
MT UNIT-2

ByBy

K. Bhaskara Rao
Asst. Prof, IT Dept.

Topics
 Types of Parameters value parameters, ref,

out, parameter array
 Method Overloading and Constructor

overloading
 Types of constructors default,

parameterized, private, static, copy constructorparameterized, private, static, copy constructor
 Default constructor a constructor with out

any parameters. This is called when class is
instantiated

Classes & Objects
• A class is a template that defines the form of an
• object. It specifies both the data and the code that will operate on that data.
• C# uses a class specification to construct objects.
• Objects are instances of a class. class is a logical abstraction.
• It is not until an object of that class has been created that a physical representation

of that class exists in memory.
• When you define a class, you declare the data that it contains and the code that

operates on it. While very simple classes might contain only code or only data, most
real-world classes contain both.

• data is contained in data members defined by the class, and code is• data is contained in data members defined by the class, and code is
contained in function members.

• data members (also called fields) include instance variables and static variables.
Function members include methods, constructors, destructors, indexers, events,
operators, and properties

General Form of a class
class classname {
// declare instance variables
access type var1;
access type var2;
// ...
access type varN;
// declare methods
access ret-type method1(parameters) {
// body of method
}}
access ret-type method2(parameters) {
// body of method
}
// ...
access ret-type methodN(parameters) {
// body of method
}
}

Class example
class Class1
{

static void Main(string[] args)
{

// Your code would go here, e.g.
Console.WriteLine("hi");

}
/* We can define other methods and vars for the class */
// Constructor
Class1()Class1()
{

// Code
}
// Some method, use public, private, protected
// Use static as well just like Java
public void foo()
{

// Code
}
// Instance, Static Variables
private int m_number;
public static double m_stuff;

}

Class Example
class Building {
public int Floors; // number of floors
public int Area; // total square footage of building
public int Occupants; // number of occupants
}

Object creation:
Building house = new Building(); // create an object of type Building house = new Building(); // create an object of type

building

Accessing members :
house.Floors = 2;

Class Example
public class BankAccount
{

public double m_amount;
BankAccount(double d) {

m_amount = d;
}
public virtual string GetInfo() {

return “Basic Account”;
}

}

public class SavingsAccount : BankAccount
{{

// Savings Account derived from Bank Account
// usual inheritance of methods, variables
public double m_interest_rate;
SavingsAccount(double d) : base(100) { // $100 bonus for signup

m_interest_rate = 0.025;
}
public override string GetInfo() {

string s = base.GetInfo();
return s + “ and Savings Account”;

}
}

Sample Class Usage
SavingsAccount a = new SavingsAccount(0.05);
CoConsole.WriteLine(a.m_interest_rate);
Console.WriteLine(a.GetInfo());

Then the output is:
100
0.05
Basic Account and Savings Account

nsole.WriteLine(a.m_amount);nsole.WriteLine(a.m_amount);

Constructors

Constructor
A constructor initializes an object when it is created. It has the same name as its class

and is syntactically similar to a method. However, constructors have no explicit
return type.

 The general form of a constructor is shown here:

access class-name(param-list) {

// constructor code

}

 Typically, you will use a constructor to give initial values to the instance variables Typically, you will use a constructor to give initial values to the instance variables
defined by the class.

 usually, access is public because constructors are normally called from outside
their class. The param-list can be empty, or it can specify one or more parameters.

• C# automatically provides a default constructor that causes all member variables
to be initialized to their default values. For most value types, the default value is
zero. For bool, the default is false. For reference types, the default is null.

Parameterized Constructors
 Most often you will need a constructor that has one or more parameters.

 Parameters are added to a constructor in the same way they are added to a method:
just

 Declare them inside the parentheses after the constructor’s name.

Constructor
access class-name(param-list) {
// constructor code
}
Ex:
// A parameterized constructor.
using System;
class MyClass {
public int x;
public MyClass(int i) {
x = i;x = i;
}
}
class ParmConsDemo {
static void Main() {
MyClass t1 = new MyClass(10);
MyClass t2 = new MyClass(88);
Console.WriteLine(t1.x + " " + t2.x);
}
}

Parameters to methods
 value types built in types, structs, enum etc…
 reference types arrays, class instances etc…
 ref type
 out type
 params allows variable no of parameters to methods

const, readonly keywords
class A{
public const int i=10; //static by default
public readonly int j;
void m1()
{

j=20; //after assignment j becomes const
}
}}

constructors
default constructor
parameterized constructor
private constructor
static constructor
copy constructor
overloaded constructor

Invoke an Overloaded Constructor Through this keyword:

constructor-name(parameter-list1) : this(parameter-list2) {
// ... body of constructor, which may be empty
}

base keyword

base keyword – calling base class
constructor

 When a derived class specifies a base clause, it is calling the constructor of its
immediate base class.

 base always refers to the base class immediately above the calling class

 You pass arguments to the base constructor by specifying them as arguments
to base.

 A reference variable of a base class can be assigned a reference to an object of
any class derived from that base class.

Syntax:

derived-constructor(parameter-list) : base(arg-list) {derived-constructor(parameter-list) : base(arg-list) {

// body of constructor

}

arg-list specifies any arguments needed by the constructor in the base class

base keyword – calling base class
constructorExample:

class A {
public int i = 0;

}
// Create a derived class.
class B : A {

new int i; // this i hides the i in A
public B(int a, int b) {public B(int a, int b) {
base.i = a; // this uncovers the i in A
i = b; // i in B

}

Member access

Class Member Access

 Public, private
 protected, private protected
 internal, protected internal
 Default (no access specifier)

Method overloading &
Constructor overloading

22

Member access

Method Overloading

 In C#, two or more methods within the same class can share the same name, as
long as their parameter declarations are different. When this is the case, the
methods are said to be overloaded, and the process is referred to as method
overloading.

 Method overloading is one of the ways that C# implements polymorphism.
 In declaring Overloaded Methods, It is not sufficient for two methods to differ only

in their return types. They must differ in the types or number of their parameters.
 When an overloaded method is called, the version of the method executed is the

one whose parameters match the arguments.

25

Arrays
Method or property Purpose

Reverse() Overloaded public static method that reverses the
order of the elements in a one-dimensional array.

Sort() Overloaded public static method that sorts the values
in a one-dimensional array.

IsFixedSize Required because Array implements ICollection. With
arrays, this will always return true (all arrays are of a
fixed size).

IsReadOnly Public property (required because Array implements IsReadOnly Public property (required because Array implements
IList) that returns a Boolean value indicating whether

the array is read-only.
IsSynchronized Public property (required because Array implements

ICollection) that returns a Boolean value indicating
whether the array is thread-safe.

Length Public property that returns the length of the array.
Rank Public property that returns the number of dimensions

of the array.

Class member visibility
Class Member Visibility Levels
Visibility Keyword Description
public This member is accessible from both inside the

assembly and outside the assembly, as well as by
members inside and outside the class.

private This member is accessible only from code within
the class definition itself.

protectedThis member is accessible only to derived types, both
inside and outside the assembly.inside and outside the assembly.

internal This member is accessible by any code within the
assembly.

public protected This member is accessible by all code within the
assembly, but only by derived types outside the
assembly.

private protected This member is protected within the assembly
(accessible only to derived types), but is
inaccessible outside the assembly.

Class member visibility
Class Member Visibility:

Object Oriented Programming

• Object Oriented Programming (OOP) is a programming
model where programs are organized around objects and data rather
than action and logic.
• OOP allows decomposition of a problem into a number of entities • OOP allows decomposition of a problem into a number of entities
called objects and then builds data and functions around these objects.

Abstraction :
Representing essential features without representing the background
details

 Abstraction lets you focus on what the object does instead of how it
does it.

Object Oriented Programming

abstract class MobilePhone
{

public void Calling();public void Calling();
public void SendSMS();

}

public class Nokia1400 : MobilePhone
{
}

Object Oriented Programming

Encapsulation: Wrapping up a data member and a method
together into a single unit (in other words class) is called
Encapsulation.

Example for encapsulation is class.

class Bag
{

book;
pen;
ReadBook();

}

Encapsulation means hiding the internal details of an object, in
other words how an object does something.

Object Oriented Programming

class Demo
{

private int _mark;

public int Mark
{

get { return _mark; }
set { if (_mark > 0) _mark = value; else _mark = 0; }set { if (_mark > 0) _mark = value; else _mark = 0; }

}
}

Ex: Mobile user learns how to use the phone but not how it works.

Numeric Custom Formatting Specifiers

Numeric Custom Format Specifiers
Specifier Description
0 The zero placeholder.
The digit placeholder. If the given value has a

digit in the position indicated by the #
specifier, that digit is displayed in the
formatted output.

. Decimal point.
, Thousands separator., Thousands separator.
% Percentage specifier. The value being

formatted will be multiplied by 100 before
being included in the formatted output.

E0/E+0/e/e+0/e-0/E Scientific notation.
'XX' or "XX“ Literal strings. These are included literally in

the formatted output without translation in
their relative positions.

; Section separator for conditional formatting
of negative, zero, and positive values.

Arrays
Initialization:
int[] nums;
nums = new int[] { 99, 10, 100, 18, 78, 23,63, 9, 87, 49 };
Multi dimensiona arrays:
int[,] table = new int[10, 20];
type[, ...,] name = new type[size1, size2, ..., sizeN];

int[,,] multidim = new int[4, 10, 3];
multidim[2, 4, 1] = 100; multidim[2, 4, 1] = 100;
Initialization:
type[,] array_name = {
{ val, val, val, ..., val },
{ val, val, val, ..., val },
...
{ val, val, val, ..., val }
};

Arrays
System.Array methods and properties:
Method or property Purpose
BinarySearch() Overloaded public static method that

searches a one-dimensional sorted array.
Clear() Public static method that sets a range of

elements in the array either to 0 or to a
null reference.

Copy() Overloaded public static method that
copies a section of one array to another
array.array.

CreateInstance() Overloaded public static method that
instantiates a new instance of an array.

IndexOf() Overloaded public static method that
returns the index (offset) of the first

instance of a value in a one-dimensional
array.

LastIndexOf() Overloaded public static method that
returns the index of the last instance of a
value in a one-dimensional array.

Object Oriented Programming

Inheritance:

 When a class includes a property of another class it is known as inheritance.
 Inheritance is a process of object reusability.

Ex: public class ParentClass
{

public ParentClass()
{

Console.WriteLine("Parent Constructor.");
}
public void print()
{{

Console.WriteLine("I'm a Parent Class.");
}

}
public class ChildClass : ParentClass

{
public ChildClass()
{

Console.WriteLine("Child Constructor.");
}
public static void Main()
{

ChildClass child = new ChildClass();
child.print();

}
}

inheritance
Syntax :

class derived-class-name : base-class-name {

// body of class

}}

inheritance
class TwoDShape {
public double Width;
public double Height;
public void ShowDim() {

Console.WriteLine("Width and height are " +
Width + " and " + Height);

}
}
// Triangle is derived from TwoDShape.
class Triangle : TwoDShape {

public string Style; // style of trianglepublic string Style; // style of triangle
// Return area of triangle.
public double Area() {
return Width * Height / 2;
}

/ / Display a triangle's style.
public void ShowStyle() {
Console.WriteLine("Triangle is " + Style);
}

}

Object Oriented Programming

Polymorphism: Polymorphism means one name, many forms.
•One function behaves in different forms.
•Many forms of a single object is called Polymorphism.
Ex: A person behaves the son in a house at the same time that the
person behaves an employee in an office.

Ex: Your mobile phone, one name but many forms:Ex: Your mobile phone, one name but many forms:

•As phone

•As camera

•As mp3 player

•As radio
Class: It is template or blueprint that describes the details of an
object.
Object:

static keyword
• Applies for classes, methods, variables and constructor.
• Normally, a class member must be accessed through an object of its class, but it is

possible to create a member that can be used by itself, without reference to a specific
instance. To create such a member, precede its declaration with the keyword static.

• When a member is declared static, it can be accessed before any objects of its class
are created and without reference to any object.

• You can declare both methods and variables to be static.
• Because static fields are independent of any specific object, they are useful when

you need to maintain information that is applicable to an entire class.
• The most common example of a static member is Main(), which is declared static • The most common example of a static member is Main(), which is declared static

because it must be called by the operating system when your program begins.
• Outside the class, to use a static member, you must specify the name of its class

followed by the dot operator. No object needs to be created. In fact, a static member
cannot be accessed through an object reference. It must be accessed through its class
name. For example, if you want to assign the value 10 to a static variable called
count that is part of a class called Timer, use this line:

Timer.count = 10;
• A static method can be called in the same way—by use of the dot operator on the

name of the class.

static keyword
• Variables declared as static are, essentially, global variables. When objects of its

class are declared, no copy of a static variable is made. Instead, all instances of the
class share the same static variable.

• A static variable is initialized before its class is used. If no explicit initializer is
specified, it is initialized to zero for numeric types, null in the case of reference
types, or false for variables of type bool. Thus, a static variable always has a value.

• The difference between a static method and a normal method is that the static
method can be called through its class name, without any instance of that class
being created. You have seen an example of this already: the Sqrt() method, whichbeing created. You have seen an example of this already: the Sqrt() method, which
is a static method within C#’s System.Math class.

static methods and static variables
• Methods declared with static keyword are called static methods..

Rules:

• • A static method does not have a this reference. This is because a static method does
not execute relative to any object.

• • A static method can directly call only other static methods of its class. It cannot

• directly call an instance method of its class. The reason is that instance methods

• operate on specific objects, but a static method is not called on an object. Thus, on
what object would the instance method operate?

• • A similar restriction applies to static data. A static method can directly access only
other static data defined by its class. It cannot operate on an instance variable of its
class because there is no object to operate on.

• Error occurs when trying to call a non-static method from within a static method
of the same class.

static method accessing a non static method - Error

using System;
class AnotherStaticError {
// A non-static method.
void NonStaticMeth() {
Console.WriteLine("Inside NonStaticMeth().");
}
/* Error! Can't directly call a non-static method
from within a static method. */from within a static method. */
static void staticMeth() {
NonStaticMeth(); // won't compile
}
}

static classes
• A class can be declared static. There are two key features of a static class. First, no

object of a static class can be created. Second, a static class must contain only
static members. A static class is created by modifying a class declaration with the
keyword static, shown here:

static class class-name { // ... }
• Within the class, all members must be explicitly specified as static. Making a class

static does not automatically make its members static.
Use of static classes:

• static classes have two primary uses. First, a static class is required when creating• static classes have two primary uses. First, a static class is required when creating
an extension method.

• Second, a static class is used to contain a collection of related static methods.

static constructor
• A constructor can also be specified as static. A static constructor is typically used

to initialize features that apply to a class rather than an instance.
• Thus, it is used to initialize aspects of a class before any objects of the class are

created.

Topics
• Properties - examples

• Base reference – Derived objects

• Using abstract classes

• Exception Handling

Base reference – Derived objects
• C# is a strongly typed language. Aside from the standard conversions and automatic

promotions that apply to its value types, type compatibility is strictly enforced.

• Therefore, a reference variable for one class type cannot normally refer to an object
of another class type.

• In general, an object reference variable can refer only to objects of its type. There
is, however, an important exception to C#’s strict type enforcement. A reference

• variable of a base class can be assigned a reference to an object of any class derived
from that base class. This is legal because an instance of a derived type encapsulates
an instance of the base type. Thus, a base class reference can refer to it.an instance of the base type. Thus, a base class reference can refer to it.

virtual Methods & Overriding

Virtual methods & Overriding – virtual
• A virtual method is a method that is declared as virtual in a base class.

• You declare a method as virtual inside a base class by preceding its declaration with
the keyword virtual.

• The defining characteristic of a virtual method is that it can be redefined in one or
more derived classes. Thus, each derived class can have its own version of a virtual
method.

• Virtual keyword allows redefining the methods in the derived classes that have the
same base class.

• when one is called through a base class reference. In this situation, C# determines• when one is called through a base class reference. In this situation, C# determines
which version of the method to call based upon the type of the object referred to
by the reference—and this determination is made at runtime. Thus, when different
objects are referred to, different versions of the virtual method are executed.

• In Either words, it is the type of the object being referred to (not the type of the
reference) that determines which version of the virtual method will be executed.
Therefore, if a base class contains a virtual method derived from that base class,
then when different types of objects are referred to through a base class reference,
different versions of the virtual method can be executed..

Overriding
• Creating a method in the derived class with the same signature as a method in the base

class is called as method overriding.
• When a virtual method is redefined by a derived class, the override modifier
is used.
• Thus, the process of redefining a virtual method inside a derived class is called method

overriding.
• When overriding a method, the name, return type, and signature of the overriding
• method must be the same as the virtual method that is being overridden. Also, a virtual

method cannot be specified as static or abstract .

• Method overriding forms the basis for one of C#’s most powerful concepts: dynamic
method dispatch. Dynamic method dispatch is the mechanism by which a call to an
overridden method is resolved at runtime, rather than compile time. Dynamic method
dispatch is important because this is how C# implements runtimr polymorphism.

• Overriding is a feature that allows a subclass or child class to provide a specific
implementation of a method that is already provided by one of its super-classes or
parent classes.

• When a method in a subclass has the same name, same parameters or signature and
same return type(or sub-type) as a method in its super-class, then the method in the
subclass is said to override the method in the super-class. Method overriding is one of
the ways by which C# achieve Run Time Polymorphism(Dynamic Polymorphism).

Overriding

Interfaces
 you can fully separate a class’ interface from its implementation by using the

keyword interface.

 Interfaces are syntactically similar to abstract classes. However, in an
interface, no method can include a body.

 one class can implement any number of interfaces.

 More than one class can implement the same interface. So code can use any
object of these classes because the interface to these objects is same.

 can have events, indexers, methods & properties declarations.

 They are useful for putting together plug-and-play architectures, where
components can be interchanged at will.

Definition of interface:

interface name {

ret-type method-name1(param-list);

ret-type method-name2(param-list);

// ...

ret-type method-nameN(param-list);

}

Interfaces
 In an interface, no method can have an implementation. Thus, each class that

includes an interface must

implement all of the methods.

Example:

public interface ISeries {

int GetNext(); // return next number in series

void Reset(); // restart

void SetStart(int x); // set starting valuevoid SetStart(int x); // set starting value

}

Definition of class implementing the interface:

class class-name : interface-name {

// class-body

}

Interfaces
 An interface reference can refer to any object of a class that

implements the interface.

// interface property

type name {

get;

set;

}}

 interfaces can be inherited

 An interface in C# is much like an interface in Java

 An interface states what an object can do, but not how it is done.

 It looks like a class definition but we cannot implement any methods in the
interface nor include any variables.

 Here is a sample interface:

Interfaces

Interface example

public interface IDrivable {
void Start();
void Stop();
void Turn();

}

public class SportsCar : IDriveable {
void Start() {

Method that uses the Interface:

void GoForward(IDrivable d)
{

d.Start();
// wait
d.Stop();

}void Start() {
// Code here to implement start

}
void Stop() {
// Code here to implement stop

}
void Turn() {
// Code here to implement turn

}
}

}

An interface is a contract that guarantees to a client how a class or struct will behave.

When a class implements an interface, it tells any potential client "I guarantee I'll
support the methods, properties, events, and indexers of the named interface.“

An interface offers an alternative to an abstract class for creating contracts among
classes and their clients.

Syntactically, an interface is like a class that has only abstract methods.

Syntax for interface :

[attributes] [access-modifier] interface interface-name [:base-list] {

Interfaces

[attributes] [access-modifier] interface interface-name [:base-list] {

interface-body

}

The base-list lists the interfaces that this interface extends.

The interface-body is the implementation of the interface

The purpose of an interface is to define the capabilities that you want to have
available in a class.

 Classes can implement more than one interface

 Example : public class Document : IStorable, Icompressible

It is possible to extend an existing interface to add new methods or members,
or to modify how existing members work

 An implementing class is free to mark any or all of the methods that
implement the interface as virtual. Derived classes can override or provide new
implementations

• E xample interface :

• interface I C reature

Interfaces

• interface I C reature

• {

• int Num Legs { put; get; }

• string Color { get; set; }

• }

- Note : There are no accessibility kewords in the interface.

• - In the class that implementing interface, all the methods should have an
access specifier ‘public’.

THANK YOU

