
INTRODUCTION

• Active Server Pages (ASP)

• ASP.NET is a web development framework that provides the developer with
an advanced, object oriented interface to build enterprise- class web
applications.

• Syntactically compatible with ASP.

• Part of . NET framework. Gets all the benefits (Type Safety, Inheritance,
language interoperability and versioning) of the CLR.language interoperability and versioning) of the CLR.

• Basically used for creating dynamic web pages.

• Developers can embed scripting language (VBScript or JavaScript) code
directly in their web pages which is difficult to handle.

FEATURES

• Compiled Code, not Interpreted.

• Separation of code from presentation.

• No more “DLL hell”

• Side by Side installation

• Support of Number of languages

• Runtime debugging

• Easy of Deployment• Easy of Deployment

• Event Based Programming model

• Web services, ADO.NET

• Increase dev. Productivity (automatic code generation & Intelli sense features).

• OO based classes for pages, applications, user controls, server controls etc…
which are easy to handle.

• Deployment support

FEATURES

• Easier use of ASP.NET with existing devices like web browsers, PDA, cell
phones and so on..

• Increase in performance and scalability

• 100 % backward compatibility

• Master pages

• Site Navigation

• Web parts• Web parts

• Configuration tools

• Personalization

• Themes and Skins

• User Management

• Provides security (has features like user authentication using cookies,
windows authentication, MS passport.)

• Mobile devices support

• Site Counters

•

FEATURES

- Maintains session state between multiple requests for a page.
(state management)

- Configuration files

Dynamic Web Technologies

Different technologies for dynamically generating Web content.

ASP.NET

ASP

CGI

ColdFusion

JSP

PHPPHP

Ruby on Rails

All of these technologies share one thing in common:

Using programming logic, they generate HTML on the server and send it back to the
requesting browser.

desktop vs web application

A desktop application is a computer program that runs locally on a computer.

 A web application, is an application which runs on the remote server and can be
accessed from any machine.

 Security & Safety is a problem with web appl.

 Desktop applications are more secure and safe.

 Web applications availability depends on the internet connection & speed.

 Maintenance of Web applications is easy compared with desktop applications. Maintenance of Web applications is easy compared with desktop applications.

 Testing of Web applications is difficult than desktop applications.

WEB APPLICATION

STATIC PAGES & DYNAMIC PAGES

Static pages : Static pages don’t change in response to user input.
Stored as .html files in the disk.

How static web pages work :

STATIC WEB CONTENT

DYNAMIC WEB PAGES
 Dynamic web pages are web forms that contain one or more server controls

such as labels, text boxes and buttons.

 Brower sends a HTTP request to the web server.

 Web server (IIS) determines the type of page as dynamic page and passes the
request to the application server (ASP.NET). ASP.NET manages the
execution of the web form that is requested. ASP.NET creates html page and
sends back to the browser as a ‘http reply’.

 Browser displays the page. The user resubmit the page by selecting controls.
This is called ‘postback’.This is called ‘postback’.

DYNAMIC WEB CONTENT

DYNAMIC WEB PAGES

ASP.NET WEB APPLICATION

An ASP.NET web application :
Consists of any number of web pages, controls, programming
classes, web services, and other files Residing within a single web
server application directory

The principal component of an ASP.NET web application are its web
pages.pages.
These are text files with an .aspx extension and are called web
forms.

Consist of two parts:
 The declaratively-defined (i.e., by markup/tags) visual elements.
 The programming logic.

Server side vs Client side Programming
• In server side programming, all code runs on the server.

When the ASP.NET code finishes running, the web server sends the user the final
result—an ordinary HTML page that can be viewed in any browser.

ASP.NET uses server side programming:

Reasons:

• Isolation: Client-side code can’t access server-side resources.

• Security: end users can view the client-side code. He may tamper with it.

• Thin Clients: Smart phones, tablets may not support client side programming • Thin Clients: Smart phones, tablets may not support client side programming
platforms such as silverlight, Flash.

• In Client side programming, a javascript code /any scripting language code is
embedded in html page and sent to the browser.
• browser downloads the code and executes it locally.

Server side Programming

Client side Programming

.NET framework

.NET FRAMEWORK

the .NET Framework is really a cluster of several technologies,
which contains:
 The .NET languages
 The Common Language Runtime (CLR)
 The .NET Framework class library
 ASP.NET ASP.NET

LANGUAGE COMPILATION IN .NET

CLR (COMMON LANGUAGE RUNTIME)

With CLR we can achieve:
 Deep language integration for CLR there is no

distinction between the C# code, VB etc..
 Side-by-side execution
 Fewer errors

Drawbacks:
 Performance we can overcome performance bottle necks

with compiled page code & caching them.
 Code tranparency IL code is easy to disassemble

VISUAL STUDIO (CHAPTER 4)
Benefits:

 Integrated error checking
 Shows data type conversion errors, missing namespaces or classes,

undefined variables. As you type, errors are displayed in error list window.

 The web form designer You can design the web page by drag &
dropping controls on to form and configure their properties. Code
markup is added automatically in .aspx

 An integrated web server IIS (Internet Information Services)
 Developer productivity enhancements Collapsible code display,

automatic stmt. Completion, color coded syntax, intelli sense etc..
 Fine-grained debugging run to cursor, pause at any point,

watch any variable value, single stepping, stepin ,stepout etc…
 Complete extensibility creating custom controls, macros, project

templates, using third party tools etc…

VISUAL STUDIO

Features of Visual Studio:
 Page Design
 Automatic error detection
 Debugging Tools
 IntelliSense

Anatomy of ASP.NET
applications –

ASP.NET file types, web foldersASP.NET file types, web folders

ASP.NET File types

ASP.NET File types

ASP.NET application folders
 \App_Code is for storing class files, .wsdl files(web service), and typed

datasets (xsd).
 The files in this folder are automatically compiled by IDE and makes

them available to all the web pages of application.
 \App_Data contains data stores of your application.

.mdf files, xml files etc … can be kept here.
 \App_Themes folder this contains .skin, .css files and images. Used to

provide a common look and feel to your site.
 \App_GlobalResources contains.resx files containing different language

string tables etc..string tables etc..
 Files placed in this folder are available to all web pages as resources.

 \App_WebReferences Allows to access remote web services
automatically from your application.

 \Web_Browsers contains .browser files, which are xml files to identity
the browsers making requests to the application and their capabilities.
\App_LocalResources these resources are accessible to a specific page

only.
\Bin Contains all the compiled .NET components (DLLs) that the

ASP.NET web application uses.

WEB FORM PROGRAMMING LOGIC

A web form's programming logic can exist in either:
 The same file as the visual elements i.e., the .aspx file.

This code is contained within a code declaration
block.

 In a separate class file. The file is usually called a code-
behind file.

By convention, its filename is same as .aspx file but with a
language extension.

HelloWorld.aspx -- web form
HelloWorld.aspx.cs -- code-behind file

Sample web form

Why use code-behind?
The real advantage of separating the code into its own file is

that it may lead to more maintainable web forms.

One of the main benefits of ASP.NET is that a page’s
programming logic can be conceptually separated from the
Presentation by using a code-behind file a page’s programming
logic can also be physically separated from the presentation/
markup.

By placing the programming code into its own file, it is also
potentially easier to make use of a division of labor in the
creation of the site.

Designing Web Page
viewing of .aspx can be done in 3 ways:

1. Design View Graphical representation of what you see.

2. Source View view with html markup, ASP.NET controls
tags.

3. Split View Page view with both Design view & source
view at once.

USING PROPERTIES WINDOW

Web Form
Web form contains:

1. Page Directive (line 1 & 2)
<%@ Page Language = "C#" AutoEventWireup = "true"

CodeFile = "Default.aspx.cs" Inherits = "_Default" %>

a. Code Language C#

b. Code behind file name .aspx.cs file name

c. Name of the Page Class page class Name

2. The Doc type (line 3) The doctype indicates the type of mark up (for
example, HTML5 or XHTML) that you’re using to create your web
page

Most web pages use HTML5 doctype

<!DOCTYPE html>

HTML basics – Basic HTML elements

Tag Name Type Description

, <i>, <u> Bold, Italic,
Underline

Container Used for making text bold,
underlining, italic.

<p> Paragraph Container Paragraphing a text

<h1>, <h2>,
<h3>, <h4>,
<h5>, <h6>

Heading Container Sets text bold & font size

 Image Stand-alone To display image

 Line Break Stand-alone Gives a single line break

<hr> Horizontal
Line

Stand-alone Gets a single horizontal line

<a> Anchor Container Gets a hyperlink for the text

, Unordered
List, List Item

Container Used for Bulleted List items

, Ordered List,
List Item

Container Used for Numbered List
items.

<table>, <tr>,
<td>, <th>

Table Container Table, table row, table cell
& table header

HTML basics – Basic HTML elements

Tag Name Type Description

<div> Division Container Container for other elements

<form> Form Container Used to hold all the controls on a web page

 Span Container all-purpose container for bits of text
content inside other elements. Used for
formatting (changing color etc..) some
portion of text.

A Complete Web Page
Basic Web Page:

<html>

<head runat = "server">

<title > Untitled Page</title>

</head>

<body>

<form ID = "form1" runat = "server">

<div><div>

</div>

</form>

</body>

</html>

Writing Code
1. Using Code behind class

2. Adding Event Handlers

3. Outlining

4. IntelliSense

 Using Member List

 Caching Errors in code

 Caching Errors in Markup

Automatically importing namespacesAutomatically importing namespaces

 Formatting and Coloring code

Adding Event Handlers
Three Ways of Adding Event Handlers:

1. Type event handler manually in Page Class.

2. Double click a control in Design View

3. Choose the event from the Properties window.

Sample web form

Server Controls
HTML Server Controls & ASP.NET

Server ControlsServer Controls

Server Controls
 Two sets of server-side controls that you can incorporate into your web

forms. These two types of controls play subtly different roles:

 HTML server controls: These are server-based equivalents for standard HTML
elements. These controls are ideal if you’re a seasoned web programmer who prefers
to work with familiar HTML tags (at least at first). They are also useful when
migrating ordinary HTML pages or classic ASP pages to ASP.NET, because they
require the fewest changes.

 Web controls: These are similar to the HTML server controls, but they provide a
richer object model with a variety of properties for style and formatting details. They richer object model with a variety of properties for style and formatting details. They
also provide more events and more closely resemble the controls used for Windows
development. Web controls also feature some user interface elements that have no
direct HTML equivalent, such as the GridView, Calendar, and validation controls.

HTML Server Controls
 HTML server controls provide an object interface for standard HTML elements.

They provide three key features:

They generate their own interface: You set properties in code, and the underlying
HTML tag is created automatically when the page is rendered and sent to the client.

 They retain their state: Because the Web is stateless, ordinary web pages need to do
a lot of work to store information between requests. HTML server controls handle
this task automatically. For example, if the user selects an item in a list box, that item
remains selected the next time the page is generated. Or if your code changes the text
in a button, the new text sticks the next time the page is posted back to the web in a button, the new text sticks the next time the page is posted back to the web
server.

 They fire server-side events: For example, buttons fire an event when clicked, text
boxes fire an event when the text they contain is modified, and so on. Your code can
respond to these events, just like ordinary controls in a Windows application. If a
given event doesn’t occur, the event handler won’t be executed.

HTML SERVER CONTROL CLASSES

All the HTML server
controls are defined in the
System.Web.UI.HtmlCont
rols namespace

HTML Server Controls
Class Name HTML Element

HtmlForm <form>

HtmlAnchor <a>

HtmlImage

HtmlTable, HtmlTableRow,
and HtmlTableCell

<table>, <tr>, <th>, and <td>

HtmlInputButton,
HtmlInputSubmit, and
HtmlInputReset

<input type="button">,
<input type="submit">, and
<input type="reset">HtmlInputReset <input type="reset">

HtmlButton <button>

HtmlInputCheckBox <input type="checkbox“>

HtmlInputRadioButton <input type="radio“>

HtmlInputText and
HtmlInputPassword

<input type="text"> and
<input type="password“>

HtmlTextArea <textarea>

HtmlInputImage <input type="image">

HtmlInputFile <input type="file">

HTML Server Controls
Class Name HTML Element

HtmlInputHidden <input type="hidden">

HtmlSelect <select>

HtmlHead and HtmlTitle <head> and <title>

HtmlGenericControl Any other HTML
Element.

HtmlControl class
Properties:

Properties Description

Attributes Provides a collection of all the attributes that are set in the
control tag, and their values

Controls Provides a collection of all the controls contained inside the
current control

Disabled Disables the control when set to true.

EnableViewState If this is set to true (the default), the control stores its state in
a hidden input field on the page, thereby ensuring that any a hidden input field on the page, thereby ensuring that any
changes you make in code are remembered.

Page Provides a reference to the web page that contains this control
as a System.Web.UI.Page object.

Parent Provides a reference to the control that contains this control.

Style Provides a collection of CSS style properties that can be used
to format the control.

TagName Indicates the name of the underlying HTML element.

Visible Hides the control when set to false and will not be rendered to
the final HTML page that is sent to the client.

Important HTML Server Control
properties

Control Properties

HtmlAnchor HRef, Target

HtmlImage Src, Alt, Width, Height

HtmlInputCheckBox and
HtmlInputRadioButton

Checked

HtmlInputText Value

HtmlTextArea ValueHtmlTextArea Value

HtmlInputImage Src, Alt

HtmlSelect Items (collection)

HtmlGenericControl InnerText and InnerHtml

HTML CONTROLS
HTML Controls:
Input (Button)

Input (Reset)

Input (Submit)

Input (Text)

Input (File)

Input (Password)Input (Password)

Input (Checkbox)

Input (Radio)

TextArea

Table

Image

Select

HTML Control events
HTML server controls also provide one of two possible

events:
1. ServerClick A Click event processed on the server

Ex controls: HtmlAnchor, HtmlButton, HtmlInputButton,
HtmlInputImage, HtmlInputReset

2. ServerChange Fires when a change has been made
to a text or selection control.to a text or selection control.

Ex controls: HtmlInputText, HtmlInputCheckBox,
HtmlInputRadioButton, HtmlInputHidden, HtmlSelect,
HtmlTextArea

HtmlContainerControl class

InnerHtml The HTML content between the opening
and closing tags of the control. Nested tags can also be
applied.

InnerText The text content between the opening and
closing tags of the control.

HtmlInputControl class

Properties:
Type Provides the type of input control.
Value Returns the contents of the control as a string.

Page class
Properties:

Property Description

IsPostBack This Boolean property indicates whether this is the
first time the page is being run (false) or whether the
page is being resubmitted in response to a control
event

EnableViewState When set to false, this overrides the enableViewState
property of the contained controls.

Application This collection holds information that’s shared
between all users in your website.

Session This collection holds information for a single user, so it
can be used in different pages.

Cache This collection allows you to store objects that are
time-consuming to create so they can be reused in
other pages or for other clients.

Request This refers to an HttpRequest object that contains
information about the current web request

Page class

Properties:

Property Description

Response This refers to an HttpResponse object that represents
the response ASP.NET will send to the user’s browser

Server This refers to an HttpServerUtility object.

User If the user has been authenticated, this property will
be initialized with user information.

Application events
Basic Application Events:

Method Description

Application_Start() Occurs when the application starts, which is the
first time it receives a request from any user

Application_End() Occurs when the application is shutting down,
generally because the web server is being restarted

Application_BeginRequest() Occurs with each request the application receives,
just before the page code is executed.just before the page code is executed.

Application_EndRequest() Occurs with each request the application receives,
just after the page code is executed.

Session_Start() Occurs whenever a new user request is received
and a session is started.

Session_End() Occurs when a session times out or is
programmatically ended. This event is raised only
if you are using in-process session-state storage

Application_Error() Occurs in response to an unhandled error.

Application events – global.asax file
 You can trace out some application level events such as

request for a page.

 global.asax file contains event handlers for handling
application level events.

 Each application can have only one global.asax file

Configuring ASP.NET Application
 web.config file setting are

 easily accessible & replicable

 settings are easy to edit & understand

web.config file structure:

<?xml version = "1.0" ?>

<configuration><configuration>
<appSettings > . . .</appSettings>

<connectionStrings > . . .</connectionStrings>

<system.web > . . .</system.web>

</configuration>

web.config file
Once you build your application with debugging enabled, the

web.config file contents will be: (initially debug=false).

<?xml version="1.0"?>

<!--

For more information on how to configure your ASP.NET application, please
visit http://go.microsoft.com/fwlink/?LinkId=169433

-->-->

<configuration>

<system.web>

<compilation debug="true" targetFramework="4.6.1"/>

<httpRuntime targetFramework="4.6.1"/>

</system.web>

</configuration>

ASP.NET website administration tool
 To open the tool, select Website ASP.NET Configuration.

 To make changes to the web.config, you can use WAT.

Server Controls
ASP.NET Web Server Controls

WEB CONTROLS
 They provide rich user interface

 A web control is programmed as an object but doesn’t necessarily correspond to a single
element in the final HTML page. For example, you might create a single Calendar or GridView
control, which will be rendered as dozens of HTML elements in the final page.

 They provide a consistent object model
 HTML is full of quirks and idiosyncrasies. For example, a simple text box can appear as

one of three elements, including <textarea>, <input type="text">, and <input
type="password">. With web controls, these three elements are consolidated as a single
TextBox control. Depending on the properties you set, the underlying HTML element that
ASP.NET renders may differ.ASP.NET renders may differ.

 They tailor their output automatically
 ASP.NET server controls can detect the type of browser and automatically adjust the

HTML code they write to take advantage of features such as support for JavaScript.

 They provide high-level features
 You’ll see that web controls allow you to access additional events, properties, and methods

that don’t correspond directly to typical HTML controls.

WEB CONTROLS

WEB CONTROL CLASSES

WEB CONTROLS

<asp:TextBox ID="txt" BackColor="Yellow" Text="Hello World"
ReadOnly="True" TextMode="MultiLine" Rows="5" runat="server" />

will be converted as the following HTML control:

<textarea name="txt" rows="5" cols="20" readonly="readonly"
ID="txt“ style="background-color:Yellow;">Hello World</textarea>

WebControl class
Properties:

Property Description

AccessKey Specifies the keyboard shortcut as one letter.

BackColor, ForeColor,
and BorderColor

Sets the colors used for the background, foreground, and
border of the control

BorderWidth Specifies the size of the control border

BorderStyle Gets or sets the border style of the Web server control.
Can be Dashed, Dotted, Double, Groove, Ridge, Inset, Can be Dashed, Dotted, Double, Groove, Ridge, Inset,
Outset, Solid, and None.

Enabled When set to false, the control will be visible, but it will
not be able to receive user input or focus.

EnableViewState If this is set to true (the default), the control uses the
hidden input field to store information about its
properties, ensuring that any changes you make in code
are remembered.

Font Specifies the font used to render any text in the control.

Height and Width Specifies the width and height of the control.

WebControl class

Properties:

Description

ID Specifies the name that you use to interact with the
control in your code.

Page Provides a reference to the web page that contains
this control as a System.Web. UI.Page object

Parent Provides a reference to the control that contains this
control control

TabIndex A number that allows you to control the tab order.
The control with a TabIndex of 0 has the focus when
the page first loads.

ToolTip Displays a text message when the user hovers the
mouse above the control

Visible When set to false, the control will be hidden and will
not be rendered to the final HTML page that is sent
to the client.

WEB CONTROL PROPERTIES

Button control properties:

Button control events

WEB SERVER CONTROLS

 Html Server controls These are server-based equivalents for
standard HTML elements.

 Web Server Controls ASP.NET controls that provide a richer object
model with a variety of properties for style and formatting details.

 Custom and User Controls

Standard Controls :Standard Controls :

Label Table

TextBox BulletedList

Button AdRotator

ImageButton Xml

CheckBox Calendar

RadioButton

RadioButtonList

Image

ASP.NET CONTROLS

Data Controls :
GridView
DataList
DetailsView
SqlDataSource
AccessDataSource
XmlDataSource
ReportViewer

ASP.NET CONTROLS
Navigation Controls :
Menu
TreeView

Validation Conrols:
RequiredFieldValidator
RangeValidatorRangeValidator
RegularExpressionValidator
CompareValidator
CustomValidator
ValidationSummary

ASP.NET CONTROLS
Authentication Controls:
Login
PasswordRecovery
LoginStatus
LoginName
CreateUserWizard
ChangePasswordChangePassword

ASP.NET CONTROLS
ASP.NET Web Server Controls :

<asp:X runat=“server” attribute=“value”>
Content
</asp:X>
Ex :
<asp:Label ID="Label1" runat="server"

Text="Label"></asp:Label> Text="Label"></asp:Label>
Text Box :
<asp:TextBox ID="TextBox1"

runat="server"></asp:TextBox>

The stages in
an ASP.NET
request

default.aspx FILE

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

…
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Untitled Page</title>
</head></head>
<body>

<form id="form1" runat="server">
<div>
</div>

</form>

</body>
</html>

default.aspx.cs FILE

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

}
}

CONTROL UNITS

• Unit structure to set Width, Height, BorderWidth etc..

• Units can be specified in no of pixels (px) or in percentage of browser
window(%).

• <asp:Panel Height="300px" Width="50%" ID="pnl" runat="server" />
• Sets Height of panel to 300 pixels and Width to 50% of browser window.

• Programmatically setting values:
• pnl.Height = Unit.Pixel(300);
• pnl.Width = Unit.Percentage(50);

OR

Unit myUnit = new Unit(300, UnitType.Pixel);

pnl.Height = myUnit;
pnl.Width = myUnit;

COLORS
 The Color property refers to a Color object from the System.Drawing namespace. You can create

color objects in several ways:

 Using an ARGB (alpha, red, green, blue) color value: You specify each value as an integer from 0
to 255. The alpha component represents the transparency of a color, and usually you’ll use 255 to
make the color completely opaque.

 Using a predefined .NET color name: You choose the correspondingly named readonly property
from the Color structure. These properties include the 140 HTML color names.

 Using an HTML color name: You specify this value as a string by using the ColorTranslator
class.

 Example:

using System.Drawing;
The following code shows several ways to specify a color in code:The following code shows several ways to specify a color in code:
// Create a color from an ARGB value
int alpha = 255, red = 0, green = 255, blue = 0;
ctrl.ForeColor = Color.FromArgb(alpha, red, green, blue);
// Create a color using a .NET name
ctrl.ForeColor = Color.Crimson;
// Create a color from an HTML code
ctrl.ForeColor = ColorTranslator.FromHtml("Blue");
When defining a color in the .aspx file, you can use any one of the known color names:
<asp:TextBox ForeColor="Red" Text="Test" ID="txt" runat="server" />

COLORS
•

Focus, Default controls, Access Keys, Default Button

Focus: Unlike HTML server controls, every web control provides a Focus()
method.

Button1.Focus() sets input focus to control ‘Button1’

Default controls:

 You can set a control that should always be focused by setting the
DefaultFocus property of the <form> tag:
<form DefaultFocus="TextBox2" runat="server">

 You can override the default focus by calling the Focus() method in your You can override the default focus by calling the Focus() method in your
code.

Access Keys:

 If you set the AccessKey property of a TextBox to A, pressing Alt+A will
switch focus to the TextBox.

<asp:Label AccessKey="2" AssociatedControlID="TextBox2" runat="server"
Text="TextBox2:" /> <asp:TextBox runat="server" ID="TextBox2" />
Default Button: The default button is the button that is “clicked” when the

user presses the Enter key.
<form DefaultButton="cmdSubmit" runat="server">

Units, Enumerations, Colors, Fonts
Fonts: The Font property actually references a full FontInfo object, which is defined
in the System.Web.UI.WebControls namespace.

FontInfo properties:

Name Font Name

NamesAn array of strings with font names, in the order of

preference.

Size The size of the font as a FontUnit object. This can represent an absolute or Size The size of the font as a FontUnit object. This can represent an absolute or
relative size.

Bold, Italic, Strikeout, Underline, and Overline boolean value

POSTBACK VS NON-POSTBACK EVENTS

Postback Non-postback
Button BulletdList

Calendar CheckBox

DataGrid CheckBoxList

GridView DropDownList

ImageButton ListBox

LinkButton RadioButtonListLinkButton RadioButtonList

Menu RadioButton

Repeater TextBox

AutoPostBack property:
IsPostBack indicates whether the page isbeing loaded

first time (IsPostBack =false) or not.

ASP.NET PAGE LIFE CYCLE EVENTS

- Request for Page
- Page Start -- IsPostBack is set/reset
- Initialization -- controls are instantiated,theme and

skin is applied
- Load -- controls properties are restored
- Validation - validation of controls
- Postback Event Handling- Postback Event Handling
- Render
- Unload

Web page view state
<input type = "hidden" name = "__VIEWSTATE"

ID = "__VIEWSTATE“ value = "dDw3NDg2NTI5MDg7Oz4. . ." />

BulletedList Properties

Property Description

BulletStyle Determines the type of list. Values are
NotSet, Numbered, LowerAlpha,
UpperAlpha, LowerRoman, UpperRoman,
Disc, CustomImage.

BulletImageUrl If the BulletStyle is set to CustomImage, this
points to the image that is placed to the left points to the image that is placed to the left
of each item as a bullet.

FirstBulletNumber In an ordered list, this sets the first value.

DisplayMode Determines whether the text of each item is
rendered as text (use Text, the default) or
a hyperlink (use LinkButton or HyperLink).

ImageMap control
ImageMap control is used to create an image that contains clickable

hotspot region. When user click on the region, the user is either sent to a
URL or a sub program is called. When it is rendered on the page, it is
implemented through HTML tag.

Properties Description

ImageUrl Url of image location.

AlternetText Appears if image not loaded properly

Tooltip Appears when on mouse over the image

ImageAlign Used to align the Text beside image.

HotSpotMode
PostBack/Navigate When Navigate, the user is navigated to
a different URL. In case of PostBack, the page is posted back
to the server.

OnClick
Attach a server side event that fires after clicking on image
when HostSpotMode is PostBack.

PostBackValue
You can access it in the server side click event through
ImageMapEventArgs. (eg. e.PostBackValue)

View state
 Microsoft ASP.NET view state is the technique used by

an ASP.NET Web page to persist changes to the state of a
Web Form across postbacks.

 If you right clicked on the page, you can see an option ‘View
Source’ witch will display the rendered page source.

 Rendered page source contains 2 hidden fields in 2 div sections of
the form tag.

<form ID = "form1" method = "post" action ="CurrencyConverter.aspx">
<div class = "aspNetHidden">
<input type = "hidden" name = "__VIEWSTATE" ID = "__VIEWSTATE"
value = "dDw3NDg2NTI5MDg7Oz4…" />
</div>
<div class = "aspNetHidden">
<input type = "hidden" name = "__EVENTVALIDATION" ID =

"__EVENTVALIDATION"
value = "/wEWAwLr3rrOBgLr797…" />
</div>

</form>

TOPICS

• Page class
• Page navigation
• Asp.Net basic controls units, Enumerations
• Fonts, Colors, Focus, Default button
• List controls,
• Panel, Table control.• Panel, Table control.

PAGE NAVIGATION

• goto page2
• When you clicked on ‘goto page2’ hyperlink, you will be redirected to

a new page Page2.aspx
Redirecting to another page:
Response.Redirect() method:

Response.Redirect("newpage.aspx");
• When Redirect() method is executed, ASP.NET sends a redirect message back to

the browser. Browser sends the redirecting page request to server.

Redirecting to another site:Redirecting to another site:
Response.Redirect("http://www.amazon.com");

Redirecting to another page :
Server.Transfer("newpage.aspx");

• The advantage of using the Transfer() method is that it doesn’t involve the
browser. Instead of sending a redirect message back to the browser, ASP.NET
simply starts processing the new page as though the user had originally
requested that page.

• This method wouldn’t allow to transer to another website or html page.

BASIC WEB SERVER CONTROLS

ASP.NET SERVER CONTROLS

• Literal

• TextBox

• LinkButton

• ImageButton

• HyperLink

• DropDownList

• ListBox

• CheckBox

• CheckBoxList

• RadioButton

RadioButtonList• RadioButtonList

• Image

• Table

• Calendar

• AdRotator

• Panel

• Xml

• PlaceHolder

• FileUpload

• ImageMap

• BulletedList

• View

• Wizard

ASP.NET PAGE PROCESSING EVENTS

The Postback
processing Sequenceprocessing Sequence

Automatic Postback

Page Life Cycle Stages

Stage Description

Request for page The page request starts before a page has been instantiated.
When a user requests a page from the web server. If cached
version exists it is returned, else a new one.

Page Start Page is instantiated. Request, Response , IsPostback and
UICulture properties are set.

Initialization During this stage, controls are instantiated and the page's
control hierarchy is constructed. Theme and skin
information is applied to the page during this stage.

Load During this stage, control properties are restored from state Load During this stage, control properties are restored from state
if the request is a postback.

Validation Validate() method of all validation controls are called to
validate the state of controls on page.

Postback Event
Handling

If the request is a postback, then postback events in
response to such things as button clicks, selected index
changes, and more are invoked.

Render each control in the Page's control hierarchy is asked to
contribute its own rendered output to the rendered output of
the entire page. The Page's view state is also included.

Unload child controls and the page dispose their resources.
Response, Request data are cleaned.

Page Life Cycle Events

Event Description

Page_PreInit Called at the beginning of the Initialize stage. Used to create
dynamic controls, set master pages and themes dynamically,
and to read/write user profile data.

Page_Init Called during the Initialize stage to initialize control properties

Page_Load Called during the Load stage to read control properties or
update existing control properties. At this stage, control
properties have been reconstituted from view state

(Control Processing of control events(Control
Events)

Processing of control events

Page_PreRen
der

This event is triggered just before the final version of the page is
rendered. If you need to make final tweaks to properties of
controls based on information that is only available immediately
before rendering, this is the event you should use.

Page_Unload This event is called immediately before the page is discarded by
ASP.NET to dispose of costly resources such as database
connections. Also commonly used to write final logging and
tracing information.

Debugging
 Single Step Debugging

1. Place a break point at any executable stmt and Press F5 (or Start Debugging
Option from Debug menu).

2. Program stops execution at the break point line. Now you can test variable
values (through watch windows, or placing cursor over the variables).

3. You can execute line by line by pressing F11 button. (single stepping).

 Variable Watches

By using variable watch windows, we can know the values of variables after
execution of a statement.

Three types of windows:

1. Autos include variables that are accessed or changed in the
previous line.
2. Locals Displays all the variables that are in the scope in the

current method.
3. Watch Displays variables you have added.

Topics

ViewState
Cross page posting
Query String
Cookies
Session State

HttpSessionState class

Member Description

Count Provides the number of items in the current session
collection.

IsCookieless Identifies whether the session is tracked with a cookie or
modified URLs.

Keys Gets a collection of all the session keys that are currently
being used

Mode Provides an enumerated value that explains how ASP.NET
stores session-state information

SessionID Provides a string with the unique session identifier for the
current client.

Timeout Determines the number of minutes that will elapse before
the current session is abandoned, provided that no more
requests are received from the client.

Abandon() Cancels the current session immediately and releases all the
memory it occupied.

Clear() Removes all the session items.

Configuring session
<configuration>
...
<system.web>
...
<sessionState
cookieless="UseCookies"
cookieName="ASP.NET_SessionId"
regenerateExpiredSessionId="false"
timeout="20"
mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
stateNetworkTimeout="10"
sqlConnectionString="data source=127.0.0.1;Integrated Security=SSPI"
sqlCommandTimeout="30"
allowCustomSqlDatabase="false"
customProvider=""
compressionEnabled="false"
/>
</system.web>
</configuration>

Data controls
 GridView Shows the tabular data in a Grid.
 The GridView control is used to display the values of a data source in a table.

Each column represents a field where each row represents a record.
 The GridView control provides many built-in capabilities that allow the user to

sort, update, delete, select and page through items in the control.
 The GridView control can be bound to a data source control.
GridView features:
 Improved data source binding capabilities
 Tabular rendering – displays data as a table
 Built-in sorting capability Built-in sorting capability
 Built-in select, edit and delete capabilities
 Built-in paging capability
 Built-in row selection capability
 Multiple key fields
 Programmatic access to the GridView object model to dynamically set

properties, handle events and so on
 Richer design-time capabilities
 Control over Alternate item, Header, Footer, Colors, font, borders, and so on.
 Slow performance as compared to Repeater and DataList control .

Populating columns of GridView
1. By setting AutoGenerateColumns property to true.

Disadv: it is not possible to explicity say, which properties should be displayed as
columns, what the HeaderText or width of each column should be.

Ex:
<asp:GridView ID="gvUsers" runat="server"

AutoGenerateColumns="true"></asp:GridView>

2. By using BoundField:
This allows you to create the columns allows to explicitly define, which columns should
be displayed, how they look and in which order they are displayed.

 In order to specify the columns we need to set the AutoGeneratedColumns property
to false.

 In order to specify the columns we need to set the AutoGeneratedColumns property
to false.

Ex:
<asp:GridView ID="gvUsers" runat="server" AutoGenerateColumns="false">

<Columns>
<asp:BoundField HeaderText="ID" DataField="IDUser" ItemStyle-Width="50"/>
<asp:BoundField HeaderText="Name" DataField="Name" ItemStyle-Width="200"/>
<asp:BoundField HeaderText="Username" DataField="UserName" ItemStyle-

Width="200"/>
</Columns>

</asp:GridView>

Column types

Column type Description

BoundField This column displays text from a field in the data
source.

ButtonField This column displays a button in this grid column.

CheckBoxField This column displays a check box in this grid column.
It’s used automatically for True / false fields.

CommandField This column provides selection or editing buttons.

HyperLinkField This column displays its contents (a field from the HyperLinkField This column displays its contents (a field from the
data source or static text) as a hyperlink.

ImageField This column displays image data from a binary field.

TemplateField This column allows you to specify multiple fields,
custom controls, and arbitrary HTML using a custom
template.

Populating columns of GridView
Ex:

<asp:BoundField DataField = "ProductID" HeaderText = "ID" />

Configuring columns of GridView using BoundField properties

BoundField properties:

Properties Description

DataField Identifies the field (by name) that you want to display in
this column

DataFormatString Formats the field. This is useful for getting the right
representation of numbers and dates.

FooterText,
HeaderText,

Sets the text in the header and footer region of the grid if
this grid has a header (GridView.ShowHeader is true) and HeaderText,

and
HeaderImageUrl

this grid has a header (GridView.ShowHeader is true) and
footer (GridView.ShowFooter is true).

ReadOnly If true, it prevents the value for this column from being
changed in edit mode. No
edit control will be provided. Primary key fields are often
read-only.

InsertVisible If true, it prevents the value for this column from being
set in insert mode

Configuring columns of GridView using BoundField properties

BoundField properties:

Properties Description

Visible If false, the column won’t be visible in the page.

SortExpression Sorts your results based on one or more columns.

HtmlEncode If true (the default), all text will be HTML
encoded to prevent special characters from
mangling the page.mangling the page.

NullDisplayText Displays the text that will be shown for a null
value.

ConvertEmptyStringToNull If true, converts all empty strings to null values.

ControlStyle, HeaderStyle,
FooterStyle, and ItemStyle

Configures the appearance for just this column,
overriding the styles for the row.

Formatting GridView
 Each BoundField column provides a DataFormatString property you can use to

configure the appearance of numbers and dates using a format string.

 Format strings generally consist of a placeholder and a format indicator, which
are wrapped inside curly brackets.

 Ex: {0:C} Currency format

Ex:
<asp:BoundField DataField = "UnitPrice" HeaderText = "Price"
DataFormatString = "{0:C}" />

Time & Date Format Strings:Time & Date Format Strings:

Type Format
String

Syntax Example

Short Date {0:d} M/d/yyyy 10/30/2012

Long Date {0:D} dddd, MMMM dd, yyyy Monday, January 30,
2012

Long Date and
Short Time

{0:f } dddd, MMMM dd, yyyy
HH:mm aa

Monday, January 30,
2012 10:00 AM

Long Date and
Long Time

{0:F} dddd, MMMM dd, yyyy
HH:mm:ss aa

Monday, January 30,
2012 10:00:23 AM

GridView styles

Style Description

HeaderStyle Configures the appearance of the header row that
contains column titles, if you’ve chosen to show it (if
ShowHeader is true).

RowStyle Configures the appearance of every data row.

AlternatingRowStyle If set, applies additional formatting to every other row

SelectedRowStyle Configures the appearance of the row that’s currently
selected.

EditRowStyle Configures the appearance of the row that’s in edit
mode. This formatting acts in addition to the RowStyle
formatting.

EmptyDataRowStyle Configures the style that’s used for the single empty row
in the special case where the bound data object contains
no rows.

FooterStyle Configures the appearance of the footer row at the
bottom of the GridView, if you’ve chosen to show it

PagerStyle Configures the appearance of the row with the page
links, if you’ve enabled paging (set AllowPaging to true).

Styles
EX:

<RowStyle BackColor = "#E7E7FF" ForeColor = "#4A3C8C" />

<HeaderStyle BackColor = "#4A3C8C" Font-Bold = "True" ForeColor = "#F7F7F7" />

EX:
<asp:BoundField DataField = "ProductName" HeaderText = "Product Name">

<ItemStyle BackColor = "#E7E7FF" ForeColor = "#4A3C8C" />
<HeaderStyle BackColor = "#4A3C8C" Font-Bold = "True" ForeColor = <HeaderStyle BackColor = "#4A3C8C" Font-Bold = "True" ForeColor =

"#F7F7F7" />
</asp:BoundField>

USING A DATA FIELD AS A SELECT BUTTON

 You don’t need to create a new column to support row selection. Instead, you can
turn an existing column into a link.

 To use this technique use a add a ButtonField column. Then, set the
DataTextField to the name of the field you want to use.

EX: <asp:ButtonField ButtonType = "Button" DataTextField = "ProductID" />

Sorting & Paging the GridView
 To enable sorting, you must set the GridView.AllowSorting property to true. Next,

you need to define a SortExpression for each column that can be sorted.

 To use automatic paging, you need to set AllowPaging to true (which shows the
page controls), and you need to set PageSize to determine how many rows are
allowed on each page

Paging with the GridView
Ex:

<asp:GridView ID = "GridView1" runat = "server" DataSourceID = "sourceProducts"

PageSize = "10" AllowPaging = "True" . . .>

. . .

</asp:GridView>

 Set GridView.EnablePersistedSelection property to true to avoid the same
row position from being selected as you move from one page to another.

GridView templates
 The TemplateField allows you to define a completely customized template for a

column. Inside the template you can add control tags, arbitrary HTML elements,
and data binding expressions.

 you want to create a column that combines the in-stock, on-order, and reorder
level information for a product using ItemTemplate as shown below:

<asp:TemplateField HeaderText = "Status">
<ItemTemplate>

 In Stock:
<%# Eval("UnitsInStock") % >

 On Order: On Order:
<%# Eval("UnitsOnOrder") % >

 Reorder:
<%# Eval("ReorderLevel") %>

</ItemTemplate>
</asp:TemplateField>

Paging member of the GridView

Property Description

AllowPaging Enables or disables the paging of the bound records. It
is false by default

PageSize Gets or sets the number of items to display on a single
page of the grid. The default value is 10.

PageIndex Gets or sets the zero-based index of the currently
displayed page, if paging is enabled.

PagerSettings Provides a PagerSettings object that wraps a variety of
formatting options for the pager controls. These options formatting options for the pager controls. These options
determine where the paging controls are shown and
what text or images they contain.

PagerStyle Provides a style object you can use to configure fonts,
colors, and text alignment for the paging controls.

PageIndexChanging
and
PageIndexChanged
events

Occur when one of the page selection elements is
clicked, just before the PageIndex is changed
(PageIndexChanging) and just after
(PageIndexChanged).

TemplateField templates

Mode Description

HeaderTemplate Determines the appearance and content of the
header cell.

FooterTemplate Determines the appearance and content of the
footer cell (if you set ShowFooter to true).

ItemTemplate Determines the appearance and content of each
data cell.

AlternatingItemTemplate Determines the appearance and content of even-AlternatingItemTemplate Determines the appearance and content of even-
numbered rows.

EditItemTemplate Determines the appearance and controls used in
edit mode.

InsertItemTemplate Determines the appearance and controls used in
edit mode. The GridView doesn’t support this
template, but the DetailsView and FormView
controls do.

DetailsView control
 The DetailsView control uses a table-based layout where each field of the

data record is displayed as a row in the control.
 Unlike the GridView control, the DetailsView control displays one row from

a data source at a time by rendering an HTML table.
 The DetailsView supports both declarative and programmatic data binding.
 The DetailsView control is often used in master-detail scenarios where the

selected record in a master control determines the record to display in the
DetailsView control. It shows the details for the row in a separate space.

 We can provide styles or CSS for customizing the appearance of the
DetailsView.

 By default displays information in two columns.
drawback: In pager navigation, whole set of records are retrieved from

database even though one record data is displayed in the control.
Features of DetailsView control:
 Tabular rendering
 Supports column layout, by default two columns at a time
 Optional support for paging and navigation.
 Built-in support for data grouping
 Built-in support for edit, insert and delete capabilities

DetailsView control
 Set AutoGenerateRows to false to stop automatic generation of rows. Then you

can display only the columns you want in the DetailsView.

 You can display, page, edit, insert, and delete database records with the
DetailsView.

 If you need more control over the appearance of the DetailsView, including the
particular order in which columns are displayed, then you can use fields with the
DetailsView control.

 BoundField—Enables you to display the value of a data item as text.

 CheckBoxField—Enables you to display the value of a data item as a check box.

 CommandField—Enables you to display links for editing, deleting, and selecting
rows.

 ButtonField—Enables you to display the value of a data item as a button (image
button, link button, or push button).

 HyperLinkField—Enables you to display the value of a data item as a link.

 ImageField—Enables you to display the value of a data item as an image.

 TemplateField—Enables you to customize the appearance of a data item.

DetailsView control

<asp:DetailsView ID = "DetailsView1" runat = "server" AutoGenerateRows =
"False"

DataSourceID = "sourceProducts">
<Fields>
<asp:BoundField DataField = "ProductID" HeaderText = "ProductID"
ReadOnly = "True" />
<asp:BoundField DataField = "ProductName" HeaderText = "ProductName" />
<asp:BoundField DataField = "SupplierID" HeaderText = "SupplierID" />
<asp:BoundField DataField = "CategoryID" HeaderText = "CategoryID" />
<asp:BoundField DataField = "QuantityPerUnit" HeaderText = "QuantityPerUnit" />
<asp:BoundField DataField = "UnitPrice" HeaderText = "UnitPrice" />
<asp:BoundField DataField = "UnitsInStock" HeaderText = "UnitsInStock" />
<asp:BoundField DataField = "UnitsOnOrder" HeaderText = "UnitsOnOrder" />
<asp:BoundField DataField = "ReorderLevel" HeaderText = "ReorderLevel" />
<asp:CheckBoxField DataField = "Discontinued" HeaderText = "Discontinued" />
</Fields>

. . .
</asp:DetailsView>

DetailsView properties
 AutoGenerateDeleteButton, AutoGenerateEditButton,

AutoGenerateInsertButton propertie are used for enabling delete/edit/insert for
detailsview.

 AutoGenerateEditButton Gets or sets a value indicating whether the built-in
controls to edit the current record are displayed in a DetailsView control.

 AutoGenerateInsertButton Gets or sets a value indicating whether the built-
in controls to insert a new record are displayed in a DetailsView control.

 AutoGenerateRows Gets or sets a value indicating whether row fields for each
field in the data source are automatically generated and displayed in a
DetailsView control. DetailsView control.

 BackImageUrl Gets or sets the URL to an image to display in the background
of a DetailsView control.

 DataMember Gets or sets the name of the list of data that the data-bound
control binds to, in cases where the data source contains more than one distinct
list of data items.

 DataSourceID Gets or sets the ID of the control from which the data-bound
control retrieves its list of data items.

 Hyperlinks are displayed at the bottom of the control.

DetailsView control styles
 AlternatingRowStyle allows you to set the appearance of the alternating

data rows in a DetailsView control.
 CommandRowStyle Gets a reference to the TableItemStyle object that

allows you to set the appearance of a command row in a DetailsView control.
 EditRowStyle Gets a reference to the TableItemStyle object that allows you

to set the appearance of the data rows when a DetailsView control is in edit mode.
 EmptyDataRowStyle Gets a reference to the TableItemStyle object that

allows you to set the appearance of the empty data row displayed when the data
source bound to a DetailsView control does not contain any records.

 FieldHeaderStyle Gets a reference to the TableItemStyle object that allows
you to set the appearance of the header column in a DetailsView control. you to set the appearance of the header column in a DetailsView control.

 FooterStyle Gets a reference to the TableItemStyle object that allows you to
set the appearance of the footer row in a DetailsView control.

 HeaderStyle Gets a reference to the TableItemStyle object that allows you
to set the appearance of the header row in a DetailsView control.

 InsertRowStyle Gets a reference to the TableItemStyle object that allows
you to set the appearance of the data rows in a DetailsView control when the
DetailsView control is in insert mode.

 PagerStyle Gets a reference to the TableItemStyle object that allows you to
set the appearance of the pager row in a DetailsView control.

 RowStyle Gets a reference to the TableItemStyle object that allows you to
set the appearance of the data rows in a DetailsView control.

FormView
 Requires Templates

 Displays columns without a table

 Templates supported by FormView control:
• ItemTemplate
• EditItemTemplate
• InsertItemTemplate
• FooterTemplate
• HeaderTemplate
• EmptyDataTemplate
• PagerTemplate

FormView
You can use FormView to display multiple item values in a single value:

Ex:

<asp:FormView ID = "FormView1" runat = "server" DataSourceID =
"sourceProducts">

<ItemTemplate>
 In Stock:
<%# Eval("UnitsInStock") %>

 On Order: On Order:
<%# Eval("UnitsOnOrder") %>

 Reorder:
<%# Eval("ReorderLevel") %>

</ItemTemplate>
</asp:FormView>

FEATURES

Configuration files:
web.config Used to set application specific configuration

settings.
machine.config located in OS dir.

Tools:
• Configuration settings editor
• Website Administration tool

- .

