the program as you go, instead of writing the
larger program all at once.

* If a program or program section does not work, first recheck the algorithm to
make sure that it really does what you want it to.

* If the algorithm seems correct, check to make sure that you have used the
correct instructions to implement the algorithm.

* If you are hand coding the program this is the next place to check. It is very easy
to get bit wrong when you are constructing the instruction codes.

* If you are not finding the problem in algorithm, instruction codes or coding then
now it’s the time to use debugger.

* For longer programs single step approach is tedious rather put breakpoints at
the victim functions you want to check.

Jumps, Flags and Conditional jumps

* The real power of a computer comes from its ability to choose between two
or more sequences of actions based on some condition, repeat a sequence
of Instructions as long as some condition exists, or repeat a sequence of
instructions until some condition exists.

* Flags indicate whether some condition is present or not.

 Jump Instructions are used to tell the computer the address to fetch its next
instruction from.

* Jump instructions are used to tell the computer the address of the next
instruction to be executed. They change the flow of the program in the
desired direction.

* Two types of jump instructions
¢ Conditional instructions
¢ Unconditional instructions

10

11/1/2024

Jumps, Flags and Conditional jumps

When the 8086 fetches and decodes an
Unconditional Jump instruction, it always goes
to the specified jump destination. You might use
this type of Jump Instruction at the end of a
program so that the entire program runs over
and over, as shown In Figure 4-6.

When the 8086 fetches and decodes a
Conditional Jump instruction, It evaluates the -
state of a specified flag to determine whether
to fetch its next instruction from the jump
destination location or to fetch its next
instruction from the next sequential memory
location.

&

JUMP

MAIN
PROGRAM
SEQUENCE

JUMP

(sTor)

FIGURE 4-6 Change in program flow that can be caused

by jump instructions.

JUMP TO
START

The 8086 Unconditional Jump Instructions(contd.)

* Jumps to the desired location without any condition

* JMP instruction is used for this purpose.

* When 8086 executes JMP instruction, it loads new number into instruction

pointer register and in some cases it also loads the number into code

segment register.

11

11/1/2024

The 8086 Unconditional Jump Instructions(contd.)

Program for Backward JMP

1 ; BOBS PROGRAM F4-08.ASM
i JABSTRACT : This program illustrates a "backwards" jump
JREGISTERS : Uses C5, AL
; ;PORTS : None used
6 0000 CODE SEGMENT
7 ASSUME CS:CO0E
8 0000 04 03 BACK: ADD AL, O3 ; Add 3 to total
1: gggi :3 NOP + Dummy ins_.:ruc:ions to represent those
NOP ; Instructions jumped back over
11 0004 EB FA JMP BACK i Jump back over imstructions to BACK |abel
12 0006 CODE ENDS
13 END

FIGURE 4-8 List file of program demonstrating “backward” JMP.

The 8086 Unconditional Jump Instructions(contd.)

Program for Forward JMP

; B0BS PROGRAM
: This program illustrates a "forwards" jump

F4-09.ASH

; Skip over a series of instructions
; Dummy instructions tc represent those

Instructions skipped over
Zero accumulator before addition instructions

: Dummy instruction to represent continuation of execution

1

2 :ABSTRACT

3 ;REGISTERS : Uses (S, AX
& ;PORTS : None used
5

6 0000 CODE SEGMENT

7 ASSUME CS:CODE
8 0000 EB 03 90 . JMP THERE ;
9 0003 90 NCP :
10 0004 90 NOP -
11 0005 B8 0000 THERE: MOV AX, OOOOHW ;
12 0008 %0 NOP :
13 0009 CODE ENDS

14 END

FIGURE 4-9 List file of program demonstrating ““forward

" IMP.

12

11/1/2024

The 8086 Unconditional Jump Instructions

* Unconditional Jump instruction — Type Overview
* Jump within segments — direct
* Jump within segments - indirect
* Inter segment or group — direct
* Inter segment or group - indirect

* The direct near and short type jump instructions
* It can cause the next instruction to be fetched from anywhere
in the current code segment.
* It adds 16-bit signed displacement contained in the instruction
to the instruction pointer register.

The 8086 Unconditional Jump Instructions

* |f the JMP destination is in the same code segment, the 8086 only has to change the
contents of the instruction pointer. This type of jump is referred to as a near, or
intrasegment, jump.

* |If the JMP destination is in a code segment which has a different name from the
segment in which the JMP instruction is located, the 8086 has to change the contents
of both CS and IP to make the jump. This type of jump Is referred to as a Far, or
intersegment, jump.

* Near and far jumps are further described as either direct or indirect.

* If the destination address for the jump is specified directly as part of the instruction,
then the jump is described as direct. You can have a direct near jump or a direct far
jump.

* |f the destination address for the jump is contained in a register or memory location,
the jump Is referred to as indirect, because the 8086 has to go to the specified register
or memory location to get the required destination address.

13

11/1/2024

IMP = Jump
Within segment or group, IP relative—near and short

l Opcode | Dhspl DhispH l
Opcode Clocks Operation
E9 15 IP o= IP + Displb
EB 15 IP == IP + Displl
(Dispd sign-extended)

Within segment or group, Indirect
ST

Opcude Clocks Operation

i Oipcode ! mq-d (.‘i.]rm
——— —4 —

FF " IP = Reglh
FF 18+EA IP = Memilf

Inter-segment or group, Direct

L. I.‘Jpéodt [lollse*-iuw [offset-high I weg-low seg-high J

Opcode Clocks Operation

EA 15 C5 + segbase
IP « olfset

Inter-segment or group. Indirect

BT BT e W

Opcotle Clacks Operation

FF 24+EA €5 + segbase
IP o« offsel

FIGURE 4-7 8086 Unconditional Jump instructions.
(inte! Corporation)

14

11/1/2024

The 8086 Conditional Flags

* The carry flag: if addition of two 8-bit numbers is greater than 8-bits then
the carry flag will be set to 1 to indicate the final carry produced by the
addition.

* The parity flag: indicates whether the word has even number of 1s or odd
number of 1s. The flag is set as 1 if the lower 8 bits of the destination
address contains even number of 1s which is known as even parity.

* The Auxiliary Carry Flag: it is used in BCD Addition and Subtraction. If the
carry is produced then lower 2 bytes are added.

* The Zero Flag: set if the result of arithmetic operation is zero.

* The sign Flag: used to indicate the sign of the number. MSB 0 means +ve
and 1 means —ve

* The overflow Flag: if the result of signed operation is too large to fit in
then it will set.

The 8086 Conditional Jump instructions

* These are the instruction that will change the flow only when some conditions are met.

MMNEMONIC CONDITION TESTED “JUMPIF .. "
JASIMNBE (CFor ZF)=0 abovelnotl below nor equal
JAESJNB CF=0 above or equal/not bolow
JELINAE CF=1 belowinot above nor equal
JBESJMA (CFor ZF) = 1 below or equalnot abowve
JC CF=1 carry
JEMZ ZF = 1 equalizerc
JGIINLE {{SF xor OF)or ZF) =0 greater/not less nor eqgual
JGEINL (SF xor OF) =0 greator or equal’not less
JLUNGE {SF xor OF) =1 leseinol groater nor ogual
JLE/ NG {{SF xor OF)or ZF) = 1 less or equalinot greater
JNC CF=0 nol camy
JNE/IMNZ ZF =0 not ecualinol e
JNO OF =0 not overflow
JNPLPO PF=0 not parity/parity odd
JNS SF=0 not sign
JO OF =1 overflow
JPLPE PF =1 parity/parity equal
IS5 S5F=1 Sign

15

11/1/2024

If-then, if-then-else, multiple if-then-else programs(contd.)
* IF-THEN PROGRAMS

Structure:
IF Condition THEN
Action.

* This structure says that IF the stated condition is found to be true, the series of actions
following THEN-will be executed, If the condition is false, execution will skip over the actions
after the THEN and proceed with the next mainline instruction.

* The Simple IF-THEN is Implemented with a Conditional Jump instruction. In some cases an
instruction to set flags is needed before the Conditional Jump instruction.

* Conditional jump can only be to a location in the range of — 128 bytes to + 127 bytes from
the address after the Conditional Jump instruction.

* If you are not sure whether the destination will be in range, the Instruction sequence shown
in Figure 4-1 b will always work. In this sequence, the Conditional Jump instruction only has to
jump over the JMP instruction. The JMP Instruction used to get to the label THERE can jump to
anywhere in the code segment.or even to another code segment.

If-then, if-then-else, multiple if-then-else programs(contd.)

CMP AX, BX ; Compare to set _flags
JE THERE ; 1f equal then skip correction
ADD AX, 0002H ; Add correction factor

THERE: MOV CL, O7H : Load count

(a)

CMP AX, BX ; Compare to set flags

JNE FI1X : 1f not equal do correction

JMP THERE ; 1f equal- then skip correction
FIX: ADD AX, 0002H ; Add correction factor

THERE: MOV CL, O7H ; Load count

b}

FIGURE 4-11 Programming conditional jumps. (a)
Destinations closer than =128 bytes. (b) Destinations
further than =128 bytes.

16

11/1/2024

The 8086 IN and OUT Instructions

* The 8086 has two types of input instruction, fixed-port and variable-port.

* The fixed-port instruction has the format IN AL, port or IN AX, port. The term port in
these Instructions represents an 8-bit port address to be put directly in the instruction.
The instruction IN AX,04H., for example, will copy a word from port 04H to the AX
register.

* The variable-port input instruction has the format IN AL,DX or IN AX,DX. When using the
variable-port Input Instruction, you must first put the address of the desired port in the
DX register. If, for example, you load DX with FFF8H and then do an IN AL,DX, the 8086
will copy a byte of data from port FFF8H to the AL register.

* The variable-port input instruction has two major advantages.

»First, up to 65,536 different Input ports can be specified with the 16-bit port address In
DX.

»Second, the port address can be changed as a program executes by simply putting a
different number in DX

The 8086 IN and OUT Instructions

* The 8086 also has a fixed-port output Instruction and a variable-port output instruction.

* The device used for parallel input and output ports on the SDK-86 board and in many
microcomputers is the Intel 8255.

* As shown in the block diagram in Figure 4-13, the 8255 basically contains three 8-bit ports
and a control register.

* Each of the ports and the control register will have a separate address, so you can write to
them or read from them.

* The addresses for the ports and control registers for the two 8255s on an SDK-86 board,
for example, are as follows:

PORT 2A FFF8H PORT 1A FFFOH
PORT 2B FFFAH PORT 1B FFFBH
PORT 2C FFFCH PORT 1C FFFDH
CONTROL2 FFFEH CONTROL1 FFFFH

17

11/1/2024

; B255A

35 Yaeser [o}—

—SdAb ,/1 ;
N~

cs

B PR 4
— 8 1ao [1 ¥, -
sl2—
g 0 v LA

——1os Fopd

— D5 1 ::

DATA | —104 2 =

sus § — o3 3

— o2 Pc{ 43

—_— M 5 12

—oo 6 :;

?
-

5 (ol

D, 11.3_.
CONTROL 0, |2

REGISTER 0] e

3; P2B¢ : 22

FIGURE 4-13 Block diagram of o s :i

SDK-86 board's 8255A port. ' |z

FIGURE 4-13 Block diagram of SDK-86 board's 8255A
port. -

If-then, if-then-else, multiple if-then-else programs(contd.)

* IF-THEN-ELSE PROGRAMS

Structure:
IF Condition THEN
Action
ELSE
Action.

Figure 3-3b shows the flowchart and pseudocode for this structure.

18

READ
TEMPERATURE

YES NO

LIGHT LIGHT
YELLOW GREEN

l

READ pH
SENSOR

READ TEMPERATURE
IF TEMPERATURE < 30° THEN
LIGHT YELLOW LAMP
ELSE
LIGHT GREEN LAMP
READ pH SENSOR

la)

READ
TEMPERATURE
YES NO
LIGHT LIGHT
_GREEN YELLOW
READ pH
SENSOR
READ TEMPERATURE

tF TEMPERATURE = 30° THEN
LIGHT GREEN LAMP
ELSE
LIGHT YELLOW LAMP
READ pH SENSOR

W)

FIGURE 4-12 Flowcharts and pseudocode for two ways of exptﬂsirils algorithm
for printed-circuit-board-making machine. (2) Temperature below 30° test.

(b) Temperature above 30 test.

L] ; BOBS PROGRAM Fi-14A.ASM
2 ;ABSTRACT : Program section for PC board making machine.
3 ; This program section reads the temperature of a cleaning bath
& ; solution and Llights one of two lamps according to the
5 i temperature read. If the temp <30°C, a yellow lamp will be
& ; turmed on. If the temp is 230°C, a green lamp will be turned on.
T ;REGISTERS: Uses CS, AL, DX
8 JPORTS : Uses FFFBH - temperature input
? ; FFFAN - lamp control output (yellow=bit 0, greensbit 1)
10
11 0000 CODE SEGMENT
FIGURE 4-14 List file = ° ASSUME 3 CODE
. . . 13 jinftialize SOK-86 port FFFAH as output port, FFFBH as input port
for prlnted-cwcwt- 14 0000 BA FFFE MOV DX, OFFFEW ; Point DX to port control register
. 15 0003 BO 99 MOV AL, 99H ; Load control word to initialize ports
board'maklng 16 0005 EE ouT DX, AL ; send control word to port control register
. 17
machine program. 18 0006 BA FFFE MOV DX, OFFFBH ; Point DX at input port
o 19 0009 EC IN AL, DX ; Read temp from sensor on input port
(a) Below 30 20 000A 3c 1E NP AL, 30 ; Compare temp with 30°C
. 21 000C 72 03 JB YELLOW ; IF temp <30 THEN Light yellow lamp
version. 22 000E EB OA 90 JMP GREEN - ; ELSE light green Lamp
23 0011 B8O O1 YELLOW: MOV AL, O1H : Load code to light yellow lamp
24 0013 BA FFFA MOV DX, OFFFAH ; Point DX at output port
25 0016 EE oUT DX, AL ; Send code to light yellow lamp
26 0017 EB O7 90 JMP EXIT ; Go to next mainline instruction
27 001A BD 02 GREEN: MOV AL, 02W ; Load code to Light green lamp
28 001C BA FFFA MOV DX, OFFFAN ; Point DX at output port
29 001F EE ouT DX, AL ; Send code to light green lamp
30 0020 BA FFFC EXIT: MOV DX, OFFFCM ; Next mainline instruction
31 0023 EC IN AL, DX ; Read ph sensor
32 0024 CODE ENDS
33 END

ta)

11/1/2024

19

11/1/2024

20 000A 3C 1E CMP AL, 30 : Compare temp with 30°C
21 000C 73 03 JAE GREEN : |IF temp 230 THEN light green lamp
22 O00DE Ee Oa 90 JMP YELLOW ; ELSE light yellow lamp
23 0071 8D 02 GREEN: MOV AL, 02H ; Load code to light green lamp
24 0013 BA FFFA MOV DX, OFFFAH ; Point DX at output port
25 0014 EE ouT DX, AL ; Send code to light green Lamp
26 0017 EB OT7 90 JHP EXIT ; Go to next mainline instruction
27 DO1A B8O 01 YELLOW: MOV AL, O1H ; Load code to Light yellow lamp
28 DO1C BA FFFA MOV DX, OFFFAN ; Point DX at output part
29 DO1F EE OuT DX, AL ; Send code to Light yellow lamp
30 D020 BA FFFC EXIT: MOV DX, OFFFCH ; Next mainline instruction
31 0023 EC IN AL, DX ; Read ph sensor
32 0024 CODE ENDS
4 END .

ib)

FIGURE 4-14 List file for printed-circuit-board-making machine program.
(b) Program section for above 30° version.

If-then, if-then-else, multiple if-then-else programs

* MULTIPLE IF-THEN-ELSE ASSEMBLY PROGRAMS
* Structure:
IF Condition THEN

Action.

ELSE IF Condition THEN
Action.

ELSE
Action.

20

11/1/2024

TEMPERATURE

? } YELLOW
.t LAMP

]

0 READ TEMPERATURE

. GREEN IF TEMPERATURE < 30° THEMN

. LAMP LIGHT YELLOW LAMP
k] ELSE IF TEMPERATURE < 40° THEN
4_0 RED LIGHT GREEN LAMP

H LAMP ELSE LIGHT RED LAMP

READ pH SENSOR
Lal]
AD
TEMPERATURE

LGHT LIGHT RED
GREEN

LAMP LAMP
READ pH
SENSOR

FIGURE 4-15 Algorithm for three-lamp printed-circuit-
+ board-making machine. (a) Condition list.
(b) Pseudocode. (c) Flowchart.

1 ; BOBS PROGRAM Fi-16.ASM

2 FABSIRACT @ This program section resds he Lemperaturs of 8 clesning bath
3 ; solution and lights one of three lamps according to the

& i temperature read, If the temp < 30°C, & yellow lamp will be
5 ; turned on. If the temp = 30* and « 40", & green Loap will be
& i turned on. Temperatures 2 &0° will turn on & red Lamp.

7 JREGISTERS : Uses CS, AL, DX

L] JPORTS ! Uses FFFEN - temperature input -
9 : FFFAH - lamp control output, yellowsbit 0, greensbit 1, redwbit 2
10 0000 CODE SEGMENT

") ASSUME CS:CODE

12 jinitialize port FFFAN for output and port FFFBH for input

13 0000 BA FFFE MOV DX, OFFFEN i Paint DX to port control register

14 0003 B0 99 WOV AL, ¥9H ; Load control word to set up output port

15 0005 EE ouT DX, AL ; Send control word to control register

16

17 000& BA FFFA MOV DX, OFFFBH ; Point DX at input port

18 0009 EC IN AL, DX ; Resd temp from sensor on imput port

19 DODA BA FFFA " mov DX, OFFFAM ; Point DX at output port

20 DOOD 3C 1E o AL, 30 ; Compare temp with 30°C
21 D0OF T2 Oa JB TELLOW ; IF temp « 30 THEW Light yellow lamp
22 0011 3 28 CHP AL, 40 : ELSE compare with &0°
3 0013 T2 0C JB GREEN ; IF temp < 40 THEN Light green lamp
24 D015 8O 04 RED: MOV AL, O&H ; ELSE temp 2 40 so light red Lsmp
25 0017 EE CUT DK, AL ; Send code to light red lLamp
26 0018 EB OA 90 JMP EXIT ; Go to next mainline instruction
27 001a 80 01 TELLOW: MOV AL, O1H ; Load code to Light yellow |amp

28 001D EE ouT DX, AL ; Send code to Light yellow lamp

29 D0TE EB 04 %0 JMP EXIT : Go to mext mainline instruction

30 0021 B8O 02 GREEN: MOV AL, 02 ; Load code to Light green lamp

31 0023 EE ouT DX, AL ; Send code to light green lamp

32 D026 __BA FFFC EXIT: MOV DX, OFFFCH ; Next mainline instruction

33 0027 EC IN AL, Dx ; Read ph sensor

34 0028 CODE ENDS

35 END

FIGURE 4-16 List file for three-lamp printed-circuit-board-making machine

program. 3

21

11/1/2024

WHILE-DO Programs

* This structure is useful in executing a number of instructions repeatedly
till some condition is satisfied.
* WHILE-DO PROGRAMS
* Structure:
WHILE some condition is present DO
Action.
Action.

i e S

TURN OM
HEATER

e i e g

——
I S -

| il it A e s e et i g

TURN OFF
HEATER

S

FLOWCHART
[21]

‘READ TEMPERATURE

WHILE TEMPERATURE < 100" DO
TURN HEATER OMN

TURN HEATER OFF

PSEUDOCODE
-
3]
FIGURE 4-17 Flowchart and pseudocode for heater

revmtenl nenoea n

22

11/1/2024

1 ; BOBS PROGRAM F&-1BA.ASM
2 ;ABSTRACT : Program turns heater off if temperature 100°C
3 ; and turns heater on if temperature < 100°C.
4 JREGISTERS : Uses CS, DX, AL
5 ;PORTS : Uses FFFBH - temperature data input
& H FFFAH - MSB for heater control output, O=off, 1=on
7 0000 CO0E SEGMENT
8 ASSUME CS:CODE
9 ; Initialize port FFFAH for output, and port FFFBH for input
10 0000 BA FFFE MOV DX, OFFFEM : Point DX to port control register
11 0003 BO 99 MOV AL, 99H ; Control word to set up output port
12 0005 EE ouT DX, AL ; Send control word to port
13
14 0006 BA FFF8 TEMP_IN: MOV DX, OFFFBH ; Paint at input port
15 0009 EC IN AL, DX ; Input temperature data
16 000A 3C 64 CMP AL, 100 ; If temp z 100 then
17 oo0C 73 08 JAE HEATER_OFF ; turn heater off
18 000E 80 80 MOV AL, BOH ; else load code for heater on
19 0010 BA FFFA MOV DX, OFFFAH ; Point DX to output port
20 0013 EE ouT DX, AL ; Turn heater on
21 0014 EB FO JHP TEMP_IN : WHILE temp < 100 read temp again
220016 B8O 00 HEATER_OFF:MOV AL, 00 ; Load code for heater off
23 0018 BA FFFA MOV DX, OFFFAH ; Point DX to output port
24 0018 EE OuT DX, AL ; Turn heater off
25 001C CODE ENDS
26 END

fa)
14 0006 BA FFF8 TEMP IN: MOV DX, OFFFBH ; Point DX at input port
15 0009 EC IN AL, DX ; Read in temperature data
16 D00A 3C 64 CMP AL, 100 ; 1f temp < 100° then
17 oooc 72 03 JB HEATER_ON ; turn heater on
18 O00E EB 09 90 JMP HEATER_OFF ; else temp 2100 so turn heater off
19 0011 BO 80 HEATER_ON: MOV AL, BOH ; Load code for heater on
20 0013 BA FFFA MOV DX, OFFFAH ; Point DX at output port
21 0016 EE ouT DX, AL ; Turn heater on
22 0017 EB ED JMP TEMP_IN ; WHILE temp < 100* read temp again
23 0019 BO 00 HEATER_OFF:MOV AL, 00 ; Load code for heater off
24 0018 BA FFFA MOV DX, OFFFAH ; Point DX at output port
25 001E EE ouT DX, AL ; Turn heater off
26 001F CODE ENDS
27 END

b}

FIGURE 4-18 List file for heater control program. (a) First approach. (b)
Improved version of WHILE-DO section of program.

23

11/1/2024

REPEAT-UNTIL Programs

* This structure can be used to loop through number of instructions until
some condition is met. If the condition in the until is true then the loop
will break and the immediate instruction will be executed.

* REPEAT-UNTIL PROGRAMS
* Structure:
REPEAT
Action
UNTIL some condition is present.

‘ START '

READ STROBE

?

YES

REPEAT
READ KEYPRESSED STROBE
lenu UNTIL STROBE = 1
ASCII CODE READ ASCII CODE FOR KEY PRESSED
FSEUDOCODE
[F-1]

FLOWCHART
la)

24

11/1/2024

10 0000
11 0003
12 0004
13 0006
14 0008
15 0ooB
16 000C

0000

BA
EC
264
T4
BA
EC

FFFA

01
FB
FFFB

;ABSTRACT

;REGISTERS

;PORTS

LOOK_AGAIN:

. B0B6 PROGRAM
Program to re
is sent from
Uses CS, DX,
Uses FFFAH -

FFFBH -

SEGMENT
ASSUME CS:CODE
MOV DX, OFFFAH
IN AL, DX
AND AL, 01

JZ LOOK_AGAIN
MOV DX, OFFF8H
IN AL, DX
ENDS

END

(el

F&4-20C.ASM

ad ASCl| code after a strobe signal
a keyboard .

AL

strobe signal input on LSB

ASCIl data input port

; Point DX at strobe port

; Read keyboard strobe

; Mask extra bits and set flags

; If strobe is low then keep looking
; else point DX at data port

; Read in ASCII code

FIGURE 4-20 Flowchart, pseudocode, and assembly language for reading
ASCII code when a strobe is present. (a) Flowchart. (b) Pseudocode. (c) List file

of program.

1 START '

GET A PRICE

|

ADD INFLATION
FACTOR

ADJUST RESULT
TO BCD

PUT RESULT
BACK IN ARRAY

YES

FLOWCHART
)

REPEAT

GET A PRICE FROM ARRAY

ADD INFLATION FACTOR

ADJUST RESULT TO CORRECT BCD

PUT RESULT BACK IN ARRAY
UNTIL ALL PRICES ARE INFLATED

PSEUDOCODE
w)

25

11/1/2024

1 ; BOBS PROGRAM : F4-21C.ASM

2 ;ABSTRACT : Program adds an inflation factor to a series of prices
3 : in memory. It copies the new price over the old price.
4 ;REGISTERS : Uses DS, CS, AX, BX, CX

- . ;PORTS : None used

&

7 0000 ARRAYS SEGMENT

B 0000 20 28 15 26 19 27 16 + cosT DB 204, 2BM, 15H, 26M, 19H, 27H, 16H, 29M
9 29

10 0008 36 55 27 42 38 41 29 » PRICES DB 36H, 55H, 27H, 42H, 38H, 4IH, 294, I
1 39 .

12 0010 ARRAYS ENDS

13

14 0000 CODE SEGMENT

15 ASSUME CS:CODE, DS:ARRAYS

16 0000 B& 0000s START: MOV AN, ARRAYS ; Initialize data segment

17 0003 BE D8 MOV DS, AX ; register

18 0005 80 1€ Q008r LEA Bx, PRICES ; [nitialize pointer

1% 0009 B9 0008 MoV Cx, 0008W : Initialize counter

20 000C 8a O7 DO_MEXT: MOV AL, [BX] ; Copy a price to AL

21 DDOE 04 03 . ADD AL, O3u : Add inflation factor

22 0010 27 DAA ; Make sure result is BCD

23 0011 B8 07 WOV [BX], AL : Copy result back to memory

24 0013 43 INC BX ; Point to next price

25 0016 &9 i DEC CX : Decrement counter

26 0015 75 FS JNZ DO_MEXT : If not last, go get next

27 o017 CODE ENDS

28 END START

el

FIGURE 4-21 Mdi-ng a constant to a series of values in memory. (a) Flowchart.

(b) Pseudocode. (c) List file of program.

1 ; BOBS PROGRAM F4-23.ASM
Fd ;ABSTRACT : Program adds a profit factor to each element in a
3 : COST array and puts the result in an PRICES array.
e ;REGISTERS : Uses DS, CS, AX, BX, CX
5 ;PORTS : None used
6
T = 0015 PROFIT EoU 154 ; profit = 15 cents
8 0000 ARRAYS SEGMENT
90000 20 28 1S 26 19 27 16 + CosT DB 20H, 2BH, 15H, 26H, 194, 27TH, 164, 29
10 29
17 0008 08*(00) PRICES DB 8 DuP(D)
12 0010 ARRAYS ENDS
13
14 0000 CODE SEGMENT .
15 ASSUME CS5:CODE, DS:ARRAYS
16 0000 B3 0000s START: MOV AX, ARRAYS ; Initialize data segment
17 0003 B8t D8 MOV DS, AX : register
18 0005 B9 0008 MOV CX, 00084 ; Initialize counter
19 0008 @8 0000 MOV BX, D00OW ; Initialize pointer
20 0008 B8A B7 0000r DO_MEXT: MOV AL, COST[BX] ; Get element [BX] from COST
21 DOOF 04 15 ADD AL, PROFIT ; Add the profit to value
22 0011 27 DAA : Decimal adjust result
23 0012 B8& 87 0008r MOV PRICES[BX], AL ; Store result in PRICES at [BX]
26 D016 43 INC BX ; Point to next element in arrays
25 0017 &9 DEC CXx : Decrement the counter
26 0018 TS F1 JNZ DO_NEXT ; If not last element, do again
27 001A CODE ENDS
28 END START

FIGURE 4-23 List file of “price-calculating” program.

26

11/1/2024

8086 Addressing Modes

* Single Index: Contents of BX, BP, SI, DI is added directly to displacement to
generate effective address.

* Double Index: Contents of BX or BP register is first added with Sl or DI and

then the result is added to Displacement to generate the effective address.

SINGLE INDEX DOUBLE INDEX St
oR
ENCODED E
IN THE 4 OR
INSTRUCTION [E_ EU
oR
el S — ADDRESS
.‘:;L’E & { dc}—Lm?u{.mtm

INSTRUCTION —

ASSUMED

UNLESS

OVERRIDDEMN

SV nerix o5 [oo]

--

FIGURE 4-24 Summary of 8086 addressing modes.

27

11/1/2024

The 8086 Loop instructions

* These are the instructions that are used to do some sequence specific
number of times.

* They are basically conditional jumps which have format LOOP Label.
* LOOP instructions decrements the CX register but do not affect the ZF.

* The LOOPNE/LOOPNZ Label instruction decrements the CX by 1 and if CX !=
0 and ZF = 0 the instruction will cause a jump on the specified label.

LOOP Loop until CX =0

LOOPE/LOOPZ Loop if zero flag set
and CX # 0

LOOPNE/LOOPNZ | Loop if zero flag not set
and CX ¥ 0

JCXZ ' Jump if CX =0

FIGURE 4-26 8086 LOOP instructions.

Instruction Timing and Delay Loops(contd.)

* The rate at which 8086 instructions are executed is determined by a crystal-
controlled clock with a frequency of a few megahertz.

* Each instruction takes a certain number of clock cycles to execute. The MOV
register, register instruction, for example, requires 2 clock cycles to execute,
and the DAA instruction requires 4 clock cycles. The JNZ instruction requires
16 clock cycles if it does the Jump, but it requires only 4 clock cycles tilt
doesn't do the Jump.

* With this, you can calculate how long it takes to execute an instruction or
series of instructions.

* For example, if you are running an 8086 with a 5-MHz clock, then each clock
cycle takes (5 MHz) or 0.2 ps.

* An instruction which takes 4 clock cycles, then, will take 4 clock cycles x 0.2
us/clock cycle or 0.8 us to execute.

28

11/1/2024

Instruction Timing and Delay Loops(contd.)

* Program loops introduce the delay between instructions.

* Calculate number of clock cycles to produce the delay. E.g. 8086 with 5
MHz clock the time for one clock cycle is 1/5 micro seconds or 0.2 micro
seconds.

* Next determine how many clock cycles needed in the loop.

* Now, suppose that you want to create a delay of 1 ms or 1000 ps with a
delay loop.

* If you divide the 1000 us desired by the 0.2 us per clock cycle, you get the
number of clock cycles required to produce the desired delay.

* For this example you need a total of 1000/0.2 or 5000 processor clock
cycles to produce the desired delay. We will call this number C;.

Instruction Timing and Delay Loops(contd.)

* The next step is to write the number of clock cycles required for each
instruction next to that instruction as shown in Figure 4-27a.

* The number of clock cycles for the instructions which execute Only Once
will only contribute to the total once. Instructions which only enter, the
calculation once are often called overhead. We will represent the number
of cycles of overhead with the symbol C, .

* Next you determine how many clock cycles required for the loop. The two
NOPs in the loop require a total of 6 clock cycles.

* The LOOP instruction requires 17 clock cycles If it does the Jump back to
KILL_TIME, but it requires only 5 clock cycles when it exits the loop.

29

11/1/2024

Instruction Timing and Delay Loops(contd.)

Clock Cycles

’
MOV CX, N - & = Co
KILL _TIME: NOP - 3
NOP : 3 = CL
= LOOP KILL _TIME ; 17 or5
(a)
= -1
¢, Co +N (CL) 2
CT-CO*'IZ S000 — &4 + 12
= = = 218
2 C 23
L

(b)

FIGURE 4-27 Delay loop program and calculations. (a)
Program. (b) Calculations.

Instruction Timing and Delay Loops

Note about using delay loops for timing:

* The BIU and the EU are asynchronous, so for some instruction sequences
an extra clock cycle may be required.

* The no of clock cycles required to read a word from memory or write a
word on memory depends on whether the first byte of the word is at even
address or at odd address.

* The no of clock cycles required to read a byte from memory or write a byte
on memory depends on the addressing mode used to address the byte.

* If a given microcomputer system is designed to insert WAIT states during
each memory access, this will increase the no of clock cycles required for
each memory access.

30

11/1/2024

*Strings and Procedures

»The 8086 string instructions
» Writing and using procedures
*Assembler Directives

8086 String Instructions

* A string is a series of bytes or words stored in successive memory
locations. Often a string consists of a series of ASCII character codes.

* When you use a word processor or text editor program, you are actually
creating a string of this sort as you type in a series of characters.

* One important feature of a word processor is the ability to move a
sentence or group of sentences from one place in the text to another.

* Doing this involves moving a siring of ASCIl characters from one place in
memory to another.

* The 8086 Move String instruction, MOVS allows you to do operations such
as this very easily.

31

11/1/2024

8086 String Instructions

* Another important feature of most word processors is the ability to
search through the text looking for a given word or phrase.

* The 8086 Compare String instruction, CMPS, can be used to do
operations of this type. In a similar manner, the 8086 SCAS instruction can
be used to search a string to see whether it contains a specified character.

8086 String Instructions- Moving a String

* Suppose that you have a string of ASCIlI characters in successive memory
locations in the data segment and you want to move the string to some new
sequence of locations in the data segment.

 To help you visualize this, take a look at the strings we Set up in the data
segment in Figure 5.1b, p. 96. to test our program.

* The statement TEST_MESS DB 'TIS TIME FOR A NEW HOME' sets side 23
bytes of memory and gives the first memory location the name TEST_MESS.

INITIALIZE SOURCE POINTER, SI
INITIALIZE DESTINATION POINTER. DI

INITIALIZE COUNTER, CX
REPEAT -
COFY BYTE FROM SOURCE TO DESTINATION
INCREMENT SOURCE POINTER
INCREMENT DESTINATION POINTER
DECREMENT COUNTER
UNTIL COUNTER = 0

32

11/1/2024

1 ; BOBS PROGRAM F5-01.ASM
2 iABSTRACT : Program moves a string from the location TEST_MESS
3 ;i to the location NEW_LOC.
& JREGISTERS ; Uses CS, DS, ES, §I, D1, AX, CX
5 ;PORTS i None used
]
7 0000 DATA SEGMENT
B 0000 54 49 53 20 54 49 4D + TEST_MESS DB 'TIS TIME FOR A NEW HOME® ; String to move
9 45 20 46 4F 52 20 41 +
10 20 4E 45 57 20 4B 4F +
. 1 W 45
ALP with 12 0017 84%(77) 08 100 DUP(?) ; Stationary block of text
13 0078 17+%(00) NEW_LOC DB 23, DUP(D) ; String destination
MOVS 14 0092 DATA ENDS
15
16 0000 CODE SEGMENT
17 ASSUME CS:CODE, DS:DATA, ES:DATA
18
19 0000 B8 0000s START:MOV AX, DATA ; Initialize data segment register
20 0003 BE DB MOV DS, AX
21 0005 BE CO MOV ES, AX ; Initialize extra segment register
22 0007 8D 36 0000r LEA SI, TEST_MESS ; Point SI at source string
23 0008 80 3E 0078r LEA DI, NEW_LOC i Point DI at destination location
24 000F B89 0017 MOV Cx, 23 ; Use CX register as counter
25 0012 FC CLD ; Clear direction flag so pointers autoinc. ement
26 ; after each string element is moved
27 0013 F3> A4 REP MOVSB ; Move string bytes until all moved
28
29 0015 CODE ENDS
30 END START

' START ’

COMPARE
BYTES

NEXT MAINLINE
INSTRUCTION

REPEAT
COMPARE SOURCE BYTE WITH DESTINATION BYTE
UNTIL (BYTES NOT EQUAL) OR (END OF STRING)
IF BYTES NOT EQUAL THEN
ND ALARM
oF
ELSE DO NEXT MAINLINE INSTRUCTION

(&)

INITIALIZE PORT DEVICE FOR OUTPUT
INITIALIZE SOURCE POINTER = SI
INITIALIZE DESTINATION POINTER - DI
INITIALIZE COUNTER — CX :
REPEAT
COMPARE SOURCE BYTE WITH DESTINATION BYTE
INCREMENT SOURCE POINTER
INCREMENT DESTINATION POINTER
DECREMENT COUNTER
UNTIL ISTRING BYTES NOT EQUAL) OR {CX = 0)
IF STRING BYTES NOT EQUAL THEN
" SOUND ALARM
STOP p
ELSE DO NEXT MAINLINE INSTRUCTION

led

FIGURE 5-2 Flowchart and pseudocode for comparing
strings program. (a) Flowchart. (b) Initial pseudocode.
(c) Expanded pseudocode.

33

11/1/2024

1 ; BOBS PROGRAM F5-03.ASM
2 JABSTRACT : This program inputs a password and sounds an alarm
3 ; if the password is incorrect
4 JREGISTERS : Uses CS, DS, ES, AX, DX, CX, §1, DI
5 ;PORTS : Uses FFFAN - Port 28 on SOK-B6 for alarm output
&
7 0000 DATA SEGMENT
B8 0000 46 41 49 4C 53 &) 46 + PASSWORD DB 'FAILSAFE' ; Password
9 &5
10 = 0008 STR_LENGTH EQU (% - PASSWORD) ; Compute length of string
11 0008 08*(00) INPUT_WORD D8 8 DUP(OD) ; Space for user password input
12 bo1o DATA ENDS
13
. 14 0000 CODE SEGMENT
ALP W|th 15 ASSUME CS:CODE, DS:DATA, ES:DATA

16 0000 B8 0000s MOV AX, DATA
17 0003 BE DB MOV DS, AX ; Initialize data segment register

CM PS 18 0005 B8E CO MOV ES, AX ; Initialize extra segment register
19 0007 BA FFFE MOV DX, OFFFEM : These next three instructions
20 000A BO 99 MOV AL, 99 ; set up an output port on
21 000C EE uUT DX, AL ; the SDK-86 board
22 0000 B0 36 0000r LEA SI, PASSWORD ; Load source pointer
23 0011 B0 3E 0008r LEA DI, INPUT_WORD ; Load destination pointer
24 0015 B9 00ODB MOV CX, STR_LENGTH ; Load counter with password length
25 0018 FC CLD ; Increment DI & SI
26 0019 F3> A6 REPE CMPSB ; Compare the two string bytes
27T 0018 75 03 JNE SOUND_ALARM ; If not equal, sound alarm
28 001D EB 08 90 JMP DK ; else continue
29 0020 BO OV SOUND_ALARM:MOV AL, 01 ; To sound alarm, send a 1
30 0022 BA FFFA WOV DX, OFFFAN ; to the output port whose
31 0025 EE ouT DX, AL ; address is in DX
32 0026 F4 HLT ; and HALT.
33 0027 90 oKz NOP ; Program continues if password is OK
34 0028 CODE ENDS
35 END

FIGURE 5-3 Assembly language program for comparing strings

writing and using Procedures

» Often when writing programs we will find that we need to use a particular
sequence of instructions at several different points in a program.

* To avoid writing the sequence of instructions in the program each time you
need them, you can write the sequence as a separate subprogram called a
procedure.

* Each time you need to execute the sequence of instructions contained in the
procedure, you use the CALL instruction to send the 8086 to the starting
address of the procedure in memory.

34

11/1/2024

writing and using Procedures

MAINLINE OR
CALLING PROGRAM

PROCEDURE
INSTRUCTIONS

CALL

NEXT MAINLINE
INSTRUCTION

RET
(a)
MAINLINE
INSTRUCTIONS
LOWER LEVEL
PROCEDURE PROCEDURE

CALL

NEXT MAINLINE
INSTRUCTION

&)

FIGURE 54 Program flow to and from procedures. (a)
Single procedures. (b) Nested procedures.

The 8086 CALL and RET Instructions

* A CALL Instruction in the mainline program loads the instruction pointer
and in some cases also the code segment register with the starting address
of the procedure.

* The next instruction fetched will be the first instruction of the procedure.

* At the end of the procedure, a RET instruction sends execution back to the
next instruction after the CALL in the mainline program.

* The RET instruction does this by loading the Instruction pointer and If
necessary, the code segment register with the address of the next
instruction after the CALL instruction.

* The 8086 CALL Instruction performs two operations when it executes.

* First, it stores the address of the Instruction after the CALL instruction on
the stack. This address is called the return address because it is the
address that execution will return to after the procedure executes.

35

11/1/2024

The 8086 CALL and RET Instructions

* |If the CALL is to a procedure in the same code segment, then the call is
near, and only the Instruction pointer contents will be saved on the stack.

* |If the CALL is to a procedure in another code segment, the call is far. In this
case, both the instruction pointer and the code segment register contents
will be saved on the stack.

* The second operation of the CALL instruction is to change the contents of
the instruction pointer and, in some cases, the contents of the code
segment register to contain the starting address of the procedure.

* This function of the CALL instruction is very similar to the operation of the
JMP instructions.

The 8086 CALL and RET Instructions

* Similar to JMP instruction here also we have

» DIRECT WITHIN-SEGMENT NEAR CALL

»THE INDIRECT WITHIN-SEGMENT NEAR CALL
»THE DIRECT/INDIRECT INTERSEGMENT FAR CALL

A 10 e Within segment or group, Indirect
(oot [s | oo] (o [owom]~ — L
Oyios Opcode Clschs Operation
E& 9 1P+ IP + Displb—I5F + return FF & P+ Reglb—{5P1 = return link
e FF 21+EA IP — Mem16—{SP) « return link

Inter-segment or group, Direct
Inter-segment or group. Indirect

L Opeade | med 011 rim l nuzl-w ! m!m—Eigh:],
Opcode Clocks Operation =
9 8 C5 «— seghase Opcode Clocks Operation

1P o offsst FF T+HEA C5 + segbase
1P+ otfset

[Opeode | ofetiow | oferhigh - sexhigh

36

11/1/2024

The 8086 CALL and RET Instructions

RET = Return from Subroutine

| Oprode l
Opeode Clocks Operation

Ci B - segmend rehurn
R 18 inter-segrment return

Return anfj add constant to SP

| Omode [ocaat | Daa |

Opeode Clacks Operation

The 8086 Stack

* The stack is a section of memory you set aside for storing return addresses.

* The stack is also used to save the contents of registers for the calling
program while a procedure executes.

* A third use of the stack is to hold data or addresses that will be acted upon
by a procedure.

* The 8086 lets you set aside up to an entire 64-Kbyte segment of memory as
a stack.

* The stack pointer register is used to hold the offset of the last word written
on the stack. The 8086 produces the physical address for a stack location by
adding the offset contained in the SP register to the stack segment base
address represented by the 16-bit number in the SS register.

37

11/1/2024

The 8086 Stack

* An important point about the
operation of the stack is that the
SP register is automatically
decremented by 2 before a
word is written to the stack.

* This means that at the start of
your program you must
initialize the SP register to
point to the top of the memory
you set aside as a stack, rather
than initializing it to point to the
bottom location.

MEMORY

R R
T — (A}
70050H —— —— (NITIAL TOP OF STACK
2004FH —— | 1pm Y 'AND TOS AFTER RET
TOO4EH ——] WL | =—|— TOPOF STACK
AFTER CALL
k STACK
PP
TOO00H —— ~—|— START OF STACK
SEGMENT
W

FIGURE 5-7 Stack diagram showing how the return
address is pushed onto the stack by CALL.

Using PUSH and POP to Save Register Contents

* |t is very common to want to use registers both in the mainline program and in a

procedure without the two uses Interfering with each other.

* The PUSH and POP instructions make this very easy to do.

* The PUSH register/memory Instruction decrements the stack pointer by 2 and
copies the contents of the specified 16-bit register or memory location to memory

at the new top-of-stack location.

* This will decrement the stack pointer by 2 and copy the Contents of the CX register

to the stack where the stack pointer now points

* The POP register/memory instruction copies a word from the top of the stack to
the specified 16-bit register or memory location and increments the stack pointer

by 2.

* This will copy a word from the top of the stack to the CX register and increment the

stack pointer by 2.

* After a POP, the stack pointer will point to the next word on the stack.

38

11/1/2024

Passing Parameters to and from Procedures

* Often when we call a procedure, we want to make some data values or
addresses available to the procedure.

* Likewise, we often want a procedure to make some processed data values
or addresses available to the main program.

* These addresses or data values passed back and forth between the
mainline and the procedure are commonly called parameters.

* The four major ways of passing parameters to and from a procedure are:
> 1. In registers

» 2. In dedicated memory locations accessed by name

» 3. With pointers passed in registers

» 4. With the stack

Passing Parameters to and from Procedures
PASSING PARAMETERS IN REGISTERS

4596 = (4 x 1000) + (5 x 1000 + (9 x 10) + (6 x 1)
1 = 0001H therefore & = & x 000TH = DOD&H
10 = O0O0AH therefore 90 = 9 x 000AH = O05AH

100 = 0064H therefore 500 = 5 x 00&4H = O1F4H

1000 = O3E8H therefore 4000 = 4 x O3E8H = OFAQH

4596 = 11Fé4H

FIGURE 5-13 BCD-to-binary algorithm.

*The units position has a value of 1 in hex, so multiplying this by 6 units gives 0006H.

*The tens position has a value of 1010 binary. or OAI-I. Multiplying this value by 9. the number of tens, gives
005AH.

*The value of the hundreds position in the BCD number is 01100100 binary, or 64H. When you multiply this
value by 5, the number of hundreds, you get 01F4H.

*When you multiply the hex value of the thousands position, O3E8H, by 4 (the number of thousands), you get
OFAOH.

*Adding up the results for the four digits gives 11F4H or 0001000111110100, which is the binary equivalent of
4596 BCD

39

11/1/2024

Passing Parameters to and from Procedures
PASSING PARAMETERS IN REGISTERS
* The algorithm for this program is the simple sequence of operations
»Separate nibbles
»Save lower nibble (don't need to multiply by 1)
» Multiply upper nibble by OAH
»Add lower nibble to result of multiplication

* Figure 5-14, p. 110, shows our first version of a procedure to Convert a two-
digit packed BCE) number to its binary equivalent. The BCD number is copied
from memory to the AL register and then passed to the procedure in the AL
register.

* We start the procedure by pushing the flag register and the other registers
we use in the procedure.

Passing Parameters to and from Procedures

PASSING PARAMETERS IN REGISTERS

* Example Program FIGURE 5-14 Page No 110

40

11/1/2024

Passing Parameters to and from Procedures
PASSING PARAMETERS IN MEMORY

* In this procedure we first push the flags and all the registers used in the
procedure.

* We then copy the BCD number into AL with the MOV AL, BCD _INPUT
Instruction.

* From here on, the procedure is the same as the previous version until we
reach the point where we want to pass the binary result back to the calling
program.

* Here we use the MOV BINVALUE, AL instruction to copy the result directly
to the dedicated memory location we set aside for it.

* To complete the procedure, we pop the flags and registers and return to
the main program.

Passing Parameters to and from Procedures

PASSING PARAMETERS IN MEMORY

* Example Program FIGURE 5-15 Page No 111

41

11/1/2024

Passing Parameters to and from Procedures

PASSING PARAMETERS USING POINTERS

* A parameter-passing method which overcomes the disadvantage of using data item
names directly in a procedure is to use registers to pass the procedure pointers to
the desired data.

* In the main program, before we call the procedure, we use the MOV SI,OFFSET
BCD_INPUT instruction to set up the Sl register as a pointer to the memory location
BCD_INPUT.

* We also use the MOV DI,OFFSET BIN_VALUE Instruction to set up the Dl register as a
pointer to the memory location named BIN_VALUE.

* In the procedure, the MOV AL,[SI] Instruction will copy the byte pointed to by Sl Into
AL.

* Likewise, the MOV [DI],AL Instruction later In the procedure will copy the byte from
AL to the memory location pointed to by Dl.

Passing Parameters to and from Procedures

PASSING PARAMETERS USING POINTERS

* Example Program FIGURE 5-16 Page No 112

42

11/1/2024

Passing Parameters to and from Procedures

PASSING PARAMETERS USING THE STACK
* To pass parameters to a procedure using the stack, we push the parameters on the stack
somewhere In the mainline program before we call the procedure.
* Instructionsin the procedure then read the parameters from the stack as needed.

* Likewise, parameters to be passed back to the calling program are written to the stack by
instructions in the procedure and read off the stack by instructions In the mainline
program.

* A simple example will best show you how this works.

* Figure 5-17, p. 114, shows a version of our BCD_BIN procedure which uses the stack for
passing the BCD number to the procedure and for passing the binary value back to the
calling program.

* To save space here, we assume that previous instructions in the mainline program set up
a stack segment. Initialized the stack segment register, and initialized the stack pointer.

Passing Parameters to and from Procedures

PASSING PARAMETERS ON STACK

* Example Program FIGURE 5-16 Page No 114

43

11/1/2024

Reentrant and Recursive Procedures
REENTRANT PROCEDURES

* The 8086 has a signal Input which allows a signal from some external device to interrupt
the normal program execution sequence and call a specified procedure.

* In our electronics factory, for example. a temperature sensor in a flow-solder machine
could be connected to the interrupt input.

* If the temperature gets too high. the sensor sends an interrupting signal to the 8086. The

8086 will then stop whatever it is doing and go to a procedure which takes whatever steps
are necessary to cool down the solder bath.

* This procedure is called an Interrupt service procedure.

* When the interrupt occurs, execution goes to the Interrupt service procedure. The interrupt
service procedure then calls the multiply procedure when it needs it.

* The RET Instruction at the end of the multiply procedure returns execution to the interrupt
service procedure. A special return instruction at the end of the interrupt service procedure

returns execution to the multiply procedure where it was executing when the-interrupt
occurred

Reentrant and Recursive Procedures
REENTRANT PROCEDURES

MAINLINE / INTERRUPT

MU T UPLY PROCEDURE
PRC ~DURE

CALL
CALL

MULTIPLY ¢ \NTERRUPT — MULTIPLY

NEXT MAINLINE OCCURS HERE RETURN TO

INTERRUPTED
PROGRAM

INSTRUCTION
AFTER CALL

RETURN TO
CALLING PROGRAM

FIGURE 5-20 Program execution flow for reentrant
procedure.

44

11/1/2024

Reentrant and Recursive Procedures
RECURSIVE PROCEDURES
* A Recursive procedure is a procedure which calls itself.

* This seems simple enough, but the question you may be thinking is, "Why
would we want a procedure to call itself?"

* The answer is that certain types of problems, such as choosing the next
move in a computer chess program, can best be solved with a recursive
procedure.

* Recursive procedures are often used to work with complex data
structures called trees.

* We usually write recursive procedures in a high-level language such as C or
Pascal, except in those cases where we need the speed gained by writing in
assembly language.

MAINLINE
PROCEDURE
FACTO

CALL FACTD

RET
WITH 11
"]

MAINLINE

PROCEDURE PROCEDURE PROCEDURE
FACTO FACTOD FACTD

CALL FACTOD

NEXT MAINLINE
INSTRUCTION

RET RET RET
WITH 3 WITH 21 WITH NI

(L]

MULTIPLY
W ¥

PROCEDURE FACTO =1
EN=1 * PREVIOUS ¥

FACTORIAL = 1
RET
ELSE
CALL FACTD

UNTILN=1
MULTIPLY [N — 1)1 X PREVIOUS N
RET

%] i

FIGURE 5-21 Algorithm for program to compute factorial for a number N
between 1 and 8. (a) Flow diagram for N = 1. ib) Flow diagram for N = 1.
(c) Pseudocode. (d) Flowchart. .

45

11/1/2024

Assembler Directives

=ASSUME

=DB—Define Byte

=*DD—Define Doubleword
=*DQ.—Define Quadword

=*DT—Define Ten Bytes

*DW—Define Word

*END—End Program

"ENDP—EnNd Procedure

*EQU—Equate

="EVEN—AIign on Even Memory Address

=*|INCLUDE—Include Source Code from
File

=LABEL

=*LENGTH—Not Implemented in IBM
MASM

*NAME

"OFFSFT

"ORG—Originate

="PROC—Procedure

=PTR—Pointer

=EXTRN =Public
=*GLOBAL—Declare Symbols as PUBLIC |*SEGMENT
or EXTRN sSHORT
*GROUP—Group-Related Segments =*TYPE
UNIT-2 ENDS
THANK YOU

46

