
ADO.NET

BY
K. BHASKARA RAO

Asst. Prof.
DEPARTMENT OF IT

BEC

Short History of Data Access

• Data Access Objects (DAO/Jet)
• Open Database Connectivity (ODBC)
• OLE for Databases (OLE/DB)
• ActiveX Data Objects (ADO)

ODBC
 ODBC is Open Data Base Connectivity, which is

a connection method to data sources and
other things.

 It requires that you set up a data source, or
what's called a DSN using an SQLdriver or what's called a DSN using an SQLdriver or
other driver if connecting to other database
types.

 Most database systems support ODBC.

OLEDB
 OLEDB is the successor to ODBC
 A set of software components that allow a

"front end" such as GUI based on VB, C++,
Access or whatever to connect with a back
end such as SQL Server, Oracle, DB2, mySQL …end such as SQL Server, Oracle, DB2, mySQL …

 The OLEDB components offer much better
performance than the older ODBC.

 It does not require that you set up a DSN

Why is ADO.NET Better?

• Disconnected by Design
• Relational by Nature
• Integration with XML
• Framework Supports Real Database Schema• Framework Supports Real Database Schema

Introducing ADO.NET

• Managed Providers
• DataSet
• DataBinding in ASP.NET

System.Data Namespace

Dataset

etc.

DataRow

DataColumn

Data Relation

ForeignKeyConstraintDataTable

System.Data.Common Namespace

etc.

DataTableMapping
DbDataRecord

DataAdapter

http://adoguy.com

etc.

Your Provider

YourCommand

YourConnection

YourDataReader

etc.

System.Data.OleDb
Namespace

OleDbCommand

OleDbConnection

OleDbDataReader

etc.

System.Data.SqlClient
Namespace

SqlCommand

SqlConnection

SqlDataReader

etc.

Managed Provider Abstraction
System.Data

DataSet

System.Data.SqlClient

SqlConnection

SqlDataAdapter

http://adoguy.com

SqlErrors

SqlDataReaderSqlCommand

SqlParameter

SqlParameters

SqlError

BY
K. BHASKARA RAO

LECTURER
DEPARTMENT OF IT

BEC

ADO.NET
Basic ADO.NET Objects :

Data Table

.Net Data Provider

Data Adapter

Database Server

Command

Connection Database

Direct data access with ADO.NET

Data Providers in the .NET

Provider Namespace Description

SQL Server System.Data.SqlClient Lets you access SQL Server
database.

OLE DB System.Data.OldDb Lets you access any database OLE DB System.Data.OldDb Lets you access any database
that supports OLE DB.

ODBC System.Data.Odbc Lets you access any database
that supports ODBC

Oracle System.Data.OracleClient Lets you access Oracle
database

Class Names for the data Providers
Object SQL Server OLE DB ODBC Oracle

Connection SqlConnection OleDbConnection OdbcConnection OracleConnec
tion

Command SqlCommand OldDbCommand OdbcCommand OracleComma
ndnd

Data
reader

SqlDataReader OleDbDataReader OdbcDataReader OracleDataRe
ader

Data
adapter

SqlDataAdapter OleDbDataAdapter OdbcDataAdapter OracleDataAd
apter

SqlConnection Class

- Before you can access the data in a database, you have to
create a connection object that defines the connection to the
database.

SqlConnection Properties and Methods :

Property Description

ConnectionString Contains information that lets you connect to the SQL
Server database. It includes information such as name ofServer database. It includes information such as name of
the server, name of the database and login information.

Method Description

Open Opens a connection to a database.

Close Closes a connection to a database.

SqlCommand Class
Property Description

Connection The SqlConnection object that is used by the Command to connect to
the data base.

CommandText SqlCommand text or name of the stored procedure

CommandType A constant specifying whether the CommandText property contains
SQL stmt (Text) or Stored Procedure (StoredProcedure).

Parameters The collection of parameters used by the command

Method Description

ExecuteReader Executes a query and returns the result as a SqlDataReader
object.

ExecuteNonQuery Executes the command and returns an int representing the no.of
rows affected.

ExecuteScalar Executes a query and returns first column of the first row
returned by query.

SqlDataAdapter Class

Property Description

SelectCommand Represents the Select statement or stored procedure used to query
the database.

DeleteCommand Represents the Delete statement or stored procedure used to delete a
row from the database.

InsertCommand Represents the Insert statement or stored procedure used to add a
row to the database.

UpdateCommand Represents the Update statement or stored procedure used to update
a row in the database.a row in the database.

Method Description

Fill Executes the command identified by SelectCommand property and loads the
result into a dataset object.

Update Executes the commands identified by the DeleteCommand, InsertCommand
and UpdateCommand properties for each row in the dataset that was deleted,
added , or updated.

SqlDataReader

Property Description

Indexer Accesses the column with the specified index or name from the
current row.

FieldCount The number of columns in the current row.

Method DescriptionMethod Description

Read Reads the next row. Returns True if there are more rows.
Otherwise, returns False.

Close Closes the data reader.

Dataset

The DataSet
DataSet

Tables

DataTable DataTable

Rows Rows

DataRow DataRow

http://adoguy.com

DataRow

DataRelation

Constraint

ForeignKeyConstraint

Dataset

Data set

DataSetDataSet

TablesTables

TableTable

ColumnsColumns

ColumnColumnColumnColumn

ConstraintsConstraints

ConstraintConstraint

RowsRows

RowRow
RelationsRelations

RelationRelation

Data Binding
 Types of data binding  Single-Value, Repeated-Value
 How data binding works
 Using Single Value Data Binding
 Using Repeated Value Data Binding

 Data binding with simple List control
Multiple bindingMultiple binding
 Data binding with a Dictionary collection
 Data binding with ADO.NET

 Working with Data Source Controls

Data Binding
• Data binding, in the context of .NET, is the method by which controls on a user

interface (UI) of a client application are configured to fetch from, or update data
into, a data source, such as a database or XML document.

• The basic principle of data binding is this: you tell a control where to find your data
and how you want it displayed, and the control handles the rest of the details.

• Data binding in the case of Desktop applications involves creating data connection
between data source and the control
– If user makes changes to the control on screen data, the changes are

immediately reflected in the linked database.immediately reflected in the linked database.
– If you made changes to the database, those changes are reflected in the

bounded UI control automatically.
Data binding with ASP.NET is more complicated (because of web connections)
 ASP.NET data binding works in one direction only. Information moves from a data

object into a control. Then the data objects are thrown away, and the page is sent
to the client.

• If the user modifies the data in a data-bound control, your program can update the
corresponding record in the database, but nothing happens automatically.

• The data controls of ASP.NET allows much powerful data binding.

Types of Data binding

 Single Value or Simple Data binding.

 Repeated Value or List Binding.

Single Value or Simple Data binding:

• You can use single-value data binding to add information anywhere on an ASP.NET
page. You can even place information into a control property or as plain text inside
an HTML tag.

• Instead, single-value data binding allows you to take a variable, a property, or an • Instead, single-value data binding allows you to take a variable, a property, or an
expression and insert it dynamically into a page.

Repeated Value or List Binding:

• Repeated-value data binding allows you to display an entire table (or just a single
field from a table). Unlike single-value data binding, this type of data binding
requires a special control that supports it.
– Controls used can be ListBox, CheckBoxList, GridView etc…

Note: You’ll know that a control supports repeated-value data binding if
it provides a DataSource property.

Types of Data binding

• As with single-value binding, repeated-value binding doesn’t necessarily need
to use data from a database, and it doesn’t have to use the ADO.NET objects. For
example, you can use repeatedvalue binding to bind data from a collection or an
array.

• To use single-value binding, you must insert a data-binding expression into the
markup in the .aspx file (not the code-behind file). To use repeated-value binding,
you must set one or more properties of a data control.

• Once you specify data binding, you need to activate it. You accomplish this task by • Once you specify data binding, you need to activate it. You accomplish this task by
calling the DataBind() method. The DataBind() method performs repeated-value
data binding.

• you can also bind the whole page at once by calling the DataBind() method of the
current Page object. Once you call this method, all the data binding expressions in
the page are evaluated and replaced with the specified value.

Using Single Value Data Binding
• Single-value data binding is really just a different approach to dynamic text. To use

it, you add special data-binding expressions into your .aspx files,

<%# expression_goes_here %>
Examples:

1. <%# Country %>  Country is a protected variable.
 When you call the DataBind() method for the page, this text will be replaced with the

value for Country.

2. <%# Request.Browser.Browser %>  gives browser name2. <%# Request.Browser.Browser %>  gives browser name
3. <%# 1 + (2 * 20) %>  gives 41
4. <%# GetUserName(ID) %>

Problems with single value data binding

 1. Violation of code separation from Presentation concept of ASP.NET

i.e putting code into a page’s user interface
2. Fragmenting code: if you use data binding to fill a control and also

modify that control directly in code, data binding will not work properly.
 If the page code changes, or a variable or function is removed or renamed, the
corresponding data binding expression could stop providing valid information
without any explanation or even an obvious error, resulting in maintenace
problems.problems.

Using Repeated Value Binding

 Repeated-value data binding works with the ASP.NET list controls.
 To use repeated-value binding, you link one of these controls to a data source.
 When you call DataBind(), the control automatically creates a full list by using all

the corresponding values. This saves you from writing code that loops through the
array or data table and manually adds elements to a control.

 Repeated-value binding can also simplify your life by supporting advanced
formatting and template options that automatically configure how the data should
look when it’s placed in the control.look when it’s placed in the control.

 List controls used in Repeated value binding:

 ListBox

 HtmlSelect

 GridView, DetailsView, FormView, ListView

Multiple Binding

 binding the same data list object to multiple controls is called multiple binding.
Ex: Populating multiple list controls with the same data.

List<string> fruits = new List<string>();
fruits.Add("Apple");
fruits.Add("Grape");
fruits.Add("Mango");
fruits.Add("Orange");
fruits.Add("PineApple");
fruits.Add("Guava");
//bind to ListBox
lstItems.DataSource = fruits;
//bind to dropdownlist
dropdownLstItems.DataSource = fruits;
//bind to checkboxlist
chkBoxListItems.DataSource = fruits;
//bind to html server select control
Select1.DataSource = fruits;
this.DataBind();

Data Binding with a Dictionary Collection

Ex:
// Use integers to index each item. Each item is a string.
Dictionary<int, string> fruit = new Dictionary<int, string>();
fruit.Add(1, "Kiwi");
fruit.Add(2, "Pear");
fruit.Add(3, "Mango");
fruit.Add(4, "Blueberry");
fruit.Add(5, "Apricot");fruit.Add(5, "Apricot");
fruit.Add(6, "Banana");
fruit.Add(7, "Peach");
fruit.Add(8, "Plum");
// Define the binding for the list controls.
MyListBox.DataSource = fruit;
// Choose what you want to display in the list.
MyListBox.DataTextField = "Value";
// Activate the binding.
this.DataBind();

Using DataValueField Property

• Along with the DataTextField property, all list controls that support data binding
also provide a DataValueField property, which adds the corresponding information
to the value attribute in the control element.

• This allows you to store extra (undisplayed) information that you can access later.

Ex: MyListBox.DataTextField = "Value";
MyListBox.DataValueField = "Key";

• <select name="MyListBox" id="MyListBox" >
• <option value="1">Kiwi</option>
• <option value="2">Pear</option>
• <option value="3">Mango</option>
• <option value="4">Blueberry</option>
• <option value="5">Apricot</option>
• <option value="6">Banana</option>
• <option value="7">Peach</option>
• <option value="8">Plum</option>
• </select>

Using DataValueField Property

protected void MyListBox_SelectedIndexChanged(Object sender,
EventArgs e)
{
lblMessage.Text = "You picked: " + MyListBox.SelectedItem.Text;
lblMessage.Text += " which has the key: " + MyListBox.SelectedItem.Value;
}

DataBinding with ADO.NET

Binding DataSet to a List:
To fill a DataSet by hand, you need to follow several steps:

1. Create the DataSet.
2. Create a new DataTable and add it to the DataSet.Tables collection.
3. Define the structure of the table by adding DataColumn objects (one for each

field) to the DataTable.Columns collection.
4. Supply the data. You can get a new, blank row that has the same structure as 4. Supply the data. You can get a new, blank row that has the same structure as

your DataTable by calling the DataTable.NewRow() method. You must then set
the data in all its fields, and add the DataRow to the DataTable.Rows collection.

Data Source controls
 Data source controls allow you to create data-bound pages without writing any data

access code at all.
 These are the tools that provide data to the data bound controls and support execution

of operations like insertions, deletions, sorting, and updates.
 The data source controls include any control that implements the IDataSource

interface.
 You can find the data source controls in the Data tab of ToolBox in visual studio.
 They retrieve data from a data source and supply it to bound controls.
 They can update the data source when edits take place in the rich data controls like

GridView and DetailsView.GridView and DetailsView.
 Using SqlDataSource control you can connect to any MS SQL, ORACLE, OleDB or ODBC

data sources. MS SQL is the default.
• Another important fact to understand about the data source controls is that when you

bind more than one control to the same data source, you cause the query to be
executed multiple times.
<asp:SqlDataSource ProviderName="System.Data.SqlClient" ... />

To refer connection string in .aspx file:
<%$ ConnectionStrings:[NameOfConnectionString] %>

Ex:
<asp:SqlDataSource ConnectionString="<%$ ConnectionStrings:Northwind %>" ... />

Data Source controls
• ASP.NET includes data source controls that allow you to work

with different types of data sources such as a database, an XML
file, or a middle-tier business object. Data source controls
connect to and retrieve data from a data source and make it
available for other controls to bind to, without requiring code.

Data Source controls
• You can use each SqlDataSource control you create to retrieve a single query. Optionally,

you can also add corresponding commands for deleting, inserting, and updating rows.
• SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand properties of

SqlDataSource is used to specify the SQL statements.
• The SqlDataSource supports automatic caching if you set EnableCaching to true.
• It’s also important to remember that data binding is performed at the end of your web page

processing, just before the page is rendered. This means the Page.Load event will fire,
followed by any control events, followed by the Page.PreRender event. Only then will the
data binding take place.

SqlDataSource that defines a Select command for retrieving product information from the SqlDataSource that defines a Select command for retrieving product information from the
Products table:

<asp:SqlDataSource ID="sourceProducts" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT ProductName, ProductID FROM Products"
/>

A DropDownList control that lists all the products:
<asp:DropDownList ID="lstProduct" runat="server"

AutoPostBack="True“ DataSourceID="sourceProducts"
DataTextField="ProductName“ DataValueField="ProductID" />

Data Source controls
 .NET framework includes the following data sources:

Data Source control Description

SqlDataSource This data source allows you to connect to any data source that has an
ADO.NET data provider. This includes SQL Server, Oracle, and OLE DB
or ODBC data sources.

AccessDataSource This data source allows you to read and write the data in an Access
database file (.mdb).

ObjectDataSource This data source allows you to connect to a custom data access class.ObjectDataSource This data source allows you to connect to a custom data access class.

XmlDataSource This data source allows you to connect to an XML file.

SiteMapDataSource This data source allows you to connect to a .sitemap file that
describes the navigational structure of your website

EntityDataSource This data source allows you to query a database by using the LINQ to
Entities feature.

LinqDataSource This data source allows you to query a database by using the LINQ to
SQL feature, which is a similar (but somewhat less powerful)
predecessor to LINQ to Entities.

SqlDataSource class

Properties Description

CacheDuration Gets or sets the length of time, in seconds, that the data source
control caches data that is retrieved by the Select method.

ConnectionString Gets or sets the ADO.NET provider–specific connection string that
the SqlDataSource control uses to connect to an underlying
database.

DataSourceMode Gets or sets the data retrieval mode that the SqlDataSource
control uses to fetch data. control uses to fetch data.

DeleteCommand Gets or sets the SQL string that the SqlDataSource control uses to
delete data from the underlying database.

DeleteCommandType Gets or sets a value indicating whether the text in the
DeleteCommand property is an SQL statement or the name of a
stored procedure.

DeleteParameters Gets the parameters collection that contains the parameters that
are used by the DeleteCommand property from the
SqlDataSourceView object that is associated with the
SqlDataSource control.

SqlDataSource class

Properties Description

EnableCaching Gets or sets a value indicating whether the SqlDataSource control
has data caching enabled.

EnableTheming Gets a value indicating whether this control supports themes.

EnableViewState Gets or sets a value indicating whether the server control persists
its view state, and the view state of any child controls it contains, its view state, and the view state of any child controls it contains,
to the requesting client.

FilterExpression Gets or sets a filtering expression that is applied when the Select
method is called.

InsertCommand Gets or sets the SQL string that the SqlDataSource control uses to
insert data into the underlying database.

InsertCommandType
Gets or sets a value indicating whether the text in the
InsertCommand property is an SQL statement or the name of a
stored procedure.

SqlDataSource class

Properties Description

InsertParameters

Gets the parameters collection that contains the parameters that
are used by the InsertCommand property from the
SqlDataSourceView object that is associated with the
SqlDataSource control.

IsViewStateEnabled Gets a value indicating whether view state is enabled for this
control.

Gets a reference to the server control's parent control in the page Parent Gets a reference to the server control's parent control in the page
control hierarchy.

SelectCommand Gets or sets the SQL string that the SqlDataSource control uses to
retrieve data from the underlying database.

SelectCommandType
Gets or sets a value indicating whether the text in the
SelectCommand property is an SQL query or the name of a stored
procedure.

SelectParameters

Gets the parameters collection that contains the parameters that
are used by the SelectCommand property from the
SqlDataSourceView object that is associated with the
SqlDataSource control.

SqlDataSource class

Properties Description

UpdateCommand Gets or sets the SQL string that the SqlDataSource control uses to
update data in the underlying database.

UpdateCommandType
Gets or sets a value indicating whether the text in the
UpdateCommand property is an SQL statement or the name of a
stored procedure.

Gets the parameters collection that contains the parameters that
are used by the UpdateCommand property from the UpdateParameters are used by the UpdateCommand property from the
SqlDataSourceView control that is associated with the
SqlDataSource control.

SqlDataSource class

Methods Description

DataBind() Binds a data source to the invoked server control and all its child
controls.

Delete() Performs a delete operation using the DeleteCommand SQL string
and any parameters that are in the DeleteParameters collection.

Focus() Sets input focus to the control.Focus() Sets input focus to the control.

Insert() Performs an insert operation using the InsertCommand SQL string
and any parameters that are in the InsertParameters collection.

Update()
Performs an update operation using the UpdateCommand SQL
string and any parameters that are in the UpdateParameters
collection.

ObjectDataSource

specify SelectMethod="GetStudents" TypeName="Student“
Where GetStudents() is the method of Student class.

Data controls
Rich data controls are:
• GridView
• DetailsView
• FormView
• ListView

GridView: The GridView is an all-purpose grid control for showing large tables of
information. The GridView is the heavyweight of ASP.NET data controls.

DetailsView: The DetailsView is ideal for showing a single record at a time, in a table that
has one row per field. The DetailsView also supports editing.

FormView: Like the DetailsView, the FormView shows a single record at a time and
supports editing. The difference is that the FormView is based on templates, which allow
you to combine fields in a flexible layout that doesn’t need to be table based.

ListView: The ListView plays the same role as the GridView—it allows you to show
multiple records. The difference is that the ListView is based on templates.

Data controls
GridView Control:
 GridView  Shows the tabular data in a Grid.
 The GridView control is used to display the values of a data source in a table. Each column

represents a field where each row represents a record.
 The GridView control provides many built-in capabilities that allow the user to sort, update,

delete, select and page through items in the control.
 The GridView control can be bound to a data source control.

GridView features:
 Improved data source binding capabilities
 Tabular rendering – displays data as a table  Tabular rendering – displays data as a table
 Built-in sorting capability
 Built-in select, edit and delete capabilities
 Built-in paging capability
 Built-in row selection capability
 Multiple key fields
 Programmatic access to the GridView object model to dynamically set properties, handle

events and so on
 Richer design-time capabilities
 Control over Alternate item, Header, Footer, Colors, font, borders, and so on.
 Slow performance as compared to Repeater and DataList control .

Populating columns of GridView
1. By setting AutoGenerateColumns property to true.

Disadv: it is not possible to explicity say, which properties should be displayed as columns, what
the HeaderText or width of each column should be.

Ex:
<asp:GridView ID="gvUsers" runat="server"

AutoGenerateColumns="true"></asp:GridView>

2. By using BoundField:
This allows you to create the columns allows to explicitly define, which columns should be
displayed, how they look and in which order they are displayed.

 In order to specify the columns we need to set the AutoGeneratedColumns property to false. In order to specify the columns we need to set the AutoGeneratedColumns property to false.

Ex:
<asp:GridView ID="gvUsers" runat="server" AutoGenerateColumns="false">

<Columns>
<asp:BoundField HeaderText="ID" DataField="IDUser" ItemStyle-Width="50"/>
<asp:BoundField HeaderText="Name" DataField="Name" ItemStyle-Width="200"/>
<asp:BoundField HeaderText="Username" DataField="UserName" ItemStyle-Width="200"/>

</Columns>
</asp:GridView>

Column types

Column type Description

BoundField This column displays text from a field in the data source.

ButtonField This column displays a button in this grid column.

CheckBoxField This column displays a check box in this grid column. It’s used
automatically for True / false fields.

CommandField This column provides selection or editing buttons.

HyperLinkField This column displays its contents (a field from the data source
or static text) as a hyperlink.or static text) as a hyperlink.

ImageField This column displays image data from a binary field.

TemplateField This column allows you to specify multiple fields, custom
controls, and arbitrary HTML using a custom template.

Populating columns of GridView
Ex:
<asp:BoundField DataField = "ProductID" HeaderText = "ID" />

Configuring columns of GridView using BoundField
properties

BoundField properties:

Properties Description

DataField Identifies the field (by name) that you want to display in this
column

DataFormatString Formats the field. This is useful for getting the right representation
of numbers and dates.

FooterText, HeaderText,
and HeaderImageUrl

Sets the text in the header and footer region of the grid if this grid
has a header (GridView.ShowHeader is true) and footer and HeaderImageUrl has a header (GridView.ShowHeader is true) and footer
(GridView.ShowFooter is true).

ReadOnly If true, it prevents the value for this column from being changed in
edit mode. No edit control will be provided. Primary key fields are
often read-only.

InsertVisible If true, it prevents the value for this column from being set in
insert mode

Configuring columns of GridView using BoundField properties

BoundField properties:

Properties Description

Visible If false, the column won’t be visible in the page.

SortExpression Sorts your results based on one or more columns.

HtmlEncode If true (the default), all text will be HTML encoded to
prevent special characters from mangling the page.

NullDisplayText Displays the text that will be shown for a null value.NullDisplayText Displays the text that will be shown for a null value.

ConvertEmptyStringToNull If true, converts all empty strings to null values.

ControlStyle, HeaderStyle,
FooterStyle, and ItemStyle

Configures the appearance for just this column,
overriding the styles for the row.

Formatting GridView
 Each BoundField column provides a DataFormatString property you can use to configure the

appearance of numbers and dates using a format string.
 Format strings generally consist of a placeholder and a format indicator, which are wrapped

inside curly brackets.
 Ex: {0:C}  Currency format
Ex:

<asp:BoundField DataField = "UnitPrice" HeaderText = "Price"
DataFormatString = "{0:C}" />

Time & Date Format Strings:Time & Date Format Strings:

Type Format
String

Syntax Example

Short Date {0:d} M/d/yyyy 10/30/2012

Long Date {0:D} dddd, MMMM dd, yyyy Monday, January 30,
2012

Long Date and
Short Time

{0:f } dddd, MMMM dd, yyyy
HH:mm aa

Monday, January 30,
2012 10:00 AM

Long Date and
Long Time

{0:F} dddd, MMMM dd, yyyy
HH:mm:ss aa

Monday, January 30,
2012 10:00:23 AM

GridView styles

Style Description

HeaderStyle Configures the appearance of the header row that contains
column titles, if you’ve chosen to show it (if ShowHeader is
true).

RowStyle Configures the appearance of every data row.

AlternatingRowStyle If set, applies additional formatting to every other row

SelectedRowStyle Configures the appearance of the row that’s currently selected.

EditRowStyle Configures the appearance of the row that’s in edit mode. This EditRowStyle Configures the appearance of the row that’s in edit mode. This
formatting acts in addition to the RowStyle formatting.

EmptyDataRowStyle Configures the style that’s used for the single empty row in the
special case where the bound data object contains no rows.

FooterStyle Configures the appearance of the footer row at the bottom of
the GridView, if you’ve chosen to show it

PagerStyle Configures the appearance of the row with the page links, if
you’ve enabled paging (set AllowPaging to true).

Styles
EX:

<RowStyle BackColor = "#E7E7FF" ForeColor = "#4A3C8C" />
<HeaderStyle BackColor = "#4A3C8C" Font-Bold = "True" ForeColor = "#F7F7F7" />

EX:
<asp:BoundField DataField = "ProductName" HeaderText = "Product Name">

<ItemStyle BackColor = "#E7E7FF" ForeColor = "#4A3C8C" />
<HeaderStyle BackColor = "#4A3C8C" Font-Bold = "True" ForeColor = "#F7F7F7" /><HeaderStyle BackColor = "#4A3C8C" Font-Bold = "True" ForeColor = "#F7F7F7" />

</asp:BoundField>

Using a Data Field as a Select Button
 You don’t need to create a new column to support row selection. Instead, you can turn an

existing column into a link.

 To use this technique use a add a ButtonField column. Then, set the DataTextField to the
name of the field you want to use.

EX: <asp:ButtonField ButtonType = "Button" DataTextField = "ProductID" />

Sorting & Paging the GridView
 To enable sorting, you must set the GridView.AllowSorting property to true. Next,

you need to define a SortExpression for each column that can be sorted.
 To use automatic paging, you need to set AllowPaging to true (which shows the

page controls), and you need to set PageSize to determine how many rows are
allowed on each page

Paging with the GridView
Ex:
<asp:GridView ID = "GridView1" runat = "server" DataSourceID = "sourceProducts"
PageSize = "10" AllowPaging = "True" . . .>
. . .
</asp:GridView>

 Set GridView.EnablePersistedSelection property to true to avoid the same row position
from being selected as you move from one page to another.

GridView templates
 The TemplateField allows you to define a completely customized template for a column.

Inside the template you can add control tags, arbitrary HTML elements, and data binding
expressions.

 you want to create a column that combines the in-stock, on-order, and reorder level
information for a product using ItemTemplate as shown below:

<asp:TemplateField HeaderText = "Status">
<ItemTemplate>

 In Stock:
<%# Eval("UnitsInStock") % >
<%# Eval("UnitsInStock") % >

 On Order:
<%# Eval("UnitsOnOrder") % >

 Reorder:
<%# Eval("ReorderLevel") %>

</ItemTemplate>

</asp:TemplateField>

Paging member of the GridView

Property Description

AllowPaging Enables or disables the paging of the bound records. It is false
by default

PageSize Gets or sets the number of items to display on a single page of
the grid. The default value is 10.

PageIndex Gets or sets the zero-based index of the currently displayed
page, if paging is enabled.

PagerSettings Provides a PagerSettings object that wraps a variety of
formatting options for the pager controls. These options formatting options for the pager controls. These options
determine where the paging controls are shown and what text
or images they contain.

PagerStyle Provides a style object you can use to configure fonts, colors,
and text alignment for the paging controls.

PageIndexChanging and
PageIndexChanged
events

Occur when one of the page selection elements is clicked, just
before the PageIndex is changed (PageIndexChanging) and just
after (PageIndexChanged).

TemplateField templates

Mode Description

HeaderTemplate Determines the appearance and content of the header
cell.

FooterTemplate Determines the appearance and content of the footer
cell (if you set ShowFooter to true).

ItemTemplate Determines the appearance and content of each data
cell.

AlternatingItemTemplate Determines the appearance and content of even-AlternatingItemTemplate Determines the appearance and content of even-
numbered rows.

EditItemTemplate Determines the appearance and controls used in edit
mode.

InsertItemTemplate Determines the appearance and controls used in edit
mode. The GridView doesn’t support this template, but
the DetailsView and FormView controls do.

DetailsView control
 The DetailsView control uses a table-based layout where each field of the data record

is displayed as a row in the control.
 Unlike the GridView control, the DetailsView control displays one row from a data

source at a time by rendering an HTML table.
 The DetailsView supports both declarative and programmatic data binding.
 The DetailsView control is often used in master-detail scenarios where the selected

record in a master control determines the record to display in the DetailsView control.
It shows the details for the row in a separate space.

 We can provide styles or CSS for customizing the appearance of the DetailsView.
 By default displays information in two columns. By default displays information in two columns.
drawback: In pager navigation, whole set of records are retrieved from database even

though one record data is displayed in the control.
Features of DetailsView control:
 Tabular rendering
 Supports column layout, by default two columns at a time
 Optional support for paging and navigation.
 Built-in support for data grouping
 Built-in support for edit, insert and delete capabilities

DetailsView control
 Set AutoGenerateRows to false to stop automatic generation of rows. Then you can display

only the columns you want in the DetailsView.
 You can display, page, edit, insert, and delete database records with the DetailsView.
 If you need more control over the appearance of the DetailsView, including the particular

order in which columns are displayed, then you can use fields with the DetailsView control.
• BoundField—Enables you to display the value of a data item as text.
• CheckBoxField—Enables you to display the value of a data item as a check box.
• CommandField—Enables you to display links for editing, deleting, and selecting rows.
• ButtonField—Enables you to display the value of a data item as a button (image button, link • ButtonField—Enables you to display the value of a data item as a button (image button, link

button, or push button).
• HyperLinkField—Enables you to display the value of a data item as a link.
• ImageField—Enables you to display the value of a data item as an image.
• TemplateField—Enables you to customize the appearance of a data item.


DetailsView control

<asp:DetailsView ID = "DetailsView1" runat = "server" AutoGenerateRows = "False"
DataSourceID = "sourceProducts">

<Fields>
<asp:BoundField DataField = "ProductID" HeaderText = "ProductID"
ReadOnly = "True" />
<asp:BoundField DataField = "ProductName" HeaderText = "ProductName" />
<asp:BoundField DataField = "SupplierID" HeaderText = "SupplierID" />
<asp:BoundField DataField = "CategoryID" HeaderText = "CategoryID" />
<asp:BoundField DataField = "QuantityPerUnit" HeaderText = "QuantityPerUnit" /><asp:BoundField DataField = "QuantityPerUnit" HeaderText = "QuantityPerUnit" />
<asp:BoundField DataField = "UnitPrice" HeaderText = "UnitPrice" />
<asp:BoundField DataField = "UnitsInStock" HeaderText = "UnitsInStock" />
<asp:BoundField DataField = "UnitsOnOrder" HeaderText = "UnitsOnOrder" />
<asp:BoundField DataField = "ReorderLevel" HeaderText = "ReorderLevel" />
<asp:CheckBoxField DataField = "Discontinued" HeaderText = "Discontinued" />
</Fields>

. . .
</asp:DetailsView>

DetailsView properties
 AutoGenerateDeleteButton, AutoGenerateEditButton, AutoGenerateInsertButton propertie

are used for enabling delete/edit/insert for detailsview.
 AutoGenerateEditButton  Gets or sets a value indicating whether the built-in controls to

edit the current record are displayed in a DetailsView control.
 AutoGenerateInsertButton  Gets or sets a value indicating whether the built-in controls

to insert a new record are displayed in a DetailsView control.
 AutoGenerateRows  Gets or sets a value indicating whether row fields for each field in

the data source are automatically generated and displayed in a DetailsView control.
 BackImageUrl  Gets or sets the URL to an image to display in the background of a

DetailsView control. DetailsView control.
 DataMember  Gets or sets the name of the list of data that the data-bound control binds

to, in cases where the data source contains more than one distinct list of data items.
 DataSourceID  Gets or sets the ID of the control from which the data-bound control

retrieves its list of data items.
 Hyperlinks are displayed at the bottom of the control.

DetailsView control styles
 AlternatingRowStyle  allows you to set the appearance of the alternating data rows in a

DetailsView control.
 CommandRowStyle  Gets a reference to the TableItemStyle object that allows you to set

the appearance of a command row in a DetailsView control.
 EditRowStyle  Gets a reference to the TableItemStyle object that allows you to set the

appearance of the data rows when a DetailsView control is in edit mode.
 EmptyDataRowStyle  Gets a reference to the TableItemStyle object that allows you to set

the appearance of the empty data row displayed when the data source bound to a
DetailsView control does not contain any records.

 FieldHeaderStyle  Gets a reference to the TableItemStyle object that allows you to set
the appearance of the header column in a DetailsView control. the appearance of the header column in a DetailsView control.

 FooterStyle  Gets a reference to the TableItemStyle object that allows you to set the
appearance of the footer row in a DetailsView control.

 HeaderStyle  Gets a reference to the TableItemStyle object that allows you to set the
appearance of the header row in a DetailsView control.

 InsertRowStyle  Gets a reference to the TableItemStyle object that allows you to set the
appearance of the data rows in a DetailsView control when the DetailsView control is in
insert mode.

 PagerStyle Gets a reference to the TableItemStyle object that allows you to set the
appearance of the pager row in a DetailsView control.

 RowStyle  Gets a reference to the TableItemStyle object that allows you to set the
appearance of the data rows in a DetailsView control.

FormView
 Requires Templates
 Displays columns without a table
 Templates supported by FormView control:

• ItemTemplate
• EditItemTemplate
• InsertItemTemplate
• FooterTemplate
• HeaderTemplate
• EmptyDataTemplate
• PagerTemplate• PagerTemplate

FormView
You can use FormView to display multiple item values in a single value:

Ex:

<asp:FormView ID = "FormView1" runat = "server" DataSourceID =
"sourceProducts">

<ItemTemplate>
 In Stock:
<%# Eval("UnitsInStock") %>

 On Order: On Order:
<%# Eval("UnitsOnOrder") %>

 Reorder:
<%# Eval("ReorderLevel") %>

</ItemTemplate>
</asp:FormView>

