
MT UNIT-1

ByBy

K. Bhaskara Rao
Asst. Prof, IT Dept.

Before .NET
• Windows GUI development: Win32 API, MFC, Visual Basic
• Web development: ASP
• Java – “Write once, run anywhere.”

.net Framework
• First developed by Microsoft in 2000
• Targets primarily Windows OS, but Mono Project (headed by

Novell) supports Linux, Unix, FreeBSD, Mac OS X, Solaris
• Primary languages: C#, Visual Basic .NET, C++/CLI, and J#
• Third-party languages: Ada, COBOL, LISP, Perl, Ruby, and many

more.

.NET Framework

Framework Class LibraryFramework Class Library

C# VB.NET C++.NET OtherC# VB.NET C++.NET Other

VisualVisual
StudioStudio

Common Language SpecificationCommon Language Specification

Windows FormsWindows FormsASP.NETASP.NET
Web Services Web Forms ControlsControls Drawing

ADO.NET

Network

XML

Security

Threading

Diagnostics

IO

Etc.

Common Language RuntimeCommon Language Runtime

Memory Management Common Type System Lifecycle Monitoring

Operating SystemOperating System

StudioStudio
.NET.NETASP.NET Application Services Windows Application Services

.NET framework versions
.NET framework
version

Visual Studio Released Year

1.0 Visual Studio 2002

1.1 Visual Studio 2003 2003

2.0 Visual Studio 2005 2005

3.5 Visual Studio 2008 2007

4.0 Visual Studio 2010 2010

4.5 Visual Studio 2012 2012

4.5.1 Visual Studio 2013 2013

4.6 Visual Studio 2015 2015

.NET framework versions
.NET framework
version

Visual Studio Released Year

4.7.2 Visual Studio 2017 2017

4.8 Visual Studio 2019 2019

4.8 Visual Studio 2022 2022

.NET design principles
• Interoperability
• Language Independence
• Portability
• Security
• Memory Management• Memory Management
• Easy Deployment
• Performance

Some .NET Languages
• C#
• COBOL
• Eiffel
• Fortran
• Mercury
• Pascal
• Python
• SML
• Perl• Perl
• Smalltalk
• VB.NET
• VC++.NET
• J#.NET
• Scheme
….

Language Compiler List

 AdaAda

 APLAPL

 Basic (Visual Basic)Basic (Visual Basic)

 C#C#

 CC

 C++C++

 lcclcc
(MS Research Redmond)(MS Research Redmond)

 Mondrian (Utrecht)Mondrian (Utrecht)

 ML ML
(MS Research Cambridge)(MS Research Cambridge)

 Mercury Mercury
(Melbourne U.) (Melbourne U.)

9

 C++C++

 JavaJava

 COBOLCOBOL

 Component PascalComponent Pascal
(Queensland U Tech)(Queensland U Tech)

 ECMAScriptECMAScript ((JScriptJScript))

 EiffelEiffel ((MonashMonash U.)U.)

 Haskell (Utrecht U.)Haskell (Utrecht U.)

(Melbourne U.) (Melbourne U.)

 Oberon Oberon
(Zurich University)(Zurich University)

 Oz (Oz (UnivUniv of of SaarlandesSaarlandes))

 PerlPerl

 PythonPython

 Scheme (Northwestern U.)Scheme (Northwestern U.)

 SmallTalkSmallTalk

Comparison to Java

Hello.java Hello.class JVM
compile execute

Hello.vb Hello.exe CLR
compile execute

Source code Byte code

CILSource code

J2EE: Language-Specific,
Platform- Independent

Person.java

Java VMPerson
bytecodes

Linux

Windows

Java VM

Deploy

Address.java

Company.java

Company
bytecodesAddress

bytecodes

Windows

Solaris

Java VM

Java VM

Deploy

.NET: Language-Independent,
(Mostly) Platform- Specific

Person.vb

CLRPerson
MSIL

Windows

Windows

CLR

Deploy

(Visual Basic)

Address.cs

Company.cbl

Company
MSILAddress

MSIL

Windows

Others?

CLR

CLR

Deploy

(C#)

(Cobol)

Java and .NET: Runtime environments

• Java
– Intermediate language is bytecode
– Original design targeted interpretation
– Java VMs with JIT compilation are now also used

• .NET Framework• .NET Framework
– Intermediate language is MSIL
– Provides JIT compilation
– What is JIT?
– Just-In-Time compilation: translates a bytecode method

into a native method on the fly, so as to remove
the overhead of interpretation

14

Compiling and executing managed code

Source
Code

Language
Compiler

Microsoft
Intermediate

Language
(MSIL)

Compilation

15

JIT
Compiler

Native
Code

The first time each
method is called

Execution

Common Language Runtime

16

Basic Truths
• .NET

• Windows-centric and language-neutral
• .NET is a Microsoft product strategy that includes a

range of products from development tools and servers
to end-user applications.

• Platform-neutral version of .NET is available• Platform-neutral version of .NET is available
• Mono –Novell-sponsored, open source

implementation of the .NET development environment
• (http://www.go-mono.com)

17

.NET Class Library
• IO
• GUI Programming
• System Information
• Collections
• Components• Components
• Application Configuration
• Connecting to Databases (ADO.NET)
• Tracing and Logging
• Manipulating Images/Graphics

18

Class Library

• Interoperability with COM
• Globalization and Internationalization
• Network Programming with Sockets
• Remoting
• Serialization• Serialization
• XML
• Security and Cryptography
• Threading
• Web Services

19

Namespace
DescriptionNamespace

Provides base data types and almost 100 classes that deal with situations like
exception handling, mathematical functions, and garbage collection.

System

Provides the classes needed to produce source files in all the .NET languages.System.CodeDom

Provides access to collection classes such as lists, queues, bit arrays, hash
tables, and dictionaries.

System.Collections

Provides classes that are used to implement runtime and design-time behaviors
of components and controls.

System.ComponentM
odel

Provides classes and interfaces that allow you to programmatically access the
various configuration files that are on your system, such as the web.config and
the machine.config files.

System.Configuration

Provides classes that allow data access and manipulation to SQL Server and
OleDb data sources. These classes make up the ADO.NET architecture.

System.Data

Provides classes that allow you to debug and trace your application. There are
classes to interact with event logs, performance counters, and system
processes.

System.Diagnostics

Namespace
DescriptionNamespace

Provides classes that allow you to access Active Directory.System.DirectoryServi
ces

Provides classes that allow you to access the basic and advanced features of the
new GDI+ graphics functionality.

System.Drawing

Provides classes that allow you to access COM+ services.System.EnterpriseServ
ices

Provides classes that access the global system variables, such as calendar
display, date and time settings, and currency display settings.

System.Globalization
display, date and time settings, and currency display settings.

Provides classes that allow access to file and stream control and manipulation.System.IO

Provides access to a collection of management information and events about
the system, devices, and applications designed for the Windows Management
Instrumentation (WMI) infrastructure.

System.Management

Provides classes that allow you to access message queue controls and
manipulators.

System.Messaging

Provides access to classes that control network services. These classes also
allow control over the system s sockets.

System.Net

Namespaces
DescriptionNamespace

Provides classes that allow control to create and invoke loaded types,
methods, and fields.

System.Reflection

Provides classes that allow you to create and manage culture-specific
resources.

System.Resources

Provides classes that allow the management of remote objects in a
distributed environment.

System.Runtime.Remoting

Provides classes that allow access to authentication, authorization, System.Security Provides classes that allow access to authentication, authorization,
cryptography, permissions, and policies.

System.Security

Provides classes that give control over Windows
services.

System.ServiceProcess

Provides classes for working with and manipulating
text strings.

System.Text

Provides classes for threading issues and allows you
to create multithreaded applications.

System.Threading

Provides the capability to raise events on specified
intervals.

System.Timers

Namespaces
DescriptionNamespace

Provides numerous classes that are used in ASP.NET Web application
development.

System.Web

Provides classes that are used throughout this book to build, deploy, and
consume Web services.

System.Web.Services

Provides classes to build and deploy Windows Forms applications.System.Windows.Forms

Provides classes to work with and manipulate XML data.System.Xml

Primitive Types

C# Type .NET Framework type

bool System.Boolean

byte System.Byte

sbyte System.Sbyte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

Primitive Types (contd.)

int System.Int32

uint System.UInt32

long System.Int64long System.Int64

ulong System.UInt64

object System.Object

short System.Int16

ushort System.UInt16

string System.String

Type System

• Value types
• Directly contain data
• Cannot be null

• Reference types
• Contain references to objects• Contain references to objects
• May be null

int i = int i = 123123;;
string s = "Hello world";string s = "Hello world";

123123ii

ss "Hello world""Hello world"

Type System

• Value types
• Primitives int i;

• Enums enum State { Off, On }

• Structs struct Point { int x, y; }

• Reference types• Reference types
• Classes class Foo: Bar, IFoo {...}

• Interfaces interface IFoo: IBar {...}

• Arrays string[] a = new string[10];

• Delegates delegate void Empty();
• events
•

Predefined Types
• C# predefined types

• Reference object, string
• Signed sbyte, short, int, long
• Unsigned byte, ushort, uint, ulong
• Character char• Character char
• Floating-point float, double, decimal
• Logical bool

• Predefined types are simply aliases for system-
provided types
• For example, int == System.Int32

Predefined Types

• C# predefined types
• Reference object, string
• Signed sbyte, short, int, long
• Unsigned byte, ushort, uint, ulong
• Character char• Character char
• Floating-point float, double, decimal
• Logical bool

• Predefined types are simply aliases for system-
provided types
• For example, int == System.Int32

Unified Type System

• Everything is an object
• All types ultimately inherit from object
• Any piece of data can be stored, transported, and

manipulated with no extra workmanipulated with no extra work

StreamStream

MemoryStreamMemoryStream FileStreamFileStream

HashtableHashtable doubledoubleintint

objectobject

Statements And Expressions

• High C++ fidelity
• If, while, do require bool condition
• goto can’t jump into blocks
• Switch statement• Switch statement

• No fall-through, “goto case” or “goto default”

• foreach statement
• Checked and unchecked statements
• Expression statements must do work

void Foo() {void Foo() {
i == 1; // errori == 1; // error

}}

Comments in C#

• Both /* … */ and // can be used for
comments.

• VS provides comment/uncomment selections.
• Use the menu bar, or Ctrl-K Ctrl-C for comment • Use the menu bar, or Ctrl-K Ctrl-C for comment

and Ctrl-K Ctrl-U for uncomment

32

Control Statements in C#
 if statement
 if else statement
 nested if statement
 switch statement
 goto goto
 while
 do while
 for
foreach

33

Control Statements in C#
 if statement
 if else statement
 nested if statement
syntax of if else:
if (expression) statement1 [else statement2]

Syntax of nested if else:
if (expression)

code_block
else if (expression_1) code_block
else if (expression_2) code_block
else code_block

34

Control Statements in C#
switch statement:
syntax:

switch (expression)
{ case constant-expression: statements

break;
case constant-expression: statementscase constant-expression: statements

break;
[default: jump-statement]
}

while statement:
Syntax: while (expression) { ... }

35

Control Statements in C#
do while statement:
Syntax:

do { ... }
while (expression);

for statement:
Syntax: Syntax:

for (initializer; exit condition; iterative code) { ...
}

foreach statement:
Syntax:

foreach (type identifier in expression) statement

36

Predefined Data types

Integer types :

Name CTS Type Description Range (min:max)
--
sbyte System.sByte signed 8bit int -128 : 127
short System.Int16 signed 16bit int -32768 : 32767
int System.Int32 signed 32bit int -231 : 231 - 1
long System.Int64 signed 64bit int -263 : 263 – 1
byte System.Byte unsigned 8bit 0 : 255
ushort System.UInt16 unsigned 16bit 0 : 65535
uint System.UInt32 unsigned 32bit 0 : 232 – 1
ulong System.UInt64 unsigned 64bit 0 : 264 - 1

Example :Example :
uint ui = 1234U;
long l=123L;
ulong ul=122UL;

Floating point type :

float System.Single single precision 32bit
double System.Double double precision 32bit
for float, range : +/-1.5 * 10-45 to +/-3.4 * 1038

for double, range: +/-5.0 * 10-324 to +/- 1.7 * 10308

Example :

float f = 12.4F;

Predefined Data types

Name CTS Type Description Range (min:max)

decimal System.Decimal 128bit precision

range : +/-1.0 x 10-28 to +/- 7.9 x 1028range : +/-1.0 x 10-28 to +/- 7.9 x 1028

boolean System.Boolean
char System.Char

object System.Object the root type
string System.String unicode char string

Parameter passing
reference types – classes, arrays, interfaces and delegates

- Small data are defined as value types
- Large objects are defined as reference types

Parameter passing mechanisms :
1 . call by Value
2. call by Reference

- By default, all parameters are passed using call by value (even refence types also
)

ref keyword :
- Allows passing of both value types and reference types to methods using call by - Allows passing of both value types and reference types to methods using call by

reference mechanism.
- class A{ public void method1(ref int i) { } }
out keyword :
- Used to pass values out of a method. Class B{ public void m2(out int a, out

double b){ int c; --- return c;}
- Calling : B bob=new B(); bob.m2(out x, out y); }

Passing Parameters
• Passing a value variable by default refers to

the Pass by Value behavior as in Java
 public static void foo(int a)
 {
 a=1;
 } }

 static void Main(string[] args)
 {
 int x=3;
 foo(x);
 Console.WriteLine(x);
 }

This outputs the value of 3 because x is passed by value to method foo, which gets
a copy of x’s value under the variable name of a.

Passing by Reference
• C# allows a ref keyword to pass value types

by reference:
 public static void foo(int ref a)
 {
 a=1;
 }

 static void Main(string[] args) static void Main(string[] args)
 {
 int x=3;
 foo(ref x);
 Console.WriteLine(x);
 }

The ref keyword must be used in both the parameter declaration of the method and
also when invoked, so it is clear what parameters are passed by reference and may be
changed.
Outputs the value of 1 since variable a in foo is really a reference to where x is stored
in Main.

Strings

 Strings are immutable (to make operations efficient)
 Strings are differently represented in different languages.

Example : string s1=“Hello World”;
string s2=s1;

String class methods :
Method Description
CompareTo - Compares this string instance with another string CompareTo - Compares this string instance with another string

instance.
Contains - Returns a Boolean indicating whether the current string

instance contains the given substring.
CopyTo - Copies a substring from within the string instance to a specified

location within an array of characters.
EndsWith - Returns a Boolean value indicating whether the string ends

with a given substring.
Equals - Indicates whether the string is equal to another string. You can

use the '==' operator as well.
IndexOf - Returns the index of a substring within the string instance.

Strings contd…

Method Description

IndexOfAny - Returns the first index occurrence of any character in the
substring within the string instance.

PadLeft - Pads the string with the specified number of spaces or
another Unicode character, effectively right-justifying the
string.string.

PadRight - Appends a specified number of spaces or other Unicode
character to the end of the string, creating a left-
justification.

Remove - Deletes a given number of characters from the
string.

Replace - Replaces all occurrences of a given character or string within
the string instance with the specified replacement.

Split - Splits the current string into an array of strings, using the
specified character as the splitting point.

Strings contd…
StartsWith - Returns a Boolean value indicating whether the string

instance starts with the specified string.
SubString - Returns a specified portion of the string, given a starting

point and length.
ToCharArray - Converts the string into an array of

characters.
ToLower - Converts the string into all lowercase

characters.
ToUpper - Converts the string into all uppercase

characters.characters.
Trim - Removes all occurrences of a given set of characters

from the beginning and end of the string.
TrimStart - Performs the TRim function, but only on the beginning

of the string.
TrimEnd - Performs the TRim function, but only on the end of the

string.

Strings contd…

Copy() vs Clone()

The Copy() method creates a new instance of string with the same value as a
specified string.
The Clone() method returns a reference to the string which is being cloned.
It is not an independent copy of the string on the Heap. It is another reference
on the same string.

Strings contd…

Copy() vs Clone()

using System;
public class CopyClone
{

static void Main() static void Main()
{

string str = "ZetCode";
string cloned = (string) str.Clone();
string copied = string.Copy(str);
Console.WriteLine(str.Equals(cloned)); // prints true
Console.WriteLine(str.Equals(copied)); // prints true
Console.WriteLine(ReferenceEquals(str, cloned)); // prints true

Console.WriteLine(ReferenceEquals(str, copied)); // prints false
}

}

Strings contd…
== vs Equals

== operator will test for value equivalence for value types
and for address (or reference) equivalence for reference types

Equals method  will see for content equivalenve

namespace StrEquEx{
public class Thing
{

private int i;
public Thing(int i)
{ this.i=i; }

}
static void Main()static void Main()

{
Thing t1=new Thing(123);
Thing t2=new Thing(123);
Console.Write(t1==t2); // false
string a=“Hello”; string b=“Hello”;
Console.Write(a==b); //true

}

StringBuilder class

Constructor Description

StringBuilder() Initializes a new instance of the StringBuilder class.

StringBuilder(Int32)
Initializes a new instance of the StringBuilder class
using the specified capacity.

 Represents a mutable string of characters.

Constructors:

StringBuilder(Int32) using the specified capacity.

StringBuilder(String)
Initializes a new instance of the StringBuilder class
using the specified string.

StringBuilder(Int32, Int32)

Initializes a new instance of the StringBuilder class that
starts with a specified capacity and can grow to a
specified maximum.

StringBuilder(String, Int32)
Initializes a new instance of the StringBuilder class
using the specified string and capacity.

StringBuilder class

Properties Description

Capacity
Gets or sets the maximum number of characters that can be
contained in the memory allocated by the current instance.

Chars
Gets or sets the character at the specified character position in
this instance.

Properties:

Length Gets or sets the length of the current StringBuilder object.

MaxCapacity Gets the maximum capacity of this instance.

Topics
 Types of Parameters  value parameters, ref,

out, parameter array
 Method Overloading and Constructor

overloading
 Types of constructors  default,

parameterized, private, static, copy constructorparameterized, private, static, copy constructor
 Default constructor  a constructor with out

any parameters. This is called when class is
instantiated



Classes & Objects
• A class is a template that defines the form of an
• object. It specifies both the data and the code that will operate on that data.
• C# uses a class specification to construct objects.
• Objects are instances of a class. class is a logical abstraction.
• It is not until an object of that class has been created that a physical representation

of that class exists in memory.
• When you define a class, you declare the data that it contains and the code that

operates on it. While very simple classes might contain only code or only data, most
real-world classes contain both.

• data is contained in data members defined by the class, and code is• data is contained in data members defined by the class, and code is
contained in function members.

• data members (also called fields) include instance variables and static variables.
Function members include methods, constructors, destructors, indexers, events,
operators, and properties

General Form of a class
class classname {
// declare instance variables
access type var1;
access type var2;
// ...
access type varN;
// declare methods
access ret-type method1(parameters) {
// body of method
}}
access ret-type method2(parameters) {
// body of method
}
// ...
access ret-type methodN(parameters) {
// body of method
}
}

Class example
class Class1
{

static void Main(string[] args)
{

// Your code would go here, e.g.
Console.WriteLine("hi");

}
/* We can define other methods and vars for the class */
// Constructor
Class1()Class1()
{

// Code
}
// Some method, use public, private, protected
// Use static as well just like Java
public void foo()
{

// Code
}
// Instance, Static Variables
private int m_number;
public static double m_stuff;

}

Class Example
class Building {
public int Floors; // number of floors
public int Area; // total square footage of building
public int Occupants; // number of occupants
}

Object creation:
Building house = new Building(); // create an object of type Building house = new Building(); // create an object of type

building

Accessing members :
house.Floors = 2;

Class Example
public class BankAccount
{

public double m_amount;
BankAccount(double d) {

m_amount = d;
}
public virtual string GetInfo() {

return “Basic Account”;
}

}

public class SavingsAccount : BankAccount
{{

// Savings Account derived from Bank Account
// usual inheritance of methods, variables
public double m_interest_rate;
SavingsAccount(double d) : base(100) { // $100 bonus for signup

m_interest_rate = 0.025;
}
public override string GetInfo() {

string s = base.GetInfo();
return s + “ and Savings Account”;

}
}

Sample Class Usage
SavingsAccount a = new SavingsAccount(0.05);
CoConsole.WriteLine(a.m_interest_rate);
Console.WriteLine(a.GetInfo());

Then the output is:
100
0.05
Basic Account and Savings Account

nsole.WriteLine(a.m_amount);nsole.WriteLine(a.m_amount);

Constructors

Constructor
A constructor initializes an object when it is created. It has the same name as its class

and is syntactically similar to a method. However, constructors have no explicit
return type.

 The general form of a constructor is shown here:

access class-name(param-list) {

// constructor code

}

 Typically, you will use a constructor to give initial values to the instance variables  Typically, you will use a constructor to give initial values to the instance variables
defined by the class.

 usually, access is public because constructors are normally called from outside
their class. The param-list can be empty, or it can specify one or more parameters.

• C# automatically provides a default constructor that causes all member variables
to be initialized to their default values. For most value types, the default value is
zero. For bool, the default is false. For reference types, the default is null.

Parameterized Constructors
 Most often you will need a constructor that has one or more parameters.

 Parameters are added to a constructor in the same way they are added to a method:
just

 Declare them inside the parentheses after the constructor’s name.

Constructor
access class-name(param-list) {
// constructor code
}
Ex:
// A parameterized constructor.
using System;
class MyClass {
public int x;
public MyClass(int i) {
x = i;x = i;
}
}
class ParmConsDemo {
static void Main() {
MyClass t1 = new MyClass(10);
MyClass t2 = new MyClass(88);
Console.WriteLine(t1.x + " " + t2.x);
}
}

Parameters to methods
 value types  built in types, structs, enum etc…
 reference types  arrays, class instances etc…
 ref type
 out type
 params  allows variable no of parameters to methods

const, readonly keywords
class A{
public const int i=10; //static by default
public readonly int j;
void m1()
{

j=20; //after assignment j becomes const
}
}}

constructors
default constructor
parameterized constructor
private constructor
static constructor
copy constructor
overloaded constructor

Invoke an Overloaded Constructor Through this keyword:

constructor-name(parameter-list1) : this(parameter-list2) {
// ... body of constructor, which may be empty
}

base keyword

base keyword – calling base class
constructor

 When a derived class specifies a base clause, it is calling the constructor of its
immediate base class.

 base always refers to the base class immediately above the calling class

 You pass arguments to the base constructor by specifying them as arguments
to base.

 A reference variable of a base class can be assigned a reference to an object of
any class derived from that base class.

Syntax:

derived-constructor(parameter-list) : base(arg-list) {derived-constructor(parameter-list) : base(arg-list) {

// body of constructor

}

arg-list specifies any arguments needed by the constructor in the base class

base keyword – calling base class
constructorExample:

class A {
public int i = 0;

}
// Create a derived class.
class B : A {

new int i; // this i hides the i in A
public B(int a, int b) {public B(int a, int b) {
base.i = a; // this uncovers the i in A
i = b; // i in B

}

Member access

Class Member Access

 Public, private
 protected, private protected
 internal, protected internal
 Default (no access specifier)

Method overloading &
Constructor overloading

70

Member access

Method Overloading

 In C#, two or more methods within the same class can share the same name, as
long as their parameter declarations are different. When this is the case, the
methods are said to be overloaded, and the process is referred to as method
overloading.

 Method overloading is one of the ways that C# implements polymorphism.
 In declaring Overloaded Methods, It is not sufficient for two methods to differ only

in their return types. They must differ in the types or number of their parameters.
 When an overloaded method is called, the version of the method executed is the

one whose parameters match the arguments.

73

Custom DateTime Format Specifiers

Specifier Description
d Displays the current day of the month.
dd Displays the current day of the month, where values < 10

have a leading zero.
ddd Displays the three-letter abbreviation of the name of the

day of the week.
dddd(+)

Displays the full name of the day of the week represented
by the given DateTime value.

f(+)f(+)
Displays the x most significant digits of the seconds value.

The more f's in the format specifier, the more significant
digits. This is total seconds, not the number of seconds
passed since the last minute.

F(+) Same as f(+), except trailing zeros are not displayed.
g Displays the era for a given DateTime (for example, "A.D.")
h Displays the hour, in range 1-12.
hh Displays the hour, in range 1-12, where values < 10 have a

leading zero.
H Displays the hour in range 0-23.

Custom DateTime Format Specifiers

Specifier Description

HH Displays the hour in range 0-23, where values < 10 have a
leading zero.

m Displays the minute, range 0-59.
mm Displays the minute, range 0-59, where values < 10 have a

leading zero.
M Displays the month as a value ranging from 1-12.
MM Displays the month as a value ranging from 1-12 where values < 10
have a leading zero.have a leading zero.
MMM Displays the three-character abbreviated name of the month.
MMMM Displays the full name of the month.
s Displays the number of seconds in range 0-59.
ss(+) Displays the number of seconds in range 0-59, where values < 10

have a leading 0.
T Displays the first character of the AM/PM indicator for the

given time.
tt(+) Displays the full AM/PM indicator for the given time.
y/yy/yyyy Displays the year for the given time.
z/zz/zzz(+) Displays the timezone offset for the given time.

Numeric Custom Formatting Specifiers

Numeric Custom Format Specifiers
Specifier Description
0 The zero placeholder.
The digit placeholder. If the given value has a

digit in the position indicated by the #
specifier, that digit is displayed in the
formatted output.

. Decimal point.
, Thousands separator., Thousands separator.
% Percentage specifier. The value being

formatted will be multiplied by 100 before
being included in the formatted output.

E0/E+0/e/e+0/e-0/E Scientific notation.
'XX' or "XX“ Literal strings. These are included literally in

the formatted output without translation in
their relative positions.

; Section separator for conditional formatting
of negative, zero, and positive values.

Arrays
 An array is a collection of variables of the same

type that are referred to by a common name.
 Arrays are implemented as objects
One dimensional array:
type[] array-name = new type[size];
Ex : int[] sample = new int[10];
(or)(or)
int[] sample;
sample = new int[10];
Initialization:
int[] nums = new int[] { 99, 10, 100, 18, 78, 23,
63, 9, 87, 49 };

Arrays
Initialization:
int[] nums;
nums = new int[] { 99, 10, 100, 18, 78, 23,63, 9, 87, 49 };
Multi dimensiona arrays:
int[,] table = new int[10, 20];
type[, ...,] name = new type[size1, size2, ..., sizeN];

int[,,] multidim = new int[4, 10, 3];
multidim[2, 4, 1] = 100; multidim[2, 4, 1] = 100;
Initialization:
type[,] array_name = {
{ val, val, val, ..., val },
{ val, val, val, ..., val },
...
{ val, val, val, ..., val }
};

Arrays
System.Array methods and properties:
Method or property Purpose
BinarySearch() Overloaded public static method that

searches a one-dimensional sorted array.
Clear() Public static method that sets a range of

elements in the array either to 0 or to a
null reference.

Copy() Overloaded public static method that
copies a section of one array to another
array.array.

CreateInstance() Overloaded public static method that
instantiates a new instance of an array.

IndexOf() Overloaded public static method that
returns the index (offset) of the first

instance of a value in a one-dimensional
array.

LastIndexOf() Overloaded public static method that
returns the index of the last instance of a
value in a one-dimensional array.

Arrays
Method or property Purpose

Reverse() Overloaded public static method that reverses the
order of the elements in a one-dimensional array.

Sort() Overloaded public static method that sorts the values
in a one-dimensional array.

IsFixedSize Required because Array implements ICollection. With
arrays, this will always return true (all arrays are of a
fixed size).

IsReadOnly Public property (required because Array implements IsReadOnly Public property (required because Array implements
IList) that returns a Boolean value indicating whether

the array is read-only.
IsSynchronized Public property (required because Array implements

ICollection) that returns a Boolean value indicating
whether the array is thread-safe.

Length Public property that returns the length of the array.
Rank Public property that returns the number of dimensions

of the array.

Arrays
GetEnumerator() Public method that returns an

IEnumerator.
GetLowerBound() Public method that returns the lower

boundary of the specified dimension of
the array.

GetUpperBound() Public method that returns the upper
boundary of the specified dimension of

the array.the array.
Initialize() Initializes all values in a value type

array by calling the default constructor
for each value. With reference arrays,
all elements in the array are set to null.

SetValue() Overloaded public method that sets the
specified array elements to a value.

Jagged Arrays
Definition : A jagged array (also referred to as an array
of arrays) is an array (single-dimension or
multidimensional) in which the elements are
themselves arrays.

Declarations:
string[][] jaggedStrings; string[][] jaggedStrings;
int[][] jaggedInts;
Customer[][] jaggedCustomers;

int[][] jaggedInts = new int[2][];
jaggedInts[0] = new int[10];
jaggedInts[1] = new int[20];

Jagged Arrays
Initialization during declaration:
int[][] ji2 = new int[2][];
ji2[0] = new int[] { 1, 3, 5, 7, 9 };
ji2[1] = new int[] { 2, 4, 6 };

(or)
int[][] ji3 = {

new int[] { 1, 3, 5, 7, 9 },
new int[] { 2, 4, 6 } new int[] { 2, 4, 6 }

};
(or)

int[][] ji4 = new int[][]
{

new int[] { 1, 3, 5, 7, 9 },
new int[] { 2, 4, 6 }

};

Jagged Arrays
Mixed jagged and rectangular array :

int[][,] mixedJagged = new int[][,] {
new int[,] { {0,1}, {2,3}, {4,5} },
new int[,] { {9,8}, {7,6}, {5,4}, {3,2}, {1,0} }new int[,] { {9,8}, {7,6}, {5,4}, {3,2}, {1,0} }
};
Console.WriteLine(mixedJagged[1][1, 1]);
Console.ReadLine();

Class member visibility
Class Member Visibility Levels
Visibility Keyword Description
public This member is accessible from both inside the

assembly and outside the assembly, as well as by
members inside and outside the class.

private This member is accessible only from code within
the class definition itself.

protectedThis member is accessible only to derived types, both
inside and outside the assembly.inside and outside the assembly.

internal This member is accessible by any code within the
assembly.

public protected This member is accessible by all code within the
assembly, but only by derived types outside the
assembly.

private protected This member is protected within the assembly
(accessible only to derived types), but is
inaccessible outside the assembly.

Class member visibility
Class Member Visibility:

Object Oriented Programming

• Object Oriented Programming (OOP) is a programming
model where programs are organized around objects and data rather
than action and logic.
• OOP allows decomposition of a problem into a number of entities • OOP allows decomposition of a problem into a number of entities
called objects and then builds data and functions around these objects.

Abstraction :
Representing essential features without representing the background
details

 Abstraction lets you focus on what the object does instead of how it
does it.

Object Oriented Programming

abstract class MobilePhone
{

public void Calling();public void Calling();
public void SendSMS();

}

public class Nokia1400 : MobilePhone
{
}

Object Oriented Programming

Encapsulation: Wrapping up a data member and a method
together into a single unit (in other words class) is called
Encapsulation.

Example for encapsulation is class.

class Bag
{

book;
pen;
ReadBook();

}

Encapsulation means hiding the internal details of an object, in
other words how an object does something.

Object Oriented Programming

class Demo
{

private int _mark;

public int Mark
{

get { return _mark; }
set { if (_mark > 0) _mark = value; else _mark = 0; }set { if (_mark > 0) _mark = value; else _mark = 0; }

}
}

Ex: Mobile user learns how to use the phone but not how it works.

Object Oriented Programming

Inheritance:

 When a class includes a property of another class it is known as inheritance.
 Inheritance is a process of object reusability.

Ex: public class ParentClass
{

public ParentClass()
{

Console.WriteLine("Parent Constructor.");
}
public void print()
{{

Console.WriteLine("I'm a Parent Class.");
}

}
public class ChildClass : ParentClass

{
public ChildClass()
{

Console.WriteLine("Child Constructor.");
}
public static void Main()
{

ChildClass child = new ChildClass();
child.print();

}
}

inheritance
Syntax :

class derived-class-name : base-class-name {

// body of class

}}

inheritance
class TwoDShape {
public double Width;
public double Height;
public void ShowDim() {

Console.WriteLine("Width and height are " +
Width + " and " + Height);

}
}
// Triangle is derived from TwoDShape.
class Triangle : TwoDShape {

public string Style; // style of trianglepublic string Style; // style of triangle
// Return area of triangle.
public double Area() {
return Width * Height / 2;
}

/ / Display a triangle's style.
public void ShowStyle() {
Console.WriteLine("Triangle is " + Style);
}

}

Object Oriented Programming

Polymorphism: Polymorphism means one name, many forms.
•One function behaves in different forms.
•Many forms of a single object is called Polymorphism.
Ex: A person behaves the son in a house at the same time that the
person behaves an employee in an office.

Ex: Your mobile phone, one name but many forms:Ex: Your mobile phone, one name but many forms:

•As phone

•As camera

•As mp3 player

•As radio
Class: It is template or blueprint that describes the details of an
object.
Object:

static keyword
• Applies for classes, methods, variables and constructor.
• Normally, a class member must be accessed through an object of its class, but it is

possible to create a member that can be used by itself, without reference to a specific
instance. To create such a member, precede its declaration with the keyword static.

• When a member is declared static, it can be accessed before any objects of its class
are created and without reference to any object.

• You can declare both methods and variables to be static.
• Because static fields are independent of any specific object, they are useful when

you need to maintain information that is applicable to an entire class.
• The most common example of a static member is Main(), which is declared static • The most common example of a static member is Main(), which is declared static

because it must be called by the operating system when your program begins.
• Outside the class, to use a static member, you must specify the name of its class

followed by the dot operator. No object needs to be created. In fact, a static member
cannot be accessed through an object reference. It must be accessed through its class
name. For example, if you want to assign the value 10 to a static variable called
count that is part of a class called Timer, use this line:

Timer.count = 10;
• A static method can be called in the same way—by use of the dot operator on the

name of the class.

static keyword
• Variables declared as static are, essentially, global variables. When objects of its

class are declared, no copy of a static variable is made. Instead, all instances of the
class share the same static variable.

• A static variable is initialized before its class is used. If no explicit initializer is
specified, it is initialized to zero for numeric types, null in the case of reference
types, or false for variables of type bool. Thus, a static variable always has a value.

• The difference between a static method and a normal method is that the static
method can be called through its class name, without any instance of that class
being created. You have seen an example of this already: the Sqrt() method, whichbeing created. You have seen an example of this already: the Sqrt() method, which
is a static method within C#’s System.Math class.

static methods and static variables
• Methods declared with static keyword are called static methods..

Rules:

• • A static method does not have a this reference. This is because a static method does
not execute relative to any object.

• • A static method can directly call only other static methods of its class. It cannot

• directly call an instance method of its class. The reason is that instance methods

• operate on specific objects, but a static method is not called on an object. Thus, on
what object would the instance method operate?

• • A similar restriction applies to static data. A static method can directly access only
other static data defined by its class. It cannot operate on an instance variable of its
class because there is no object to operate on.

• Error occurs when trying to call a non-static method from within a static method
of the same class.

static method accessing a non static method - Error

using System;
class AnotherStaticError {
// A non-static method.
void NonStaticMeth() {
Console.WriteLine("Inside NonStaticMeth().");
}
/* Error! Can't directly call a non-static method
from within a static method. */from within a static method. */
static void staticMeth() {
NonStaticMeth(); // won't compile
}
}

static classes
• A class can be declared static. There are two key features of a static class. First, no

object of a static class can be created. Second, a static class must contain only
static members. A static class is created by modifying a class declaration with the
keyword static, shown here:

static class class-name { // ... }
• Within the class, all members must be explicitly specified as static. Making a class

static does not automatically make its members static.
Use of static classes:

• static classes have two primary uses. First, a static class is required when creating• static classes have two primary uses. First, a static class is required when creating
an extension method.

• Second, a static class is used to contain a collection of related static methods.

static constructor
• A constructor can also be specified as static. A static constructor is typically used

to initialize features that apply to a class rather than an instance.
• Thus, it is used to initialize aspects of a class before any objects of the class are

created.

Topics
• Properties - examples

• Base reference – Derived objects

• Using abstract classes

• Exception Handling

Base reference – Derived objects
• C# is a strongly typed language. Aside from the standard conversions and automatic

promotions that apply to its value types, type compatibility is strictly enforced.

• Therefore, a reference variable for one class type cannot normally refer to an object
of another class type.

• In general, an object reference variable can refer only to objects of its type. There
is, however, an important exception to C#’s strict type enforcement. A reference

• variable of a base class can be assigned a reference to an object of any class derived
from that base class. This is legal because an instance of a derived type encapsulates
an instance of the base type. Thus, a base class reference can refer to it.an instance of the base type. Thus, a base class reference can refer to it.

THANK YOU

IO in C#

