
13.SYSTEM DESIGN

1. The major elements of system Design

The system design activity specifies the context within which detailed
design will occur. A major part of system design is defining the system architecture.
The meaning and scope of the term architecture for computerized information
systems is much debated but it is generally accepted that it is an important feature
of the delivered system.

The architecture of a system is concerned with its overall structure, the
relationships among its major components and their interactions. If the system relationships among its major components and their interactions. If the system
being considered contains human, software and hardware elements then its
architecture includes how these elements are structured and how they interact.

On the other hand, if the system being considered comprises software
and hardware, then its architecture only concerns these elements. It is important to
consider the structure of the software elements of the system and this is termed the
software architecture. The hardware architecture of a system describes computers
and peripherals required for the system and how software is allocated to them.

The architecture of the information system is first considered early in the
project during the requirements capture and analysis activities. This first view of the
system architecture is driven significantly by the use cases and then informs the
continuing requirements capture and analysis activities. This forms a useful basis
from which to develop the design architecture.

The detailed software architecture of a computerized information system
develops as the design process continues into object design but it is important to
identify an overall system architecture within which the detail can be refined. High-
level architectural decisions that are made during system design deter-mine how
successfully the system will meet its non-functional objectives (e.g. perfor-mance,
extensibility) and thus its long-term utility for the client. extensibility) and thus its long-term utility for the client.

Reuse is one of the much wanted benefits of object-orientation and poor
software architecture usually reduces both the reusability of the components
produced and the opportunity to reuse existing components.

During system design we need to consider the following activities.
 Sub-systems and major components are identified.
 Any inherent concurrency is identified.
 Sub-systems are allocated to processors.
 A data management strategy is selected.
 A strategy and standards for human-computer interaction are chosen.
 Code development standards are specified.
 The control aspects of the application are planned.
 Test plans are produced.
 Priorities are set for design trade-offs.
 Implementation requirements are identified (for example, data conversion).

2. Software Architecture

Software architecture, like system architecture has no generally agreed
definition and can be interpreted differently depending upon the context.
According to Booch , the architecture of a system is its class structure. He
suggests that part of the architecture is the way in which classes are grouped
together. Rumbaugh use the term system architecture to describe the overall

organization of a system into sub-systems.

A software architecture is a description of the sub-systems and components
of a software system and the relationships between them. Subsystems and
components are typically specified in different views to show the relevant functional
and non-functional properties of a software system. Software architecture is the
result of the software design activity.

According to Soni , identified the following four different aspects of
software architecture as shown below.

Type of architecture Examples of elements Examples of relationships

Conceptual Components Connectors Conceptual Components Connectors

Module Sub-systems, modules Exports, imports

Code Files, Directories, libraries Includes, contains

Execution Tasks, threads, object
interactions

Uses, calls

The conceptual architecture is concerned with the structure of the static class
model and the connections between the components of the model. The module
architecture describes the way the system is divided into sub-systems or
modules and how they communicate by exporting and importing data. The code
architecture defines how the program code is organized into files and directories
and grouped into libraries. The execution architecture focuses on the dynamic
aspects of the system and the communication between components as tasks and
operations execute.

There are alternative ways of giving different aspects of architecture. For
example, a logical architecture might comprise the class model, while a physical
architecture is concerned with mapping the software onto the hardware
components. However, in all cases these different aspects combine to define a components. However, in all cases these different aspects combine to define a
software architecture for the system. There are various architectural styles, each of
which has characteristics that make it more or less suitable for certain types of
application.

Sub-systems
A sub-system typically groups together elements of the system that share

some common properties. An object-oriented sub-system encapsulates a coherent
set of responsibilities in order to ensure that it has integrity and can be maintained.
For example, the elements of one sub-system deals about human-computer
interface, the elements of another may deals about data management and the
elements of a third may all focus on a particular functional requirement.

The division of an information system into sub-systems has the following advantages.

• It produces smaller units of development.
• It helps to maximize reuse at the component level.
• It helps the developers to cope with complexity.
• It improves maintainability.
• It aids portability.

Each sub-system should have a clearly specified boundary and fully defined
interfaces with other sub-systems. A specification for the interface of a sub-system
defines the precise nature of the sub-system's interaction with the rest of the system
but does not describe its internal structure .but does not describe its internal structure .
A sub-system can be designed and constructed independently of other sub-systems,
simplifying the development process. Sub-systems may correspond to increments of
development that can be delivered individually as part of an incremental life cycle
also.

Dividing a system into sub-systems is an effective strategy for handling complexity.
Sometimes it is only feasible to model a large complex system piece by piece, with
the sub-division forced on the developers by the nature of the application. Splitting a
system into sub-systems can also aid reuse as each sub-system may correspond to
a component that is suitable for reuse in other applications.

Each sub-system provides services for other sub-systems, and there are
two different styles of communication that make this possible. These are known as
client-server and peer-to-peer communication and are shown below.

Sub-system A Sub-system C

<< client>> <<peer>>

Sub-system B Sub-system D

<<server>>
<<peer>>

The server sub-system does
not depend on the client sub-
system and is not affected by
changes to the client's
interface.

Each peer sub-system
depends on the other
and each is affected by
changes in the other's
interface

Client-server communication requires the client to know the interface of the server
sub-system, but the communication is only in one direction. The client sub-system
requests services from the server sub-system and not vice versa. Peer-to-peer
commun-ication requires each sub-system to know the interface of the other, thus
coupling them more tightly. The communication is two way since either peer sub-
system may request services from the other.

In general client-server communication is simpler to implement and to maintain, as
the sub-systems are less tightly coupled than they are when peer-to-peer
communi-cation is used. In Figure the sub-systems are represented using
packages that have been stereotyped to indicate their role. Component and
deployment diagrams can also be used to model the implementation of sub-
systems .systems .

Layering and partitioning

There are two general approaches to the division of a software system into
sub-systems. These are known as

1. Layering - so called because the different sub-systems usually represent different
levels of abstraction

2. Partitioning - which usually means that each sub-system focuses on a different
aspect of the functionality of the system as a whole. In practice both approaches
are often used together on one system, so that some of its sub-systems are divided
by layering, while others are divided by partitioning.

1. Layered sub-systems
Layered architectures are used to specify high-level structures for a

system. A schematic of the general structure is shown below.

Schematic of a layered architecture

Layer N
Layer N-1

Layer N
Layer N-1

Layer2
Layer1

Layer2
Layer1

Closed architecture -
messages may only be
sent to the adjacent lower
layer.

Open architecture - messages
can be sent to any lower layer

Each layer corresponds to one or more sub-systems, which may be
differentiated from each other by differing levels of abstraction or by a different focus
of their functionality.

In this architecture , the top layer uses services provided by the layer
immediately below it. This in turn may require the services of the next layer down.
Layered architectures can be either open or closed, and each has its particular
advantages.

In a closed layered architecture a certain layer (say layer N) can only use
the services of the layer immediately below it (layer N - 1). In an open layered
architecture layer N may directly use the services of any of the layers that lie below
it. it.

A closed architecture minimizes dependencies between the layers and
reduces the impact of a change to the interface of anyone layer. An open layered
architecture produces more compact code since the services of all lower level layers
can be accessed directly by any layer above them without the need for extra
program code to pass messages through each intervening layer. However this
breaks the encapsulation of the layers, increases the dependencies between layers
and increases the difficulty caused when a layer needs to be changed. \

Networking protocols provide some of the best known examples of layered
architectures. Eg: The OSI (Open Systems Interconnection) 7 Layer Model was
defined by the International Standard-ization Organization (ISO) as a standard
architectural model for network protocols

Buschmann suggests that a series of issues need to be addressed when
applying a layered architecture for an application. These includes:

• Maintaining the stability of the interfaces of each layer;
• The construction of other systems using some of the lower layers;
• Variations in the appropriate level of granularity for sub-systems;
• The further sub-division of complex layers;
• Performance reductions due to a closed layered architecture.

The following steps are adapted from Buschmann , and provide an outline
process for the development of a layered architecture for an application. These
steps offers guidelines on the issues that need to be addressed during the steps offers guidelines on the issues that need to be addressed during the
development of a layered architecture.

1. Define the criteria by which the application will be grouped into layers -
A commonly used criteria is level of abstraction from the hardware. The lowest
layer provides primitive services for direct access to the hardware while the
layers above provide more complex services that are based upon these
primitives. Higher layers in the architecture carry out tasks that are more
complex and correspond to concepts that occur in the application domain .

2. Determine the number of layers - Too many layers will introduce unnecessary
overheads while too few will result in a poor structure.

3. Name the layers and assign functionality to them - The top layer should be
concerned with the main system functions as perceived by the user. The layers
below should provide services and infrastructure that enable the delivery of the
functional requirements.

4. Specify the services for each layer. In general it is better in the lower layers to have
a small number of low-level services that are used by a larger number of services
in higher layers.

5. Refine the layering by iterating through steps 1 to 4.

6. Specify interfaces for each layer.

7. Specify the structure of each layer. This may involve partitioning within the layer 7. Specify the structure of each layer. This may involve partitioning within the layer

8. Specify the communication between adjacent layers.

9. Reduce the coupling between adjacent layers - This effectively means that each
layer should be strongly encapsulated. Where a client-server communication
protocol will be used, each layer should have knowledge only of the layer
immediately below it.

One of the simplest application architectures has only two layers-
the application layer and a database layer. Tight coupling between the user
interface and the data representation would make it more difficult to modify either
independently, so a middle layer is often introduced in order to separate the
conceptual structure of the problem domain.

This gives the architecture shown in the following Figure , which is
commonly used for business-oriented information systems. It is same as the
three-tier architecture (user interface, business objects and database tiers).

Presentation

Business Logic

Database

Three layer architecture

The following figure, four layer architecture separates the business The following figure, four layer architecture separates the business
logic layer into application logic and domain layers.

Presentation

Application Logic

Domain

Database

The approach which is used during the analysis activity of use case
realization results in the identification of boundary, control and entity classes and it
is easy to map the boundary classes onto a presentation layer, the control classes
onto an application logic layer and the entity classes on a domain layer. Thus from
an early stage in the development of an information system some of element of
layering is being introduced into the software architecture. However, it is important
to appreciate that as we move through design, the allocation of responsibility
amongst these types of class may be adjusted to accommodate non-functional
requirements . A good design solution is one that balances competing requirements
effectively.

2. Partitioned sub-systems
In the design phase , some layers within a layered architecture may have In the design phase , some layers within a layered architecture may have

to be decomposed because of their complexity. The following figure shows a four
layer architecture for part of Agate's campaign management system that also has
some partitioning in the upper layers.

Advert HCL
Sub-system

Campaign costs
HCL Sub-system

Advert
sub-system

Campaign costs
sub-system

Campaign domain

Campaign database

Presentation Layer
A single
domain
Layer
supports
two
application
sub-
systems

Application Layer

In this, the application layer corresponds to the analysis class model for a
single application, and is partitioned into a series of sub-systems. These sub-
systems are loosely coupled and each should deliver a single service or coherent
group of services.

The Campaign Database layer provides access to a database that
contains all the details of the campaigns, their adverts and the campaign teams.

The Campaign Domain layer uses the lower layer to retrieve and store
data in the database and provides common domain functionality for the layers
above. For example, the Advert sub-system might support individual advert costing
while the Campaign Costs sub-system uses some of the same common domain while the Campaign Costs sub-system uses some of the same common domain
functionality when costing a complete campaign. Each application sub-system has
its own presentation layer to cater for the differing interface needs of different user
roles.

A system may be split into sub-systems during analysis because of the
system's size and complexity. However, the analysis sub-systems should be
reviewed during design for coherence and compatibility with the overall system
architecture. The sub-systems that result from partitioning should have clearly
defined boundaries and well specified interfaces, thus providing high levels of
encapsulation so that the implementation of an individual sub-system may be
varied without causing dependent changes in the other sub-systems.

Model-View-Controller Architecture

Many interactive systems uses the Model-View-Controller (MVC)
architecture. This structure is capable of supporting user requirements that are
presented through differing interface styles, and it aids maintainability and
portability.

The MVC architecture separates an application into three major types of
component:

1.Models that comprise the main functionality,

2. Views that present the user interface,

3. Controllers that manage the updates to views.

It is common for the view of an information system that is required for each
user to differ according to their role. This means that the data and functionality
available to any user should be customized to his or her needs. The needs of
different types of users can also change at varying rates. For these reasons provide
access to each user separately, only to the relevant part of the functionality of the
system as a whole.

For example, in the Agate case study many users need access to
information about campaigns, but their perspectives vary.

• The campaign manager needs to know about the current progress of a
campaign and concerned with the current state of each advertisement and how
this impacts on the campaign as a whole-is it prepared and ready to run, or is it
still in the preparation stage? If an advert is behind schedule does this affect other
aspects of the campaign?

• The creative artist also needs access to adverts but he is likely to need access
to the contents of the advert as well as some scheduling information.

• A director may wish to know about the state of all live campaigns and their • A director may wish to know about the state of all live campaigns and their
projected income over the next six months.

This gives at least three different perspectives on campaigns and
adverts, each of which might use different styles of display. The director may
require charts and graphs that summarize the current position at quite a high level.
The campaign manager may require lower level summaries that are both textual
and graphical in form. The graphic designer may require detailed textual displays
of notes with a capability to display graphical images of an adverts content. Ideally,
if any information about a campaign or an advert is updated in one view then the
changes should also be reflected immediately in all other views.

The following figure shows a possible architecture with multiple interfaces for the
same core functionality, but some problems remain.

Campaign Forecasting Advert Development Campaign Management

Each sub-system contains some core
functionality

Changes to data in one sub-system Need to be
propagated to the others.

Campaign and Advert Database Access

The following are some of the difficulties that need to be resolved for this type of
application.

• The same information should be capable of presentation in different formats in
different windows.

• Changes made within one view should be reflected immediately in the other
views.

• Changes in the user interface should be easy to make.
• Core functionality should be independent of the interface to enable multiple
interface styles to co-exist.

The MVC architecture solves this type of problems through its separation
of core functionality (model) from the interface and through its incorporation of a
mechanism for propagating updates to other views. The interface itself is split into
two elements: the output presentation (view) and the input controller (controller).

The following figure shows the basic general structure of the Model – View
Controller.

View A View B
<<propogate>> <<propogate>>

The propagation mechanism

controller A Controller B

Model

<<access>>

<<access>>

<<access>>

<<access>>

<<access>>

<<access>>

The responsibilities of the components of an MVC architecture are …

Model - The model provides the central functionality of the application and is aware of
each of its dependent view and controller components .

View - Each view corresponds to a particular style and format of presentation of
information to the user. The view retrieves data from the model and updates its
presentations when data has been changed in one of the other views. The view
creates its associated controller.

Controller - The controller accepts user input in the form of events that trigger the
execution of operations within the model. These may cause changes to the information execution of operations within the model. These may cause changes to the information
and in turn trigger updates in all the views ensuring that they are all up to date.

Propagation Mechanism - This enables the model to inform each view that the model
data has changed and as a result the view must update itself. It is also often called the
dependency mechanism.

The following figure represents the capabilities offered by the different
MVC components as they might be applied to part of the campaign management
system at Agate.

AdvertView
viewData

initialize()
displayAdvert()
update()

<< componant >>

11

CampaignModel
<< componant >>

1

n

1

n

depends on

Advertcontroller

initialize()
changeAdvert()
update()

<< componant >>

11

updates

CampaignModel
coreData
setOfObservers [0..*]

attach()
detach()
notify()
getAdvertData()
modifyAdvert()

1

nn

updates

1

The operation update () in the AdvertView and AdvertController
components triggers these components to request data from the CampaignModel
component. This model component has no knowledge of the way that each view and
controller component will use its services. It need only know that all view and
controller components must be informed whenever there is a change of state.

The attach () and detach () services in the CampaignModel component
enable views and controllers to be added to the setOfObservers. This contains a list
of all components that must be informed of any change to the model core data.
Generally there would be separate views, each with its own controller, to support the
requirements of the campaign manager and the director.

The following interaction sequence diagram gives the communication that
is involved in the operation of an MVC architecture.

:Advertcontroller :CampaignModel :AdvertNew

1: Change Advert ()

2: Modify Advert()

3: Notify()

MVC component interaction

4: Update()
5: display Advert()

6: getAdvertData()

7: Update()

8: getAdvertData()

An AdvertController component receives the interface event changeAdvert (). In
response to this event the controller invokes the modifyAdvert () operation in the
CampaignModel object. The execution of this operation causes a change to the
model.

For example, if the target completion date for an advertisement is altered.
This change of state must now be propagated to all controllers and views that are
currently registered with the model as active. For this, the modifyAdvert () operation
invokes the notify () operation in the model that sends an update() message to the
view. The view responds to the update () message by executing the displayAdvert ()
operation which requests the appropriate data from the model via the
getAdvertData () operation. The model also sends an update () message to the
AdvertController, which then requests the data it needs from the model.

One of the important aspects of the MVC architecture is that each model
knows only which views and controllers are registered with it, but not what they do.
The notify () operation causes an update message to all the views and controllers.

The change propagation mechanism can be structured so that further views and
controllers can be added without causing a change to the model. Other kinds of
communication may take place between the MVC components during the operation
of the application. The controller may receive events from the interface that require a
change in the way that some data is presented to the user but do not cause a change
of state. The controller's response to such an event would be to send an appropriate
message to the view. There would be no need for any communication with the model.

3. Architectures for distributed systems
Distributed information systems are becoming more common as

communications technology improves and becomes more reliable. An information
system may be distributed over computers at the same location or different
locations. Since Agate has offices around the world, it may need information
systems that use data that is distributed among different locations. If Agate grows, it
may also open new offices and require new features from its information systems.

An architecture that is suitable for distributed information systems needs
also to be flexible so that it can cope with change. A distributed information system
may be supported by software products such as distributed database management
systems or object request brokers .

A simplified version of the broker architecture is shown in the following figure.

Broker

Server1

Server2

Server3

Client A

Client B

A broker component increases the flexibility of the system by decoupling the
client and server components. Each client sends its requests to the broker rather than
communicating directly with the server component. The broker then forwards the
service request to an appropriate server. A broker may offer the services of many
servers and part of its task is to identify the relevant server to which a service request
should be forwarded. The advantage offered by a broker architecture is that a client
need not know where the server is located, and it may therefore be stored on either a
local or a remote computer. Only the broker needs to know the location of the servers
that it handles.

The following figure shows a sequence diagram for client-server The following figure shows a sequence diagram for client-server
communication using the broker architecture. Here the server sub-system is on a local
computer. In addition to the broker itself, two additional proxy components have been
introduced to insulate the client and server from direct access with the broker. On the
client side a ClientSide Proxy receives the initial request from the client and packs the
data in a format suitable for transmission. The request is then forwarded to the Broker
which finds an appropriate server and invokes the required service via the
ServerSideProxy.

: C l i e n t : C l i e n t S i d e P r o x y : B r o k e r : S e r v e rS id e P ro x y : S e r v e r

1 : C a l l S e r v e r ()

2 : S e n d R e q u e s t ()

3 : P a c k D a t a ()

4 : S e n d r e q u e s t ()

5 : f i n d S e r v e r ()

6 : R e q u e s t S e r v i c e ()

7 : U n p a c k D a ta ()

8 : S e r v i c e ()

9 : A c k

1 0 : P a c k d a t a ()

1 1 : S e n d R e s p o n s e ()

1 2 :

1 3 : S e n d R e s p o n s e ()

1 4 : U n p a c k D a t a ()

1 5 : r e p l y

Possible Process
boundaries

The ServerSideProxy then unpacks the data and issues the service
request sending the service () message to the Server object. The service ()
operation then executes and on completion control returns to the ServerSideProxy.
The response is then sent to the Broker which forwards it to the originating
ClientSideProxy. Note that these are both new messages and not returns. The
reason for this is that a broker does not wait for each response before handling
another request. Once its sendRequest - activation has been completed the broker
will in all probability deal with many other requests, and thus requires a new
message from the ServerSideProxy object that causes it to enter a new activation.
Unlike the broker, the ClientSideProxy has remained active; this then unpacks the
message and the response becomes available to the client as control returns.

The following figure shows a schematic broker architecture that uses
bridge components to communicate between two remote processors. Each bridge
converts service requests into a network specific protocol so that the message can
be transmitted.

Broker
Bridge Bridge Broker

Sub-System A

Sub-System D

Sub-System C

Sub-System B Possible process boundary

4. CONCUREENCY
In most systems there are many objects that do not need to operate

concurrently but some may need to be active simultaneously. Object-oriented
modelling captures any inherent concurrency in the application through the
development of interaction diagrams and statecharts and the examination of use
cases also helps with the identification of concurrency.

These models can be used to identify circumstances where concurrent
processing is necessary.

1. A use case may indicate a requirement that the system should be able to
respond simultaneously to different events, each of which triggers a different thread
of control.

2. If a statechart reveals that a class has complex nested states which themselves
have concurrent substates, then the design must be able to handle this
concurrency. The statechart for the class Campaign has nested concurrent states
within the Active state and there may be the possibility of concurrent activity.

In cases where an object is required to exhibit concurrent behaviour it is
sometimes necessary to split the object into separate objects in order to avoid the
need for concurrent activity within anyone object.

Concurrent processing may also be indicated if interaction diagrams reveal that
a single thread of control requires that operations in two different objects should execute
simultaneously, perhaps because of asynchronous invocation. This essentially means
that one thread of control is split into two or more active threads. An example of this is
shown below.

CLASS A :CLASS B : CLASS D: CLASS C

1:
Asynchronous
Message

2:

3:

Simultaneous
execution Do not execute

simultaneously

Concurrency activity in an interaction diagram

Different objects that are not active at the same time can be implemented
on the same logical processor .Objects that must operate concurrently must be
implemented on different logical processors.

The following figure shows a possible relationship between a scheduler
and the other parts of a system. Events that are detected by the I/O (input/output)
sub-systems generate interrupts in the scheduler. The scheduler then invokes the
appropriate thread of control. Further interrupts may invoke other threads of control
and the scheduler allocates a share of physical processor time to each thread .

Sub-system 1
Sub-system 2

This thread of execution
generates output

Scheduler

I/O sub-system
A

I/O sub
system B

<< invoke>>
<< invoke >>

<< interrupt >>
<<interrupt>>

Interrupts generated in scheduler

Thread of control invoked
by scheduler and produces
no output

Another way of implementing concurrency is to use a multi-threaded
programming language. These permit the direct implementation of concurrency
within a single processor task. Finally, a multi-processor environment allows each
concurrent task to be implemented on a separate processor. Most concurrent
activity in a business information system can be supported by a multi-user
environment. These are designed to allow many users to perform tasks
simul-taneously.

5 Processor Allocation

In the case of single-user system it is almost always appropriate for the
complete system to operate on a single computer. The software for a multi-user complete system to operate on a single computer. The software for a multi-user
information system may be installed on many computers that all use a common
file-server. More complex applications sometimes require the use of more than one
type of computer, where each provides a specialized kind of processing capability
for a specific sub-system.

An information system may also be partitioned over several processors
either because sub-systems must operate concurrently, or because some parts of
the application need to operate in different locations. Information systems that use
the Internet or company intranets for their communications are being built more
frequently. Such distributed information systems operate on diverse computers and
operating systems.

The allocation of a system to multiple processors on different platforms involves the
following steps.

 The application should be divided into sub-systems.
 Processing requirements for each sub-system should be estimated.
 Access criteria and location requirements should be determined.
 Concurrency requirements for the sub-systems should be identified.
 Each sub-system should be allocated to an operating platform-either general

purpose (PC or workstation) or specialized (embedded micro-controller or
specialist server).

 Communication requirements between sub-systems should be determined.
 The communications infrastructure should be specified.

The estimation of processing requirements requires careful consideration of such
factors as event response times, the data throughput that is needed, the nature
of the I/O that is required and any special algorithmic requirements.

6. Data Management Issues

Suitable data management approaches for an information system can vary
from simple file storage and retrieval to sophisticated database management
systems of various types. In some applications where data has to be accessed very
rapidly, the data may be kept in main memory while the system executes. However,
most data management is concerned with storing data, often large volumes, so that
it may be accessed at a later stage either by the same system or by another.

Database management systems (DBMS) provide the following facilities that
are useful in many applications. are useful in many applications.

 different views of the data by different users,
 control of multi-user access,
 distribution of the data over different platforms,
 security,
 enforcement of integrity constraints,
 access to data by various applications,
 data recovery,
 portability across platforms,
 data access via query languages and
 query optimization.

DBMS exhibits a significant performance overhead and the standard data
access mechanisms may be inappropriate for specialized systems.

Relational DBMS is likely to be appropriate if there are large volumes of data with
varying (perhaps ad hoc) access requirements.

Object-oriented DBMS is more likely to be suitable if specific transactions require
fast access or if there is a need to store complex data structures and there is not a
need to support a wide range of transaction types.

A third type of DBMS is emerging-the object-relational DBMS-that is similar to an
object-oriented DBMS in its support for complex data structures, but that also
provides effective querying facilities. In some systems there may be different data provides effective querying facilities. In some systems there may be different data
management requirements for different sub-systems and it may be best then to use
a mix of DBMS types.

7. Development standards

All information systems development projects should operate with clearly
defined guidelines within which all members of the development team work.
Many organizations will have corporate style guides that govern the production
of software development artefacts, including the delivered system.

In some organizations these corporate guides may be adapted for particular
development projects. From the design perspective it is important to specify
guidelines for the development of I/O sub-systems and their interfaces and
standards for the development of code. standards for the development of code.

1. HCl guidelines - Standards for the human-computer interface are an
important aspect of the design activity, since it is with the interface that users
actually interact.

2 Input/output device guidelines

Where an application interacts with mechanical or electronic devices such as
temperature and pressure sensors or actuators that control heaters or motors, it
is equally important to develop guidelines.

The objective is to use a standard form of interface with the devices so that
hardware may be changed or updated without occasioning any changes to the core
system functionality. Sensor and controller devices usually have fully specified
communications protocols and standardization is probably best achieved by
encapsulating all direct access with each device in a single I/O device object. An I/O
device class can be sub classed so that for each particular device involved with the
application there is a class that deals with its communications protocol. Since all the
I/O device classes would then be subclasses of one inheritance hierarchy they can
easily be constructed to provide consistent interfaces to the rest of the application.
This feature can be achieved by using Polymorphism concept of OO.

3 Construction guidelines 3 Construction guidelines

Construction guidelines will normally include advice on the naming of classes,
operations and attributes, and where this is the case these guidelines are also
applicable during the analysis activity. Wherever possible, consistent naming
conventions should be enforced throughout the project since this makes it easier to
trace an analysis class directly through to its implementation.

8. Prioritizing Design Trade-Offs

Design frequently involves choosing the most appropriate compromise.
The designer is often faced with design objectives that are mutually incompatible
and he or she must then decide which objective is the more important. The
requirements model may indicate the relative priorities of the different objectives
but, if it does not, then prepare general guidelines used for this purpose. These
guidelines must be agreed with clients since they determine the nature of the
system and what functionality will be delivered.

Guidelines for design trade-offs ensure consistency between the Guidelines for design trade-offs ensure consistency between the
decisions that are made at different stages of development. They also ensure
consistency between different sub-systems . However, no guidelines can legislate
for every case. Design experience and further discussions with the client will
remain necessary to resolve those situations that cannot be anticipated .

14. Object Design

Object design is concerned with the detailed design of the objects and
their interactions. It is completed within the overall architecture defined during
system design and according to agreed design guidelines and protocols. Object
design is particularly concerned with the specification of the attribute types, how
operations function and how objects are linked to other objects.

The following figure shows various resources of information that guides
the object design process .During the design process the analysis models undergo

1. Object Design Process

the object design process .During the design process the analysis models undergo
some degree of transformation. There is a commonly accepted view that changes
made to analysis artifacts to produce the design model should be kept to a
minimum, as the analysis model is a coherent and consistent description of the
requirements .

Object design produces a detailed specification of the classes ,attributes
and operation signatures. In this an important aspect of every class is what
attributes and operations are generally accessible during the interaction among the
objects.

:actor : object :object :object

:object

Operation
Spectifcations

Constraints and
Dependencies

Repository

Classes Attributes

Operations

Associations

CLASS SPECIFICATION - Attributes and operation signatures

Attributes
During analysis Stage we need to consider in detail the data types of the

attributes also. For example, an attribute temperature might be a floating-point data
type if it holds the temperature in Centigrade or it might be an enumerated data type
if it holds one of the values, 'hot' or 'cold'. The attribute has a different meaning and
would be manipulated differently for each of these data types and it is important to
determine during analysis which meaning is appropriate.

Common primitive data types include Boolean (true or false), Character
(any alphanumeric or special character), Integer (whole numbers) and Floating-Point (any alphanumeric or special character), Integer (whole numbers) and Floating-Point
(decimal numbers). In most object-oriented languages more complex data types,
such as Money, String, Date, or Name can be constructed from the primitive data
types or may be available in standard libraries. An attribute's data type is declared in
UML using the following syntax:

name ':' type-expression '=' initial-value '{'property-string'}'

The name is the attribute name, the type-expression is its data type, the initial-value
is the value the attribute is set to when the object is first created and the property-
string describes a property of the attribute, such as constant or fixed. The characters
in single quotes are literals.

The following is a class BankAccount which is shown along with attribute
data types declared. The attribute balance in a BankAccount class might be
declared with an initial value of zero using the syntax:

balance:Money = 0.00 BankAccount
accountNumber : Integer
accountName : String{not null}
balance : Money = 0
/ availableBalance : Money
overDraftLimit : Money

open()
close()
credit()
debit()

The attribute accountName might be
declared with the property string indicating
that it must have a value and may not be null
using the syntax:

accountName : String {not null} getBalance()
setBalance()
getAccountName()
setAccountName()

accountName : String {not null}

Attribute declarations can also include arrays
also. For example, an Employee class might
include an attribute to hold a list of
qualifications that would be declared using
the syntax:

qualification[O .. 10]: String

Operations

Each operation also has to be specified in terms of the parameters that it
passes and returns. The syntax used for an operation is:

operation name' ('parameter-list ') “ : “ return-type-expression

An operation's signature is determined by the operation's name, the
number and type of its parameters and the type of the return value if any. In the
BankAccount class we have a credit () operation that passes the amount being
credited to the receiving object and has a Boolean return value. The operation
would be defined using the syntax: would be defined using the syntax:

credit(amount : Money): Boolean

A credit() message sent to a BankAccount object could have the format:

creditOK = accObject.credit(500.00)

where creditOK holds the Boolean return value that is available to the sending
object when the credit () operation has completed executing. This Boolean value
may be tested to determine whether the credit () operation performed successfully.

As UML is a modelling language, It does not determine what operations
should be shown in a class diagram instead, It provides the notation to use and
suggestions on presentation, but does not tell the analyst or designer what to include
and what not to include.

Specific guidelines about operations in object-oriented analysis and design
includes in the following way.

According to Coad and Yourdon , an object provides services to other
objects in a system. These services are like responsibilities at the system level, and
these can also be called asl the operations of classes. Also we have some services
which are implicit services , like creating instances of objects, to modify attributes of
instances, to select instances based on some kind of key or identifier, and to delete
instances. instances.

These operations need not be shown on diagrams explicitely, as they clutter
up the diagrams and make them difficult to read. They also point out that sometimes it
is important to be able to see these services. However, this is an issue about the
functionality offered by CASE tools rather than methodologies. Ideally, it should be
possible to switch off the display of any operation that the analyst or designer does not
wish to have displayed in the operations compartment in a class.

An alternative approach would be to follow the way that some CORBA tools
work. The IDL2JAVA tool will generate two Java operations for every attribute: one to
set the values of the attribute and one to get the value of the attribute.

The following example shows the operations generated to set and get the value of
the attribute smallUnit in a Currency class.

short smallUnit;
…..
public void smallUnit(short smallUnit)
{
II implement attribute writer ...

smallUnit = smallUnit;
}
public short smaIIUnit() public short smaIIUnit()
{
II implement attribute reader ...
return smallUnit;
}
The framework for this fragment of code was generated automatically from the
following IDL interface definition.

interface Money {
attribute long largeUnit; attribute short smallUnit; attribute string format;
Money Money(in long large, in short small); string toString();
} ;

So, if CASE tool generates set and get operations for every attribute automatically,
then no need to include them in the class diagram.

One commonly held approach is normally not to show primary operations
on analysis class diagrams as it can be assumed that such functionality is available.
During analysis issues such as the visibility of operations or the precise data types
of attributes may not have been finally decided. However, when completing a design
class diagram it may be important to indicate that certain primary operations have
public or protected visibility and as such these may justifiably be shown on the
diagram. Those that are private may be omitted as they do not constitute part of the
class public interface.

Exceptionally primary operations may usefully be included on analysis Exceptionally primary operations may usefully be included on analysis
class diagrams either if they reflect particular functionality that has to be publicly
visible or if it is important to indicate that more than one constructor, for example, is
required. A class may need more than one constructor if objects could be
instantiated in one of several initial states that require different input parameters.
Each constructor would have a different signature.

Object visibility

The concept of encapsulation is one of the fundamental principles of
object-orientation. During analysis various assumptions have been made regarding
the encapsulation boundary for an object and the way that objects interact with
each other.

For example, it is assumed that the attributes of an object cannot be
accessed directly by other objects but only via 'get' and 'set' operations (primary
operations) that are assumed to be available for each attribute. Moving to design
involves making decisions regarding which operations (and possibly attributes) are
publicly accessible. In other words we must define the encapsulation boundary.

A class bankAccount has the attribute balance, which we might assume
during analysis, can be accessed directly by the simple primary operations
getBalance () and setBalance (). However, the balance should be updated through
the operations credit () and debit () that contain special processing to check
whether these transactions should be permitted and to ensure that the transactions
are logged in an audit trail. In these circumstances, it is important that changes to
the value of the balance attribute can only occur through the debit() and credit()
operations. The operation setBalance () should not be publicly available for use by
other classes. And here the attribute availableBalance is a derivable attribute
indicated in UML by the symbol ' / '. A derivable attribute is one whose value can be
calculated or determined from the value of other attributes.

Meyer introduced the term 'secret' to describe those features that are not
available in the public interface. Programming languages designate the non-public
parts of a class, which may include attributes and operations, in various ways. The
four commonly accepted termss used to describe visibility are listed in the following
figure.

Visibility may also be shown as a property string.

Balance : Money {visibility = private}

Visibility
sumbol

Visibility Meaning
sumbol

+ Public The feature (an operation or an attribute) is directly
accessible by an instance of any class.

- Private The feature may only be used by an instance of the class
that includes it.

protected The feature may be used either by instances of the class
that includes it or of a subclass or descendant of that
class.

~ Package The feature is directly accessible only by instances of a
class in the same package.

To enforce encapsulation the attributes of a class are normally designated
private. The operation setBalance() is also designated private to ensure that objects
from other classes cannot access it directly , and shown in the following figure.

BankAccount
accountNumber : Integer
accountName : String{not null}
balance : Money = 0
/ availableBalance : Money
overDraftLimit : Money

 + open()
 + close()
+ credit()
 + debit()

In the figure the operation getBalance () is
assigned protected visibility so that
subclasses of BankAccount can examine the
value of the balance attribute. For example,
the debit () operation might be redefined
polymorphically in a Junior BankAccount
subclass. The redefined operation would use

 + debit()
 # getBalance()
 - setBalance()
 # getAccountName()
 # setAccountName()

getBalance () to access the balance and
check that a debit would not result in a
negative balance.

2. Interfaces
Generally a class may present more than one external interface to other

classes or the same interface may be required from more than one class. An interface
in UML is a group of externally visible (i.e. public) operations. The interface contains no
internal structure, it has no attributes, no associations and the implementation of the
operations is not defined. Formally, an interface is equivalent to an abstract class that
has no attributes, no associations and only abstract operations.

The following figure shows two alternative notations for an interface. The
simpler of the two UML interface notations is a circle. This is attached by a solid line to
the classes that support the interface. For example, in Figure the Advert class supports
two interfaces, Manageable and Viewable, that is, it provides all of the operations
specified by the interface . The circle notation does not include a list of the operations specified by the interface . The circle notation does not include a list of the operations
provided by the interface type, though they should be listed in the repository. The
dashed arrow from the CreativeStaff class to the Manageable interface circle icon
indicates that it uses or needs, at most, the operations provided by the interface.

The alternative notation uses a stereotyped class icon. As an interface only
specifies the operations and has no internal structure, the attributes compartment is
omitted. This notation lists the operations on the diagram. The realize relationship,
represented by the dashed line with a triangular arrowhead, indicates that the client
class (e.g. Advert) supports at least the operations listed in the interface .Again the
dashed arrow from CreativeStaff means that the class needs or uses no more than the
operations listed in the interface.

CrerativeStaff
staffNo
'staffName
staffStartDate
qualification

calculateBonus()
linkToNote()

Client
companyName
companyAddress
companyTelephone
contactName
contactTelephone

assignStaffContact()
ChangeStaffContact()

Advert
title
type

Interfaces for the Advert Class

Manageable

type
targetDate
estimatedCost
completionDate

getCost()
setCompleted()
view()

Viewable

getcost()
setCompleted()
view()

<< interface >>

view()

<< interface >>
<< realize >>

<<realize>>

Manageable Viewable

3. Criteria for Good Design

1 Coupling and cohesion – These factors coupling and cohesion are inportant
factors for good design.

Coupling describes the degree of interconnectedness between design
components and is reflected by the number of links an object has and by the degree
of interaction the object has with other objects.

Cohesion is a measure of the degree to which an element contributes to a
single purpose. The concepts of coupling and cohesion are not mutually exclusive but
actually support each other. This criteria can be used within object-orientation as
described below. described below.

Interaction Coupling is a measure of the number of message types an
object sends to other objects and the number of parameters passed with these
message types. Interaction coupling should be kept to a minimum to reduce the
possibility of changes rippling through the interfaces and to make reuse easier. When
an object is reused in another application it will still need to send these messages
and hence needs objects in the new application that provide these services. This
complicates the reuse process as it requires groups of classes to be reused rather
than individual classes.

Inheritance Coupling describes the degree to which a subclass actually
needs the features it inherits from its base class.

Vehicle
decription
serviceDate
MaximumAltitude
takeOffspeed

checkAltitude()
takeOff()

Inheritance coupling.

LandVehicle
noOfAxles
registrationDate

register()

For example, in the above figure, the inheritance hierarchy exhibits low inheritance
coupling and is poorly designed. The subclass LandVehicle needs neither the
attributes maximumAltitude and takeOff Speed nor the operations checkAltitude ()
and takeOff (). They have been inherited unnecessarily.

In this example it shows the base class, Vehicle, would be better named
FlyingVehicle and the inheritance relationship is somewhat suspect. A land vehicle is
not a kind of flying vehicle .However, many systems developers view designs with a
small degree of unnecessary inheritance as being acceptable if the hierarchy is
providing valuable reuse and is meaningful. However, a subclass with unnecessary
attributes or operations is more complex than it needs to be and objects of the
subclass may take more memory than they actually need. The real problems may
come when the system needs maintenance. The system's maintainer may not
realize that some of the inherited attributes and operations are unused and may
modify the system incorrectly as a result. Alternatively the system's maintainer may
use these unneeded features to provide a fix for a new user requirement, making the
system even more difficult to maintain in the future. For these reasons, unnecessary system even more difficult to maintain in the future. For these reasons, unnecessary
inheritance should be kept as low as possible.

Operation Cohesion measures the degree to which an operation focuses on a
single functional requirement. Good design produces highly cohesive operations,
each of which deals with a single functional requirement. For example in the
following figure , the operation calculateRoomSpace () is highly cohesive.

Lecturer
lecturerName
lecturerAddress
roomnumber
roomLength
roomWidth

calculateRoomspace()

{ return
roomLength
roomWidth ; }

- - - - - - - - - -

Class Cohesion reflects the degree to which a class is focused on a single
requirement. The class Lecturer in the previous figure exhibits low levels of
cohesion as it has three attributes (roomNumber, roomLength and roomWidth
and one operation calculate RoomSpace ()) that would be more appropriate in a
class Room. The class Lecturer should only have attributes that describe a
Lecturer object (e.g. lecturerName and lecturerAddress) and operations that use
them. Specialization Cohesion addresses the semantic cohesion of inheritance
hierarchies. For example in the following figure all the attributes and operations of
the Address base class are used by the derived classes - this hierarchy has high
inheritance coupling. However, it is neither true that a person is a kind of address
nor that a company is a kind of address. The example is only using inheritance as
a syntactic structure for sharing attributes and operations. This structure has low
specialization cohesion and is poor design. It does not reflect meaningful specialization cohesion and is poor design. It does not reflect meaningful
inheritance in the problem domain.

Address
number
street
town
country
pincode

Person
personName
age
gender

Company
companyName
annualIncome
annualProfit

A better design is shown in the following figure , in which a common
class Address is being used by both the Person and Company classes.

Address
number
street
town
country
pincode

Person
personName

lives at

Company
companyName

located at

personName
age
gender

companyName
annualIncome
annualProfit

All the above are considered as design criteria , which may be applied at the
same time to good effect.

2 Liskov Substitution Principle

The Liskov Substitution Principle (LSP) is another design criteria which
is applicable to inheritance hierarchies. LSP states that, in object interactions, it
should be possible to treat a derived object as if it were a base object. If the
principle is not applied then it may be possible to violate the integrity of the derived
object.

In the following figure objects of the class MortgageAccount cannot be
treated as if they are objects of the class ChequeAccount because
MortgageAccount objects do not have a debit operation whereas ChequeAccount
objects do. The debit operation is declared private in MortgageAccount and hence
cannot be used by any other object. It also shows an alternative structure that cannot be used by any other object. It also shows an alternative structure that
satisfies LSP. Interestingly, this inheritance hierarchy has maximal inheritance
coupling, and enforcing the LSP normally produces structures with high inheritance
coupling. c he que A c c o unt

ac c oun tN am e
balanc e

c red it ()
deb it ()

M o rta g e A c co unt
in teres tR ate

c a lc u la te in teres t ()
deb it ()

Acco unt
account Name
balance

cred it()

chequeAccount

debit()

MortageA ccount
interestRate

calculateinterest()

Restructuring to
satisfy LSP

M o rta g eA cco unt
in te res tR ate

c a lc u la te in te res t ()
- deb it ()

3 Further design guidelines

The following are the further guidelines which are to be considered for good design.

Design Clarity. A design should be made as easy to understand as possible. This
reinforces the need to use design standards or protocols that have been specified.

Don't Over-Design. Developers are on occasions tempted to produce designs that may
not only satisfy current requirements but may also be capable of supporting a wide
range of future requirements. Designing flexibility into a system has a cost, the
system may take longer to design and construct but this may be offset in the future
by easier and less expensive modification. However, it is not feasible to design for by easier and less expensive modification. However, it is not feasible to design for
every eventuality. Systems that are over-designed in first instance are more difficult
to extend if the modifications are not sympathetic to the existing structure.

Control Inheritance Hierarchies. Inheritance hierarchies should be neither too deep
nor too shallow. If a hierarchy is too deep it is difficult for the developer to understand
easily what features are inherited. There is a tendency for developers new to 00 to
produce over-specialized hierarchies, thus adding complexity rather than reducing it.

Keep Messages and Operations Simple. In general it is better to limit the number of
parameters passed in a message to no more than three .Ideally an operation should
be capable of specification in no more than one page.

Design Volatility. A good design will be stable in response to changes in
requirements. It is reasonable to expect some change in the design if the
requirements are changed. However, any change in the design should be
commensurate with the change in requirements. Enforcing encapsulation is a key
factor in producing stable systems.

Evaluate by Scenario. An effective way of testing the suitability of a design is to role
play it against the use cases using CRC cards.

Design by Delegation. A complex object should be decomposed (if possible) into
component objects forming a composition or aggregation. Behaviour can then be
delegated to the component objects producing a group of objects that are easier to delegated to the component objects producing a group of objects that are easier to
construct and maintain. This approach also improves reusability.

Keep Classes Separate. In general, it is better not to place one class inside
another. The internal class is encapsulated by the other class and cannot be
accessed independently. This reduces the flexibility of the system.

4. Designing Associations

An association between two classes indicates the possibility that links will exist
between instances of the classes. The links provide the connections necessary
for message passing to occur. When deciding how to implement an association it
is important to analyze the message passing between the objects tied by the link.

1 One-to-one Associations In the following figure objects of the class Owner
need to send messages to objects of the class Car but not vice versa. This particular
association may be implemented by placing an attribute to hold the object identifier for
the Car class in the Owner class. Thus Owner objects have the Car object identifier the Car class in the Owner class. Thus Owner objects have the Car object identifier
and hence can send messages to the linked Car object. Here the owns association is
an example of a one-way association: the arrow-head on the association line shows
the direction along which it may be navigated. So before an association can be
designed it is important to decide in which direction or directions messages may be
sent.

Owner
name
address
dateOfLicence
OwnedCar

Car
registrationNumber
Make
Model
Colour

11

owns

1 1

CarobjectId is placed in the owner class

In general an association between two classes A and B should be
considered with the questions:

1.Do objects of class A have to send messages to objects of class B?

2. Does an A object have to provide some other object with B object identifiers?

If either of these questions is answered 'yes' then A objects need B object
identifiers. However if A objects get the required B object identifiers as parameters
in incoming messages, A objects need not remember the B object identifiers.
Essentially, if an object needs to send a message to a destination object it must
have the destination object's identifier either passed as a parameter in an
incoming message just when it is required, or the destination object's identifier
must be stored in the sending object.

An association that has to support message passing in both directions is a
two-way association. A two-way association is indicated with arrowheads at both
ends or with solid line , and it is important to minimize the coupling between
objects. Minimizing the number of two-way associations keeps the coupling
between objects as low as possible.

2 One-to-many Associations

In the following figure, objects of the class Campaign need to send
messages to objects of the class Advert but not vice versa. If the association between
the classes was one-to-one, the association could be implemented by placing an
attribute to hold the object identifier for the Advert class in the Campaign class.
However, the association is in fact one-to-many and many Advert object identifiers
need to be tied to a single Campaign object. The object identifiers could be held as a
simple one-dimensional array in the Campaign object but program code would have
to be written to manipulate the array.

CrerativeStaff
staffNo
'staffName1..n1..n

C ampaign
title
campaignStartDate
campaignfinishdate
completionDate
actualcost
estimatedcost

assignManager()
assignStaff()
checkBudget()
checkStaff()
completed()
recordPayment()

'staffName
staffStartDate
qualification

calculateBonus()
linkToNote()

1..n

1..n

works on campaign

Advert
title
type
targetDate
estimatedCost
completionDate

getCost()
setCompleted()
view()

1..n

11

1..n

owns

1..n

1..n

3 Many-to-many Associations

The Association of the type many-to-many association workOnCampaign
is shown between Creative Staff and Campaign in previous figure.Assuming this is
a two-way association, each Campaign object will need a collection of CreativeStaff
object identifiers and each Creative Staff object will need a collection of Campaign
object identifiers.

5. Integrity Constraints

Systems analysis identifies a series of integrity constraints that have to Systems analysis identifies a series of integrity constraints that have to
be enforced to ensure that the application holds data that is mutually consistent
and manipulates it correctly. These integrity constraints come in various forms
and includes:
Referential Integrity constraints ensures that an object identifier in an object is
actually referring to an object that exists.

Dependency Constraints ensures that attribute dependencies, where one
attribute may be calculated from other attributes, are maintained consistently.

Domain Integrity constraint ensures that attributes only hold permissible
values.

1 Referential integrity Constraints

The concept of referential integrity as applied to a relational database
management system can be applied when considering references between objects.

In the following figure the association manageCampaign between CreativeStaff and
Campaign is two-way, and an object identifier called campaignManagerld that refers
to the particular CreativeStaff object that represents the campaign manager is
needed in Campaign. To maintain referential integrity the system must ensure that
the attribute campaign Managerld either is null or contains the object identifier of a
CreativeStaff object that exists.

Campaign
title
campaignStartdate
campaignfinishDate
actualcost
estimatedbudget
CampaignManagerId

assignManager()
assignStaff()
checkBudget()

CreativeStaff
staffno
staffName

calculateBonus()

ManageCampaign

In this particular case the association states that a Campaign must have a
CreativeStaff instance as its manager, and it is not correct to have a Campaign with
a null campaignManagerld attribute. In order to enforce this constraint, the
constructor for Campaign needs as one of its parameters the object identifier of the
CreativeStaff object that represents the campaign manager, so that the
campaignManagerld attribute can be instantiated with a valid object identifier.

Problems in maintaining the referential integrity of a Campaign may occur
during its lifetime. For instance, the campaign manager, NameX, may leave the
company to move to another job and NameX CreativeStaff object will then be
deleted. Referential integrity is maintained by ensuring that the deletion of a
CreativeStaff object that is a campaign manager always involves allocating a new
campaign manager. The task of invoking the operation assignManager() is included campaign manager. The task of invoking the operation assignManager() is included
in the Creative Staff destructor, and it will request the object identifier of the new
campaign manager. Similarly, any attempt to remove the current campaign
manager from a Campaign must always involve allocating the replacement.

The multiplicity of exactly one represents a strong integrity constraint for the
system. In the example just discussed, it seems to be appropriate that a campaign
should always have a manager, even when it has just been created. However,
great care should be taken when assigning a multiplicity of exactly one (or in
general a minimum of one) to an association, as the consequences in the
implemented system can be quite dramatic.

2 Dependency constraints
Attributes are dependent upon each other in various ways. These

dependencies may have been identified during analysis and must now be dealt with
during design. A common form of dependency occurs when the value of one attribute
may be calcuated from other attributes. For instance, a requirement to display the total
advertising cost may be satisfied either by storing the value in the attribute
totalAdvertCost in the Campaign class or by calculating the value every time it is
required. The attribute totalAdvertCost is a derived attribute and its value is calculated
by summing the individual advert costs. Placing the derived attribute in the class
reduces the processing required to display the total advertising cost as it does not
require calculation. On the other hand, whenever the cost of an advert changes, or an
advert is either added to or removed from the campaign, then the attribute advert is either added to or removed from the campaign, then the attribute
totalAdvertCost has to be adjusted so that it remains consistent with the attributes
upon which it depends. The UML symbol ('/') used to indicate that a modelling element
(attribute or association) is derived as shown below.

Campaign
title
campaignStartdate
campaignfinishDate
actualcost
estimatedbudget
CampaignManagerId
 / totalAdvertCost

assignManager()
assignStaff()
checkBudget()

In order to maintain the consistency between the attributes, any operation
that changes the value of an Advert's cost must trigger an appropriate change in the
value of totalAdvertCost by sending the message adjustCost () to the Campaign
object. The operation adjustCost () is an example of a synchronizing operation. The
operations that have to maintain the consistency are setAdvertCost () and the Advert
destructor. When a new advert is created the constructor would use setAdvertCost ()
to set the advert cost. This would invoke adjustCost() and hence ensure that the
totalAdvertCost is adjusted. So any change to an Advert's cost takes more
processing if the derived attribute totalAdvertCost is used. Thus one part of the
system executes more quickly while another part executes more slowly. Generally it
is easier to construct systems without derived attributes, as this indicates the need
for complex synchronizing operations. Derived attributes should only be introduced if for complex synchronizing operations. Derived attributes should only be introduced if
performance constraints cannot be satisfied without them. If performance is an issue
then one of the skills needed in design is how to optimize the critical parts of the
system without making the other parts of the system inoperable.

Another form of dependency occurs where the value of one attribute is
constrained by the values of other attributes.

Dependency constraints can also exist between or among associations. In
the following example, the chairs association is a subset of the isAMemberOf
association. This constraint is stating that the chair of a committee must be a
member of the committee, and it can be enforced by placing a check in the
assignChair () operation in Committee to confirm that the Employee object identifier
passed as a parameter is already in the collection class of committee members.
More complex constraints may also exist that require several associations. Derived
associations may also be introduced to improve performance if absolutely
necessary and, as in the case of derived attributes, synchronizing operations are
needed to ensure that the derived links are consistent with the links on which they
depend.

3 Domain integrity

Domain integrity is concerned with ensuring that the values an attribute takes
are from the appropriate underlying domain. For instance, the attributes from the
Cost domain might reasonably be non-negative decimal values with two decimal
places. These constraints may be viewed as an extended form of those implied
by data types. The necessary integrity checking code is normally placed in the
'set' operations or in any interactive interface that permits the entry of values.

6. Designing Operations
The design of operations involves determining the best algorithm to perform the
required function. In the simplest case, primary operations require little design
apart from the inclusion of code to enforce integrity checks. For more complex
operations, algorithm design can be an involved process. Various factors
constrain algorithm design including:

• the cost of implementation,
• performance constraints,
• requirements for accuracy and
• the capabilities of the implementation platform.

The following factors should be considered when choosing among alternative algorithm
designs.

• Computational complexity. This is concerned with the performance characteristics
of the algorithm as it operates on increasing numbers of input values. For example,
the bubble sort algorithm has an execution time that is proportional to N X N where N
is the number of items being sorted.

• Ease of implementation and understandability. It is generally better to sacrifice
some performance to simplify implementation.

• Flexibility. Most software systems are subject to change and an algorithm should be
designed with this in mind .

• Fine-tuning the object model. Some adjustment to the object model may simplify • Fine-tuning the object model. Some adjustment to the object model may simplify
the algorithm and should be considered.

Designing the main operations in a class is likely to highlight the need for lower-level
private operations to decompose complex operations. This process is much the
same as traditional program design. Techniques such as step-wise refinement or
structure charts may well be used to good effect.

UML offers activity diagrams as a technique both to document and to design
operations. In circumstances where high levels of formality are required in operation
design.

Responsibilities identified during analysis may map onto one or more
operations. The new operations that are identified need to be assigned to classes.
In general, if an operation operates on some attribute value then it should be
placed in the same class as the attribute. On occasions a particular operation may
modify attributes in more than one class and could sensibly be placed in one of
several classes. In choosing where to locate the operation, one view is that
minimizing the amount of object interaction should be a major criterion, while
another significant criterion is simplicity.

7. Normalization
One form of dependency can be given among class attributes as functional
dependency. For two attributes A and B, A is functionally dependent on B if for dependency. For two attributes A and B, A is functionally dependent on B if for
every value of B there is precisely one value of A associated with it at any given
time.
This is shown notationally as: B A

Normalization may be useful when using a relational database
management system as part of the implementation platform or as a guide to
decomposing a large, complex object. Most object-oriented approaches to software
development do not view normalization as essential, and structures that are not
normalized are considered acceptable. In general however, object-oriented
approaches, if applied with suitable quality constraints, will produce structures that
are largely redundancy free.

15. DESIGN PATTERNS

Successful software development relies on the knowledge and expertise
of the developer, among others also. These are built and refined during
development stage. A system analyst applies his solutions to development
problems, monitors their success or failure and produces more effective solutions .
In the software development there may be possibility same type problem may to re-
occur, in this case instead of going for new solutions we can go for utilizing an
existing solutions which are already implemented, that is through an existing
patterns.

Patterns provide a means for capturing knowledge about problems and Patterns provide a means for capturing knowledge about problems and
successful solutions in software development.

Pattern : Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of a solution to that problem, in such
a way that you can use this solution a million times over, without ever doing it the
same way twice.

1. Software development patterns

A. Frameworks Vs Patterns

Frameworks are partially completed software systems that may be targeted at a
specified type of application, for example sales order processing. An application
system tailored to a particular organization may be developed from the framework
by completing the unfinished elements and adding application specific elements.
This may involve the specialization of classes and the implementation of some
operations. Essentially the framework is a reusable mini-architecture that provides
a structure and behaviour common to all applications of this type.

The major differences between patterns and frameworks can be summarized as :The major differences between patterns and frameworks can be summarized as :

1. Patterns are more abstract and general than frameworks. A pattern is a description
of the way that a type of problem can be solved, but the pattern is not itself a
solution.

2. Unlike a framework, a pattern cannot be directly implemented in a particular
software environment. A successful implementation is only an example of a design
pattern.

3. Patterns are more primitive than frameworks. A framework can employ several
patterns but a pattern cannot incorporate a framework.

B. Pattern catalogues and languages

Patterns are grouped into catalogues and languages. A pattern catalogue is a group of
patterns that are related to some extent and may be used together or independently of
each other. The patterns in a pattern language are more closely related, and work
together to solve problems in a specific domain.

For example, Cunningham documented the 'Check Pattern Language of
Information Integrity', which consists of eleven patterns that address issues of data
validation. All were developed from his experiance of developing interactive financial
systems in Smalltalk.

One of these patterns, Echo, describes how data input should be echoed One of these patterns, Echo, describes how data input should be echoed
back to the user after it has been modified and validated by the information system
Typically users enter small batches of values and then look at the screen to check that
they have been correctly entered. The sequence in which a user can enter data into
fields may not be fixed and so validation feedback be given one field at a time. For
example, a user enters a value as 5.236. This might be echoed back by the system
as 5.24 (correctly rounded to two decimal places). The user receives direct visual
feedback that the value has been accepted and how it has been modified.

C. Software development principles and patterns
Patterns are intended to represent good design practice and hence are based upon
software development principles, many of which have been identified since the early
days of software development and applied within other development approaches
than object-oriented ones. The following are the key principles that underlie patterns:

 abstraction,
 encapsulation,
 information hiding,
 modularization,
 separation of concerns,
 coupling and cohesion, coupling and cohesion,
 sufficiency, completeness and primitiveness,
 separation of policy and implementation,
 separation of interface and implementation,
 single point of reference and
 divide and conquer (this means breaking a complex problem into smaller, more

manageable ones).

D. Patterns and non-functional requirements
Patterns can address the issues that are raised by non-functional requirements

also. The following are the important non-functional properties of a software
architecture:

 changeability,
 interoperability,
 efficiency,
 reliability,
 testability and
 reusability.

These properties may be required of a complete system or a part of a system. These properties may be required of a complete system or a part of a system.
For example, a particular set of functional requirements may be seen as volatile
and subject to change. It is important to develop a structure for these
requirements that can cope with change. Another requirement may be that a
particular aspect of an application must be highly reliable. Again this
requirement must be met by the design.

2. Documenting Patterns – Pattern templates

Patterns can be documented using one of several alternative templates.
The pattern template determines the style and structure of the pattern description,
and these vary in the emphasis they place on different aspects of patterns. The
differences between pattern templates may provide variations in the problem
domain but there is no agreement as to the most appropriate template even within
a particular problem domain. Generally a pattern description should include the
following elements .

Name. A pattern should be given a meaningful name that reflects the knowledge
embodied by the pattern. This may be a single word or a short phrase. These embodied by the pattern. This may be a single word or a short phrase. These
names become the vocabulary for discussing conceptual constructs in the domain
of expertise.

Problem. This is a description of the problem that the pattern addresses means
the intent of the pattern. It should identify and describe the objectives to be
achieved, within a specified context and constraining forces. For example, one
problem might be concerned with producing a flexible design, another with the
validation of data.

The problem can frequently be written as a question, for example 'How
can a class be constructed that has only one instance and can be accessed
globally within the application?' This question expresses the problem addressed by
the Singleton pattern .

Context. The context of the pattern represents the circumstances or preconditions
under which it can occur. The context should provide sufficient detail to allow the
applicability of the pattern to be determined.

Forces. The forces embodied in a pattern are the constraints or issues that must be
addressed by the solution. These forces may interact with and conflict with each other,
and possibly also with the objectives described in the problem. They reflect the details
of the pattern.

Solution. The solution is a description of the static and dynamic relationships among
the components of the pattern. The structure, the participants and their collaborations
are all described. A solution should resolve all the forces in the given context. A
solution that does not resolve all the forces fails. solution that does not resolve all the forces fails.

The following are the other features which are to be mentioned in pattern templates:

 An example of the use of a pattern that serves as a guide to its application;
 The context that results from the use of the pattern;
 The rationale that justifies the chosen solution;
 Related patterns;
 Known uses of the pattern that validate it (some authors suggest that until the

problem and its solution have been used successfully at least three times-the
rule of three-they should not be considered as a pattern);

 A list of aliases for the pattern;

3. Types of Design Patterns
Patterns are classified according to their scope and purpose into the following three
main categories.

1. Creational patterns

2. Structural patterns

3. Behavioural patterns.

The scope of a pattern may be primarily at either the class level or at the
object level. Patterns that are principally concerned with objects describe
relationships that may change at run-time and hence are more dynamic. Patterns relationships that may change at run-time and hence are more dynamic. Patterns
that relate primarily to classes tend to be static and identify relationships between
classes and their subclasses that are defined at compile-time.

The patterns are based on principles of good design that include the
maximizing of encapsulation and the substitution of composition for inheritance
wherever possible. Using composition as a design issue produces composite objects
whose component parts can be changed, perhaps dynamically under program
control hence resulting in a highly flexible system. Generally patterns will frequently
use both inheritance and composition to achieve the desired result.

Changeability involves several different aspects - main-tainability,
extensibility, restructuring and portability.
Maintainability is concerned with the ease with which errors in the information
system can be corrected.
Extensibility addresses the inclusion of new features and the replacement of
existing components with new improved versions. It also involves the removal of
unwanted features.
Restructuring focuses on the reorganization of software components and their
relationships to provide increased flexibility.
Portability deals with modifying the system so that it may execute in different
operating environments, such as different operating systems or different hardware.

1. Creational patterns
A creational design pattern is concerned with the construction of object

instances. In general, creational patterns separate the operation of an application
from how its objects are created. This decoupling of object creation from the
operation of the application gives the designer considerable flexibility in configuring
all aspects of object creation. This configuration may be dynamic or static .

For example, when dynamic configuration is appropriate, an object-oriented
system may use composition to make a complex object by aggregating simpler
component objects. Depending upon circumstances different components may be
used to construct the composite and, irrespective of its components, the composite
will fulfill the same purpose in the application.

Creating composite objects is not simply a matter of creating a single entity
but also involves creating all the component objects. The separation of the creation of
a composite object from its use within the application provides design flexibility. By
changing the method of construction of a composite object, alternative
implementations may be introduced without affecting the current use.

Eg : Singleton Pattern

Singleton Pattern

Singleton pattern is one, which can be used to ensure that only one
instance of a class is created. In order to understand the use of the pattern we need instance of a class is created. In order to understand the use of the pattern we need
to consider the circumstances under which a single instance may be required.

The Agate campaign management system needs to hold information
regarding the company. For example, its name, its head office address and the
company registration details need to be stored so that they can be displayed in all
application interfaces and printed on reports. This information should be held in only
one place within the application but will be used by many different objects.

One design approach would be to create a global data area that can be
accessed by all objects, but this violates the principle of encapsulation. Any change to
the structure of the elements of global data would require a change to all objects that
access them.

The creation of a Company class overcomes this problem by encapsulating
the company attributes as shown below. These are then accessible to other objects
through the operations of the Company object. But there is still a problem with this
proposal. An object that wants to use the Company object needs to know the Company
object's identifier so that it can send messages to it. This suggests that the Company
object identifier should be globally accessible-but again this is undesirable since it
violates encapsulation.

Company

CompanyName
companyAddresscompanyAddress
companyRegistrationNumber

getcompanyDetails()

Some object-oriented programming languages provide a mechanism that
enables certain types of operations to be accessed without reference to a specified
object. These are called class operations or static operations. This offers a solution to
the problem of providing global access without the need to globally define the object
identifier.

For example, a static operation getCompanylnstance() can be defined in
such a way that it will provide any client object with the identifier for the Company
instance. This operation can be invoked by referencing the class name as shown
below.

Company.getCompanyInstance()

When a client object needs to access the Company object it can send this
message to the Company class and receive the object identifier in reply. The client
object can now send a getCompanyDetails () message to the Company object.

The design problem can be solved in the following way. It is important that
there should only be one instance of this object. To ensure system integrity the there should only be one instance of this object. To ensure system integrity the
application should be constructed so that it is impossible to create more than one.
This aspect of the problem can be solved by giving the Company class sole
responsibility for creating a Company object. This is achieved by making the class
constructor private so that it is not accessible by another object. The next issue that
needs to be addressed is the choice of an event that causes the creation of the
company object. Perhaps the simplest approach is to create the Company object at
the moment when it is first needed. When the Company class first receives the
message getCompanylnstance() this can invoke the Company class constructor.
Once the Company object has been created, the object identifier is stored in the
class attribute companylnstance so that it can be passed to any future client
objects.

Company

The following Company class provides a single global point of access via
the class operation getCompanylnstance() and that also ensures that only one
instance is created.
A simple version of the logic for the getCompanylnstance() operation is shown
below.

If (companyInstance == null)
{
companyInstance = new Company()
} return companyInstance

- companyInstance
- companyName
- companyAddress
- companyRegistrationNumber
+ getCompanyInstance()
+ getcompanyDetails()
- company()

Class-scope
attribute

Class-scope
operation

Private
constructor

The design may need to accommodate further requirements also. Since
Agate operates as a separate company in each country , variations in company law
from country to country may need different company registration details to be recorded
for each country. This suggests a requirement for different types of Company class
each with its own variation of the registration details. The creation of a separate
subclass for each style of company registration details is a solution to this aspect ofthe
problem as shown below.

Company

- companyInstance
- companyName
- companyAddress
- companyRegistrationNumber- companyRegistrationNumber

+ getCompanyInstance()
+ getcompanyDetails()
- company()

UKCompany

- companyRegistrationNumber

+ getcompanyDetails() : string
- UKCompany() : UK company

USACompany

- companyRegistrationNumber

+ getcompanyDetails() : string
- USACompany() : USAcompany

The singleton pattern is described below in more general language.

Name. Singleton.

Problem. How can a class be constructed that should have only one instance and
that can be accessed globally within the application?

Context. In some applications it is important that a class have exactly one instance.
A sales order processing application may be dealing with sales for one company. It is
necessary to have a Company object that holds details of the company's name,
address, taxation reference number and so on. Clearly there should only be one
such object. Alternative forms of a singleton object may be required depending upon
different initial circumstances.

Forces. One approach to making an object globally accessible is to make it a global
variable but in general this is not a good design solution as it violates encapsulation.
Another approach is not to create an object instance at all but to use class
operations and attributes . However, this limits the extensibility of the model since
polymorphic redefinition of class operations is not possible in all development
environments .

Solution. Create a class with a class operation getInstance() , which, when the
class is first accessed, creates the relevant object instance and returns the object
identity to the client. On subsequent accesses of the getInstance() operation no
additional instance is created but the object identity of the existing object is returned.

The Advantages and Disadvantages of singleton patterns.

+ It provides controlled access to the sole object instance as the Singleton class
encapsulates the instance.

+ The namespace is not unnecessarily extended with global variables.

+ The Singleton class may be subclassed. At system start-up user-selected options
may determine which of the subclasses is instantiated when the Singleton class is
first accessed.

+ A variation of this pattern can be used to create a specified number of instances if
required.

- Using the pattern introduces some additional message passing. To access the
singleton instance the class scope method has to be accessed first rather than
accessing the instance directly.

- The pattern limits the flexibility of the application. If requirements change and as a
result the singleton class may have many instances then accommodating this new
requirement necessitates significant modification to the system.

- The singleton pattern is quite well known and developers are tempted to use it in
circumstances that are inappropriate. Patterns must be used with care.

2. Structural patterns

Structural patterns address issues concerned with the way in which
classes and objects are organized. Structural patterns offer effective ways of
using object-oriented constructs such as inheritance, aggregation and
composition to satisfy particular requirements. If there , a requirement for a
particular aspect of the application to be extensible. In order to achieve this, the
application should be designed with constructs that minimize the sideeffects of
future change. Alternatively it may be necessary to provide the same interface for
a series of objects of different classes also.

Eg : Composite Pattern

Composite Pattern

To apply Composite structural pattern in a design for the Agate case
study , consider if further work is required to design a multimedia application that
can store and play components of an advert.

Here an advert is made up of sound clips and video clips each of which
may be played individually or as part of an advert. The classes SoundClip and
VideoClip have attributes and operations in common and it is appropriate that
these classes are subclassed from MediaClip as shown below as MediaClip
Inheritance hierachy.

MediaClip

Play()

VideoClip

Play()

soundClip

Play()

But not all advert clips are primitive that is, made up of only a single MediaClip.
Some consist of one or more sequences of clips, such that each sequence is in
turn an aggregation of SoundClip and video Clip objects as shown below.

AdSequence

Play()
addClip()
removeClip()
Getchild()

VideoClip

Play()

soundClip

Play()

These two orthogonal hierarchies can be integrated by treating AdSequence both
as a subclass of MediaClip and also as an aggregation of MediaClip objects as
shown below. All the subclasses have the polymorphically redefined operation
play() . For the subclasses VideoClip and SoundClip this operation actually plays
the object. But for an AdSequence object, an invocation of the play() operation
results in it sending a play() message to each of its components in turn.

MediaClip

Play()
addClip()
removeClip()
Getchild()

Advert

VideoClip

Play()

soundClip

Play()

AdSequence
mediaClipcollection
Play()
addClip()
removeClip()
Getchild()

Getchild()

This structure of the Composite pattern is described below.

Name. Composite.
Problem. There is a requirement to represent whole-part hierarchies so that both
whole and part objects offer the same interface to client objects.
Context. In an application both composite and component objects exist that are
required to offer the same behaviour. Client objects should be able to treat
composite or component objects in the same way. A commonly used example for
the composite pattern is a graphical drawing package. Using this software
package a user can create atomic objects like circle or square and can also group
a series of atomic objects or composite objects together to make a new composite
object. It should be possible to move or copy this composite object in exactly the object. It should be possible to move or copy this composite object in exactly the
same way as it is possible to move or copy an individual square or a circle.
Forces. The requirement that the objects, whether composite or component, offer
the same interface suggests that they belong to the same inheritance hierarchy.
This enables operations to be inherited and to be polymorphically redefined with
the same signature. The need to represent whole-part hierarchies indicates the
need for an aggregation structure.
Solution. The solution resolves the issues by combining inheritance and
aggregation hierarchies. Both subclasses, Leaf and Composite, have a
polymorphically redefined operation anOperation (). The Composi te subclass also
has additional operations to manage the aggregation hierarchy so that
components may be added or removed.

3. Behavioural Patterns

Behavioural patterns addresses the problems that arise when assigning
responsibilities to classes and when designing algorithms. Behavioural patterns
specifies static relationships between objects and classes and how the objects of one
class communicates with another. Behavioural patterns may use inheritance
structures to spread behaviour across the subclasses or they may use aggregation
and composition to build complex behaviour from simpler components.

Eg: The State pattern, uses both of these techniques.

State Pattern

Consider Agate case study to determine whether it has features that may
satisfy the application of the state pattern or not. Identify whether there are any satisfy the application of the state pattern or not. Identify whether there are any
objects with significant state dependent behaviour or not. Among those Campaign
objects will have behaviour that varies according to state , may be in any one of four
main states, as shown below.

1.Commissioned State.

2.Active State.

3.Completed State

4.Paid State.

Clearly a Campaign object's state changes dynamically as the campaign progresses,
thus necessitating changes in the behaviour ofthe object.

For example, when a campaign is planned a Campaign object is created in the
Commissioned state. It remains in this state until a campaign budget has been agreed
and only then does it become possible to run advertisements, although some
preparatory work may be done for the campaign in the meantime. Once a Campaign
object enters the Active state all advert preparation and any other work that is done is
subject to an agreed billing schedule. Several operations, for example addAdvert () and
calcCosts (), will behave differently depending upon the state of the Campaign object.
The following figure shows Campaign class with different operations including all states.

However, this would be a
complex class which is further
complicated by state
dependent operations such as
calcCosts (), which would need
to be specified with a series of
case or if-then-else statements
to test the state of the object.

It would be simpler to subdivide the operations that have state dependent
behaviour, which in this case would result in four separate calcCosts() operations,
one for each state.

Another possibility is to create additional classes, one for each state so
that each holds a state specific version of the operations, and this is how the State
pattern works. A class diagram fragment illustrating this application of the State
pattern is shown in the following figure.

The State pattern is described more generally below.

Name. State pattern.

Problem. An object exhibits different behaviour when its internal state changes making
the object appear to change class at run-time.

Context. In some applications an object may have complex behaviour that is dependent
upon its state. In other words the response to a particular message varies according to
the object's state. One example is the calcCosts () operation in the Campaign class.

Forces. The object has complex behaviour that should be factored into less complex
elements. One or more operations have behaviour that varies according to the state of
the object. Typically the operation would have large, multi-part conditional statements the object. Typically the operation would have large, multi-part conditional statements
depending on the state. One approach is to have separate public operations for each
state but client objects would need to know the state of the object so that they could
invoke the appropriate operation. For example four operations calcCosts
Commissioned(), calcCostsActive(), calcCostsCompleted() and calcCostsPaid() would
be required for the Campaign object. The client object would need to know the state of
the Campaign object in order to invoke the relevant calcCosts() operation. This would
result in undesirably tight coupling between the client object and the Campaign object.
An alternative approach is to have a single public calcCosts () operation that invokes the
relevant private operation (calcCosts Commissioned () would be private). However, the
inclusion of a separate private operation for each state may result in a large complex
object that is difficult to construct, test and maintain.

Solution: The state pattern separates the state dependent behaviour from the original
object and allocates this behaviour to a series of other objects, one for each state.
These state objects then have sole responsibility for that state's behaviour.
Advantages and Disadvantages of State pattern includes :

+ State behaviour is localized and the behaviour for different states is separated.
This eases any enhancement of the state behaviour, in particular the addition of extra
states.

+ State transitions are made explicit. The state object that is currently active indicates
the current state of the Context object.

+ Where a state object has no attributes relevant to a specific Context object it may + Where a state object has no attributes relevant to a specific Context object it may
be shared among the Context objects.

- If the State objects cannot be shared among the Context objects each Context
object will have to have its own State object thus increasing the number of objects
and the storage requirements for the system.

- State objects may have to be created and deleted as the Context object changes
state, thus introducing a processing overhead.

- Use of the State pattern introduces at least one extra message, the message from
the Context class to the State class, thus adding a further processing overhead.

4. How to Use Design Patterns
The use of a pattern requires careful analysis of the problem that is to be

addressed and the context in which it occurs. Before contemplating the application
of patterns within a software development environment it is important to ensure that
all members of the team receive appropriate training.

When a developer identifies a part of the application that may be subject to
high coupling, a complex class or any other undesirable feature, there may be a
pattern that addresses the difficulty.

The following are the issues to be considered before applying a pattern to resolve
the problem. the problem.

 Is there a pattern that addresses a similar problem?
 Does the pattern trigger an alternative solution that may be more acceptable?
 Is there a simpler solution? Patterns should not be used just for the sake of it.
 Is the context of the pattern consistent with that of the problem?
 Are the consequences of using the pattern acceptable?
 Are constraints imposed by the software environment that would conflict with

the use of the pattern?

Gamma et al. suggested seven-part procedure that should be followed
after an appropriate pattern has been selected in order to apply it successfully.

1. Read the pattern to get a complete overview.
2. Study the Structure, Participants and Collaborations of the pattern in detail.
3. Examine the Sample Code to see an example of the pattern in use.
4. Choose names for the pattern's participants that is classes that are

meaningful to the application.
5) Define the classes.
6) Choose application specific names for the operations.
7) Implement operations that perform the responsibilities and collaborations in

the pattern. the pattern.

A pattern should not be viewed as a prescriptive solution but rather as
guidance on how to find a suitable solution. It is likely that a pattern will be used
differently in each particular set of circumstances. At a simple level the classes
involved will have attributes and operations that are determined by application
requirements. Often a pattern is modified to accommodate contextual differences.
Alternatively a pattern may suggest some other solution also to the developer.

It is critical to the use of patterns that pattern catalogues and languages
should be made readily available to the developer. Many patterns are documented
in hypertext on the Internet or on company Intranets. CASE tool support for
patterns is developing and is provided by some vendors.

5.Benefits and Dangers of Using Patterns
One of the most important benefits of object-orientation is reuse. Reuse

at the object and class level has proved more tangible than was initially expected.
Patterns provide a mechanism for the reuse of generic solutions for object-
oriented and other approaches. They provides a strong reuse culture. Within the
design context, patterns suggest reusable elements of design and, most
significantly, reusable elements of demonstrably successful designs. This reuse
permits the transfer of expertise to less experienced developers so that a pattern
can be applied again and again

Another benefit gained from patterns is that they offer a vocabulary for
discussing the problem domain means whether it be analysis, design or some discussing the problem domain means whether it be analysis, design or some
other aspect of information systems development at a higher level of abstraction
than the class and object making it easier to consider micro-architectural issues.
Pattern catalogues and pattern languages offer a rich source of experience that
can be explored and provide patterns that can be used together to generate
effective systems.

Some people believe that the use of patterns can limit creativity. Since a
pattern provides a standard solution the developer may be tempted not to spend
time on considering alternatives. The use of patterns in an uncontrolled manner
may lead to over-design. Developers may be tempted to use many patterns
irrespective of their benefits, thus rendering the software system more difficult to
develop, maintain and enhance.

When a pattern is used in an inappropriate context the side effects may
also occur with the system. For example, the use of the State pattern may
significantly increase the number of objects in the application with a consequent
reduction in performance.

Developers need to spend time understanding the relevant pattern
catalogues, they need to be provided with easy access to the relevant catalogues
and they need to be trained in the use of patterns. Another aspect of the introduction
of patterns is the necessary cultural change. Patterns can only be used effectively in
the context of an organizational culture of reuse.

These dangers emphasize that the use of patterns in software development
requires care and planning. In this respect patterns are no different from any other requires care and planning. In this respect patterns are no different from any other
form of problem solving: they must be used with intelligence. It is also important to
appreciate that patterns only address some of the issues that occur during systems
development.

16. Human-Computer Interaction

1. What is the user interface?

Users of an information system need to interact with it in some way.

Whether they are users of tele-sales system entering orders made over the
telephone by customers, or members of the public using a touch screen system to
find tourist information, they will need to carry out the following secondary tasks:

• read and interpret information that instructs them how to use the system;
• issue commands to the system to indicate what they want to do;
• enter words and numbers into the system to provide it with data to work with;
• read and interpret the results that are produced by the system either on

screen or as a printed report;
• respond to and correct errors ;

In the above examples , the primary tasks are to take a customer order and to
find tourist information. If the system has been designed well, the secondary,
system-related tasks will be easy to carry out; if it has not been designed well,
the secondary tasks will intrude into the process and will make it more difficult
for the users to achieve their primary tasks.

The dialogue metaphor

In the design of many computer systems, interaction between the user and
the system takes the form of a dialogue. The idea that the user is carrying on a
dialogue with the system is a metaphor. There is no real dialogue in the sense of a
conversation between people going on between the user and the computer, but as in
dialogues between people, messages are passed from one participant to the other.

The following figure shows the human-computer dialogue in schematic form.

data

prompt

data

control
INPUTINPUT

DEVICES

data

status

error

help

OUTPUT
OUTPUT
DEVICES

Output

prompt request for user input

data data from application following user request

status acknowledgement that something has happened

error processing cannot continue

help additional information to user

the following table describes what is meant by each of the types of
message that can be found in this dialogue.

Input
control user directs which way dialogue will proceed

data data supplied by user

Types of Messages in Human-computer dialogue

The direct manipulation metaphor

The other metaphor for the design of the user interface is the direct
manipulation metaphor. Many people are now familiar with this through the use of
GUIs. When you use a software package with this kind of interface you are given
the impression that you are manipulating objects on the screen through the use of
the mouse. This metaphor is reflected in the concrete nature of the terms that are
used. The user of the system can:

 drag and drop an icon,
 shrink or expand a window,
 push a button and
 pull down a menu.

Such interfaces are event-driven. Graphical objects are displayed on the
screen and the window management part of the operating system responds to events,
Most such events are the results of the user's actions. The user can click on a button,
type a character, press a function key, click on a menu item or hold down a mouse
button and move the mouse. The design of user interfaces to support this kind of
interaction is more complicated than for text-based interfaces using the dialogue
metaphor.

HP systems

Monthly magazine

80,000 IRS

The following figure shows the interface of a VB program to implement
the use case Check campaign budget for the Agate case study.

In this use case, the user first selects the name of a client from a list box
labelled Client. Having selected the client, a list of all active campaigns for that client is
placed in the list box labelled Campaign. At this point, no campaign is selected, and the
user can click on the arrow at the end of the list box to view the list and select a
campaign. When a campaign has been selected, the user can click on the button
labelled Check. The program then totals up the cost of adverts in that campaign,
subtracts it from the budget and displays the balance as a money value .In this interface
design, there is no point in the user selecting a campaign until a client has been selected
or clicking the Check button until a client and a campaign have been selected. The
designer may choose to disable the Campaign list box until the client has been selected,
and disable the button until both client and campaign have been selected. Having
checked one campaign, the user may choose a different client, in which case the checked one campaign, the user may choose a different client, in which case the
contents of the Campaign list box have to be changed and the button disabled again
until a different campaign has been selected.

Windows like the one in the example above are usually called dialogue boxes
in GUI environments. In terms of the metaphors, they combine elements of a dialogue
with the user with direct manipulation of buttons and lists.

Characteristics of good dialogues

Regardless of whether a system is being developed for a text-based
environment or for a GUI environment, there are a number of important general
characteristics of good dialogue design. These includes the following :

• consistency,
• appropriate user support,
• adequate feedback from the system and
• minimal user input.

Consistency. A consistent user interface design helps users to learn an application
and to apply what they know across different parts of that application. This applies to and to apply what they know across different parts of that application. This applies to
commands, the format for the entry of data such as dates, the layout of screens and
the way that information is coded by the use of colour or highlighting.

Appropriate user support. When the user does not know what action to take or has
made an error, it is important that the system provides appropriate support at the
interface. This support can be informative and prevent errors by providing help
messages, or it can assist the user in diagnosing what has gone wrong and in
recovering from their error. Help messages should be context-sensitive. This means
that the help system should be able to detect where the user has got to in a dialogue
and provide relevant information.

In a GUI environment, this means being able to detect which component of
the interface is active and providing help that is appropriate to that part of the
interface. The help provided may be general, explaining the overall function of a
particular screen or window, or it may be specific, explaining the purpose of a
particular field or graphical component and listing the options available to the user. It
may be necessary to provide a link between different levels of help so that the user
can move between them to find the information they require. Help information may be
displayed in separate screens or windows, or it may be displayed simultaneously in a
status line also or using tooltips as the user moves through the dialogue or positions
the cursor over an item. Many web page designers provide help about elements of
their pages by dis-playing messages in the status line at the bottom of the browser
window or by displaying a tooltip-style message in a box as the cursor moves over an window or by displaying a tooltip-style message in a box as the cursor moves over an
item on the page.

This way of displaying Warning messages can prevent the user from making
serious errors by providing a warning or caution message before the system carries
out a command from the user that is likely to result in an irreversible action. Warning
messages should allow the user to cancel the action that is about to take place.

Adequate feedback from the system. Users expect the system to respond when
they make some action. If they press a key during data entry, they expect to see the
character appear on the screen ; if they click on something with the mouse, they
expect that item to be highlighted and some action from the system. Users who are
uncertain whether the system has noticed their action keep on pressing keys or
clicking with the mouse, with the result that these further key presses and clicks are
taken by the system to be the response to a later part of the dialogue, with
unpredictable results. It is important that users know where they are in a dialogue or
direct manipulation interface: in a text-based interface there should be a visible
cursor in the current active field; in a GUI environment the active object in the
interface should be highlighted.

Minimal user input. Users resent making what they see as unnecessary
keypresses and mouse clicks. Reducing unnecessary input also reduces the risk
of errors and speeds data entry. The interface should be designed to minimize
the amount of input from the user. The user can be helped in this way by:

• using codes and abbreviations,
• selecting from a list rather than having to enter a value,
• editing incorrect values or commands rather than having to type them in again,
• not having to enter or re-enter information that can be derived automatically
• Using default values

Style guides

Guidelines for user interface design are usually referred to as style guides,
and large organizations with many different information systems produce their own
style guides for the design of systems to ensure that all their applications, whether
they are produced in-house or by outside software companies, conform to a standard
set of rules that will enable users quickly to become familiar with a new application.
The use of style guides and the characteristics of a good dialogue relate to dialogue
and interface design in general.

For example Microsoft produces a book of guidelines called The Windows
Interface Guidelines for Software Design that lays down the standards to which
developers must follow if they are to be granted Windows certification.

2. Approaches to USERINTERFACE Design
There are many different ways of designing and implementing the elements of the

user interface that support the interaction with users by using formal and informal
approaches.

The following are the factors to be considered while designing User Interface .

 the nature of the task that the user is carrying out,
 the type of user,
 the amount of training that the user will have undertaken,
 the frequency of use
 the hardware and software architecture of the system. the hardware and software architecture of the system.

These factors may be very different from system to systems which are listed
in the following table. The following are the factors for the tele-sales system
and a WAP tourist information system. Systems that are used by members of
the public are very different from information systems used by staff.

Tele-Sales System WAPTourist

Information System

The nature of the task that
the user is carrying out

Routine task; closed Open-ended task; may

solution; limited options. be looking for information

that is not available.

The type of user

Clerical user of the system; Could be anyone;

no discretion about use discretion about use of

system; novice in relation

to this system.

The amount of training that
the user will have undertaken

Training provided as part of No training provided.

job.

The frequency of use
Very frequent; taking an Very occasional; may

The frequency of use
order every few minutes. never use it again.

The hardware and software
architecture of the system

Mini-computer, dumb Mobile telephone screen

terminals with text screens, with keypad and scroll

keyboard data entry. All buttons to move through

software runs on the mini- menus. WAP browser

computer. Structured runs on mobile

programs with subroutines telephone, WAP gateway

for data access and screen- connects to server, which

painting. generates WML for WAP

browsers and HTML for

other browsers using

XML and stylesheets.

The following are the three types of more formal and methodical approaches to the
analysis of usability requirements to be considered for design of HCI User
Interfaces.

1. Structured approaches
2. Ethnographic approaches
3. Scenario-based approaches.

These approaches are very different from one another. However, they all carry
out three main steps in HCI design:

1. requirements gathering,
2. design of the interface and 2. design of the interface and
3. interface evaluation.

1. Structured approaches
Structured approaches to user interface design have been developed in

response to the growth in the use of structured approaches to systems analysis and
design. Structured analysis and design methodologies have a number of
characteristics. They are based on a model of the systems development life cycle,
which is broken down into stages, each of which is further broken down into steps
that are broken down into tasks. Specific analysis and design techniques are used,
and the methodology specifies which techniques should be used in which step. Each
step is described in terms of its inputs , the techniques applied and the deliverables
that are produced as outputs (diagrams and documentation).

These approaches are more structured than the simple waterfall model of
the life cycle, as they provide for activities being carried out in parallel where
possible rather than being dependent on the completion of the previous step or
stage.

Structured approaches uses data flow diagrams to model processes in the
system and take a view of the system that involves decomposing it in a top-down
way. Structure charts or structure diagrams are used to design the programs that will
implement the system.

Benefits of Structured approaches :

• They make management of projects easier. The breakdown of the project into • They make management of projects easier. The breakdown of the project into
stages and steps makes planning and estimating easier, and thus assists
management control of the project.

• They provide for standards in diagrams and documentation that improves
understanding between the project staff in different roles means between analyst,
designer and pro-grammer.

• They improve the quality of delivered systems. Because the specification of the
system is comprehensive, it is more likely to lead to a system that functions correctly.

Structured approaches make use of diagrams to show the structure of tasks
and the allocation of tasks between users and the system. They also make
extensive use of checklists in order to categorize the users, the tasks and the
task environments. Evaluation is typically carried out by assessing the
performance of the users against measurable usability criteria.

The following are the two examples of structured approaches.
1. STUDIO (STructured User-interface Design for Interface Optimization)
2. The RESPECT User Requirements Framework

STUDIO is divided into Stages, and each Stage is broken down into Steps.
The activities undertaken in each of the Stages are shown below :

Stage Summary of activities Stage Summary of activities

Project Proposal and
Planning

Decide whether user interface design expenditure can be justified. Produce
quality plan.

User Requirements
Analysis

Similar to systems analysis, with focus on gathering information relating to
user interface design rather than general functionality .

Task Synthesis
Synthesize results of requirements analysis to produce initial user interface
design. Produce user support documentation.

Usability Engineering
Prototyping combined with impact analysis to provide an approach to iterative
development that is easy to manage.

User Interface
Development

Handover of the user interface specification to developers to ensure that
usability requirements are understood.

STUDIO uses a number of techniques such as :
• task hierarchy diagrams,
• knowledge representation grammars,
• task allocation charts, and
• state charts.

2. Ethnographic approaches

The term ethnography is applied to a range of techniques used in sociology
and anthropology and reflects a particular philosophy about how scientific enquiry
should be carried out.

In HCI this means that the professional charged with carrying out the user
interface design spends time with the users immersed in their everyday working life. interface design spends time with the users immersed in their everyday working life.
Only by spending time in this way can the real requirements of the users be
understood and documented.

Ethnographic methods also concentrates on how different users interpret their
experience of using systems subjectively, and it is this subjective interpretation that the
HCI professional must understand rather than assuming that the system can be
assessed objectively.

Ethnographic approaches use a range of techniques to capture data:
interviews, discussions, prototyping sessions and videos of users at work or using new
systems. These data are analysed from different perspectives to gain insights into the
behaviour of the users.

3. Scenario-based approaches

Scenario-based design has been developed by John Carroll and others .
It is less formal than the structured approaches but more clearly defined than most
ethnographic approaches. Scenarios are step-by-step descriptions of a user's
actions that can be used as a tool in requirements gathering, interface design and
evaluation. Use cases are similar to scenarios.

Among these three approaches, scenario-based design fits best with use
case modelling. Scenarios can be textual narrative describing a user's actions or
they can be in the form of storyboards (a series of pictures that depict those
actions), video mock-ups or even prototypes.

Scenarios can be used for requirements gathering to document the actions
that a user carries out in their current system. They can also be used to document
ideas about how the user would see themselves using the new system. This is
called envisioning the design. Alternative scenarios describing different approaches
to the design can be compared by the designers and the users.

Scenarios provide a means of communication that can be used by
professionals and end-users to communicate about the design of the users'
interaction with the system. They are simple enough that users can produce them
without the need for the kind of training that they would need to understand class
diagrams, for example. Scenarios can be used with use cases. The use cases can
provide a description of the typical interaction;

scenarios can be used to document different versions of the use case, for
example, to document what happens when a user is adding a new note but is not
authorized to work on the project they try to add it to. Use cases are concerned with
the functionality offered by the system, while scenarios focus on the interaction
between the user and the system.

Scenario based design can result in large volumes of textual information
that must be organized and managed so that it is easily accessible. There is a
document management task to be undertaken that requires a rigorous approach to
control different versions of scenarios and to cross-reference them to claims and
feedback from users.

