
8. REFINING THE

REQUIREMENTS MODEL
Once the requirements have been identified and the various use

case class diagrams have been assembled into a single analysis class
diagram which shows all relevant classes and associations , the next step
in the life cycle of a development of a system is to refine this requirements
model. model.

This will be undertaken with a particular view to creating the
conditions for developing components that can be re-used either within the
project or on future projects. In this process we need to know

What do you mean by component ?

 Role of Abstraction in an OO approach for an identifying and building re-
usable components .

 A composition which is a special type of abstraction.

 S/W development patterns.

Component Based Development :

Nowadays in an industry the use of standard components, and even
standard designs, is not common.

To take a familiar example, an architect may design many different
houses, each unique in its own particular ways. But it would be very unusual to
design every component from scratch. The architect typically chooses components
from a catalogue, each house being assembled from a standard set of bricks,
roofing timbers, tiles, doors, window frames, electrical circuits,…etc.

Thus, while one house may be completely unlike another in overall
appearance, floor plan and number of rooms, the differences between them lie in appearance, floor plan and number of rooms, the differences between them lie in
the way standard components have been assembled.

Software components: the problems :

The information systems development organizations believe that the
analysis of requirements should begin from scratch on every new project. In one
sense, this is necessary, since at first we know nothing about what the requirements
for a new system are. It is also advantageous if it encourages analysts to take
account of the unique characteristics of the proposed system and its environment.

But starting from a position of knowing nothing can also have significant
disadvantages. Effort may be wasted on finding new solutions to old problems that
have already been adequately solved by others in the past. While it is important that have already been adequately solved by others in the past. While it is important that
real differences between two projects should not become blurred, this should not
prevent the team from capitalizing on successful past work, provided that it is
relevant to the current problem.

In the majority of cases, those analysts, designers and programmers who
seem unnecessarily to reinvent the wheel do not do so deliberately. Good
professionals have always tried to learn as much as possible from experience, both
their own and that of their colleagues. Programmers have built up extensive libraries
that range from personal collections of useful subroutines, to commercially
distributed products that contain large numbers of industry-standard components.

One example of this is the use of code libraries such as .DLL (Dynamic
Link Library) files in Microsoft Windows. So why do some software developers carry
on reinventing so many wheels?

One reason for this is the NIH ('Not Invented Here') syndrome, which
mainly seems to afflict programmers.

Another reason is the functionally-based decomposition of the modelling
techniques in structured analysis, which primarily affects analysts as well as
designers also.

The NIH syndrome

In spite of all the library resources available today, some professional
programmers still fall prey to the NIH syndrome. This is the attitude of one who
thinks: 'I don't trust other people's widgets-even those that appear to work, suit my
purpose and are affordable-I want to invent my own widgets anyway.'

This is understandable in someone who enjoys a technical challenge, or
has reasons not to trust the work of others, but it usually does not make good
commercial sense.

One remedy can be found in object orientation, partly because of the
different attitude to program development it engenders, but also partly because
object orientation actually makes it easier to use library components.

Model organization :

Analysts suffer from the NIH syndrome too, but the biggest obstacle to
reuse of successful analysis work has been the way that structured models are
organized.

It is difficult enough to create a model that is useful at other stages of one It is difficult enough to create a model that is useful at other stages of one
single project. It is even harder to create a structured model that is useful on a
completely different project. This is partly because structured models are partitioned
according to functions, which are a particularly volatile aspect of a business domain.

There is also little in structured analysis models such as data flow diagrams
that explicitly encourages encapsulation. This is an area where object-orientation
can make a distinctive contribution to the reuse of requirements analysis.

How object-orientation contributes to reuse :

Object-oriented software development tackles the problem of achieving
reuse in ways that resemble the practice of other industries that use standard
components.

The aim is to develop components that are easy to use in systems for
which they were not specifically developed. Ideally, software analysts should be in
the position described for an architect, free to think about how their client intends to
use the system, without needing to worrying about how individual components are
built. built.

One of the keys is the encapsulation of internal details of components, so
that other components requesting their service need not know how the request will
be met. This allows different parts of the software to be effectively isolated in
operation and greatly reduces the problems in getting different sub systems to
interact with each other, even when the sub-systems have been developed at
different times or in different languages, and even when they execute on different
hardware platforms. Sub-systems that have been constructed in this way are said to
be decoupled from each other.

The effect can be scaled up to the level of complex sub systems, by applying the
same principle of encapsulation to larger groups of objects. Any part of a
software system or, by extension, a model of one- can be considered for reuse
in other contexts, provided certain criteria are met.

• A component should meet a clear- cut but general need (in other words, it
delivers a coherent service) .

• A component should have a simple, well-defined external interface.

In theory, reusable components can be designed within any development
approach, but object-orientation is particularly suited to this task. Well chosen approach, but object-orientation is particularly suited to this task. Well chosen
objects meet both of the criteria above, since an object requesting a service
need only know the message protocol, and the identity of an object that can
provide it!.

Another important aspect of object-orientation is the way that models, and hence
also code, are organized.

Requirements reuse

When we write of a 'reusable requirement', we really mean a reusable
model of a requirement. This is one of the least developed areas of software reuse.
In any case, only parts of any model are likely to be reusable. But the key to reuse in
requirements modelling is that models are organized so that they abstract out (hide)
those features of a requirement that are not necessary for a valid comparison with a
similar requirement on another project.

Second, the whole point of reuse is to save work, so it should also not be
necessary to develop a full model of the second require ment in order to make the
comparison.

Finally, any relevant differences between the two requirements being
compared should be clearly visible and it should not be necessary to develop a full
model of the second requirement in order to see these either.

Generalization

As a simple example of generalization that enables reuse of a component,
The design of a program, which makes it suitable for use in many different
situations, rather than being restricted to one narrow set of circumstances, is an
example of abstraction by generalization.

The Object-oriented developers have one significant advantage that,
Using inheritance, a 'software architect' has a way of spawning new products from
old ones with minimal effort.

But inheritance provides a way of designing and building the larger part of
a new software component in advance, leaving only the specialized details to be
completed at a later stage. This is because, in a class hierarchy, those
characteristics that are shared by subclasses are maintained at the superclass
level, and are instantly available to any subclass when required.

Composition

Composition is a type of abstraction that encapsulates groups of classes
that collectively have the capacity to be a reusable sub-assembly. Unlike
generalization, the relationship is that between a whole and its parts.

The essential idea is that a complex whole is made of simpler components.
These, while less complex than the whole, may themselves be made of still less
complex sub-assemblies, elementary components or a mixture of the two.

A simple example of the usefulness of the idea can be seen in a house-A simple example of the usefulness of the idea can be seen in a house-
builder fitting a window frame to a new house. Like many other house components,
window frames are delivered to site as ready-assembled units. All internal details of
the sub-assembly are 'hidden' from both architect and builder, in the sense that they
do not need to think about them.

Composition, also known as the a-part-of, is a form of aggregation
with strong ownership to represent the component of a complex object.
Composition also is referred to as a part-whole relationship.

Composition in UML

Composition (or composite aggregation) is based on the rather less
precise concept of aggregation, which is a feature of many object-oriented
programming languages.

The UML Specification is deliberately rather vague about aggregation,
but says the following about the relationship between aggregation and
composition.

Composite aggregation is a 'strong form of aggregation which requires Composite aggregation is a 'strong form of aggregation which requires
that a part instance be included in at most one composite at a time and that the
composite object has sole responsibility for the disposition of its parts. This means
that the composite object is responsible for the creation and destruction of its
parts.'

While composition and aggregation may be identified during
requirements analysis, their main application is during design and implementation
activities, where they can be used to encapsulate a group of objects as a
potentially re-usable sub-assembly.

This is more than just a matter of labelling the group of objects with a
single name. The fact that they are encapsulated is much more important. The
external interface for a composition is actually the interface of the single object at
the 'whole' end of the association. Details of the internal structure of the
composition-that is, what other objects and associations it contains-remain hidden
from the client. from the client.

General example for composition :

On a practical level, composition is familiar to users of most common computer
drawing packages.

For example, many of the drawings were prepared or edited using a
widely used drawing package.

Within this application, several drawing objects can be selected and
grouped. They then behave exactly like a single object, and can be sized, rotated,
copied, moved or deleted with a single command. The following Figures shows this
type of composition as both objects and classes.

Some objects in a computer drawing package.

Composition used in class diagram to represent composite objects.

:Composite

:Composite

:Ellipse

:Ellipse

:Line

:Line

Composition used in class diagram to represent composite objects.

This example is nested one - the composition itself contains a further
composition. In just the same way that a composite drawing object can only be
handled as a single drawing component, the 'part' objects in a composition
structure can usually not be directly accessed, and the whole presents a single
interface to other parts of the system.

This notation is similar to a simple association, but with a diamond at the
'whole' end. The diamond is filled with solid colour to indicate composition, and left
unfilled for aggregation.

Adding further Structure to the Class Diagram :

consider how to add structure to the class diagram that will help with reuse at later
stages of development. In this First, we need to concentrate on generalization,
since it is the more useful of the two concepts for this purpose. Then we need to
consider how to model a structure that combines generalization and
aggregation.

Modelling Generalization :

The following table shows an interview carried out by an analyst in the Agate
case study. Analysts main objective was to understand more about different case study. Analysts main objective was to understand more about different
types of staff. These facts highlights some useful information that must be
modelled appropriately:

• There are two types of staff,
• Bonuses are calculated differently and
• Different data should be recorded for each type of staff.

Brief interview with Finance Director and Analyst :

Purpose - clarification of staff types.

Asked about staff types

- only two types seem relevant to system -creative staff (C) and admin staff (A)

How do they differ?
- main difference is bonus payment ...

Analyst's note of the differences between Agate staff types :

1. (C) bonus calculated on basis of campaign profits (only those campaigns they worked
on)

2. (A) paid rate based on average of all campaign profits

Any other diffs? Finance director says –

- C qualifications need to be recorded
- C can be assigned as contact for a client

- A are not assigned to specific campaigns

No other significant differences.

The following figure shows the concerned Class diagram for previous note :

Super Class

Two sub classes

1..n 0..n

Grade
GradeName

StaffMember {abstract}
StaffName
StaffNO
StaffStartDate

calculatebonus()
assignNewStaffGrade()
getstaffdetails()

AdminStaff

calculateBonus()

CreativeStaff
qualification

calculateBonus()
assignstaffcontact()

This class diagram includes a generalization association between Staff
Member, AdminStaff and CreativeStaff. Of these, Staff Member is the super-class,
while AdminStaff and CreativeStaff are subclasses.

The generalization symbol states that all characteristics of the superclass
Staff Member (its attributes, operations and associations) are automatically inherited
by AdminStaff and CreativeStaff. There is no need to repeat superclass
characteristics within a subclass definition.

From a subclass perspective, inherited features are actually features that
belong to the subclasses but have been removed to a higher level of abstraction.
Generalization saves the analyst from the need to show these characteristics Generalization saves the analyst from the need to show these characteristics
explicitly for each subclass to which they apply. Common attributes, operations and
associations thus may be shared by several subclasses, but need be shown only
once, in the superclass. This aids the general consistency of the model, and can
also considerably reduce its complexity.

Redefined operations :

Here we have an operation calculateBonus () , represented even in sub
classes also means redefined .
Because, while both AdminStaff and CreativeStaff require an operation
calculateBonus (), it works differently in each case. Since the precise logic for the
calculation differs between these two groups of staff, the two operations will need
to be treated separately later when each algorithm is designed, and also when
programme code is written to implement the algorithm. This difference in logic
justifies the separate appearance of a superficially similar operation in both
subclasses.subclasses.

This sort of fine distinction is not always recognized during analysis.
then, what is the reason the operation calculateBonus () is included in the
superclass Staff Member?

The answer is that it is an attempt at 'future-proofing'. One of the
consequences of identifying a superclass is that it may later acquire other
subclasses, that are as yet unknown. In this case the analyst has recognized or
assumed that objects belonging to all subclasses of Staff Member are likely to
need an operation of some kind to calculate bonus. For this reason, at least a
'skeleton' of the operation is included in the superclass.

Abstract and concrete classes

Here the {abstract} annotation at the starting of Staff Member class
name in Figure, means that a class is an abstraction of its members.
However, Staff Member is abstract in the still more compelling sense that it
has no instances. This is shown by the {abstract} property (an alternative
notation for this is to write the class name in italics).

The {abstract} property can only be applied to a superclass in a
generalization hierarchy. All other classes have at least one instance, and
are said to be concrete or instantiated.

Applying the {abstract} property to Staff Member means that no
staff exist at Agate who are 'general' members of staff, and not members of
a particular sub-group. All staff members encountered so far are defined as
either AdminStaff or CreativeStaff. Should we later discover another group of
staff that is distinct in behaviour, data or associations, and if we need to
model this new group, it should be represented in the diagram by a new
subclass. The whole reason for the existence of a superclass is that it sits at
a higher level of abstraction than its subclasses. This generality allows it to
be adapted for use in other systems.

The usefulness of generalization

consider the contribution of generalization hierarchies to reuse, means This
provides to add a new sub class with the already available generalization.

Imagine that the Agate system is completed and in regular use. Some time
after installation, the Directors decide that they want to reorganize the company, and
one of the results is that Account Managers are to be paid bonuses related to
campaign profits.

Their bonus is to be calculated in a different way from both administrative Their bonus is to be calculated in a different way from both administrative
and other creative staff, and is to include an element from campaigns that they
supervise, and an element from the general profitability of the company. This is
shown as below .

Here the three subclasses are organized into a tree structure with a single
triangle joining this to the super class. The UML Specification calls this
representation as shared target styles and in the previous figure UML calls that
representation as the separate target style. Both are acceptable in UML.

StaffMember {abstract}
StaffName
StaffNO
StaffStartDate

calculatebonus()
assignNewStaffGrade()
getstaffdetails()

Grade
GradeName

New sub class easy to add with generalization

CreativeStaff
qualification

calculateBonus()
assignstaffcontact()

AccountManager

calulatebonus()

AdminStaff

calculateBonus()

Adding a new subclass requires relatively little change to the existing
class model, essentially just adding a new subclass AccountManager to the staff
hierarchy. In practice, some judgement would be needed as to whether this is
better modelled as a subclass of Staff Member, or of CreativeStaff, and this
would be based on assumptions about difficulty of implementation and likely
future benefits. In either case, the impact is minimal.

The reuse lies in the fact that the existing abstract class Staff Member
has been used as a basis for AccountManager. The latter it can inherit all
attributes and operations that are not part of its own .

Identifying generalization (a top-down approach) :

It is relatively easy to discover generalization where this exists between
classes that have already been identified. The rule to be used here for the
identification is straightforward , If an association can be described by the
expression is a kind of, then it can usually be modelled as generalization.

Sometimes this is so obvious, for example, 'administrative staff are a kind
of staff'. More often, it is not quite so obvious, but still straightforward.

For example, 'a helicopter is a type of aircraft and so is a jumbo-jet' and 'a For example, 'a helicopter is a type of aircraft and so is a jumbo-jet' and 'a
truck is a type of vehicle and so is a car ' imply generalizations with similar
structures, as shown below. Vehicle

car Truck Aircraft

Jumbo-jet Helicaptor

It is not uncommon to find multiple levels of generalization. This simply
means that a superclass in one relationship may be a subclass in another. As in
figure Aircraft is both a superclass of Helicopter , jumbo-jet and a subclass of
Vehicle. In practice, more than about four or five levels of generalization in a class
model is too many ,but this is primarily for design reasons.

Adding generalization (a bottom-up approach)

An alternative approach to adding generalization is to look for similarities
among the classes in your model, and consider whether the model can be
simplified by introducing super classes that abstract the similarities. simplified by introducing super classes that abstract the similarities.

This needs to be done with some care. The purpose of doing this is quite
explicitly to increase the level of abstraction of the model.

Multiple inheritance

It is quite possible, and often appropriate, for a class to be simultaneously
the subclass of more than one superclass.

When not to use generalization

Generalization can be over used, for this consider the implicit judgements
made in deciding to model the generalization structure developed in previous
figures.

First, as a rule we only model a class as a superclass of another if we are
confident that what we know about the former (that is its attributes, operations and
associations) applies completely to the latter.

In this example, the analyst had to be reasonably sure that everything he
knew about Staff Member applied also to both AdminStaff and CreativeStaff. This is knew about Staff Member applied also to both AdminStaff and CreativeStaff. This is
part of the UML definition of generalization: a subclass is 'fully consistent with' its
superclass. Even when this is true, if the differences between two potential
subclasses are too great, the forced creation of a superclass can give rise to
confusion rather than clarity.

Second, we should not anticipate subclasses that are not justified by
currently known requirements.

For example, at Agate AdminStaff and CreativeStaff are distinct classes
based on differences in their attributes and operations. We also know about other
kinds of staff in the organization, e.g. the directors. But we have no information
that suggests a need to model directors as part of the system, and thus we should
not create another subclass of Staff Member called DirectorStaff. Even if it were to
turn out that we do need to model Directors, there is no reason yet to suppose
they must be a distinct class. They might turn out to be members of an existing
class. This, too, is part of the UML standard definition: a subclass must 'add
additional information‘.additional information‘.

On the one hand, generalization is modelled in order to permit future
subclassing in situations that the analyst inevitably cannot fully anticipate. Indeed
the ability to take advantage of this is one of the main benefits of constructing a
generalization hierarchy.

Yet, on the other hand, if generalization is overdone, it just adds
needlessly to the complexity of the model for no return.

Combining generalization with composition or aggregation

Consider the following figure to represent the combination of both
Generalization and aggregation.

Campaign

Advert

AdvertCopy

TelevisionAdvert

AdvertPhotograph

NewsPaperAdvert

1..n

1

1..n

1

AdevertGraphhic 1..n

1

1..n

1
1

1..n

1..n

1

In an Campaign , 'adverts can be one of several types‘, Like a newspaper
advert is a kind of advert and televisionAdvert is a kind of advert . This suggests
that advert could be a superclass, with newspaper advert, etc. as its subclasses.

This identification is made based on the following :

First, is everything that is true of Advert also true of NewspaperAdvert or
not ? The answer appears to be yes. All actual adverts must be one of the specific
types, with no such thing in reality as a 'general' advert. Advert is thus a sound
generalization of common features shared by its specialized subclasses.

Second, does NewspaperAdvert include some details (attributes,
operations or associations) that are not derived from Advert? Here also answer operations or associations) that are not derived from Advert? Here also answer
appears to be yes. A newspaper advert consists of a particular set of parts. The
precise composition of each type of advert is different, and so this structure of
associations could not be defined at the superclass level .

Finally, there is no reason to suppose that a newspaper advert has any
other potential ancestor besides advert, so we do not need to consider this rule at
higher levels of recursion.

Next, we can see possible composition in the association between
Campaign and Advert, and in turn between Advert and its associated parts. A
campaign includes one or more adverts. A newspaper advert includes written
copy, graphics and photographs.

In order to identify the type of a composition consider the following :

First, can an advert belong to more than one campaign? This is not
stated in the case study, but it seems unlikely that an advert can simultaneously
be part of more than one campaign.

secondly, can copy, graphics or photographs belong to more than one
newspaper advert? This seems unlikely, but should really be clarified.newspaper advert? This seems unlikely, but should really be clarified.

Finally, has each of these components a coincident lifetime with the
advert? Probably some do, and some do not.

It is hard to imagine that advertising copy would be used again on
another advert, but photographs and graphics seem less certain. This is another
point to be clarified, but in the meantime composition does not seem justified in
any of these cases, and aggregation has therefore been used.

Analysis packages and dependencies :

The analyst is responsible to create a model that will be robust in the
face of changing requirements based on his decisions and skill. To some extent
this depends on defining analysis packages that are relatively independent of each
other while still internally highly cohesive .

The UML package is a tool for managing the complexity of a model, and
they are also a useful way of identifying subsystems that can stand alone as
components. Packages are the means by which a developer can 'factor out'
classes or structures that have potential use in a wider context than this project
alone. But when a model is partitioned into packages it is very important to keep alone. But when a model is partitioned into packages it is very important to keep
track of the dependencies between different classes and packages.

In the Agate case study we have mainly two related but distinct
application areas:
1.campaign management
2.staff management.

If this model proves to be only one part of a larger domain, it will
probably make sense to model these as two separate analysis packages:
Campaign Management and Staff Management. If this is done, it is quite likely that
some entity objects will prove to be common to both packages.

Alternative dependencies among packages and among objects within packages.

1. Based on preliminary analysis , the StaffMernber entity class plays a role in both
packages, So this class can be placed within the Staff Management package. And
here, we need to model a dependency from Campaign Management to Staff
Management, since the Client and Campaign classes need an association with
StaffMernber

as shown below.

C a m p a i g n M a n a g m e n t

S t a f f M a n a g m e n t

C a m p a i g n
c l i e n t

S t a f f M e m b e r

2. We could remove StaffMernber to a separate package. This would be justified
if it appears to have more widespread use.

For example, there may also be wages, personnel, welfare and pension
applications that need this class. In this case, we need to model
dependencies from all the corresponding packages to the package that
contains the StaffMernber class as shown below.

CampaignManagment

Staff

StaffMember

StaffManagment

3. The following figure shows by placing all boundary objects into a User
Interface package and all control objects into a Control package. Objects in
these specialized packages will certainly have dependencies on objects in
other packages .

User
Interface

Campaign
Managment

Staff
Control

Interface
Managment

Staff
Managment

SOFTWARE DEVELOPMENT PATTERNS

What is a pattern?

Generally, a pattern refers to a kind of design that is used to reproduce
images in a repetitive manner in a daily life. In software development, the term is
related to this idea, but has a much more specific meaning.

Pattern : Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of a solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the
same way twice.

Christopher Alexander, who first used the above term pattern to describe
solutions to recurring problems in architecture. Alexander identified many related
patterns for the development of effective and harmonious architectural forms in
buildings. Alexander's patterns address many archi-tectural issues-for example the
best place to site a door in a room, or how to organize and structure a waiting area
in a building so that waiting can become a positive experi-ence. Alexander argued
that his patterns became a design language within which solutions to recurring
architectural problems could be developed and described.

A pattern provides a solution that may be applied in different ways
depending upon the specific problem to which it is being applied.

Another One definition of a pattern that is appropriate to software
systems development is this:

A pattern is the abstraction from a concrete form which keeps recurring in
specific non arbitrary contexts.

Each pattern is a three-part rule, which expresses a relation between a
certain context, a certain system of forces which occurs repeatedly in that context,
and a certain software configuration which allows these forces to resolve
themselves.themselves.

This definition focuses on three elements-a context that can be
understood as a set of circumstances or preconditions, forces that are issues that
have to be addressed and a software configuration that addresses and resolves
the forces.

In this definition the term 'software configuration' might suggest that
patterns are limited to software design and construction. In fact, patterns are
applied much more widely in systems development. The Analysis class
stereotypes are patterns widely applied during requirements analysis and systems
design.

Coad make the distinction between a strategy which they describe as a
plan of action intended to achieve some defined purpose and a pattern which they
describe as a template that embodies an example worth emulating.

This view of a pattern is slightly different from the views described earlier
as it does not emphasize contextual aspects to the same extent. An example of a
Coad strategy is 'Organize and Prioritize Features' and relates to the need to
prioritize requirements .

A simple example of an analysis pattern from is the Transaction-
Transaction Line Item pattern as shown below.Transaction Line Item pattern as shown below.

Transaction
TransactionNumber
TransactionDate
TransactionTotal

UpdateTransactionTotal()

TransactionLineItem
Transactionl ineNumber
TransactionLineQuant ity
TransactionLineValue1..n1

comprise

1..n1

The following figure shows the pattern as it might be applied to a sales
order processing system. Here the Transaction suggests a SalesOrder class and
the Transaction Line Item suggests a SalesOrderLine class.

SalesOrder
OrderNumber
OrderDate
OrderTotalValue

UpdateOrderTotalValue()

SalesOrderLine
OrderLineNumber
OrderLinequantity
OrderLineValue1..n1 1..n

comprise

1

Very similar structures are used in a wide variety of other
circumstances also. A trainee software developer has to learn this structure, or
to reinvent it. The latter is much less efficient. The act of describing it as a
pattern highlights it as a useful piece of development expertise and makes it
readily available for the a trainee software developer .

Coplien identifies the critical aspects of a pattern as follows.
• It solves a problem.
• It is a proven concept.
• The solution is not obvious.
• It describes a relationship.
• The pattern has a significant human component.

In the same way that a pattern captures and documents proven good practice,
antipatterns capture practice that is demonstrably bad. It is sensible to do this.
We should ensure not only that a software system embodies good practice but
also that it avoids known pitfalls. Antipatterns are a way of documenting
attempted solutions to recurring problems that proved unsuccessful. attempted solutions to recurring problems that proved unsuccessful.

For example, Mushroom Management is an example of an anti pattern in the
domain of software development organizations. It describes a situation where
there is an explicit policy to isolate systems developers from users in an attempt
to limit requirements go with flow or float.

In such an organization, requirements are passed through an intermediary such
as the project manager or a requirements analyst. The negative consequence
of this pattern of development organization is that inevitable inadequacies in the
analysis documentation are not resolved.

Furthermore design decisions are made without user involvement, and the
delivered system may not address users' requirements. The reworked solution is
to use a form of spiral process development model . Other reworked solutions
include the involvement of domain experts in the development team, as
recommended by the Dynamics Systems Development Method (DSDM).

Patterns have been applied to many different aspects of software development.
1. Software patterns are applied in order to describe aspects of interface design in

Smalltalk environments.

2. A set of patterns specifically for use in C++ programming (patterns that are
related to constructs in a specific programming language are now known as related to constructs in a specific programming language are now known as
idioms).

3. Analysis and Design Patterns have been applied to software development
approaches other than object-orientated ones.

A series of analysis patterns are used for data modelling and
'Design Patterns are Elements of Reusable Object-Oriented Software'.

Architectural patterns – Responsibilities

1. Addresses some of the issues concerning the structural organization of software
systems.

2. Architectural patterns also describes the structure and relationship of major
components of a software system.

3. These patterns identifies subsystems, their responsib-ilities and their
interrelationships.

Design patterns – Responsibilities

1. These patterns identify the interrelationships among a group of software
components describing their responsibilites, collaborations and structural
relationships.
2. Idioms describe how to implement particular aspects of a software system in a
given programming language.

Analysis patterns : Resposibilities

These are defined as describing groups of concepts that represent
common constructions in domain modelling. These patterns may be applic-able
in one domain or in many domains.

The use of analysis patterns is an advanced approach that is
principally of use to experienced analysts,. They are closely related to design
patterns also.

An analysis pattern is essentially a structure of classes and
associations that is found to occur over and over again in many different
modelling situations.modelling situations.

Each pattern can be used to communicate a general understanding
about how to model a particular set of requirements, and therefore the model
need not be invented from scratch every time a similar situation occurs. Since a
pattern may consist of whole structures of classes, the abstraction takes places
at a higher level than is normally possible using generalization alone.

A particular pattern may belong to more than one category. For
example, the MVC architecture can be viewed as an architectural pattern when
it is applied to subsystems, as a design pattern when it is concerned with
smaller com-ponents or individual classes

The following figure shows Accountability pattern as an illustration
of an analysis pattern .Here we will consider only the class structure, An
accountability structure may be of many kinds, such as management or
contract supervision. The generalization of Person and Organization as
Party allows the pattern to represent relationships between individuals,
organizations, or a mixture of the two.

Accountabili ty type

1

Time Period

Person

Organisation

PartyAccountability

10..*

10..*

1

0..*

1

0..*

commissioner

Responsible

The Accountability analysis pattern (adapted from Fowler, 1997).

The following figure shows Accountability analysis pattern, In Agate “
Staff contact “ relationship.

StaffContact

AssignStaffContact()
RemoveStaffContact()

Client

1

0..*

1 1
0..*

1

Commissioner

Campaign

time Period
StartDate
EndDate

StaffMember

contactforCampaign

1 1

1

0..*

0..*

1
Responsible

This class is not a class of patterns, but
gives how the pattern structure is
integrated into the model as a whole

This pattern could apply to several different relation-ships: that
between a manager and a member of staff they supervise, that between a
client and a client contact, or that between a client and a campaign manager.
Since the details of the relationship itself have been abstracted out as
Accountability Type, this one class structure is sufficiently general to be
adapted to any of these relationships, given an appropriate set of attributes,
operations and associations to other classes specific to the application model.
The generalization of Person and Organization as Party similarly allows the
pattern to represent relationships between individuals, organizations, or a
mixture of the two.

9.Object Interaction
Communication and collaboration between the objects is

fundamental concept in OO. This involves communication to request
information , to share information and to request to help from each other.
Among the set of autonomous objects in an interaction , each is
responsible for a small part of systems overall behavior. These objects
produce the required behavior through collaboration , by exchanging
messages that request information, that give information or that ask another
object to perform some task.

Object Interaction and Collaboration :
When an object sends a message to another object, an operation is

invoked in the receiving object.
For example, in the Agate case study there is a requirement to be able to

determine the current cost of the advertisements for an advertising campaign. This
responsibility is assigned to the Campaign class. For a particular campaign this
might be achieved if the Campaign object sends a message to each of its Advert
objects asking them for their current cost.

In a programming language, sending the message getCost () to an Advert
object, might use the following syntax.

advertCost = anAdvert.getCost()

The cost of each advert returned by the operation getCost () is totalled up in
the attribute actualCost in the sending object, Campaign, so in order to calculate the
sum of the costs for all adverts in a campaign the above statement must be executed
repeatedly. For this purpose we are using message passing mechanism for object
interaction. This Message passing can be represented on an object diagram, as
shown below.

:campaign anAdvert : ADvert

1: getCost

It can be difficult to determine what messages should be sent by each
object. In this case, the getCost () operation should be located in the Advert class.
This operation requires data that is stored in the advertCost attribute, and this has
been placed in Advert. We can also see that an operation that calculates the cost
of a Campaign must be able to find out the cost of each Advert involved.

But this is a simple collaboration and the allocation of these operations is
largely dictated by the presence of particular attributes in the classes. More
complex requirements may involve the performance of complex tasks, such that
an object receiving one message must itself send messages that initiate further
collaboration with other objects.

the objective of OOAD to distribute system functionality appropriately
among its classes. This does not mean that all classes have exactly equal levels
of responsibility but rather that each class should have appropriate
responsibilities. Where responsibilities are evenly distributed, each class tends
not to be complex and easy to develop , test and maintain.

An appropriate distribution of responsibility among classes has the
important side effect of producing a system that is more resilient to changes in its
requirements. When the users' requirements for a system change it is reasonable
to expect that the application will need some modification, but ideally the change
in the application should be of no greater magnitude than the change in the in the application should be of no greater magnitude than the change in the
requirements.

An application that is resilient in this sense costs less to maintain and to
extend than one that is not. The following figure illustrates this resilient concept.

Resilience of design

Equivalence areas of change – a
highly resilience system

Real world requirements
Application that caters for these

requirements

Figure (a)

A small change in requirements causes a much greater
change in s/w not a resilient system

Real world requirements
Application that caters for these

requirements

Figure (b)

The purpose of a object interaction is to determine the most appropriate
scheme of messaging between objects in order to support a particular user
requirement.

For this interaction , user requirements are first documented by use
cases , each use case can be seen as a dialogue between an actor and the
system that results in objects performing tasks so that the system can respond in
the way that is required by the actor.

For this reason many interaction diagrams explicitly include objects to
represent the user interface (boundary objects) and to manage the object
communication (control objects). When such objects are not shown explicitly it can
be assumed in most cases that they will need to be identified at a later stage. The be assumed in most cases that they will need to be identified at a later stage. The
identification and specification of boundary objects is in part an analysis activity
and in part of a design activity also. During analysis our concern is to identify the
nature of a dialogue in terms of the user's need for information and his or her
access to the system's functionality.

UML defines object interaction within the context of a collaboration and defines
a collaboration as follows.

‘ The structure of Instances playing roles in a behavior and their
relationships is called a Collaboration .'

The behaviour mentioned above can be that of an operation or a use case . A
particular object instance may play different roles in different contexts or
collaborations and may play more than one role in a given collaboration.

Interaction among the objects will be provided an interaction diagrams called

1. Interaction Sequence diagrams

2. Interaction Collaboration Diagrams

Interaction Sequence Diagrams :

An interaction sequence diagram (or simply a sequence diagram) is
one of the two kinds of UML interaction diagram. The other one is the
collaboration diagram,.

An Interaction is defined in the context of Collaboration. It specifies the
communication patterns between the roles in the Collaboration. More precisely,
it contains a set of partially ordered Messages, each one specifying
communication; what Signal to be sent or what Operation to be invoked, as
well as the roles to be played, by the sender and receiver respectively. well as the roles to be played, by the sender and receiver respectively.

A sequence diagram shows an interaction between objects arranged
in a time sequence. Sequence diagrams can be drawn at different levels of
detail and to meet different purposes at several stages in the development life
cycle. The commonest application of a sequence diagram is to represent the
detailed object interaction that occurs for one use case or for one operation.
When a sequence diagram is used to model the dynamic behaviour of a use
case it can be seen as a detailed specification of the use case.

Sequence diagrams drawn during analysis differ from those drawn during
design in two major respects.

1. Analysis sequence diagrams normally do not include design objects .
2. They usually do not specify message signatures in any detail.

Basic concepts and notation :

In Sequence diagram the vertical dimension represents time and all objects
involved in the interaction are spread horizontally across the diagram.

Time normally proceeds down the page. However, a sequence diagram may be
drawn with a horizontal time axis if required, and in this case, time proceeds
from left to right across the page. Each object is represented by a vertical from left to right across the page. Each object is represented by a vertical
dashed line, called a lifeline, with an object symbol at the top. A message is
shown by a solid horizontal arrow from one lifeline to another and is labelled with
the message name. Each message name may optionally be preceded by a
sequence number that represents the sequence in which the messages are
sent, but this is not usually necessary on a sequence diagram since the
message sequence is already conveyed by their relative positions along time
axis.

The following figure shows a sequence diagram for the use case Add a new
advert to a campaign.

 :
CampaignManager

:client :campaign Advert

1: GetName()

2: List Campaigns()

3: Get Campaign Details()

4: List Adverts()

*

*

newAd:Advert

5: Get Advert Details()

6: Add New Advert()

7: Advert()

ActivationObject life line
New object creation

*

UML uses the general term stimulus to describe an interaction between
two objects that conveys information with an expectation of some action. Formally
then, a message specifies the sender and receiver objects and the action of a
stimulus. A message may correspond to calling an operation or raising a signal. In
UML a signal is an asynchronous communication that may have parameters. An
event is the specification of an occurrence of significance and may for instance be
the receipt of a message or a signal by an object.

When a message is sent to an object, it invokes an operation of that
object. Once a message is received, the operation that has been invoked begins to
execute. The period of time during which an operation executes is known as an
activation, and is shown on the sequence diagram by a rectangular block laid along activation, and is shown on the sequence diagram by a rectangular block laid along
the lifeline. The activation period of an operation includes any delay while the
operation waits for a response from another operation that it has itself invoked as
part of its execution. The message name is usually the same as the particular
operation that is being invoked.

The above Figure shows a sequence diagram for to add new advet to
campaign without boundary or control objects.

The getName () message is first message received by the Client and is
intended to correspond to the Campaign Manager requesting the name of the
selected Client. The Client object then receives a listCampaigns () message and a
second period of operation activation begins. This is shown by the tall thin
rectangle that begins at the message arrowhead. The Client object now sends a
message getCampaign Details () to each Campaign object in turn in order to build
up a list of campaigns. This repeated action is called iteration and is indicated by
an asterisk (*) before the message. The conditions for continuing or ceasing an
iteration may be shown beside the message name.iteration may be shown beside the message name.

This example of a continuation condition is written as follows.

[For all client's campaigns] *getCampaignDetails()

The Campaign Manager next sends a message to a particular Campaign object
asking it to list its advertisements. The Campaign object delegates responsibility for
getting the advertisement title to each Advert object although the Campaign object
retains responsibility for the list as a whole.

When an advertisement is added to a campaign an Advert object is created.
This is shown by the Advert () message arrow drawn with its arrowhead pointing
directly to the object symbol at the top of the lifeline. Where an object already exists
prior to the interaction the first message to that object points to the lifeline below the
object symbol. For example, this is the case for the Campaign object, which must
exist before it can receive an addNewAdvert () message.

Most use cases imply at least one boundary object that manages the
dialogue between the actor and the system and one control object which controls the
overall activity flow, these specifications will be provided in design phase diagrams.

According to USDP boundary and control classes are identified in Analysis
phase, but generally these to be identified during design stage only.

The following figure shows an alternative sequence diagram for the use
case Add a New Advert to a Campaign with boundary and control objects.
Essentially this is in the style of the Unified Software Development Process.

The boundary object, representing the user interface, is : AddAdvertUI. The control
object is : AddAdvert and this manages the overall object communication.

An object can send a message to itself. This is known as a reflexive
message and is shown by a message arrow that starts and finishes at the same
object lifeline.

:A ddA dverUI

 :
C ampa ign...

:A ddA dvert :Advert :clie nt :C ampaign :newA dvert

1: get C lient

2: start Interface()

3 : S eelct client

4: show client campaigns

5: L ist campaigns

6: get campaign deta ils

7 : Select campaign7: Select campaign

8: S how campa ign A dverts

9: L i st Adver ts

10: Get Advert D etails()

11: C reate New A dvert()

12: AddNewA dvert

13: ad dNew Advert

14: create A dvert

Objects may be created or destroyed at different stages during an
interaction. On a sequence diagram the destruction of an object is indicated by a
large X on the lifeline at the point in the interaction when the object is destroyed.
An object may either be destroyed when it receives a message or it may self-
destructive at the end of an activation if this is required by the particular operation
that is being executed. This is shown as follows.

:Campaign :Advert

1: GetAdvertDetails()

2: Destroy

: C a m p a i g n

 :
C a m p a i g n M a n a g e r

: C l i e n t : A d v e r t

1 : G e tN a m e ()

2 : L i s t C a m p a i g n s ()

3 : g e t C a m p a i g n D e t a i ls

The campaign budget may be checked to ensure that it has not been
exceeded. The current campaign cost is determined by the total cost of all the
adverts and the campaign overheads. The corresponding sequence diagram is
shown below, which includes a reflexive message getOverheads () sent from a
Campaign object to itself.

4 : c h e c k C a m p a i g n B u d g e t ()

5 : * G e t C o s t ()

6 : g e t O v e r h e a d s ()

In this case the reflexive message invokes a different operation from the
operation that sent the message and a new activation symbol is stacked on
the original activation.

Focus Of control :
The focus of control indicates times during an activation when processing is

taking place within that object. Parts of an activation that are not within the focus of
control represent periods when, for example, an operation is waiting for a return from
another object. The focus of control may be shown by shading those parts of the
activation rectangle that correspond to active processing by an operation.

In the next figure , the Check campaign budget use case is redrawn with
foci of control shaded. The focus of control for the checkCampaignBudget ()
operation is initially with the Campaign object, but is then transferred to the Advert
object and the activation rectangle in the Campaign object is now unshaded while the
Advert object has the focus of control. The checkCampaignBudget () activation is
also unshaded while the getOverheads () operation is activated by the reflexive also unshaded while the getOverheads () operation is activated by the reflexive
message getOverheads () .

A return is a return of control to the object that originated the message that
began the activation. This is not a new message, but is only the conclusion of the
invocation of an operation. Returns are shown with a dashed arrow, but it is optional
to show them at all since it can be assumed that control is returned to the originating
object at the end of the activation in a destination object.

The following figure some variations in the sequence diagram :

:C a m p a i g n

 :
C a m p a i g n M a n a g e r

:C l i e n t :A d v e r t

1 : G e tN a m e ()

2 : L i s t C a m p a i g n s ()

3 : g e tC a m p a i g n D e ta i ls

< - - - - - - - -

< - - - - - - -
4 : c h e c k C a m p a i g n B u d g e t ()

5 : * G e t C o s t ()

6 : g e tO v e r h e a d s ()

< - - - - - - -< - - - - - - - -

< - - - - -

< -------< - - - - - - - - - - - - - - - - -

A returnvalue is the value that an operation returns to the object that
invoked it. These are rarely shown on an analysis sequence diagram, in Figure
the operation invoked by the message getName () would have return-value of
clientName and no parameters. In order to show the return-value the message
could be shown as

clientName := getName()

where clientName is a variable of type Name.

A synchronous message or procedural call is shown with a full
arrowhead , and is one that causes the invoking operation to suspend execution arrowhead , and is one that causes the invoking operation to suspend execution
until the focus of control has been returned to it. This is essentially a nested flow
of control where the complete nested sequence of operations is completed before
the calling operation resumes execution. This may be because the invoking
operation requires data to be returned from the destination object before it can
proceed. The se are shown In Figure with procedural calls and explicit returns.
Procedural calls are appropriate for the interaction since each operation that
invokes another does so in order to obtain data and cannot continue until that
data is supplied.

The following figure shows a sequence diagram for ClassA and ClassB with
different message types and time constraints.

:C la s s A : C la s s B

1 :

2 :

< - - - - - - - - - - - - - - - -

A n active object

Synchronous message

{ 2.sendtime – 1.sendtime < 3 sec }

Asynchronous message

Construction marks to
show time

Synchronous and asynchronous messages with sequence diagram

3 :

4 :

5 :

show time
constrained interval

< 5 sec

{ 4.Receive time -4.sendtime < 1.5 sec }
Call back

{ 5.sendtime – 4.receivetime < 6 sec }

{ 5.receivetime – e.sendtime < 6 sec }

An asynchronous message, drawn with an open arrowhead as in above
Figure , does not cause the invoking operation to halt execution while it awaits a
return. When an asynchronous message is sent operations in both objects may
carry out processing at the same time.

Asynchronous messages are frequently used in real-time systems where
operations in different objects must execute concurrently, either for reasons of
efficiency, or because the system simulates real-world activities that also take
place concurrently. It may be necessary for an operation that has been invoked
asynchronously to notify the object that invoked it when it has terminated. This is
done by explicitly sending a message (known as a callback) to the originating
object. object.

Time constraints :

A sequence diagram can be labelled to document time constraints in
various ways. Labels may be included with, descriptions of actions or any time
constraints that apply to the execution of operations.

In the above figure each of the messages is simply named with 1,2..,
and so on. Time expressions may be associated with the name of the message
so that time constraints can be specified for the execution of an operation or the
transmission of a message.

The standard functions sendTime (the time at which a message is sent by
an instance) and receiveTime (the time at which an instance receives a message)
give times when applied to message names. Thus 1. sendtime gives the time that
the message 1 is sent.

Construction marks may also be used to show a time interval with a
constraint. This is shown in above Figure to show the interval between the receipt
of message 2 and sending message 3. Time constraints are frequently used in
modelling real-time systems where the application must respond within a certain
time, typically for reasons of safety or efficiency. For most other information
systems time constraints are not significant and only the sequence of the
messages matters. messages matters.

A message arrow here indicates that the time taken to send a message is
not significant in comparison to the time taken for operation execution. There is
consequently no need to model another activity during the period while a message
is in transit. In some applications the length of time taken to send a message is
itself significant.

For example, in distributed systems messages are sent over a
network from an object on one computer to another object on a different
computer. If the transit time for a message is significant the message arrow is
slanted downwards so that the arrowhead (the arrival of the message) is below
(later than) the tail (the origination of the message).

Branching :

The interactions so far have only one execution path, although some have
iterations during their execution. Some interactions have two or more alternative
execution pathways. Each reflects a branch in the possible sequence of events for
the use case it represents.

The notation for branching is illustrated in the following Figure . This shows
a sequence diagram for the use case Add a new advert to a campaign if within
budget .

The use case description is as follows.

A new advertisement is added to a campaign by the campaign manager only
if the campaign budget is not exceeded by adding the new advert. If adding the
advertisement would cause the budget to be exceeded then a campaign budget
extension request is generated. This will be recorded for later reference. The budget

extension request is printed and sent to the client at the end of the day.

Sequence diagram for “ Add a new Advert to a campaign if within budget “
showing branching

Here messages 3 and 4 will be originated from the same Campaign object.

The first part of this sequence diagram is identical to that for Check
campaign budget but only the checkCarnpaignBudget () message has been
shown. Comparing with previous figure where all the messages that result from
the execution of the operation checkCampaignBudget () are shown here.

The branching is seen where two messages Advert () and Request ()
both start from the same point on the Campaign lifeline. Each branch is followed
only if the branch condition is true; this is shown in square brackets before the
message label. The fact that the Advert () message is above the Request ()
message does not imply a time sequence since the two branches are actually
alternative execution pathways. Only one branch is followed during anyone
execution of the use case. execution of the use case.

The branching notation can be used at a generic level to create a
sequence diagram that represents all possible sequences of interaction for a use
case. Such a generic diagram will typically show communication between
anonymous objects rather than particular instances.

In general looping and branching constructs correspond respectively to
iteration and decision points in the use case. When drawn at an instance level a
sequence diagram shows a specific interaction between particular objects. The
two kinds of sequence diagram (generic and instance level) are equivalent to one
another if the interactions implied by the use case contain no looping or branching
constructs.

Managing sequence diagrams

On occasions it is necessary to link two or more sequence diagrams
together. It may be that a single sequence diagram is too complex and unwieldy to
represent an interaction in an easily assimilable fashion.

Sometimes the interaction involves too many lifelines to place on a single
diagram or perhaps there is a subsequence that is common to several interactions.
Another possibility is that part of the interaction involves complex messaging
between members of a group of objects and that this part of the interaction is best
shown separately.

One approach for this problem is to split a complex diagram into two or
more smaller diagrams with the connections between the diagrams indicated by
message arrows that are left in mid-air and do not end at a lifeline.

For example the sequence diagram in “ Add a new Advert to a campaign “
is redrawn as two sequence diagrams in Figure 1 and Figure 2 each of which
shows fewer lifelines that the original. This approach relies on clear annotation in
each diagram to show how it is related to other diagrams.

< - - - - - - - - - - - - - - - - -

These flows are continued in figure 2

Figure 1 : first part of interaction for use case Add a new Advert to a Campaign

< - - - - - - - - - - - - - -

< - - - - - - - - -- - - -- - - -

< - - - - - - - - - - - - - - - - -

< - - - - - - - - - - - - - - -

< - - - - - - - - - - - - - - -

< - - - - - - - - - - - - - - -

< - - - - - - - - -

< - - - - - - - -

Figure 2 : Second part of interaction for use case Add a new Advert to a Campaign

These
flows are
continued
from
figure 1

< - - - - -- - - - - - - - - - - - - - - - - -

< -

figure 1

Another approach is to represent a group of objects by a single lifeline.
This is shown in the following Figure , where the lifeline for the object group
CampaignAdverts represents the Campaign and Advert objects.

This approach is useful when drawing an interaction at a high level and
not showing the detailed interaction within a group of objects. Here in this notation,
it is implicit that received messages are dealt with by interaction between
members of the group or by a single object in the group.

Interaction Collaboration Diagrams

Collaboration diagrams are the second kind of interaction diagram in the
UML diagrams. They are used to represent the collaboration that realizes a use
case.

Basic concepts and notation

Collaboration diagrams have many similarities to sequence diagrams.
1.They express the same information in a different format, and, like sequence
diagrams, they can be drawn at various levels of detail and during different stages diagrams, they can be drawn at various levels of detail and during different stages
in the system development process.
2. Due to their similar content, collaboration diagrams can be used for the
auto-matic generation of sequence diagrams and vice versa.

The most significant difference between the two types of interaction
diagram is that a collaboration diagram explicitly shows the links between the
objects that participate in a collaboration, as in sequence diagrams , there is no
explicit time dimension.

In a collaboration diagram the interaction is drawn on a fragment of a
class or object diagram. A collaboration diagram shows that the order of messages
that implement an operation or a transaction. Collaboration diagrams show objects,
their links, and their messages. They can also contain simple class instances and
class utility instances. Each collaboration diagram provides a view of the
interactions or structural relationships that occur between objects and object like
entities in the current model.

The following figure shows collaboration diagram for a use case
Add a New Advert to a Campaign

:AddAdverUI :AddAdvert :Advert
3: Seelct client

7: Select campaign
11: Create New Advert()

1: get Client
5: List campaigns

2: start Interface()

4: show client campaigns
8: Show campaign Adverts

12: AddNewAdvert

6: get campaign details
9: List Adverts

13: addNewAdvert

10: Get Advert Details()

Collaboration diagram for a ADD A NEW ADVERT TO A CAMPAIGN

 :
CampaignManager

:client

:Campaign

:newAdvert

5: List campaigns

14: create Advert

Here collaboration diagram contains , a boundary object : AddAdvertUI
and the control object : AddAdvert .This level of detail is sufficient to capture the
nature of a collaboration. Since the diagram has no time dimension the order in
which messages are sent is represented by sequence numbers.

In this diagram the sequence numbers are written in a nested style to indicate the
nesting of control within the interaction that is being modelled. Thus the operation
showCampaign Adverts () passes control to the operation listAdverts (), which has
one deeper level of nesting. A similar style of numbering is used to indicate
branching constructs.

Message labels in collaboration diagrams : Message labels in collaboration diagrams :

Messages on a collaboration diagram are represented by a set of
symbols that are the same as those used in a sequence diagram, but with some
additional elements to show sequencing and recurrence as these cannot be
inferred from the structure of the diagram. Each message label includes the
message signature and also a sequence number that reflects call nesting,
iteration, branching, concurrency and synchron-ization within the interaction.

The formal message label syntax is as follows:

[predecessor] [guard-condition] sequence-expression [return-value ':='] message-
name' (' [argument-list] ')'

A predecessor is a list of sequence numbers of the messages that must
occur before the current message can be enabled. This permits the detailed
specification of branching pathways. The message with the immediately preceding
sequence number is assumed to be the predecessor by default, so if an interaction
has no alternative pathways the predecessor list may be omitted without any
ambiguity. The syntax for a predecessor is as follows:

sequence-number { ',' sequence-number} 'I'

The 'I' at the end of this expression indicates the end of the list and is only included
when an explicit predecessor is shown.

Guard conditions are written in Object Constraint Language (OCL) ,and are only
shown where the enabling of a message is subject to the defined condition. A guard
condition may be used to represent the synchronization of different threads of
control.

A sequence-expression is a list of integers separated by dots ('.') optionally
followed by a name (a single letter), optionally followed by a recurrence term and
terminated by a colon. A sequence-expression has the following syntax:

integer { '.' integer } [narne] [recurrence] ':'

In this expression integer represents the sequential order of the
message. This may be nested within a loop or a branch construct, so that, for
example, message 5.1 occurs after message 5.2 and both are contained within
the activation of message 5.

The name of a sequence-expression is used to differentiate two
concurrent messages since these are given the same sequence number. For
example, messages 3.2.1a and 3.2.1b are concurrent within the activation of
message 3.2.

Recurrence reflects either iterative or conditional execution and its syntax
is as follows: is as follows:

Branching: '['condition-clause‘] ,

Iteration: ‘ * ‘ ‘ [‘ iteration-clause ‘] '

10. Specifying Operations

Operation specifications play a similar role in the project repository to that
of other entries, such as attribute specifications. They support a graphical model by
adding precision so that users can confirm the correctness of the model, and
designers can use them as a basis for software development. But they are
potentially the most complex of all entries in the repository, since they explain the
detailed behaviour of the system.

Here we need to consider

 The need for specifying operations . The need for specifying operations .

 The 'contract' as a kind of black box specification - If the behaviour of an
operation is simple, a contract that describes only its external interface may be all
that is required, and if its behaviour is not yet understood in any detail, a black box
specification may be all that is possible.

 Operation's logic or internal behaviour - we have two types.

1.‘Algorithmic' or 'procedural'

2.‘Non-algorithmic' or 'declarative'.

A non-algorithmic approach is generally preferred in object-oriented development,
but in some situations only an algorithmic approach is sufficiently expressive.

 UML do not requires any specific techniques for specifying operations, but
activity diagrams can be used to express the logic of an operation in a graphical
form . The UML has also a formal language known as the Object Constraint
Language (OCL), which is intended mainly for specifying general constraints on a
model.

1. The Role of Operation specifications –

Each operation specification is a small but necessary step on a path that
begins with a user's idea of a business activity, and leads ultimately to a software
system made up of collaborating objects with attributes and methods.

From an analysis perspective, an operation specification is created at a From an analysis perspective, an operation specification is created at a
point when the analyst's understanding of some aspect of an application domain
can be fed back to users, ensuring that the proposals meet users' needs.

From a design perspective, an operation specification is a framework for
a more detailed design specification that later guides a programmer to a method
that is an appropriate implementation of the operation in code.

An operation specification can also be used to verify that the method does
indeed meet its specification, which in turn describes what the users intended, thus
checking that the requirements have been implemented.

New programmers often do not appreciate the need to design, still less
specify, an operation before beginning to write it in program code. This is
partly because beginners are given simple tasks.

In Object-oriented programming it is important to describe the logical
operation of the planned software as early as possible. Modelling object
interaction is part of this description process, as it helps to determine the
distribution of behaviour among the various classes. A detailed description of
individual operations must also now be provided.

There are differences of opinion on how much specification should be done.

1. According to Rumbaugh , only operations that are 'computationally interesting' 1. According to Rumbaugh , only operations that are 'computationally interesting'
or 'non-trivial' need to be specified. 'Trivial' operations (e.g. those that create
or destroy an instance, and those that get or set the value of an attribute)
need not be specified at all. Further, operation specifications are kept simple
in form, and consist only of the operation signature and a description of its
'transformation' (i.e. its logic).

2. According to Allen and Frost , recommend the specification of all operations,
although the level of detail may vary according to the anticipated needs of the
designer.

Among these two the latter approach is the better one, because if the
problems that can arise later in a project are not documented, then it is better to go
for second approach. It is important to keep at least to a minimal documentation
standard, even for operations that are very simple.

Each operation has a number of characteristics, which should be specified
at the analysis stage. Users must confirm the logic, or rules, of the behaviour. The
designer and the programmer responsible for the class will be the main users of the
specification, as they need to know what an operation is intended to do: does it
perform a calculation, or transform data, or answer a query? Designers and
programmers of other parts of the system also need to know about its effects on
other classes. For example, if it provides a service to other classes, they need to other classes. For example, if it provides a service to other classes, they need to
know its signature. If it calls operations in other classes or updates the values of their
attributes, this may establish dependencies that guide how these classes should be
packaged during design or implementation .

Defining operations should neither be begun too early, nor left too late, this
task should be left until the class diagram has stabilized. In a project where the
development activity has been broken down at an early stage to correspond to
separate sub-systems, this may refer only to that part of the class diagram which
relates to a particular sub-system. But for any given part of the model, it is important
to create all operation specifications before moving into the object design activity.

2. Contracts :

The term 'contract' is a deliberate echo of legal or commercial contracts
between people or organizations. Signing a contract involves making a
commitment to deliver a defined service to an agreed quality standard.

For example, a small ground-care company has a contract to cut the
grass on the lawn in front of the Agate’s building. The contract speifies how often
the grass must be cut , the maximum height of the grass immediately after it is cut
and how much Agate will pay for the service). The contract does not spell out how
the work will be done .

In the language of system theory, a contract is an interface between two
systems. In this example, Agate is a business system and the ground-care
company is a system for ‘cutting Agate's grass. The contract defines inputs and
outputs, and treats the grass-mowing system to some extent as a black box, with
its irrelevant details hidden. Which details are deemed irrelevant is always a
matter of choice, and any contract can specify that some details of the
implementation should be visible to other systems. For example, Agate's directors
might not wish to permit the ground-care contractor to use toxic pesticides or
weedkillers. This can be included as a constraint in the contract.

Analogy between commercial contracts and service relationships between
objects is given by Meyer. This word in object-oriented development stresses on
the encapsulation of classes and sub-systems in a model.
One of Meyer's principal arguments for using the analogy of a contract is that
design-by-contract helps to achieve a software design that is correct in terms of
its require-ments. Specification by contract means that operations are defined
primarily in terms of the services they deliver, and the 'payment' they receive
(usually just the operation signature).

Finally , these various aspects related to Contracts can be summarized as follows.

 The intent or purpose of the operation.
 The operation signature including the return type.
 An appropriate description of the logic.
 Other operations called, whether in the same object or in other objects.
 Events transmitted to other objects.
 Attributes set during the operation's execution.
 The response to exceptions (e.g. what should happen if a parameter is invalid).
 Any non-functional requirements that apply.

3. Describing Operational logic :

The following are the reasons for the classification of operations
based on various ways of describing their logic.

First, operations that have side-effects. Possible side-effects
include the creation or destruction of object instances, setting or returning
attribute values, forming or breaking links with other objects, carrying out
calculations, sending messages or events to other objects or any
combination of these. A complex operation may do several of these things,
and, where the task is at all complex, an operation may also require the
collaboration of several other objects. It is partly for this reason that we collaboration of several other objects. It is partly for this reason that we
identify the pattern of object collaboration before specifying operations in
detail.

Second, operations that do not have side-effects. These are pure
queries; they request data but do not change anything within the system.

Like classes, operations may also have the property of being either
{abstract} or {concrete} .Abstract operations have a form that consists at
least of a signature, sometimes a full specification, but they will not be given
an implementation (i.e. they will not have a method). ‘Typically, abstract
operations are located in the abstract superclasses of an inheritance
hierarchy. They are always overridden by concrete methods in concrete
subclasses.

A specification may be restricted to defining only external and visible effects of
an operation, and for this we have two approaches for specifying operational logic.

1. Non- algorithmic approach

2.Algorithmic approach.

A specification may also define internal details, but this is effectively a design activity.

1 Non-algorithmic approaches

A non-algorithmic approach concentrates on describing the logic of an
operation as a black box. In an object-oriented system this is generally preferred for operation as a black box. In an object-oriented system this is generally preferred for
two reasons.

First, classes are usually well-encapsulated, and thus only the designers and
programmers responsible for a particular class need concern themselves with internal
implementation details. Collaboration between different parts of the system is based on
public interfaces between. Classes and sub-systems implemented as operation
signatures (or message protocols). As long as the signatures are not changed, a
change in the implementation of a class, including the way its operations work, has no
effect on other parts of the system•

Second, the relatively even distribution of effort among the classes of an
object-oriented system generally results in operations that are small and single-
minded. Since the processing carried out by anyone operation is simple, it does not
require a complex specification.

Even in non object-oriented approaches, a declarative approach has
recognized as particularly useful where, for example, a structured decision is made,
and the conditions that determine the outcome are readily identified, but the actual
sequence of steps in reaching the decision is unimportant.

For situations like this, structured methods uses non-algorithmic techniques
called decision tables and pre- and post-condition pairs .

Decision tables

A decision table is a matrix that shows the conditions under which a decision
is made, the actions that may result and how the two are related. They cater best for is made, the actions that may result and how the two are related. They cater best for
situations where there are multiple outcomes, or actions, each depending on a
particular combination of input conditions.

One common form shows conditions in the form of questions that can be
answered with a simple yes or no. Actions are listed, and check-marks are used to
show how they correspond to the conditions.

The following is an example of a possible application in the Agate case
study. The following Figure shows a corresponding decision table.

Conditions and Actions Rule1 Rule2 Rule3

conditions

Is budget likely to be overspent? N Y Y

Is overspend likely to exceed 2% - N Y

Actions

No Action X

Send Letter X X

A decision table with two conditions and three actions, yielding three distinct rules.

Send Letter X X

Set up meeting X

When a campaign budget is overspent, this normally requires prior approval
from the c1ient otherwise Agate is unlikely to be able to recover the excess costs. A
set of rules has been established to guide Campaign Managers when they identify a
possible problem. If the budget is expected to be exceeded by up to 2%, a letter is
sent notifying the client of this. If the budget is expected to be exceeded by more
than 2%, a letter is sent and the staff contact also telephones the client to invite a
representative to a budget review meeting. If the campaign is not thought Iikely to
exceed its budget, no action is taken

The vertical columns with Y, N and X entries are known as rules. Each rule is read
vertically downwards, and the arrangement of Ys and Ns indicates which
conditions are true for that rule. An X indicates that an action should occur when
the corresponding condition is true (i.e. has a Y answer). We can paraphrase the
table into text as follows.

Rule 1. If the budget is not overspent (clearly in this case the scale of overspend is
irrelevant, indicated by a dash against this condition), no action is required.

Rule 2. If the budget is overspent and the overspend is not likely to exceed 2%, a
letter should be sent.

Rule 3. If the budget is overspent and the overspend is likely to exceed 2%, a
letter should be sent and a meeting set up.

A single rule may have multiple outcomes that overlap with the outcomes
of other rules. Decision tables are very useful for situations that require a non-
algorithmic specification of logic, reflecting a range of alternative behaviours. But
this is relatively unusual in an object-oriented system, where thorough analysis of
object collaboration tends to minimize the complexity of single operations.

Pre- and post-conditions

It suggests, this technique concentrates on providing answers to the
following questions .

• What conditions must be satisfied before an operation can take place?

• What are the conditions that can apply (i.e. what states may the system be in)
after an operation is completed?

Let us consider an example from Agate. The operation Advert. getCost()
If it contains the following signature.

Advert.getCost() : Money

This operation has no pre-condition. (Here the object sending the message
must know the identity of the object that contains the operation, but this is not in
itself a pre-condition for the operation to execute correctly when invoked).

The post-conditions should express the valid results of the operation upon
completion. In this case, a money value is returned .

Precondition: none
Postcondition: a valid money value is returned

Consider the another example, for a use case Assign staff to work on a
campaign. This involves calling the operation Campaign.assignStaff() for each
member of staff assigned. Let us assume that the signature of this operation
is as follows:

Campaign.assignStaff(creativeStaff)

This example has one pre-condition: a calling message must supply a valid
creative Staff object. There is one post-condition: a link must be created
between the two objects.

Precondition: creativeStaffObject is valid Precondition: creativeStaffObject is valid

Postcondition: a link is created between campaignObject and creativeStaffObject

For many operations in an object-oriented model, such a specification would
sufficiently detailed. It must meet the following two tests .

• A user should be able to check that it correctly expresses the business logic .
• A class designer should be able to produce a detailed design of the operation

for a programmer to code.

2. Algorithmic approach:

An algorithm describes the internal logic of a process or decision by
breaking it down into small steps .The level of detail to which this is done varies
greatly, depending on the information available at the time and on the reason for
defining it.

An algorithm also specifies the sequence in which the steps are performed.
In the field of computing and information systems, algorithms are used either as a
description of the way in which a programmable task is currently carried out , or as a
prescription for a program to automate the task. This dual meaning reflects the
differing perspectives of analysis (understanding a problem and determining what differing perspectives of analysis (understanding a problem and determining what
must be done to achieve a solution) and design (the creative act of imagining a
system to implement a solution).

An algorithmic technique is almost always used during method design,
because a designer is concerned with the efficient implementation of requirements,
and must therefore select the best algorithm available for the purpose. But
algorithms can also be used with an analysis intention.

A major difference here is that the analyst no need to worry about
efficiency, since the algorithm need only illustrate accurately the results of the
operation.

Control structures in algorithms :

Algorithms are generally organized procedurally, means they use the
fundamental programming control structures of sequence, selection and iteration.

We can illustrate this in the Agate case study by considering the operation that
calculates the total cost of a campaign. This operation is invoked during the use
case Check campaign budget.

Use case description : The campaign budget may be checked to ensure that it
has not been exceeded. The current campaign cost is determined by the total
cost of all the adverts and the campaign overhead costs.

If there simple formula for this calculation, based on summing the
individual total costs of each advert, and adding the campaign overhead costs.
For further simplicity, assume that the overhead cost part of the calculation
simply involves multiplying the total of all other costs by an overhead rate. To
convey an understanding of the calculation, we can begin by representing it as a
mathematical formula.

totaLcampaign_cost = (sum of all advert_costs) * overhead_rate

This does not explicitly identify all the steps, but a sequence can be
deduced. In fact, several possible sequences can be deduced, but any
sequence that always produces a correct result will do.

One possible sequence, at a very coarse level of detail would include the
following steps:

1. add up all the individual advert costs;
2. multiply the total by the overhead rate;
3. the resulting sum is the total campaign cost.

For such a simple calculation , the formula itself serves better as a specification, For such a simple calculation , the formula itself serves better as a specification,
but if they complex, Then we can use Structured English approach.

Structured English :
This is a ‘language' of written English that is about halfway between everyday
non-technical language and a formal programming language. When it is
necessary to specify an operation procedurally, this is the most useful and

versatile technique.

Advantages of Structured English :

• It provides readability and understandability same as of everyday English. It
also allows the construction of a formal logical structure that is easy to translate
into program code.

• Structured English is very easy to write iteratively, at successively greater levels
of detail, and it is easily dividing into components that can be reassembled in
different structures without a lot of reworking. The logical structure is made
explicit through the use of keywords and indentation, while the vocabulary is
kept as close as possible to everyday usage in the business context. Above all,
expressions and keywords that are specific to a particular programming
language are avoided. The result ideally is something that a non-technical user language are avoided. The result ideally is something that a non-technical user
is able to understand, alter or approve, as necessary, while it should also be
useful to the designer. This means it must be capable of further development
into a detailed program design without undue difficulty.
The main principles of Structured English are as follows. A specification is made
up of a number of simple sentences, each consisting of a simple imperative
statement or equation. Statements may only be combined in restricted ways that
correspond to the sequence, selection and iteration control structures of
structured programming. The very simplest specifications contain only
sequences, and differ little from everyday English except in that they use a more
restricted vocabulary and style .

Here are some statements that illustrate a typical style of Structured English:

get client contact name

sale cost = item cost * (1 - discount rate)

calculate total bonus

description = new description

Selection structures show alternative courses of action, the choice between
them depending on conditions that prevail at the time the selection is made. For
example, an ifthenelse construct, which has only two possible outcomes, is shown in
the following fragment:

if client contact is 'Sushila' then

set discount rate to 5%

else

set discount rate to 2%

end if ;

If the two alternatives are not really different actions, but are rather a choice
between doing something and not doing it, the 'else' branch can be omitted. The
following fragment shows this simpler form:

if client contact is 'Sushila' then set discount rate to 5% end if ;

Multiple outcomes are handled either by a case construct or by a nested
if. The following fragment illustrates the case structure:

begin case

case client contact is 'Sushila'

set discount rate to 5%

case client contact is' 'Wu'

set discount rate to 10%

case client contact is 'Luis'

set discount rate to 15%

otherwise set discount rate to 2%

end case ;

The following fragment illustrates the nested-if structure:

if client contact is 'Sushila' set discount rate to 5%

else if client contact is 'Wu' set discount rate to 10%

else if client contact is 'Luis' set discount rate to 15%

else set discount rate to 2% end if ; end if ; end if ;

The third type of control structure is iteration. This is used when a
statement, or group of statements, needs to be repeated. Typically this is a way of
applying a single operation to a set of objects. Logically, once something has begun
to occur repeatedly, there must be a condition for stopping the repetition. There are
two main forms of control of iteration. These differ in whether the condition for ending
the repetition is tested before or after the first loop. The next two examples show
typical applications of each kind of structure. In the first, the test is applied before the
loop is entered, so that if the list is empty no bonus is calculated.

do while there are more staff in the list
calculate staff bonus
store bonus amount store bonus amount
end do ;

The repeat – until construct can also be used in structured english as shown below

repeat
allocate member of staff to campaign
increment count of allocated staff
until count of allocated staff = 10

A Structured English specification can be made as complex as it needs to
be, and it can also be written in an iterative, top-down manner.

For example, an initial version of an algorithm is defined at a high level of
granularity. Then, provided the overall structure , Then, more detail is easily added
progressively. In refining the level of detail, structures can be nested within each
other to any degree of complexity. One of the guideline is that a Structured English
specification should not be longer than one page of typed A4 size paper, or one
screen if it is likely to be read within a CASE tool environment-although in practice
the acceptable length of a section of text depends on the context.

Pseudo-code Pseudo-code
Pseudo-code differs from Structured English in that it is closer to the

vocabulary and syntax of a specific programming language. There are thus many
different languages of pseudo-code, each corresponding to a particular
programming language. They differ from each other in vocabulary, in syntax and in
style.

Structured English avoids language specificity primarily to avoid reaching
conclusions about design questions too early. But the final implementation language
has been decided early in the project. This can be misleading, as it may be
desirable 'at a later stage to redevelop the system in a different programming
language. If the operations have been specified in a language-specific pseudo-
code, it would then be necessary to rewrite them.

However language-specific it may be, pseudo-code remains only a skeleton
of a program, intended only to illustrate its logical structure without including full
design and implementation detail. In other words, it is not so much a fully developed
program as an outline that can later be developed into program code.

The following pseudo-code for Check campaign budget can be compared
with the Structured English version above.

{
{ while more adverts:
next advert;
get advertcost; get advertcost;
cumcost = cumcost + advertcost;
endwhile;
}
{ campaigncost = cumcost X ohrate;
get campaignbudget;
case campaigncost >= campaignbudget:
return warningflag;
endcase
}
}

Activity diagrams :

Activity diagrams can also be used to specify the logic of procedurally
complex operations. If these activity diagrams are used for specifying the logic of
operation, activity states in the diagram usually represent steps in the logic of the
operation. This can be done at any level of abstraction, so that, if appropriate, an
initial high level view of the operation can later be decomposed to a lower level of
detail.

Activity diagrams are inherently very flexible in their use, and therefore a
little care should be exercised when they are employed in operation specification. A little care should be exercised when they are employed in operation specification. A
diagram may be drawn to represent a single operation on an object, but it may just
as easily be drawn to represent a collaboration between several objects

The following figure shows activity diagram for the operation
CreativeStaff.changeGrade(). This example contains a single selection.

Link to
creative Staff

Create new
staff Grade

Link to Previous
staff Gradestaff Grade

Set previous staff Grade
Grade FinishDate

There is no complex behaviour to be shown at this level of abstraction. However, if
we consider the operation logic at a more detailed level some selection logic may
become apparent. For this purpose the following figure shows more complex
activity diagram for CreativeStaff. changeGrade () with an initial selection to check
that approval has been given .

Check approval for
grade change

approved by director

Print approval
request

Create new
staff Grade

Link to
creative Staff

Link to Previous
staff Grade

Set previous staff Grade
Grade FinishDate

The following figure shows an Activity diagram for prepareBonusList () showing
selection and iteration structures.

calculate
bonus

[bonus >= 25$ AND bonus <= 250$]

create
warning letter [bonus < 25$]

add to star
list

[bonus > 250$]

format list

add to list

[more staff members]

[no more staff members]

4 . Object constraint Language (OCL)

In drawing any class diagram, much of the time and effort is spent in
working out what constraints to be applied.

For example, the multiplicity of an association represents a constraint on
how many objects of one class can be linked to any object of the other class. This
particular example can be expressed in the graphical language of the class
diagram, but this is not equally so for all constraints. Among those for which it is not
true are many of the constraints within operation specifications.

For example, many pre- and post-conditions in a contract are constraints For example, many pre- and post-conditions in a contract are constraints
on the behaviour of objects that are party to the contract. Sometimes the definition
of such constraints can be done in an informal manner ,but where greater precision
is required, OCL provides a formal language.

OCL expressions are constructed from a collection of pre-defined elements
and types, and the language has a precise grammar that enables the construction
of unambiguous statements about the properties of model components and their
relationships to each other.

Most OCL statements consist of the following structural elements:

• A context that defines a domain within which the expression is valid. This is often
an instance of a specific type, for example an object in a class diagram. A link
may also be the context for an OCL expression.

• A property of that instance which is the context for the expression. Properties
may include attributes, association-ends and query operations.

• An OCL operation that is applied to the property,includes the arithmetical
operators *, +, - and I, set operators such as size, isEmpty , select and type
operators such as oclIsTypeOf.

OCL statements can also include OCL keywords that include the logical operators OCL statements can also include OCL keywords that include the logical operators
such as and, or, implies, if, then, else and not and the set operator in, printed
in bold to distinguish them from other OCL terms and operations. Together with
the non-keyword operations mentioned above, these can be used to define
complex pre-and post-conditions for an operation.

The following table gives some examples of expressions in OCL, mainly adapted
from the OCL Specification, which is part of the UML Specification .All have an
object of some class as their context. The figure shows examples of OCL syntax
and an interpretation of the meaning of each.

OCL Expression Interpretation

Person

self.gender

In the context of a specific person, the value
of the property 'gender' of that person-i.e. a
person's gender.

Person

self.savings >= 500

The property 'savings' of the person under
consideration must be greater than or equal
to 500.

Person

self.husband->notEmpty implies

If the set 'husband' associated with a
person is not. empty, then the value of the self.husband->notEmpty implies

self.husband.gender = male

person is not. empty, then the value of the
property 'gender' of the husband must be
male. The boldface denotes an OCl
keyword, but has no semantic import in
itself.

Company self.CEO->size <= 1 The size of the set of the property 'CEO' of
a company must be less than or equal to 1.
That is, a company cannot have more than
1 Chief Executive Officer.

Company self.employee->select (age
< 60)

The set of employees of a company whose
age is less than 60.

OCL can specify many constraints that cannot be expressed directly in
diagrammatic notation, and is thus useful as a precise language for pre- and post-
conditions. The general syntax for operation specification is as follows:

Type::operation(parameter1:type,parameter2:type) : return type

pre: parameter1 operation

parameter2 operation

post: result = ...

Here the contextual type is the Type (normally a class) that owns the Here the contextual type is the Type (normally a class) that owns the
operation as a feature.

The pre: expressions are functions of operation parameters, while

post: expressions are functions of self, of operation parameters, or of both.

OCL expressions can be written with an explicit Context declaration.

The following example is used to explain this usage, together with an inv: label to
denote an invariant

Context Person inv:
self.age >= 0

Here the invariant is a person's age must always be greater than or equal to zero-
arguably, this should not need specification, but poorly specified computer systems
often get the really obvious things wrong. The context of an OCL expression
associated with a diagram (such as a class or collaboration diagram) is often
obvious; when this is the case, the declaration can be omitted.

One of the useful feature of OCL is its ability to define two values for a
single property using the postfix @pre. As you might expect, this refers to the
previous value of a property, and it can only be used in post-condition clauses. A
typical use is to constrain the relationship between the values of an attribute before
and after an operation has taken place.

Conditions and Actions Rule1 Rule2 Rule3

conditions

Is budget likely to be overspent? N Y Y

Is overspend likely to exceed 2% - N Y

Actions

Consider the following decision table , defines different actions depending on
changes in the estimated cost of a campaign in comparison with its budget. If
the new estimated cost is greater than the old estimated cost, but exceeds the
budget by no more than 2%, the value of this attribute is set to true, flagging a
need to generate a warning letter to the client.

Actions

No Action X

Send Letter X X

Set up meeting X

We can model this in a very simple way by adding an attribute Campaign.
clientLetterRequired.

We can write part of the logic in OCL as follows:
Context Campaign inv:
post: if estimatedCost > estimatedCost@pre and estimatedCost > budget and
estimatedCost <= budget * 1.02 then
self.clientLetterRequired : Boolean = 'true'
endif

Operation specifications frequently include invariants. When an invariant
is associated with an operation specification it describes a condition that always is associated with an operation specification it describes a condition that always
remains true for an object, and which must therefore not be altered by an operation
side-effect. Formal definition of invariants is valuable because they provide
rigorous tests for execution of the software.

5. Creating an Operation specification

The following figure shows the sequence diagram for the use case
Check campaign budget .In this example the message checkCampaignBudget
invokes the operation Campaign. checkCampaignBudget ().

:C a m p a i g n

 :
C a m p a i g n M a n a g e r

:C l i e n t :A d v e r t

1 : G e tN a m e ()

2 : L i s t C a m p a i g n s ()

3 : g e tC a m p a i g n D e ta i ls

4 : c h e c k C a m p a i g n B u d g e t ()

5 : * G e t C o s t ()

6 : g e tO v e r h e a d s ()

A specification for Campaign. checkCampaignBudget () is given below.

Operation specification: checkCampaignBudget
Operation intent: return difference between campaign budget and actual costs.

The invocation appears not to require anyparameters, but does
have a return type that we can expect it to contain a
numerical value. Let us assume that there is a Money type
available. The signature is shown below, followed by the pre-
and post-conditions.

operation signature: Campaign: : checkCampaignBudget () operation signature: Campaign: : checkCampaignBudget ()
budgetCostDifference:Money

logic description (pre- and post-conditions):
pre:self ->exists
post:campaignBudget = self.estimatedCost
committedExpenditure = self.adverts.estimatedCost->sum

From the sequence diagram it gives, this operation calls two other
operations and these must be listed. In a full specification.

Two Other operations called are :

Advert.getCost and self.getOverheads

Events transmitted to other objects: none

The only messages are those required to call the operations just
mentioned, whose return values are required by this operation. An 'event' is a
message that starts another distinct thread of processing .

Attributes set: none

This is a query operation whose only purpose is to return data already stored within
the system. the system.

Response to exceptions: none defined

Here we could define how the operation should respond to error conditions, e.g.
what kind of error message will be returned if a calling message uses an invalid
signature.

Non-functional requirements: none defined

11.Specifying Control

The various types of UML notations enable us to model the static structure
of an application (class diagrams) and the way in which objects interact (sequence
and collaboration diagrams). Another important aspect of an application that must
be modelled is the way that its response to events can vary depending upon the
passage of time and the events that have occurred already.

For an application such as a real-time system it is easy to understand that
the response of the system to an event depends upon its state. For example, an
aircraft flight control system should respond differently to events (for example, aircraft flight control system should respond differently to events (for example,
engine failure) when the aircraft is in flight and when the aircraft is taxiing along a
runway. A general example is that of a vending machine, which does not normally
dispense goods until an appropriate amount of money has been inserted.

This variation in behaviour is determined by the state of the machine-which
depends on whether or not sufficient money has been inserted to pay for the item
selected. In reality, of course, the situation is more compli-cated than this. For
example, even when the correct amount of money has been inserted; the machine
cannot dispense an item that is not in stock.

Objects can have similar variations in their behaviour dependent upon their
state. So, It is important to model state dependent variations in behaviour since they
represent constraints on the way that a system should behave.

1. State Chart diagram :

The statechart is a versatile technique, and can be used within an
object-oriented approach for other purposes than the modelling of object life
cycles. A statechart diagram shows the states of a single object, the events or
messages that cause a transition from one state to another , and the actions
that result from a state change. As in Activity diagram , statechart diagram also
contains special symbols for start state and stop state.

States and Events :

All objects will have a state in a system. The current state of an object
is a result of the events that have occurred to the object, and is determined by is a result of the events that have occurred to the object, and is determined by
the current value of the object's attributes and the links that it has with other
objects. Some attributes and links of an object are significant for the
determination of its state while others are not.

For example, in the Agate case study staffName and staff No attributes
of a Staff Member object have no impact upon its state, whereas the date that a
staff member started his or her employment at Agate determines when the
probationary period of employment ends . The Staff Member object is in the
Probationary state for the first six months of employment. While in this state, a
staff member has different employment rights and is not eligible for redundancy
pay in the event that they are dismissed by the company.

The UML specification defines a state as follows:

A state is a condition during the life of an object or an interaction during which it
satisfies some condition, performs some action or waits for some event
Conceptually, an object remains in a state for an interval of time. The possible states
that an object can occupy are limited by its class. Objects of some classes have only
one possible state.

For example, in the Agate case study a Grade object either exists or it does
not. If it exists it is available to be used, and if it does not exist it is not available.
Objects of this class have only one state, which we might name Available. Objects of
other classes have more than one possible state.

For example, an object of the class GradeRate may be in one of several For example, an object of the class GradeRate may be in one of several
states. It may be Pending, if the current date is earlier than its start date, Active, if
the current date is equal to or later than the start date but earlier than the finish date
, or Lapsed, if the current date is later than the finish date for the grade. If the current
date is at least a year later than the finish date then the object is removed from the
system. The current state of a GradeRate object can be determined by examining
the values of its two date attributes (alternatively, the GradeRate class might have a
single attribute2 (an enumerated type-that has an integer value for each possible
state) with values that indicate the current state of an object).

It is important that movement from one state to another for a
GradeRate object is dependent upon events that occur with the passage of time.
The following figure shows a state chart for GradeRate.

Initial state

Change event
Pending

Active

GradeRate()

when[ratestratDate <= currentDate]

Lapsed

when[ratefinishDate <= currentDate]

after[1 year]

Transition b/w states

Elapsed time event

Final State

Movement from one state to another is called a transition, and is triggered by
an event. When its triggering event occurs a transition is said to fire. A transition is
shown as a solid arrow from the source state to the target state.

An event is an occurrence of a stimulus that can trigger a state change and
that is relevant to the object or to an application.

For example, the cancellation of an advert at Agate is an event that will change
the state of the Advert object being cancelled. Just as a set of objects is defined by the
class of which they are all instances, events are defined by an event type of which each
event is an instance. Here this cancellation is defined by the event type
cancellationOfAdvert (). An event can have parameters and a return value, and in an
object-oriented system it is implemented by a message. object-oriented system it is implemented by a message.

Events can be grouped into several general types. A change event occurs
when a condition becomes true. This is usually described as a Boolean expression,
which means that it can take only one of two values: true or false. Change events are
annotated by the keyword when followed by the Boolean expression in parenthesis. This
form of conditional event is different from a guard condition that is only evaluated at the
moment that its associated event fires.

A call event occurs when an object receives a call for one of its operations either
from another object or from itself. Call events correspond to the receipt of a call
message and are annotated by the signature of the operation as the trigger for the
transition.

A signal event occurs when an object receives a signal. As with call events the
event is annotated with the signature of the operation invoked. There is no syntactic
difference between call events and signal events. It is assumed that a naming
convention is used to distinguish between them.

The basic syntax for a call or signal event is: event-name' (' parameter-list 'j'

where the parameter-list contains parameters of the form:

parameter-name':' type-expression
separated by commas. Characters in single quotes, such as '(', are literals that
appear as part of the event.

An elapsedtime event is caused by the passage of a designated period of time
after a specified event .Elapsed-time events are shown by time expressions as
triggers for the transitions. The time expression is placed in parentheses and should
evaluate to a period of time. It is preceded by the keyword after and if no starting
time is indicated it reflects the passage of time since the most recent entry to the
current state.

Basic Notation

The initial state of a life cycle is indicated by a small solid filled circle.
The initial state is a notational convenience, and an object cannot remain in its
initial state but must immediately move into another named state. In previous
Figure the GradeRate object enters the Pending state immediately on its
creation. A transition from the initial state can optionally be labelled with the
event that creates the object. The Final state means end point of a life cycle is
shown by a bull's-eye symbol. This too is a notational convenience, and an
object cannot leave its final state once it has been entered. All other states are
shown as a rectangle with rounded corners and should be labeled with a
meaningful name. In this example all transitions except the transition from the meaningful name. In this example all transitions except the transition from the
initial state are triggered by change events. The state chart for a GradeRate
object is very simple, since it enters each state only once. Some classes have
much more complex life cycles.

Commissioned

Active

authorized(authorizationCode)[contact Signed] / SetCampaignActive()

The Figure shows the basic notation for a state chart with two states for the class
Campaign and one transition between them. A transition should be annotated with a
transition string to indicate the event that triggers it.

This event must correspond to an
operation in the campaign class

For call and signal events the format of the transition string is as follows:

event-signature ' [‘ guard-condition ‘] ' ‘ / ' action-expression

The event signature takes the following form:

event-name ' (‘ parameter-list ‘) '

A guard condition is a Boolean expression that is evaluated at the time the
event fires. The transition only takes place if the condition is true. A guard condition
is a function that may involve parameters of the triggering event and also attributes
and links of object that owns the state chart. A guard condition is contained in
square brackets , [, ... '] '. In Figure the guard condition is a test on the
contractSigned attribute in the Campaign classand since the attribute is Boolean it
could be written follows: [contractSigned]

This expression evaluates to true only if contractSigned is true. A guard
condition can also be used to test concurrent states of the current object or the
state of some other reachable object.

An actionexpression is executed when an event triggers the transition to
fire. Like a guard condition, it may involve parameters of the triggering event and
may also involve operations, attributes and links of the owning object.

In the above Figure the action-expression begins with the '/' delimiter
character and is the execution of the Campaign object's operation
setCampaignActive () . An action-expression may comprise a sequence of actions
and include actions that may generate events such as sending signals or invoking
operations. Each action in an action string is separated from its preceding action
with a semicolon.

The action-expressions that are associated with a transition, can also be
useful to model internal actions or activities associated with a state. These actions
may be triggered by events that do not change the state, or by an event that causes
the state to be entered or by an event that results in exiting the state.

The following Figure the state symbol is shown with two compartments, a
name compart-ment and an internal transitions compartment.

State Name

Internal transition compartment
Name compartment

State Name

entry/ action expression
exit/ action expression
do/ activity

Include / sub machine

A state
may
include
sub
state-
chart

Two kinds of internal event have a special notation. These are the entry
event and the exit event, respectively indicated by the keywords entry and exit.
These cannot have guard conditions as they are invoked implicitly on entry to the
state and exit from the state respectively. Entry or exit actionexpressions may also
involve parameters of incoming transitions and attributes and links of the owning
object. It is important to emphasize that any transition into a state causes the entry
event to fire and all transitions out of a state cause the exit event to fire.

Activities are preceded by the keyword do and have the following syntax:

'do' 'I' activity-name' (' parameter-list ')'

It is also possible to show that a state contains substates by using the It is also possible to show that a state contains substates by using the
keyword include' followed by the name of the contained sub-statechart or
submachine. Complex states may be represented by a statechart nested within the
state. The nesting of one state-chart within another allows the representation of
highly complex behaviour. When an activity in a state ends the state is considered
completed and the object makes a transition triggered by the completion of this
activity. Alternatively an activity may persist as long as the object remains in the
state, in which case it does not trigger a transition from the state. The activity will
only end when some other specified event triggers a transition from the state.

The following Figure shows a statechart for the class Campaign.

Commissioned

Active

/ assignManager(); AssignStaff()

authorized(authorizationCode)[contractsigned] / set campaign active

campaign completed() / prepare final statement()

Completed

Paid

campaign completed() / prepare final statement()

payment received(payment) [paymentdue - payment > zero]

payment received(payment) [paymentdue - payment < = zero]

archiveCampaign() / unassignStaff(); UnassignManager()

The transition from the initial state to the Commissioned state has been labelled
only with an action-expression that comprises the operations assignManager ()
and assignStaff (). Execution of these operations ensures that when a campaign
is created a manager and member(s) of staff are assigned to it. The operations
are triggered by the event that creates a Campaign object. The transition from
the Completed state to the Paid state has a guard condition that only allows the
transition to fire if total amount due (paymentDue) for the Campaign has been
completely paid.

The recursive transition from the Completed state models any payment
event that does not reduce the amount due to zero or beyond. Only one of the
two transitions from the Completed state can be triggered by the two transitions from the Completed state can be triggered by the
paymentReceived event since the guard conditions are mutually exclusive. It
would be bad practice to construct a statechart where one event can trigger two
different transitions from the same state. A life cycle is only unambiguous when
all the transitions from each state are mutually exclusive.

Further Notation :

The state chart notation can be used to describe highly complex time-dependent behaviour.
Hierarchies of states can be nested and concurrent behaviour can also be represented.

1.Nested States :

When the state behaviour for an object or an interaction is complex it may be necessary to
represent it at different levels of detail and to reflect any hierarchy of states that is present in the
application. For example, in the statechart for Campaign the state Active encompasses several substates.
These are shown below where the Active state is seen to comprise three disjoint substates: Advert
Preparation, Scheduling and Running Adverts.

ACTIVE

Advert
Preparation

Running
Adverts Scheduling

extendCampaign() / modify Budget() AdvertsApproved() / authorize()

confirmSchedule()

campaignCompleted() / PrepareFinalStatement()

This diagram now shows a single state which contains within it a nested
state diagram. In the nested statechart . within the Active state, there is an initial state
symbol with a transition to the first substate that a Campaign object enters when it
becomes active. The transition from the initial pseudo state symbol to the first
substate (Advert Preparation) should not be labelled with an event but it may be
labelled with an action. It is implicitly fired by any transition to the Active state. A final
pseudostate symbol may also be shown on a nested state diagram. A transition to the
final pseudostate symbol represents the completion of the activity in the enclosing
state (i.e. Active) and a transition out of this state triggered by the completion event.
This transition may be unlabelled (as long as this does not cause any ambiguity)
since the event that triggers it is implied by the completion event.

When a campaign enters the Active state in, it first enters the Advert
Preparation substate, then if the adverts are approved it enters the Scheduling
substate and finally enters the Running Adverts substate when the schedule is
approved. If the campaign is deemed completed the object leaves the Running
Adverts substate and also leaves the Active enclosing state, moving now to the
Completed state . If the campaign is extended while in the Running Adverts substate
the Advert Preparation substate is re-entered . A high level state chart for the class
Campaign can be drawn to include within the main diagram the detail that is shown in
the nested statechart for the Active state if so desired.

If the detail of the sub machine is not required on the higher level
statechart or is just too much to show on one diagram the higher level statechart
can be annotated with the hidden decomposition indicator icon (two small state
symbols linked together) as shown below. The submachine Running is referenced
using the include statement.

Active

Include / running

2.Concurrent states :2.Concurrent states :

Objects can have concurrent states. This means that the behaviour of the
object can best be explained by regarding it as a product of two distinct sets of
substates, each state of which can be entered and exited independently of
substates in the other set. The following figure illustrates this concurrent states
form.

Advert
Preparation

Running
Adverts

Scheduling

extendCampaign() / modify Budget() AdvertsApproved() / authorize()

confirmSchedule()

campaignCompleted() / PrepareFinalStatement()

Active

Running

Survey

Evaluation

surveyComplete()

runSurvey()

Monitoring

The Active state with concurrent substates.

Suppose in Agate Ltd. , a campaign is surveyed and evaluated while it is
also active. A campaign may occupy either the Survey substate or the Evaluation
substate when it is in the Active state. Transitions between these two states are not
affected by the campaign's current state in relation to the preparing and running of
adverts. We model this by splitting the Active state into two concurrent nested
statecharts, Running and Monitoring, each in a separate sub-region of the Active
statechart. This is shown by dividing the state icon with a dashed line. These
concurrent substates for the Active state of the Campaign class are shown in above
figure.

A transition to a complex state such as this one is equivalent to a
simultaneous transition to the initial states of each concurrent statechart. An initial
state must be specified in both nested statecharts in order to avoid ambiguity about
which substate should first be entered in each concurrent region. A transition to the
Active means that the Campaign object simultaneously enters the Advert
Preparation and Survey states. A transition may now occur within either concurrent
region without having any effect on the state in the other concurrent region. However,
a transition of the Active state applies to all its substates. We can say that the sub
states inherit the campaignCompleted () transition from Active state since it applies
implicitly to them all. This equivalent to saying that an event that triggers a transition
out of the Active state triggers a transition out of any substates that are currently
occupied. The nested statechart Monitoring does not have a final state and when the
Active state is exited one of the two states Survey or Evaluation will be occupied.

The following figure shows the use of synchronization bars to show
explicitly how an event triggering a transition to a state with nested concurrent
states causes specific concurrent substates to be entered and also shows that the
super-state is not exited until both concurrent nested state charts are exited.

Synchronization Bar

2.Approaches to prepare STATECHART

State charts can be prepared from various perspectives. The statechart for a class
can be seen as a description of the ways that use cases can affect objects of
that class. Use cases give rise to interaction diagrams (sequence diagrams or
collaboration diagrams) and these can be used as a starting point for the
preparation of a statechart.

Interaction diagrams show the messages that an object receives during the
execution of a use case. The receipt of a message by an object does not
necessarily correspond to an event that causes a state change.

For example, simple 'get' messages like getTitle() ,query messages like For example, simple 'get' messages like getTitle() ,query messages like
listAdverts() are not events in this sense. This is because they do not change
the values of any of the object's attributes, nor do they alter any of its links with
other objects. Some messages change attribute values without changing the
state of an object. For example, a message receivePayment () to a Campaign
object will only cause a change of state to Paid if it represents payment at least
of the full amount due.

StateCharts can be prepared with the help of Interaction diagrams by using the
following two approaches.

1. A Behavioural approach.

2. A Life Cycle Approach

1. A behavioural approach

The following figure shows a sequence diagram for the use case Record
completion of a campaign. The receipt of the message campaignCompleted ()
by a Campaign object is an event from the perspective of the Campaign object.
In this example this event is a call event and causes the campaignCompleted ()
operation to invoked triggering a transition from the Active state to the
Completed state. Incoming messages to an object generally correspond to an
event and trigger a state change.

Allen and Frost describes these interaction diagrams can be used to
develop a statechart as a behavioural approach.

:CompleteCampaignUI
 :

CampaignManager

:CompleteCampaign :Client :Campaign

1: * GetClient()

2: Start Interface()

3: Select Client()

4: Show client Campaigns()

Sequence diagram for use case Record completion of a campaign

Active
Region5: List Campaigns()

6: * getCampaignDetails()

7: Complete Campaign()

8: Complete Campaign()

9: Campaign Completed

Region

Completed
Region

The preparation of a statechart from a set of interaction diagrams using
this behavioural approach has the following sequence of steps.

1. Examine all interaction diagrams that involve each class that has heavy
messaging.

2. Identify the incoming messages on each interaction diagram that may
correspond to events. Also identify the possible resulting states.

3. Document these events and states on a statechart.

4. Elaborate the statechart as necessary to cater for additional interactions as
these become evident, and add any exceptions.

5. Develop any nested statecharts if already identified.

6. Review the statechart to ensure consistency with use cases. In particular, check
that any constraints that are implied by the state chart are appropriate.

7. Iterate steps 4, 5 and 6 until the statechart captures the necessary level of
detail.

8. Check the consistency of the state chart with the class diagram, with interaction
diagrams and with any other statecharts.

The above sequence diagram can be annotated to indicate the state
change that is triggered by the event campaignCompleted (). In order to identify all
incoming messages that may trigger a state change for an object, all interaction
diagrams that affect the object should be examined .Analysis of the interaction
diagrams produces a first-cut list of all events (caused by incoming messages) that
trigger state changes, and also a first-cut list of states that the object may enter as a
result of these events.

The next step is to prepare a draft state chart for the class. The following
Figure shows the level of detail that might be shown in a first-cut statechart for the
Campaign class. This would need to be expanded in order to reflect any events that
have not been identified from the interaction diagrams, and also to include any have not been identified from the interaction diagrams, and also to include any
exceptions. Complex nested states can be refined at this stage.

The following figure shows Initial statechart for the Campaign class -

using a behavioural approach.

Commissioned

Advert
Preparation

/ AssignMAnager(); AssignStaff();

authorized(authorization COde) [contract signed] / set Campaign Active

Running
Adverts

Scheduling

AdvertsApproved() / authorize()

confirm Schedule()

extendCampaign() / ModifyBudget()

campaigncompleted() / Prepare Final Statement()

Completed

Paid

paymentReceived(payment)[paymentDue - payment = zero]

PaymentReceived(payment)[paymentDue - payment > zero]

paymentReceived(payment)[paymentDue - payment < zero] / generateRefund()

archiveCampaign() / unassignstaff() ; unassignMAnager()

The following figure shows a revised state chart for the previous Figure
results in the addition of the Active state to encompass the states Advert
Preparation, Scheduling and Running Adverts

C ommi ssioned

A dvert
Preparation

/ A ssignMA nager(); A ssignS taff();

authori zed(authori zati on C Ode) [contra ct s igne d] / set C ampaign A cti ve

Runni ng
A dverts

S che duling

A dvertsA pproved() / authorize()

confirm S chedule()

extendCa mpa ign() / ModifyBudg et()

ACTIVE

A dverts
S che duling

C ompleted

P aid

archiveC ampaign() / unassignsta ff() ; unassignMAnager()

campaigncompleted() / Prepare F ina l S tatem ent()

paymentReceived(payment)[paymentD ue - payment = zero]

paymentReceived(payment)[paymentD ue - payment < zero] / generateRefund ()

paymentReceived(payment)[paymentD ue - payment > zero]

2. A life cycle approach

An alternative approach to the preparation of statecharts is based on the
consideration of life cycles for objects of each class. This approach does not
use interaction diagrams as an initial source of possible events and states.
Instead, they are identified directly from use cases and from any other
requirements documentation that happens to be available. First, the main
system events are listed (at Agate 'A client commissions a new campaign' might
be one of the first to consider). Each event is then examined in order to
determine which objects are likely to have a state dependent response to it.

The steps involved in the life cycle approach to state modelling are as The steps involved in the life cycle approach to state modelling are as
follows:

1. Identify major system events.

2. Identify each class that is likely to have a state dependent response to these
events.

3. For each of these classes produce a first-cut statechart by considering the
typical life cycle of an instance of the class.

4. Examine the state chart and elaborate to encompass more detailed event
behaviour.

5. Enhance the statechart to include alternative scenarios.

6.Review the statechart to ensure that is consistent with the use cases. In particular,
check that the constraints that the state chart implies are appropriate.

7. Iterate through steps 4, 5 and 6 until the statechart captures the necessary level
of detail.

8. Ensure consistency with class diagram and interaction diagrams and other
statecharts.

Consistency Checking :

Statecharts must also be consistent with other models also. Here Consistency
checks are an important task in the preparation of a complete set of models. This
process highlights omissions and errors, and encourages the clarification of any process highlights omissions and errors, and encourages the clarification of any
ambiguity or incompleteness in the requirements.

1. Every event should appear as an incoming message for the appropriate object on
an interaction diagram.

2. Every action should correspond to the execution of an operation on the appro· ·
priate class, and perhaps also to the despatch of a message to another object.

3. Every event should correspond to an operation on the appropriate class (but note
that not all operations correspond to events).

4. Every outgoing message sent from a statechart must correspond to an operation
on - another class.

12. Moving into Design

Here we need to discuss about

1.Differences between analysis and Design activities –

Analysis – It is often said to be about the What? Of a system

Design – It is described as being about the How?.

2. Difference between Logical (implementation Independent) Vs Physical Design
(implementation dependent).

3. Two levels of designing –

System design – addresses architectural aspects that affects the overall
system.

Detailed Design – addresses the design of classes and the detailed working
of system.

4. Qualities and Objectives of Analysis and Design

5. Measurable objectives in design and planning for design

1. How is design different from Analysis?

Design has been described by Rumbaugh as 'how the system will be
constructed without actually building it'. The models that are produced by design
activities show how the various parts of the system will work together; the models
produced by analysis activities show what is in the system and how those parts
are related to one another.

The word analysis comes from a Greek word meaning to break down into
component parts. When we analyse an organization and its need for a new
system, the analysis activity is characterized as asking what happens in the
current system and what is required in the new system. It is a process of seeking current system and what is required in the new system. It is a process of seeking
to understand the organization, investigating its requirements and modelling them.
The result of this analysis activity is a specification of what the proposed system
will do based on the requirements.

Design is about producing a solution that meets the requirements that have
been analysed. The design activity is concerned with specifying how the new
system will meet the requirements. There may be many possible design solutions,
but the intention is to produce the best possible solution in the circumstances.
Those circumstances may reflect constraints such as limits on how much can be
spent on the new system or the need for the new system to work with an existing
system.

Jacobson defines design as part of the construction process (together with
implementation). The systems designer has his or her attention focused on the
implementation of the new system, while the systems analyst is focused on the way
the business is organized and a possible better organization.

consider a simple example, in the Agate case study. Analysis identifies the
fact that each Campaign has a title attribute, and this fact is documented in the class
model. Design determines how this will be entered into the system, displayed on
screen and stored in some kind of database together with all the other attributes of
Campaign and other classes.

Design can be seen either as a stage in the systems development life cycle
or as an activity that takes place within the development of a system.or as an activity that takes place within the development of a system.

In projects that follow the waterfall life cycle model , the Analysis stage will
be complete before the Design stage begins. However, in projects that follow an
iterative life cycle, design is not such a clear-cut stage, but is rather an activity that
will be carried out on the evolving model of the system.

In the Unified Process , design is organized as a workflow - a series of
activities with inputs and outputs-that is independent of the project phase. In the
Rational Unified Process , analysis and design are combined into a single workflow-
the analysis activities produce an overview model, if it is required, but the emphasis
is on design-and the workflow is similarly independent of the' project phase.

A project consists of major phases (Inception, Elabor-ation, Construction and
Transition); each phase requires one or more iterations, and within the iterations,
the amount of effort dedicated to the activities in each workflow gradually
increases and then declines as the project progresses.

a) Design in the traditional life cycle

In large-scale projects that follow a traditional systems development life cycle
there are a number of advantages to making a clear break between analysis and
design. These are concerned with:

1. project management,
2. staff skills and experience, 2. staff skills and experience,
3. client decisions, and
4. choice of development environment.

1. Project management - The project manager will have an overall budget in terms
of money and staff time within which the system must be developed. Some
proportion of those resources will have been allocated to analysis and some to
design. In order to manage and control the project effectively, the project
manager will want to have a clear idea of how much time is spent on each of
these activities. If the two activities are allowed to merge, then the management
of the project becomes more difficult, If all the time is being spent on analysis,
then the project will fall behind schedule, whereas if all the time is being spent on
design, then it is likely that the requirements have not been properly understood .

2. Staff skills and experience –

Analysis and design may be carried out by staff with different skills and
experience. Staff with job titles such as business analyst and systems analyst will
have the skills and expertise to carry out the an alysis, while systems architects
and systems designers will have an understanding of the technology available to
deliver the solution and will carry out the design.

3. Client decisions.

The clients will want to know what they are paying for. The end of
analysis is often a decision point in a project. The clients will be provided with a
specification of the system that can be traced back to their requirements and they specification of the system that can be traced back to their requirements and they
will have to agree to this or sign it off before work progresses to design. In some
projects, the client may be presented with a number of alternative specifications
that differ in scope (what parts of the system will be computerized). In this case,
the client must choose which of these alternative systems to take forward into
design.

4. Choice of development environment –
In many projects the hardware and software that will be used to develop

and deliver the finished system will not be known at the time of the analysis stage.
The reasons for delaying the choice of hardware and software until the
requirements for the system have been determined by the analysis, especially in the
rapidly changing world of information technology in which some new technology
always seems to be due for release. Because the choice of hardware, development
language and database will affect the design, it may be necessary to make a break
between analysis and design so that decisions about the development environment
can be made.

b) Design in the iterative life cycle b) Design in the iterative life cycle

There are also advantages to be gained from using an iterative life cycle such
as the Unified Software Development Process.

These are concerned with:

1. risk mitigation,
2. change management,
3. team learning and
4. improved quality.

1.Risk mitigation –

An iterative process enables the identification of potential risks and
problems earlier in the life of a project. The early emphasis on architecture and the
fact that construction, test and deployment activities are begun early on, make it
possible to identify technological problems and take action to reduce them.
Integration of sub-systems is begun earlier and is less likely to throw up unpleasant
surprises at the last minute.

2. Change management –

Users' requirements do change during the course of a project, often Users' requirements do change during the course of a project, often
because of the time that projects take, and often because until they see some
results they may not be sure what they want. In a waterfall life cycle, changing
requirements are a problem, in an iterative life cycle there is an expectation that
some requirements activities will still be going on late in the project, and it is easier
to cope with changes. It is also possible to revise decisions about technology during
the project, as the hardware and software' available to do the job will almost
certainly change during the project.

3. Team learning –
Members of the team, including those concerned with testing and

deploying, are involved in the project from the start, and it is easier for them to learn'
about and understand the requirements and the solution from early on. They are not
then suddenly presented with a new and unfamiliar system. It is also possible to
identify training needs and provide the training while people are still working on an
aspect of the system.

4. Improved quality –
Testing of deliverables begins early and continues throughout the project.

This helps to prevent the situation where all testing is done in a final 'big bang' and
there is little time to resolve the bugs that are found. there is little time to resolve the bugs that are found.

The use of object-oriented techniques helps to take advantage of an
iterative life cycle. Before object-oriented approaches were developed, structured
analysis and design was the dominant approach to analysis and design. In
structured approaches, a clear distinction between analysis and design is made in
terms of the types of diagram that are used. During analysis data flow diagrams are
used to model requirements, whereas structure charts or structure diagrams are
used to model the design of 'the' system and the programs in it.

One of the main advantage for the use of object-oriented approaches is that the
same model (the class diagram or object model) is used right through the life of
the project.
Analysis identifies classes, those classes are refined in design, and the
eventual programs will be written in terms of classes. While this so-called
seamlessness of object-oriented methods may seem like an argument for
weakening the distinction between analysis and design, when we move into
design different information is added to the class diagram, and other different
diagrams are used to support the class diagram.

2. Logical design Vs Physical design

In the life of a system development project a decision must be made
about the hardware and software that are to be used to develop and deliver the
system-the hardware and software platform. In some projects this is known right
from the start. Many companies have an existing investment in hardware and
software, and any new project must use existing system software (such as
programming languages and database management systems) and will be
expected to run on the same hardware. This is more often the case in large
companies with mainframe computers. In such companies the choice of
configuration has been limited in the past to the use of terminals connected to the configuration has been limited in the past to the use of terminals connected to the
mainframe.

However, client-server architectures and open system standards, that
allow for different hardware and software to operate together, have meant that even
for such companies, the choice of platform is more open. For many new projects the
choice of platform is relatively unconstrained, and so at some point in the life of the
project a decision must be made about the platform to be used.

Some aspects of the design of systems are dependent on the choice of platform.
These will affect the system architecture, the design of objects and the
interfaces with various components of the system.

Examples include the following. Examples include the following.

• The decision to create a distributed system with elements of the system
running on different machines will require the use of some middleware such as
is provided by CORBA to allow objects to communicate with one another across
the network. This will affect the design of objects.

• The decision to write programs in Java and to use a relational database that
supports ODBC (Object Data Base Connectivity) will require the use of JDBC
(Java Data Base Connectivity) and the creation of classes to map between the
objects and the relational database.

• The choice of Java as a software development language will mean that the
developer has the choice of using the standard Java AWT (Abstract Windowing
Toolkit), the Java Swing classes or proprietary interface classes for designing the
interface.

• Java does not support multiple inheritance; other object-oriented languages such as
C++ do. If the system being developed appears to require multiple inheritance then in
Java this will have to be implemented using Java's interface mechanism.

• If the system has to interface with special hardware, for example bar-code
scanners, then it may be necessary to design the interface so that it can be written in
C as a native method and encapsulated in a Java class, as Java cannot directly C as a native method and encapsulated in a Java class, as Java cannot directly
access low-level features of hardware.

• The interaction between objects to provide the functionality of particular use cases
can be designed using interaction diagrams or collaboration diagrams.

• The layout of data entry screens can be designed in terms of the fields that will be
required to provide the data for the objects that are to be created or updated, and the
order in which they will appear on the screen can be determined.

• The nature of commands and data to be sent to and received from special hard-ware
or other systems can be determined without needing to design the exact format of
messages.

Because of this, design is sometimes divided into two stages.

The first is implementationindependent or logical design and the second is
implementationdependent or physical design.

Logical design is concerned with those aspects of the system that can be
designed without knowledge of the implementation platform; physical design deals
with those aspects of the system that are dependent on the implementation platform
that will be used.

Having an implementation-independent design may be useful for if system
to be re-implemented with little change to the overall design but on a different to be re-implemented with little change to the overall design but on a different
platform.

In many projects, design begins after hardware and software decisions have
been made. However, if this is not the case, then the project manager must ensure
that the plan of work for the project takes account of this and that logical design
activities are tackled first. In an iterative project life cycle, logical design may take
place in the early design iterations, or if the system is partitioned into sub-systems,
the logical design of each sub-system will take place before its physical design.

3. System Design and Detailed Design

Design of systems takes place at two levels: 1.system design and

2. detailed design.

System design is concerned with the overall architecture of the system and the setting of
standards, for example for the design of the human-computer interface.

Detailed design is concerned with designing individual components to fit this architecture
and to conform to the standards. In an object-oriented system, the detailed design is
mainly concerned with the design of objects.

1 System design -

During system design the designers make decisions that will affect the system
as a whole. The most important aspect of this is the overall architecture of the system.
Many modern systems use a client-server architecture in which the work of the system is
divided between the clients and a server . This arises questions about how processes
and objects will be distributed on different machines, and it is the role of the system
designer or system architect to decide on this.

The design will have to be broken down into sub-systems and these sub-
systems may be allocated to different processors. This introduces a requirement for
communication between processors, and the systems designer will need to
determine the mechanisms used to provide for this communication. Distributing
systems over multiple processors also makes it possible for different sub-systems
to be active simultaneously or concurrently.

Many organizations have existing standards for their systems. These may
involve interface design issues such as screen layouts, report layouts or how on-
line help is provided. Decisions about the standards to be applied across the whole
system are part of system design, whereas the design of individual screens and
documents is part of detailed design. documents is part of detailed design.

When a new system is introduced into an organization, it will have an
impact on people and their existing working practices. Job design is often included
in system design and addresses concerns about how people's work will change,
how their interest and motivation can be maintained, and what training they will
require in order to carry out their new jobs. How people use particular use cases
will be included in the detailed design of the human-computer interface.

2 Detailed Design –

This addresses the design of classes and the detailed working of system.
These activities we need to consider under traditional and OO approaches.

a) Traditional detailed design -

Here, detailed design was seen as consisting of four main activities:

• Designing inputs - Designing inputs meant designing the layout of menus
and data entry screens;

• Designing outputs - Designing outputs concerned with the layout of • Designing outputs - Designing outputs concerned with the layout of
enquiry screens, reports and printed documents;

• Designing processes - Designing processes dealt with the choice of
algorithms and ensuring that processes correctly reflected the decisions
that the software needed to make;

• Designing files - Designing files dealt with the structure of files and
records, the file organization and the access methods used to update and
retrieve data from the files.

The development of structured design methods made two major changes
to the way in which design was carried out.

First, the work of Jackson provided a method for designers to design
programs by using a technique to match the structure of the inputs and outputs with
the structure of data to be read from or written to files.

Second , A criteria which is to be considered in breaking systems and
programs down into modules to ensure that they are easy to develop and maintain.
These criteria concern two issues: cohesion and coupling.

Criteria to maximize desirable types of cohesion have as their aim the Criteria to maximize desirable types of cohesion have as their aim the
production of modules-sections of program code in whatever language is used-that
carry out a clearly defined process or a group of processes that are functionally
related to one another. This means that all the elements of the module contribute to
the performance of a single function. Poor cohesion is found when processes are
grouped together in modules for other reasons.

Examples of poor types of cohesion include:

• When processes are grouped together for no obvious reason (coincidental
cohesion)

• Because they handle logically similar processes such as inputs (logical cohesion)

• Because they happen at the same time-for example when the system
initializes-(temporal cohesion)

• because the outputs of one process are used as inputs by the next (sequential
cohesion).cohesion).

By aiming to produce modules that are functionally cohesive, the designer should
produce modules that are straightforward to develop, easy to maintain and have the
maximum potential to be reused in different parts of the system. This will be
assisted if coupling between modules is also reduced to the minimum.

Criteria to minimize the coupling between modules have as their aim the production
of modules that are independent of one another and that can be amended without
resulting in knock-on effects to other parts of the system. Good coupling is
achieved if a module can perform its function using only the data that is passed to it
by another module and using the minimum necessary amount of data.

Poor coupling is found in the following circumstances:

• Modules that rely on data in global variables or data in common blocks (used
in languages such as COBOL and FORTRAN) that other modules may change.

• Modules that are designed to need large amounts of data to be passed to
them as parameters .

• Modules that are not cohesive because they perform several functions and
therefore require control information as well as data to be passed as
parameters so that a decision can be made within the module about which parameters so that a decision can be made within the module about which
function is required.

Modules with low coupling and high cohesion are the aim of structured design
and programming techniques.

b) Object-Oriented Detailed Design

Traditionally, detailed design has been about designing inputs, outputs,
processes and file or database structures; these same aspects of the system
also have to be designed in an object-oriented system, but they will be
organized in terms of classes.

During the analysis phase of a project, concepts in the business will have
been identified and elaborated in terms of classes, and use cases will have been
identified and described. The classes that have been included in the class diagram
will reflect the business requirements but they will only include a very simple view
of the classes to handle the interface with the user, the interface with other
systems, the storage of data and the overall co-ordination of the other classes into
programs. These classes will be added in design with greater or lesser degrees of
detail depending on the hardware and software platform that is being used for the
new system.

Different authors describe these additional aspects of the system in Different authors describe these additional aspects of the system in
different ways.

According to Coad and Yourdon - calls the business classes the problem domain
component and develop three further components in the design phase:

• Human interface component,
• Data management component and
• Task management component.

Coad propose a slightly different set of components:

• human interface component,
• data management component and
• system interaction component

In their designs, windows play the co-ordinating role played by the classes in the
task management component.

Larman proposes an architecture based on three layers:

• presentation layer (windows and reports), • presentation layer (windows and reports),
• application logic layer and
• storage layer.

However, his application logic layer includes both domain concepts-equivalent to
the problem domain component-and services, which may include interfaces to
the data-base and to other systems. The following figure shows UML packages
representing layers in the three-tier architecture.

Java AWT Application
windows

Control
objects

Business
objects

Application Layer Package

Presentation layer package

Storage Layer package

JDBC Object to
Relational

Java SQL

objectsStorage Layer package

UML packages representing layers in the three-tier architecture

Important Aspects to be considered in an Object-Oriented Detailed Design :

Certain aspects of the detailed design require special attention in the
development of object-oriented systems. These include reuse and assignment of
responsibilities to classes.

One of the arguments for the use of object-oriented languages is that they
promote reuse through encapsulation of functionality and data together in classes
and through the use of inheritance. This is not just a programming issue, but one
that also affects recognition of the need to reuse analysis results in object-oriented
systems development.

Design reuse already takes place at two levels: first through the use of
design patterns and second by recognizing during design that business classes design patterns and second by recognizing during design that business classes
that have been identified during analysis may be provided by reusing classes that
have already been designed within the organization, or even bought in from outside
vendors.

There is a move in the software industry towards the use of components
that provide this kind of functionality and that can be bought from vendors. CASE
tool suppliers such as SELECT Software Tools have added component
management software to their range of products.

The assignment of responsibilities to classes is an issue that is related to
reuse. In an object-oriented system , it is important to assign responsibility for
operations to the right classes, and there is often a choice.

4. Qualities and Objectives of Analysis and Design

Reusability is one of the feature which designers of object-oriented systems
are trying to achieve in their design. Reusability is not the only objective of design.
There are a number of other criteria for a good design. Perhaps the most obvious
measure of design quality is whether the finished application is of high quality. This
assumes that the analysis that preceded the design work was itself of high quality.

What makes for good analysis?

The cost of fIxing faults in a system 'increases as the system progresses
through the system's development life cycle. If an error occurs in the analysis of a through the system's development life cycle. If an error occurs in the analysis of a
system, it is cheaper to fix it during the analysis phase than it is later when that error
may have propagated through numerous aspects of the design and implementation. It
is most expensive to fix it after the system has been deployed and the error may be
reflected in many different parts of the system. The quality of the design is, therefore,
dependent to a large extent on the quality of the analysis.

Some methodologies have explicit quality criteria that can be applied to the
products of every stage of the life cycle, but these quality criteria typically check
syntactic aspects of the products, that is whether the notation is correct in diagrams,
rather than semantic aspects, that is whether the diagrams correctly represent the
organization's requirements.

To provide foundation for design phase, analysis should meet the following four
criteria:

 correct scope,
 completeness,
 correct content and
 consistency.

Correct scope. The scope of a system determines what is included in that
system and what is excluded. It is important, first that the required scope of the
system is clearly understood, documented and agreed with the clients, and
second that every-thing that is in the analysis models does fall within the scope second that every-thing that is in the analysis models does fall within the scope
of the system.
Coad included a not this time component with their other four components
(problem domain, human interface, data management and system interaction).
The not this time component is used to document classes and business
services that emerge during the analysis but are not part of the requirements
this time. This is a useful way of forcing consideration of the scope of the
system.
Clearly determining the scope of a system before design starts is a strong
argument for making a distinction and a break between the analysis and design
phases of a project.

Completeness. Just as there is a requirement that everything that is in the analysis
models is within the scope of the system, so everything that is within the scope of
the system should be documented in the analysis models. Everything that is known
about the system from the requirements capture should be documented and
included in appropriate diagrams. Often the completeness of the analysis is
dependent on the skills and experience of the analyst. Knowing what questions to
ask in order to list out requirements comes with time and experience. However,
analysis patterns and strategies, can help the less experienced analyst to identify
likely issues.

Non-functional requirements should be documented even though they may
not affect the analysis models directly. Rumbaugh suggests that some of the not affect the analysis models directly. Rumbaugh suggests that some of the
requirements found during analysis are not analysis requirements but design
requirements. These should be documented, but the development team may only
have to consider them once the design phase has begun.

Correct content. The analysis documentation should be correct and accurate in
what it describes. This applies to textual information, diagrams and also to
quantitative features of the non-functional requirements. Examples include correct
descriptions of attributes and any operations that are known at this stage, correct
representation of associations between classes, particularly the multiplicity of
associations, and accurate information about volumes of data.

Consistency. Where the analysis documentation includes different models that
refer to the same things (use cases, classes, attributes or operations) the same
name should be used consistently for the same thing. Errors of consistency can
result in errors being made by designers, for example, creating two attributes with
different names that are used in different parts of the system but should be the
same attribute. If the designers spot the inconsistency, they may try to resolve it
themselves, but may get it wrong because the information they have about the
system is all dependent on what they have received in the specification of
requirements from the analysts.

Errors of scope or completeness will typically be reflected in the finished
product not doing what the users require; the product will either include features product not doing what the users require; the product will either include features
that are not required or lack features that are. Errors of correctness and
consistency will typically be reflected in the finished product performing incorrectly.
Errors of completeness and consistency will most often result in difficulties for the
designers; in the face of incomplete or inconsistent specifications, they will have to
try to decide what is required or refer back to the analysts.

What makes for good design?

The quality of the design will clearly be reflected in the quality of the
finished system that is delivered to the clients. Moreover, in the same way as the
quality of analysis affects the work of designers, the quality of the design has an
impact on the work of the programmers who will write the program code in order to
implement the system based on the design.

Some of the criteria given below for a good design will bring benefits to
the developers, while some will provide benefits for the eventual users of the
system.

Objectives of Design

The designers of a system seek to achieve many objectives that have
been identified as the characteristics of a good design since the early days of
information systems development.

Characteristics of Good Design are efficiency, flexibility, generality,
maintainability and reliability and Other characteristics of a good design includes ,
it should be functional, portable, secure and economical in the context of
object-oriented systems, reusability is a priority objective.

Functional. When we use a computer system, we expect it to perform correctly
and completely those functions that it is claimed to perform; when an information
system is developed for an organization, the staff of that organization will expect it
to meet their documented requirements fully and according to specification.

So, the staff of Agate will expect their system to provide them with the
functionality required to document advertising campaigns, record notes about
campaigns and store information about the advertisements to be used in those
campaigns. If it does not perform these functions, it is not fully functional.

Efficient. It is not enough that a system performs the required functionality; it
should also do so efficiently, in terms both of time and resources. Those resources
can include disk storage, processor time and network capacity. This is why design can include disk storage, processor time and network capacity. This is why design
is not just about producing any solution, but about producing the best solution.

Economical , Linked to efficiency is the idea that a design should be economical.
This applies not only to the fixed costs of the hardware and software that will be
required to run it, but also to the running costs of the system. The cost of memory
and disk storage is very low compared to 20 years ago, and most small businesses
using Microsoft Windows probably now require more disk space for their programs
than they do for their data.

Reliable. The system must be reliable in two ways: first, it should not be prone to
either hardware or software failure; second it should reliably maintain the integrity of
the data in the system. Hardware reliability can be paid for : some manufacturers
provide systems with redundant components that run in parallel or that step in when
an equivalent component fails; RAID (redundant arrays of inexpensive disks)
technology can provide users with disk storage that is capable of recovering from
failure of one drive in an array. The designers must design software reliability into
the system. In physical design, detailed knowledge of the development environment
is likely to help ensure reliability .

Secure. Systems should be designed to be secure against malicious attack by
out-siders and against unauthorized use by insiders. System design should include out-siders and against unauthorized use by insiders. System design should include
considerations of how people are authorized to use the system and policies on
passwords.

Flexible. It is the ability to adapt changing business requirements as time passes.

Generality. It Describes the extent to which a is general purpose.Means it includes
the feature of portability.

Manageable. A good design should allow the project manager to estimate the
amount of work involved in implementing the various sub-systems.If implementation
of these sub-systems is completed then forwarded for testing will not have any
affects on other parts of the system.

Maintainable. Maintenance activities include fixing bugs, modifying reports and
screen layouts, enhancing programs to deal with new business requirements,
migrating systems to new hardware and fixing the new bugs that are introduced by all
of the above. A well-designed and documented system is easier to maintain than one
that is poorly designed and documented. If maintenance is easy then it is with less
cost.

Usable. Usability includes a range of aspects including the idea, mentioned above,
that a system should be both satisfying and productive.

Reusable. Reusability is the important feature of object-oriented development. Many
of the features of object-oriented systems are geared to improve the possibility of
reuse. Reuse affects the designer in three ways.reuse. Reuse affects the designer in three ways.

First, he or she will consider how economies can be made by designing
reuse into the system through the use of inheritance;

second, he or she will look for opportunities to use design patterns, which
provide templates for the design of reusable elements;

third, he or she will seek to reuse existing classes either directly or by sub-
classing them.

Constraints on Design

Constraitns arise from the context of the project as well as from the users'
requirements. The clients' budget for the project, the timescale within which they
expect the system to be delivered, the skills of staff working on the project, the
need to integrate the new system with existing hardware or systems, and
standards set as part of the overall systems design process can all constrain what
can be achieved. Resolving conflicts between requirements and constraints results
in the need for compromises in design.

The following is one of the example which illustrates how these can occur.

If the users of Agate's new system require the ability to change If the users of Agate's new system require the ability to change
fonts in the notes that they write about campaigns and adverts, then they will
want to be able to edit notes with the same kind of functionality that would be
found in a word processor. As pointed out above, this will seriously impact the
storage requirements for notes. It will also have an effect on network traffic, as
larger volumes of data will need to be transferred across the network when
users browse through the notes. The designers will have to consider the impact
of this requirement. It may be that the users will have to accept reduced
functionality or the management of Agate will have to recognize that their
system will have higher costs for storage than first envisaged.

Compromise solutions may involve only transferring the text of a note (without the
overhead of all the formatting information) when users are browsing a note and
transferring the full file only when it needs to be viewed or edited. However, this
will increase the processing load on the server. Another compromise solution
might be to use a different file format such as RIF (rich text format) rather than
the word-processor format.

Measurable objectives in Design

Some objectives are specific to a particular project, and it is important to
be able to assess whether these objectives have been achieved or not. One way
of doing this is to ensure that these objectives are expressed in measurable
terms so that they can be tested by simulation during the design phase, in
prototypes that are built for this purpose or in the final system.
Measurable objectives often represent the requirements that we referred to as
non-functional requirements. They also reflect the fact that information systems
are not built for their own sake, but are developed to meet the business needs of
some organization. The system should contribute to the strategic aims of the
business, and so should help to achieve aims such as:

• provide better response to customers, or
• increase market share.

Planning for Design
In a waterfall life cycle project, the transition from the analysis phase to the
design phase also gives the project manager the opportunity to plan for the
activities that must be undertaken during design.

1. If the hardware and software platform has not been decided upon, then design
will begin as logical design, but the project manager must plan for the time
when the platform is known and physical design can begin.

2. The system architecture must be agreed and system standards must be set
that will affect the design of individual sub-systems.

3. If the designers are not familiar with all aspects of the platform, time must be
allowed for training, or additional staff must be brought in, perhaps contractors
with expertise in particular aspects of the hardware or software.

4.Design objectives must be set and procedures put in place for testing those that
can be tested by simulation during the design process.

5. Procedures must also be put in place for resolving conflicts between
constraints and requirements and for documenting and agreeing any trade-
offs that are made.

