ADO.NET

BY

K. BHASKARA RAO
Asst. Prof.
DEPARTMENT OF IT
BEC

Short History of Data Access

Data Access Objects (DAO/Jet)

Open Database Connectivity (ODBC)
OLE for Databases (OLE/DB)

ActiveX Data Objects (ADO)

. History of ADQ.NET

Des ktop
OB | M5

ACCEss)

SLorage

- Data Access Object
- Remote Data Object
ActiveX Data Object

Developed By: Ashish Kr Chakiabarty, ARDENT COMPUTECHPVYTLTD

ODBC

= ODBC is Open Data Base Connectivity, which is
a connection method to data sources and
other things.

" |t requires that you set up a data source, or
what's called a DSN using an SQLdriver or
other driver if connecting to other database

types.
" Most database systems support ODBC.

OLEDB

** OLEDB is the successor to ODBC

** A set of software components that allow a
"front end" such as GUI based on VB, C++,
Access or whatever to connect with a back
end such as SQL Server, Oracle, DB2, mySQL ...

¢ The OLEDB components offer much better
performance than the older ODBC.

*** It does not require that you set up a DSN

Why is ADO.NET Better?

Disconnected by Design

Relational by Nature

ntegration with XML

-ramework Supports Real Database Schema

Connectionless Data Access

* Motivation

— Many parallel, long lasting access operations

— Connection-oriented data access too costly

 [dea

— (Caching data in main memory

=>» “main memory data base*

— Only short connections for reading and updates

=> DataAdapter

— Main memory data base independent from data source

=>conflicting changes are possible

Architecture of Connectionless Data Access

connectionless

connection-oriented

Connectionless data flow

ADO.NET Content Components ADO.NET Managed
e Providers
Tables DataAdapter
DataTal::Ig - — -l
Constraints
I
DataColumn
| DataRow Update
Relations e e
L |
| | DataTable DataRelation
A
| ReadXml
WriteXml “
XML file

Connection-oriented data flow

————————————— — o=

Introducing ADO.NET

* Managed Providers
* DataSet
* DataBinding in ASP.NET

System.Data Namespace

Dataset DataRow Data Relation
DataTable DataColumn ForeignKeyConstraint
etc.
System.Data.Common Namespace
DataAdapter DataTableMapping DbDataRecord
etc.
System.Data.SqlClient System.Data.OleDb Your Provider
Namespace Namespace
SqlConnection OleDbConnection YourConnection
SqlCommand OleDbCommand YourCommand
SqlDataReader OleDbDataReader YourDataReader
etc. etc. etc.

Managed Provider Abstraction

System.Data.SqlClient System.Data

SqlConnection

SqlDataAdapter =~ prommmmmmessmsosososssosooooooooos F4{--1 DataSet

|

SqlCommand -1 SqlDataReader

|_\

SqlParameters

_l

SqlParameter

SqlErrors

I_I

SqlError

This technology takes its name from ADO({ActiveX Data Objects)

New —is designed to overcome the limitation of ADO technology. It
deals with accessing and manipulating databases. It comprises of many
namespaces and classes to do s0. ADO.Net provides accessesto data source
suchas etc.

ADOQ technology supports only Connected approach. But new ADO.Net
supports both a connected and disconnected approach.

approach
approach

Developed By: Ashish Kr Chakrabarty, ARDENT COMPUTECH PYTLTD

ADO.NET
Basic ADO.NET Objects :

Direct data access with ADO.NET

DataReader Command
() e | VG || o
i “|Ccomnection)| € Q
—
Your Connection
Web m}]EG‘I Database
Page
Lk Send direct
Update/Delete :

Command
command > Object > ___/

Figure 14-8. Direct data access with ADO.NET

-

has two major components

1. The
2. The

A is used for connecting to a database, executing
commands, and retrieving results. Using the .Net Data Providers, we can
either access database directly or use the disconnected approach, in
disconnected approach we use DataSet class.

The - It has following basic objects.

1. A Connection Object
2. A Command Object

3. A DataReader Object
4. A DataAdapter Object

Developed By: Ashish Ky Chakeabarty, ARDENT COMPUTECHPYTLTD

Th

objects

e
The is used to connected to the data source.
Data source can be any database file. The Connection object contains
information like the provider name, server name, data source name,
username, passwordand so on.

A is used to connect the Connection Object to a
dataReader or DataAdaptor Object. The Command Object allows us
to execute anSOL statement ora stored procedure ina data source.

The is used to read the data in a first an efficient
manner from the database. It is generally used to extract one or a
few records or specific field values, or to execute simple SQL
statements.

A is used to fill data from the databaseintothe
DataSet Object. The DataSetis used in the disconnected approach.

Developed By: Ashish Kr Chakrabharty, ARDENT COMPUTECHPYTLTD

Class

DbhCommand

DbhConnection

DbDatalfAdapter

DbhDataReader

Description

Executes a data command,
such as a SQL statement or a
stored procedure.

Establishes a connection to a
data source.

Populates a DataSet from a
data source.

Represents a read-only,
forward-only stream of data

from a data source.

Data Providers in the .NET

SQL Server System.Data.SqlClient Lets you access SQL Server
database.
OLE DB System.Data.OldDb Lets you access any database

that supports OLE DB.

ODBC System.Data.Odbc Lets you access any database
that supports ODBC

Oracle System.Data.OracleClient Lets you access Oracle
database

Class Names for the data Providers

W sQL Server | OLE DB ODBC m

Connection SglConnection OleDbConnection OdbcConnection OracleConnec

tion
Command SqlCommand OldDbCommand OdbcCommand OracleComma
nd
Data SglDataReader OleDbDataReader OdbcDataReader OracleDataRe
reader e
Data SqlDataAdapter OleDbDataAdapter OdbcDataAdapter OracleDataAd

adapter apter

Developed By: Ashish kr Chakeabarty, ARDENT COMPUTECHPYTLTD

» The process for using these classes is as
follows:

. Create a DbConnection to the database
via a connection string.

. Create and execute a DbCommand for the
database.

. |Optional] Fill a DataSet from the
database using a DbDataAdapter, Or use
a DbDataReader to retrieve data from the

database.

» Represents a connection to a data source
through which commands are passed to
the data source and through which data is
returned.

» Before you can access a database, you
must first create a connection to it.

|H'

» Database commands then “travel” across
the connection to the database, as does
any data returned from a database.

» Each Dbconnection class has members
for:

> opening and closing a connection,

~ setting and retrieving properties of a
connection,

= handling connection-related events.

» Represents an SQL statement or a stored
procedure that is executed by the data
source.

» Each Dbcommand class has members for:

» representing an SQL statement,
» creating data parameters,

» executing SQL commands that either return
data (e.g., SELECT) or do not return data
(e.q., INSERT, DELETE, or UPDATE).

» can also be used to run stored procedures if
the database supports them.

> Once a DbCcommand object has been

instantiated and its command text,
command type, and connection set, the

command can be run by calling one of the
Execute methods of the DbCommand

class:
» ExecuteNonQuery

» for commands that do not return any record
data, such as an SQL INSERT or DELETE.

> ExecuteScalar

» for SELECT commands that return a single
value.

> ExecuteReader

» for SELECT commands that return multiple
results.

» How are these results returned?
 mrehums a DbhDataReader.

T
'
T

Represent a parameter to a command.

Parameters are used to specify criteria to a
query

» that is, they are used to construct
parameterized queries.

» They are a more secure alternative to
simply building a query with criteria via
string building.

Creating a command using a
DbParameter involves three steps:

> Modify the SQL WHERE clause so it uses
parameter names instead of values.

m"oelect * Ffrom Users where DserlId=Huser"™:

Create the appropriate DbParameter

objects and assign them the appropriate
names and values.

SglParam=ecer param = new SglParamecer ("Euser",txtlser.

= Add the created DbParameter objects to
the DbCommand object’'s Parameters

collection.

» This step must be done before calling any of
the Dbcommand object’'s Execute methods.

cmd - Parameters . . Add (param)

» Transactions provide a way to gracefully
handle errors and keep your data properly
consistent when errors do occur.

» Transactions can be implemented both in

ADO.NET as well as within the DBMS.
» Transactions can be local or distributed.

Create a DbTransaction object by calling the
BeginTransaction method of the DbConnection
class.

Assign the DbTransaction object to each
DbCommand object being executed as part of

the transaction via its Transaction property.

Execute each DbCommand.

Commit (i.e., save the database changes)
if everything worked okay or roll back
(i.e., undo any database changes) if an
exception occurred.

> If the connection is closed before a commit
or a roll back (caused, for instance, by a
crash in the DBMS or the web server), then
the transaction would be rolled back.

» The DbDataReader is optimized for the

fast retrieval of a read-only stream of
records and is thus ideal for web
applications.

» DbDataReader is not a data container

like the DataSet, but a kind of pointer to

a record in a result set (that is, a set of
records returned from a database query).

» DbDataReader also implements the
TEnumerable interface so multi-value

web server controls can be data bound to
it.

= Field data can be retrieved from the
current record in the reader since the
reader object acts like a collection, with
each element in the collection
corresponding to a field in the record.

SELECT Id, ProductName, Price FROM FProducts

S retrieve using column name

int id = (int)reader[™Id4d"™] :

sString name = (string)reader["ProductHamse"] ;7
doulbhle price = ([(double)resader["Price™]):

S retrieve using a =Zero—based column ordinal
dmt id = ({(inmnt)readexr[O0]:r

String namse — (string)reader[1]:;

double price = [(double)reader[Z]

S0 retrieve a tyvped value using column ordinal
dnmt id = reader.GecIntc3z2 (0) ;

String name — reader.GecString{l) :

double price = reader.GCetDouble (Z)

=

» These classes represent a bridge between
the Dataset container and an underlying
database.

» Each DbDataRdapter class provides a:
» Fill method for filing a Dataset (or just

a DataTable) with data from the database

» Update method for outputting any changes
made to the data in the Dataset back to

the database.
» The DbDataAdapter can also persist

changes made to the in-memory data by
writing the changes back to the database.

DataSet ds = new DataSet () :

A create a connection
SglConnection conn = new SglConnection{connstring) -

gstring sgl = "SELECT Isbn, Title, ,Price FROM Books™:;
SglDatahdapter adapter = new SglDataldapter(s=gl, Cconn) ;

tTry
{

A read data i1nto DatabSet
adapter.Fill {(ds) -

A4 use the £filled DataSet
}
catch (Exception £x)
{

LY process exception

string connstring = "._."
OleDbConnection conn = new OleDbConnection (connsString):

string cmd3tring = "SELECT Id,ProductMName,Price From Products™;
OleDbECommand cmd = new OleDbCommand (cmdString, conn):;

conn.Cpen()
OleDBDataBReader reader

cmd . ExecuteReader () ;

someControl . DataSource = reader:
somelControl .DataBind /() :

reader.Close() r
conn.Close ()

SqglConnection Class

- Before you can access the data in a database, you have to
create a connection object that defines the connection to the
database.

SglConnection Properties and Methods :

ConnectionString Contains information that lets you connect to the SQL
Server database. It includes information such as name of
the server, name of the database and login information.

Wethod | esupion

Open Opens a connection to a database.

Close Closes a connection to a database.

SglCommand Class

Connection The SqlConnection object that is used by the Command to connect to
the data base.

CommandText SqlCommand text or name of the stored procedure

CommandType A constant specifying whether the CommandText property contains
SQL stmt (Text) or Stored Procedure (StoredProcedure).

Parameters The collection of parameters used by the command
Wethod | Descrpton
ExecuteReader Executes a query and returns the result as a SqlDataReader
object.

ExecuteNonQuery Executes the command and returns an int representing the no.of
rows affected.

ExecuteScalar Executes a query and returns first column of the first row
returned by query.

SqlDataAdapter Class

SelectCommand Represents the Select statement or stored procedure used to query
the database.

DeleteCommand Represents the Delete statement or stored procedure used to delete a
row from the database.

InsertCommand Represents the Insert statement or stored procedure used to add a
row to the database.

UpdateCommand Represents the Update statement or stored procedure used to update
a row in the database.

wethod | Deseption

Fill Executes the command identified by SelectCommand property and loads the
result into a dataset object.

Update Executes the commands identified by the DeleteCommand, InsertCommand
and UpdateCommand properties for each row in the dataset that was deleted,
added, or updated.

SqglDataReader

Indexer Accesses the column with the specified index or name from the
current row.

FieldCount The number of columns in the current row.

Wetnod | Desuptn

Read Reads the next row. Returns True if there are more rows.
Otherwise, returns False.

Close Closes the data reader.

— for Database Management(

using System;
using System.Data;
using System.Data. SglClient;

namespace <FileName>

f

class DbAccess
{

static SqlConnection con = new SqlConnection(@" Connection String");
Il Method use to execute from the data source

public static DataSet FetchData(string Query)
{
SqlDataAdapter da = new SqlDataAdapter(Query, con);
DataSet ds = new DataSet();
da.Fill(ds);
return ds;
j

Develspad By: Ashith Kr Chakeabarty, ARDENT COMPUTECH FVYTLTD

// Method use to execute (INSERT { UPDATE { DELETE Jrecords
public static bool SaveData(string Query)

f
try
f
SqlCommand ¢cmd = new SglCommand(Query, con);
con.Open();
cmd.ExecuteNonQuery();
retum true;

}

catch (Exception ex)

{

retumn false;

}

finally
{

con.Close();

]

Developed By: Ashiah Kr Chakrabarty, ARDENT COMPUTECHPYTLTD

{f Method use to obtaina from the data source

public static string FetchScalar(string Query)
{
SqlCommand c¢md = new SglCommand(Query, con);
string 5;
try
{
con.Open();
s = Convert. ToString(cmd.ExecuteScalar());
retumn s;]
catch (Exception ex)

i
return " "]
finally

£
con.Close(); }

/{End of DbAccess class.
{{fEnd of the namespace.

Developed By: Ashish Kr Chakrabarty, ARDENT COMPUTECHFYTLTD

It help us to connect to Database.
For usin

1. Change the namespace to - using System.Data.OleDb;

2. Change the DataProvider Object name with -
OleDbConnection, OleDbAdapter, OleDbCommand
ALC.

Developed By: Ashich Kr Chakeabarty, ARDENT COMPUTECHPYTLTD

DataSet

* Main memory data base

— relational structure
— object oriented interface

DataSet consists of

— collection of DataTables
— collection of DataRelations

DataTables consists of
— collection of DataColumns (= schema definition)
— collection of DataRows (= data)
— DefaultView (DataView, see later)

DataRelations

— associate two DataTable objects

— define ParentTable and ParentColumns
and ChildTable and ChildColumns

Table[0]

Table[]

Table[2] —

It temporarily stores Data in
a disconnected approach for
Database Management.

Developed By: Ashish Kr Chakrabarty, ARDENT COMPUTECH FYTLTD

The DataSet

DataSet
Tables
DataTable DataTable
Rows Rows
DataRow DataRow
A DataRelation [
jremm e Constraint | '

ForeignKeyConstrain

Dataset

—| DataRow Object
DataSet Object DataTable Object
g \
Rows Collection
(Tables Collection " ’ DataColumn Object
'S =
Columns Collection
5)
5 : J Constraint Object
Constraints Collection
Relations Collection n
\ J
b
DefaultView —
i DataView Object
|
|

DataRelation Object

Figure 14-15. The DataSet family of objects

Data set

DataSet
a—

Example: Person Contacts

Realisation as data set

Concept
Person Contact
D D

FirstName FirstName

Name Name
MickName

EMail

Phone
J»| PersoniD

DataTable ,Person”

DataColumn_ /D"

DataColumn .FirstName"

DataColumn ,Mamea"

DataSet

WEEEREER]

DataTable ,Contact”

DataColumn

ID*

DataColumn .,

FirstName"

DataColurnn

Name"

DataColumn

MickName"

DataColumn

.EMail”

DataColumn

.Phone"

DataColumn

PersonlD¥

[mplementation steps:

« Define schema

» Define data

» Access data

Building A DataSet — Create Table

e« (reate DataSet and DataTable "Person”

DataSet ds = new DataSet("PersonContacts");
DataTable personTable = new DataTable("Person”);

* Define column "ID" and set properties

DataColumn col = new DataColumn();
col.DataType = typeof(System.Int64);
col.ColumnName = "[D";
col.ReadOnly = true;

col.Unique = true; // values must be unique
col.Autolncrement = true; // keys are assigned automatically
col.AutolncrementSeed = -1; // first key starts with -1
col.AutolncrementStep = -1; // next key = prev. key - 1

* Add column to table and set as primary key

personTable.Columns.Add(col);
personTable.PrimaryKey = new DataColumn[| { col };

Building A DataSet — Add Table

« Add table to DataSet
ds.Tables.Add(personTable);

« Create table "Contact" in similar way

DataTable contactTable = new DataTable("Contact”);

ds. Tables.Add(contactTable):

Adding Relations

DataColumn parentCol = ds.Tables["Person"].Columns|["ID"];
DataColumn childCol = ds.Tables["Contact"].Columns["Person|D";

Create relation
PersonHasContacts

and add 1t to the DataSet

DataTable Parsan’

DataCobumn, (D

DataTable .Contact™

CataCobumn Srstiame’

DataCokumn Mame®

 EEIUD TSRS E "

DataColurmn, iD°

DiataColurmn [rathame’

DataColurmn Mame"

DataCourmn MickMName®

Uuane|ayeieg

DataCodurnn EMail*

DataColurmn _Phong”

v

DataColurmn PersaniD’

DataRelation rel = new DataRelation("PersonHasContacts", parentCol, childCol);
ds.Relations.Add(rel);

Working with DataRows - Filling Data

* (Create new row and assign column values

DataRow personRow = personTable.NewRow();

personRow([1] = "Wolfgang";
personRow["Name"] = "Beer";

« Add row to table "Person"

personTable.Rows.Add(personRow);

e (Create and add row to table "Contact"

DataRow contactRow = contactTable.NewRow ();
contactRow|[0] = "Wolfgang";

;:‘.;;:mtac:tﬁﬂw["PersanlD"] = (long)personRow|['ID"]; // defines relation
contactTable.Rows.Add (contactBow);

 Commit changes

ds.AcceptChanges();

Working with DataRows: Reading Data

[terate over all persons of personTable and put out the names

foreach (DataRow person in personTable.Rows) {
Console.WriteLine("Contacts of {0}.", person['Name"]);

* Access contacts through relation "PersonHasContacts"
and print out contacts

foreach (DataRow contact in person.GetChildRows("PersonHasContacts”)) {
Console.WriteLine("{0}, {1}: {2}", contact[0], contact['Name"], contact['Phone"]);

}

Filling DataSets with Data Adapters

« DataAdapter for connection to
data source
Fill: Filling the DataSet
Update: Writing back changes

« DataAdapters use Command
objects
SelectCommand
InsertCommand
DeleteCommand
UpdateCommand

connectionless connection-oriented
ggﬁ-“iﬂfﬁﬂ”‘e”t ADO.NET Managed
PO Providers
DataSet
DataAdapter
- s SelectCommand
UpdateCommand
InsetCommand
Update i
DeleteCommand
|
‘ |DbConnection
! ReadXml _
WriteXml i "
O f‘nz.l;a;;j
b < __
ZML file R

Connectionless data flow

Connection=oriented data flow

-

DataAdapter: Loading Data

« C(Create DataAdapter object and set SelectCommand

|IDbDataAdapter adapter = new OleDbDataAdapter();

OleDbCommand cmd = new OleDbCommand();
cmd.Connection = new OleDbConnection ("provider=SQLOLEDB; ...");

cmd.CommandText = "SELECT * FROM Person”;
adapter.SelectCommand = cmd;

e« Read data from data source and fill DataTable "Person”

— Only works when DataTable . Person®

adapter.Fill(ds, "Person”); already exists and is compatible to
database table!

adapter.Fill(ds, new DataTable("Person");

DataAdapter: Writing Back Changes (1)

Changes are written back with Update method

— IMPORTANT
Do not call AcceptChanges() before, this will be called automatically

Update-, Insert- and DeleteCommand define how changes are
written

CommandBuilder can create Update-, Insert- und DeleteCommand
from SelectCommand automatically (in simple cases)

Conflict management for updates:

— comparison of data in DataTable and data source

— in case of conflict DBConcurrencyException is thrown

DataAdapter: Writing Back Changes (2)

« Create DataAdapter with SELECT expression

OleDbConnection con = new OleDbConnection ("provider=SQLOLEDB; ...");
adapter = new OleDbDataAdapter("SELECT * FROM Person”, con);

* (reate update commands using CommandBuilder

OleDbCommandBuilder cmdBuilder = new OleDbCommandBuilder(adapter);

» (all Update and handle conflicts

try {
adapter.Update(ds, tableName);
} catch (DBConcurrencyException) {

// Handle the error, e.g. by reloading the DataSet

}
adapter.Dispose();

Data Binding

» Types of data binding -2 Single-Value, Repeated-Value
» How data binding works
» Using Single Value Data Binding
» Using Repeated Value Data Binding
» Data binding with simple List control
» Multiple binding
» Data binding with a Dictionary collection
» Data binding with ADO.NET
» Working with Data Source Controls

Data Binding

* Data binding, in the context of .NET, is the method by which controls on a user
interface (Ul) of a client application are configured to fetch from, or update data
into, a data source, such as a database or XML document.

* The basic principle of data binding is this: you tell a control where to find your data
and how you want it displayed, and the control handles the rest of the details.

* Data binding in the case of Desktop applications involves creating data connection
between data source and the control

— If user makes changes to the control on screen data, the changes are
immediately reflected in the linked database.

— If you made changes to the database, those changes are reflected in the
bounded Ul control automatically.

Data binding with ASP.NET is more complicated (because of web connections)

= ASP.NET data binding works in one direction only. Information moves from a data
object into a control. Then the data objects are thrown away, and the page is sent
to the client.

* |f the user modifies the data in a data-bound control, your program can update the
corresponding record in the database, but nothing happens automatically.

* The data controls of ASP.NET allows much powerful data binding.

Types of Data binding

» Single Value or Simple Data binding.
» Repeated Value or List Binding.

Single Value or Simple Data binding:

* You can use single-value data binding to add information anywhere on an ASP.NET
page. You can even place information into a control property or as plain text inside
an HTML tag.

* Instead, single-value data binding allows you to take a variable, a property, or an
expression and insert it dynamically into a page.

Repeated Value or List Binding:

* Repeated-value data binding allows you to display an entire table (or just a single
field from a table). Unlike single-value data binding, this type of data binding
requires a special control that supports it.

— Controls used can be ListBox, CheckBoxList, GridView etc...

Note: You’ll know that a control supports repeated-value data binding if
it provides a DataSource property.

Types of Data binding

As with single-value binding, repeated-value binding doesn’t necessarily need

to use data from a database, and it doesn’t have to use the ADO.NET objects. For
example, you can use repeatedvalue binding to bind data from a collection or an
array.

To use single-value binding, you must insert a data-binding expression into the
markup in the .aspx file (not the code-behind file). To use repeated-value binding,
you must set one or more properties of a data control.

Once you specify data binding, you need to activate it. You accomplish this task by
calling the DataBind() method. The DataBind() method performs repeated-value
data binding.

you can also bind the whole page at once by calling the DataBind() method of the
current Page object. Once you call this method, all the data binding expressions in
the page are evaluated and replaced with the specified value.

Using Single Value Data Binding

* Single-value data binding is really just a different approach to dynamic text. To use
it, you add special data-binding expressions into your .aspx files,

<%# expression_goes_here %>
Examples:

1. <%t Country %> —> Country is a protected variable.

v" When you call the DataBind() method for the page, this text will be replaced with the
value for Country.

<%t Request.Browser.Browser %> —> gives browser name
3. <%#1+(2*20) %> - gives 41
<%# GetUserName(ID) %>

>

Problems with single value data binding

1. Violation of code separation from Presentation concept of ASP.NET

i.e putting code into a page’s user interface
2. Fragmenting code: if you use data binding to fill a control and also
modify that control directly in code, data binding will not work properly.

» |If the page code changes, or a variable or function is removed or renamed, the

corresponding data binding expression could stop providing valid information
without any explanation or even an obvious error, resulting in maintenace

problems.

Using Repeated Value Binding

» Repeated-value data binding works with the ASP.NET list controls.
» To use repeated-value binding, you link one of these controls to a data source.

» When you call DataBind(), the control automatically creates a full list by using all
the corresponding values. This saves you from writing code that loops through the
array or data table and manually adds elements to a control.

» Repeated-value binding can also simplify your life by supporting advanced
formatting and template options that automatically configure how the data should
look when it’s placed in the control.

» List controls used in Repeated value binding:
» ListBox
» HtmlSelect
» GridView, DetailsView, FormView, ListView

Multiple Binding

» binding the same data list object to multiple controls is called multiple binding.
Ex: Populating multiple list controls with the same data.

List<string> fruits = new List<string>();
fruits.Add("Apple");
fruits.Add("Grape");
fruits.Add("Mango");
fruits.Add("Orange");
fruits.Add("PineApple");
fruits.Add("Guava");

//bind to ListBox

Istitems.DataSource = fruits;

//bind to dropdownlist
dropdownLstlitems.DataSource = fruits;
//bind to checkboxlist
chkBoxListltems.DataSource = fruits;
//bind to html server select control
Selectl.DataSource = fruits;
this.DataBind();

Data Binding with a Dictionary Collection

// Use integers to index each item. Each item is a string.
Dictionary<int, string> fruit = new Dictionary<int, string>();
fruit.Add(1, "Kiwi");

fruit.Add(2, "Pear");

fruit.Add(3, "Mango");

fruit.Add(4, "Blueberry");

fruit.Add(5, "Apricot");

fruit.Add(6, "Banana");

fruit.Add(7, "Peach");

fruit.Add(8, "Plum");

// Define the binding for the list controls.
MyListBox.DataSource = fruit;

// Choose what you want to display in the list.
MyListBox.DataTextField = "Value";

// Activate the binding.

this.DataBind();

Using DataValueField Property

* Along with the DataTextField property, all list controls that support data binding
also provide a DataValueField property, which adds the corresponding information
to the value attribute in the control element.

* This allows you to store extra (undisplayed) information that you can access later.

Ex: MyListBox.DataTextField = "Value";
MyListBox.DataValueField = "Key";

e <select name="MylListBox" id="MyListBox" >
* <option value="1">Kiwi</option>

* <option value="2">Pear</option>

* <option value="3">Mango</option>

* <option value="4">Blueberry</option>

» <option value="5">Apricot</option>

* <option value="6">Banana</option>

* <option value="7">Peach</option>

* <option value="8">Plum</option>

o </select>

Using DataValueField Property

protected void MyListBox_SelectedindexChanged(Object sender,
EventArgs e)

{
IbIMessage.Text = "You picked: " + MyListBox.SelectedItem.Text;

IbIMessage.Text += " which has the key: " + MyListBox.Selectedltem.Value;
}

DataBinding with ADO.NET

Binding DataSet to a List:
To fill a DataSet by hand, you need to follow several steps:

1. Create the DataSet.
2. Create a new DataTable and add it to the DataSet.Tables collection.

3. Define the structure of the table by adding DataColumn objects (one for each
field) to the DataTable.Columns collection.

4. Supply the data. You can get a new, blank row that has the same structure as
your DataTable by calling the DataTable.NewRow() method. You must then set
the data in all its fields, and add the DataRow to the DataTable.Rows collection.

Data Source controls

= Data source controls allow you to create data-bound pages without writing any data
access code at all.

= These are the tools that provide data to the data bound controls and support execution
of operations like insertions, deletions, sorting, and updates.

= The data source controls include any control that implements the IDataSource
interface.

= You can find the data source controls in the Data tab of ToolBox in visual studio.
= They retrieve data from a data source and supply it to bound controls.

= They can update the data source when edits take place in the rich data controls like
GridView and DetailsView.

= Using SqglDataSource control you can connect to any MS SQL, ORACLE, OleDB or ODBC
data sources. MS SQL is the default.

* Another important fact to understand about the data source controls is that when you
bind more than one control to the same data source, you cause the query to be
executed multiple times.

<asp:SqlDataSource ProviderName="System.Data.SqlClient" ... />
To refer connection string in .aspx file:
<%S ConnectionStrings:[NameOfConnectionString] %>
Ex:
<asp:SqlDataSource ConnectionString="<%S ConnectionStrings:Northwind %>" ... />

Data Source controls

ASP.NET includes data source controls that allow you to work
with different types of data sources such as a database, an XML
file, or a middle-tier business object. Data source controls
connect to and retrieve data from a data source and make it
available for other controls to bind to, without requiring code.

Data Source controls

* You can use each SqglDataSource control you create to retrieve a single query. Optionally,
you can also add corresponding commands for deleting, inserting, and updating rows.

 SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand properties of
SqglDataSource is used to specify the SQL statements.

* The SqlDataSource supports automatic caching if you set EnableCaching to true.

* |t’s also important to remember that data binding is performed at the end of your web page
processing, just before the page is rendered. This means the Page.Load event will fire,
followed by any control events, followed by the Page.PreRender event. Only then will the
data binding take place.

SqlDataSource that defines a Select command for retrieving product information from the
Products table:

<asp:SqlDataSource ID="sourceProducts" runat="server"
ConnectionString="<%S ConnectionStrings:Northwind %>"
SelectCommand="SELECT ProductName, ProductID FROM Products"
/>

A DropDownlList control that lists all the products:

<asp:DropDownlList ID="IstProduct" runat="server"
AutoPostBack="True” DataSourcelD="sourceProducts"
DataTextField="ProductName” DataValueField="ProductID" />

Data Source controls

= _NET framework includes the following data sources:

SqlDataSource This data source allows you to connect to any data source that has an
ADO.NET data provider. This includes SQL Server, Oracle, and OLE DB
or ODBC data sources.

AccessDataSource This data source allows you to read and write the data in an Access
database file (.mdb).

ObjectDataSource This data source allows you to connect to a custom data access class.
XmlDataSource This data source allows you to connect to an XML file.

SiteMapDataSource This data source allows you to connect to a .sitemap file that
describes the navigational structure of your website

EntityDataSource This data source allows you to query a database by using the LINQ to
Entities feature.

LingDataSource This data source allows you to query a database by using the LINQ to
SQL feature, which is a similar (but somewhat less powerful)
predecessor to LINQ to Entities.

Property Group

DeleteCommand,
DeleteParameters,

DeleteCommandType

FilterExpression,

FilterParameters

InsertCommand,
InsertParameters,

InsertCommandType

SelectCommand,
SelectParameters,

SelectCommandType

SortParameterlame

UpdateCommand,

UpdateParameters,

UpdateCommandType

Description

Gets or sets the SQL statement, parameters, and type
for deleting rows in the underlying data.

Gets or sets the data filtering string and parameters.

Gets or sets the SQL statement, parameters, and type
for inserting rows in the underlying database.

Gets or sets the SQL statement, parameters, and type
for retrieving rows from the underlying database.

Gets or sets the name of an input parameter that the
command’s stored procedure will use to sort data.

Gets or sets the SQL statement, parameters, and type
for updating rows in the underlying data store.

CacheDuration

ConnectionString

DataSourceMode

DeleteCommand

DeleteCommandType

DeleteParameters

SqglDataSource class

Gets or sets the length of time, in seconds, that the data source
control caches data that is retrieved by the Select method.

Gets or sets the ADO.NET provider—specific connection string that
the SqlDataSource control uses to connect to an underlying
database.

Gets or sets the data retrieval mode that the SqlDataSource
control uses to fetch data.

Gets or sets the SQL string that the SqlDataSource control uses to
delete data from the underlying database.

Gets or sets a value indicating whether the text in the
DeleteCommand property is an SQL statement or the name of a
stored procedure.

Gets the parameters collection that contains the parameters that
are used by the DeleteCommand property from the
SqglDataSourceView object that is associated with the

SqglDataSource control.

EnableCaching

EnableTheming

EnableViewState

FilterExpression

InsertCommand

InsertCommandType

SqglDataSource class

Gets or sets a value indicating whether the SqlDataSource control
has data caching enabled.

Gets a value indicating whether this control supports themes.

Gets or sets a value indicating whether the server control persists
its view state, and the view state of any child controls it contains,
to the requesting client.

Gets or sets a filtering expression that is applied when the Select
method is called.

Gets or sets the SQL string that the SqlDataSource control uses to
insert data into the underlying database.

Gets or sets a value indicating whether the text in the
InsertCommand property is an SQL statement or the name of a

stored procedure.

InsertParameters

IsViewStateEnabled

Parent

SelectCommand

SelectCommandType

SqglDataSource class

Gets the parameters collection that contains the parameters that
are used by the InsertCommand property from the
SqglDataSourceView object that is associated with the

SqglDataSource control.

Gets a value indicating whether view state is enabled for this
control.

Gets a reference to the server control's parent control in the page
control hierarchy.

Gets or sets the SQL string that the SqlDataSource control uses to
retrieve data from the underlying database.

Gets or sets a value indicating whether the text in the
SelectCommand property is an SQL query or the name of a stored

SelectParameters

procedure.

Gets the parameters collection that contains the parameters that
are used by the SelectCommand property from the
SqglDataSourceView object that is associated with the

SqglDataSource control.

UpdateCommand

UpdateCommandType

SqglDataSource class

Gets or sets the SQL string that the SqlDataSource control uses to
update data in the underlying database.

Gets or sets a value indicating whether the text in the
UpdateCommand property is an SQL statement or the name of a

UpdateParameters

stored procedure.

Gets the parameters collection that contains the parameters that
are used by the UpdateCommand property from the
SqglDataSourceView control that is associated with the

SqglDataSource control.

DataBind()

Delete()

Focus

Insert()

Update()

SqglDataSource class
Binds a data source to the invoked server control and all its child
controls.

Performs a delete operation using the DeleteCommand SQL string
and any parameters that are in the DeleteParameters collection.

Sets input focus to the control.

Performs an insert operation using the InsertCommand SQL string
and any parameters that are in the InsertParameters collection.

Performs an update operation using the UpdateCommand SQL
string and any parameters that are in the UpdateParameters
collection.

ObjectDataSource

specify SelectMethod="GetStudents" TypeName="Student”
Where GetStudents() is the method of Student class.

Data controls

Rich data controls are:
* GridView
. DetailsView
* FormView
* ListView

GridView: The GridView is an all-purpose grid control for showing large tables of
information. The GridView is the heavyweight of ASP.NET data controls.

DetailsView: The DetailsView is ideal for showing a single record at a time, in a table that
has one row per field. The DetailsView also supports editing.

FormView: Like the DetailsView, the FormView shows a single record at a time and
supports editing. The difference is that the FormView is based on templates, which allow
you to combine fields in a flexible layout that doesn’t need to be table based.

ListView: The ListView plays the same role as the GridView—it allows you to show
multiple records. The difference is that the ListView is based on templates.

Data controls

GridView Control:
v" GridView = Shows the tabular data in a Grid.

v" The GridView control is used to display the values of a data source in a table. Each column
represents a field where each row represents a record.

v" The GridView control provides many built-in capabilities that allow the user to sort, update,
delete, select and page through items in the control.

v" The GridView control can be bound to a data source control.

GridView features:
» Improved data source binding capabilities
» Tabular rendering — displays data as a table
Built-in sorting capability
Built-in select, edit and delete capabilities
Built-in paging capability
Built-in row selection capability
Multiple key fields

Programmatic access to the GridView object model to dynamically set properties, handle
events and so on

» Richer design-time capabilities
» Control over Alternate item, Header, Footer, Colors, font, borders, and so on.
» Slow performance as compared to Repeater and Datalist control .

VVYVY Y VYV

Populating columns of GridView

1. By setting AutoGenerateColumns property to true.

Disadv: it is not possible to explicity say, which properties should be displayed as columns, what
the HeaderText or width of each column should be.

Ex:

<asp:GridView ID="gvUsers" runat="server"
AutoGenerateColumns="true"></asp:GridView>

2. By using BoundField:

This allows you to create the columns allows to explicitly define, which columns should be
displayed, how they look and in which order they are displayed.

v"In order to specify the columns we need to set the AutoGeneratedColumns property to false.

Ex:
<asp:GridView ID="gvUsers" runat="server" AutoGenerateColumns="false">
<Columns>
<asp:BoundField HeaderText="ID" DataField="IDUser" ItemStyle-Width="50"/>
<asp:BoundField HeaderText="Name" DataField="Name" ItemStyle-Width="200"/>
<asp:BoundField HeaderText="Username" DataField="UserName" ItemStyle-Width="200"/>
</Columns>
</asp:GridView>

Column types

BoundField This column displays text from a field in the data source.

ButtonField This column displays a button in this grid column.

CheckBoxField This column displays a check box in this grid column. It’s used
automatically for True / false fields.

CommandpField This column provides selection or editing buttons.

HyperLinkField This column displays its contents (a field from the data source
or static text) as a hyperlink.

ImageField This column displays image data from a binary field.

TemplateField This column allows you to specify multiple fields, custom

controls, and arbitrary HTML using a custom template.

Populating columns of GridView

Ex:
<asp:BoundField DataField = "ProductID" HeaderText = "ID" />

Configuring columns of GridView using BoundField

properties
BoundField properties:

DataField Identifies the field (by name) that you want to display in this
column
DataFormatString Formats the field. This is useful for getting the right representation

of numbers and dates.

FooterText, HeaderText, Sets the text in the header and footer region of the grid if this grid
and HeaderlmageUrl has a header (GridView.ShowHeader is true) and footer
(GridView.ShowFooter is true).

ReadOnly If true, it prevents the value for this column from being changed in
edit mode. No edit control will be provided. Primary key fields are
often read-only.

InsertVisible If true, it prevents the value for this column from being set in
insert mode

Configuring columns of GridView using BoundField properties

BoundField properties:

Visible
SortExpression

HtmlEncode

NullDisplayText
ConvertEmptyStringToNull

ControlStyle, HeaderStyle,
FooterStyle, and ItemStyle

If false, the column won’t be visible in the page.
Sorts your results based on one or more columns.

If true (the default), all text will be HTML encoded to
prevent special characters from mangling the page.

Displays the text that will be shown for a null value.
If true, converts all empty strings to null values.

Configures the appearance for just this column,
overriding the styles for the row.

Formatting GridView

= Each BoundField column provides a DataFormatString property you can use to configure the
appearance of numbers and dates using a format string.

= Format strings generally consist of a placeholder and a format indicator, which are wrapped
inside curly brackets.

= Ex: {0:C} -2 Currency format

Ex:
<asp:BoundField DataField = "UnitPrice" HeaderText = "Price"
DataFormatString = "{0:C}" />

Time & Date Format Strings:

Type Format Syntax
String

Short Date {0:d} M/d/yyyy 10/30/2012

Long Date {0:D} dddd, MMMM dd, yyyy Monday, January 30,
2012

Long Date and {0:F } dddd, MMMM dd, yyyy Monday, January 30,

Short Time HH:mm aa 2012 10:00 AM

Long Date and {0:F} dddd, MMMM dd, yyyy Monday, January 30,

Long Time HH:mm:ss aa 2012 10:00:23 AM

GridView styles

HeaderStyle Configures the appearance of the header row that contains
column titles, if you’ve chosen to show it (if ShowHeader is
true).

RowsStyle Configures the appearance of every data row.

AlternatingRowsStyle If set, applies additional formatting to every other row

SelectedRowsStyle Configures the appearance of the row that’s currently selected.

EditRowStyle Configures the appearance of the row that’s in edit mode. This

formatting acts in addition to the RowStyle formatting.

EmptyDataRowStyle Configures the style that’s used for the single empty row in the
special case where the bound data object contains no rows.

FooterStyle Configures the appearance of the footer row at the bottom of
the GridView, if you’ve chosen to show it

PagerStyle Configures the appearance of the row with the page links, if
you’ve enabled paging (set AllowPaging to true).

Styles

EX:

<RowStyle BackColor = "#E7E7FF" ForeColor = "#4A3C8C" />
<HeaderStyle BackColor = "#4A3C8C" Font-Bold = "True" ForeColor = "#F7F7F7" />

EX:
<asp:BoundField DataField = "ProductName" HeaderText = "Product Name">
<ItemStyle BackColor = "#E7E7FF" ForeColor = "#4A3C8C" />
<HeaderStyle BackColor = "#4A3C8C" Font-Bold = "True" ForeColor = "#F7F7F7" />
</asp:BoundField>

Using a Data Field as a Select Button

= You don’t need to create a new column to support row selection. Instead, you can turn an
existing column into a link.

= To use this technigue use a add a ButtonField column. Then, set the DataTextField to the
name of the field you want to use.

EX: <asp:ButtonField ButtonType = "Button" DataTextField = "ProductID" />

Sorting & Paging the GridView

= To enable sorting, you must set the GridView.AllowSorting property to true. Next,
you need to define a SortExpression for each column that can be sorted.

= To use automatic paging, you need to set AllowPaging to true (which shows the

page controls), and you need to set PageSize to determine how many rows are
allowed on each page

Paging with the GridView
Ex:

<asp:GridView ID = "GridView1" runat = "server" DataSourcelD = "sourceProducts"
PageSize = "10" AllowPaging = "True" .. .>

</asp:GridView>

» Set GridView.EnablePersistedSelection property to true to avoid the same row position
from being selected as you move from one page to another.

GridView templates

» The TemplateField allows you to define a completely customized template for a column.

Inside the template you can add control tags, arbitrary HTML elements, and data binding
expressions.

» you want to create a column that combines the in-stock, on-order, and reorder level
information for a product using ItemTemplate as shown below:

<asp:TemplateField HeaderText = "Status">

<ltemTemplate>

 In Stock:

<%# Eval("UnitsInStock") % >

 On Order:

<%# Eval("UnitsOnOrder") % >

 Reorder:

<%# Eval("ReorderLevel") %>
</ltemTemplate>

</asp:TemplateField>

Paging member of the GridView

AllowPaging Enables or disables the paging of the bound records. It is false
by default
PageSize Gets or sets the number of items to display on a single page of

the grid. The default value is 10.

Pagelndex Gets or sets the zero-based index of the currently displayed
page, if paging is enabled.

PagerSettings Provides a PagerSettings object that wraps a variety of
formatting options for the pager controls. These options
determine where the paging controls are shown and what text
or images they contain.

PagerStyle Provides a style object you can use to configure fonts, colors,
and text alignment for the paging controls.

PagelndexChanging and Occur when one of the page selection elements is clicked, just
PagelndexChanged before the Pagelndex is changed (PagelndexChanging) and just
events after (PagelndexChanged).

TemplateField templates

Mode Description

HeaderTemplate Determines the appearance and content of the header
cell.

FooterTemplate Determines the appearance and content of the footer
cell (if you set ShowFooter to true).

ltemTemplate Determines the appearance and content of each data
cell.

AlternatingltemTemplate Determines the appearance and content of even-
numbered rows.

EditltemTemplate Determines the appearance and controls used in edit
mode.

InsertltemTemplate Determines the appearance and controls used in edit

mode. The GridView doesn’t support this template, but
the DetailsView and FormView controls do.

v
v

DetailsView control

The DetailsView control uses a table-based layout where each field of the data record
is displayed as a row in the control.

Unlike the GridView control, the DetailsView control displays one row from a data
source at a time by rendering an HTML table.

The DetailsView supports both declarative and programmatic data binding.

The DetailsView control is often used in master-detail scenarios where the selected
record in a master control determines the record to display in the DetailsView control.
It shows the details for the row in a separate space.

We can provide styles or CSS for customizing the appearance of the DetailsView.
By default displays information in two columns.

drawback: In pager navigation, whole set of records are retrieved from database even

though one record data is displayed in the control.

Features of DetailsView control:

>

YV V V

Tabular rendering

Supports column layout, by default two columns at a time
Optional support for paging and navigation.

Built-in support for data grouping

Built-in support for edit, insert and delete capabilities

DetailsView control

Set AutoGenerateRows to false to stop automatic generation of rows. Then you can display
only the columns you want in the DetailsView.

You can display, page, edit, insert, and delete database records with the DetailsView.

If you need more control over the appearance of the DetailsView, including the particular
order in which columns are displayed, then you can use fields with the DetailsView control.

BoundField—Enables you to display the value of a data item as text.
CheckBoxField—Enables you to display the value of a data item as a check box.
CommandField—Enables you to display links for editing, deleting, and selecting rows.

ButtonField—Enables you to display the value of a data item as a button (image button, link
button, or push button).

HyperLinkField—Enables you to display the value of a data item as a link.
ImageField—Enables you to display the value of a data item as an image.
TemplateField—Enables you to customize the appearance of a data item.

DetailsView control

<asp:DetailsView ID = "DetailsView1" runat = "server" AutoGenerateRows = "False"

DataSourcelD = "sourceProducts">
<Fields>
<asp:BoundField DataField = "ProductID" HeaderText = "ProductID"
ReadOnly = "True" />
<asp:BoundField DataField = "ProductName" HeaderText = "ProductName" />
<asp:BoundField DataField = "SupplierID" HeaderText = "SupplierID" />
<asp:BoundField DataField = "CategorylD" HeaderText = "CategoryID" />
<asp:BoundField DataField = "QuantityPerUnit" HeaderText = "QuantityPerUnit" />
<asp:BoundField DataField = "UnitPrice" HeaderText = "UnitPrice" />
<asp:BoundField DataField = "UnitsInStock" HeaderText = "UnitsInStock" />
<asp:BoundField DataField = "UnitsOnOrder" HeaderText = "UnitsOnOrder" />
<asp:BoundField DataField = "ReorderLevel" HeaderText = "ReorderLevel" />
<asp:CheckBoxField DataField = "Discontinued" HeaderText = "Discontinued" />
</Fields>

</asp:DetailsView>

DetailsView properties

AutoGenerateDeleteButton, AutoGenerateEditButton, AutoGeneratelnsertButton propertie
are used for enabling delete/edit/insert for detailsview.

AutoGenerateEditButton = Gets or sets a value indicating whether the built-in controls to
edit the current record are displayed in a DetailsView control.

AutoGeneratelnsertButton —> Gets or sets a value indicating whether the built-in controls
to insert a new record are displayed in a DetailsView control.

AutoGenerateRows —> Gets or sets a value indicating whether row fields for each field in
the data source are automatically generated and displayed in a DetailsView control.

BacklmageUrl —> Gets or sets the URL to an image to display in the background of a
DetailsView control.

DataMember - Gets or sets the name of the list of data that the data-bound control binds
to, in cases where the data source contains more than one distinct list of data items.

DataSourcelD = Gets or sets the ID of the control from which the data-bound control
retrieves its list of data items.

Hyperlinks are displayed at the bottom of the control.

DetailsView control styles

AlternatingRowStyle — allows you to set the appearance of the alternating data rows in a
DetailsView control.

CommandRowStyle = Gets a reference to the TableltemStyle object that allows you to set
the appearance of a command row in a DetailsView control.

EditRowStyle = Gets a reference to the TableltemStyle object that allows you to set the
appearance of the data rows when a DetailsView control is in edit mode.

EmptyDataRowStyle = Gets a reference to the TableltemStyle object that allows you to set
the appearance of the empty data row displayed when the data source bound to a
DetailsView control does not contain any records.

FieldHeaderStyle = Gets a reference to the TableltemStyle object that allows you to set
the appearance of the header column in a DetailsView control.

FooterStyle - Gets a reference to the TableltemStyle object that allows you to set the
appearance of the footer row in a DetailsView control.

HeaderStyle =2 Gets a reference to the TableltemStyle object that allows you to set the
appearance of the header row in a DetailsView control.

InsertRowStyle = Gets a reference to the TableltemStyle object that allows you to set the
appearance of the data rows in a DetailsView control when the DetailsView control is in
insert mode.

PagerStyle = Gets a reference to the TableltemStyle object that allows you to set the
appearance of the pager row in a DetailsView control.

RowStyle = Gets a reference to the TableltemStyle object that allows you to set the
appearance of the data rows in a DetailsView control.

FormView

v" Requires Templates
v’ Displays columns without a table

v" Templates supported by FormView control:
e [temTemplate
e EditltemTemplate
e InsertltemTemplate
e FooterTemplate
e HeaderTemplate
e EmptyDataTemplate
e PagerTemplate

FormView

You can use FormView to display multiple item values in a single value:
Ex:

<asp:FormView ID = "FormView1" runat = "server" DataSourcelD =
"sourceProducts">

<|ltemTemplate>

 In Stock:

<%# Eval("UnitsInStock") %>

 On Order:

<%# Eval("UnitsOnOrder") %>

 Reorder:

<%# Eval("ReorderLevel") %>

</ltemTemplate>
</asp:FormView>

