
19. IMPLEMENTATION

Implementation might be considered outside the scope of analysis and design.
However, in projects that use rapid application development techniques, the
distinction between different roles tends to break down . Analysts may have a
role during implementation in dealing with system testing, data and user training
also.

1. Software Implementation -
Software tools :
The implementation of a system will require a range of tools. Ensuring that these

are available in compatible versions and with sufficient licences for the number are available in compatible versions and with sufficient licences for the number
of developers who will be using them is part of the project management role.
Many of these tools have been designed and developed to make the work of
the system developer easier. The following are different types of tools to be
considered for Implementation.

CASE tools
Computer-aided software engineering tools allow the analysts and designers to

produce the diagrams that make up their models of the system. The repository
for the project should be maintained using the CASE tool to link the textual and
structured descriptions of every class, attribute, operation, state and so on to its
diagrammatic representation.

To ensure that the implementation accurately reflects the design
diagrams, it may be possible to generate code in one or more programming
languages from the documentation in the CASE tool. CASE tools exist that
generate code for languages such as Visual Basic, C++ and Java. Some support
the generation of SQL statements to create relational database tables to implement
data storage, and the generation of the CORBA IDL for a distributed system. Some
CASE tools provide support for reverse engineering from existing code to design
models. This implementation is combined with code generation, so it is known as
round-trip engineering.

Compilers, interpreters and run-time support

Irrespective of the language used in the implementation , some kind of Irrespective of the language used in the implementation , some kind of
compiler or interpret required to translate the source code into executable code.

• c++ must be compiled into object code that can be run on the target machine.

• Java is compiled into an intermediate bytecode format and requires a run-time
program to enable it to execute. Fo this run-time program is provided in the web
browser, otherwise it is provided by the program called simply java or java.exe.

• C# can be compiled into bytecode in Intermediate Language (MSIL) format for
.NET applications.

Visual editors

Graphical user interfaces can be extremely difficult to program manually.
Since the advent of Visual Basic, visual development environments have been
produced a wide range of languages. These enable the programmer to develop a
user interface by dragging and dropping visual components onto forms and setting
the parameters that control their appearance in a properties window.

Integrated development environment

Large projects involve many files containing source code and other
information as the resource files for prompts in languages. Keeping track of all
these files and the dependencies between them, and recompiling all those that have
changed as a project is being built is a task best performed by software designed
for that purpose.

Integrated development environments (IDEs) incorporate a multi-window
editor, mechanisms for managing the files that make up a project, links to the
compiler so that code can be compiled from within the IDE and debugger to help the
programmer step through the code to find errors. An IDE may also include a visual
editor to help build the user interface and a version control system to keep track of
different versions of the software.

Configuration management

Configuration management tools keep track of the dependencies between
components and the versions of source code and resource files that are used to
produce a particular release of a software package. Each time a file is to be changed, it
must be check of a repository. When it has been changed it is checked in again as a
new version. The tool keeps track of the versions and the changes from one version to
the next. software release is built, the tool keeps track of the versions of all the files that
were used in the build. To ensure that an identical version can be rebuilt, other tools
such as compilers and linkers should also be under version control.

Class browsers Class browsers

In an object-oriented system, a browser provides a visual way of navigating the
class hierarchy of the application and the supporting classes to find their attributes and
operations.

Component managers

Component managers provide the user with the ability to search for suitable
components, to browse them and to maintain different versions of components for re-
usability purpose.

DBMS
A large-scale database management system will consist of a considerable

amount of software. If it supports a client-server mode of operation, there will be
separate client and server components . To use ODBC or JDBC will require ODBC
software installed on the client. For any database, special class libraries or Java
packages may be required on the client either during compilation or at run-time or
both.

CORBA
An ORB is required in order to use CORBA. It will include the IDL compiler

that takes interface definitions in IDL and produces the interface, stub and skeleton
files necessary to use CORBA.

Testing tools
Automated testing tools are available for some environments. What is

more likely is that programmers will develop their own tools to provide harnesses
within which to test classes and sub-systems.

Conversion tools
In most cases data for the new system will have to be transferred from an system.

Whereas once the existing system was usually a manual system, most now a days replace
an existing computerized system, and data will have to be extracted from files or a database
in the existing system and reformatted so that it can be set up the database for the new
system. Packages like Data Junction provide automated mated tools to extract data from a
wide range of systems and format it for system.

Documentation generators
In the same way that code can be generated from the diagrams and

documents in a CASE tool, it may be possible to generate technical and user
documentation. In Windows there are packages such as Documentation Studio that
can be produce files in Windows Help format. Java includes a program called
javadoc that processes Java source files and builds HTML documentation in the
style of the API documentation from special comments with embedded tags in the
source code.

Coding and documentation standards
On any project in which people collaborate to develop software, standards for

the naming of classes, attributes, operations and other elements system are essential.
Naming standards should have been agreed before the analysis began as shown
below.

 Classes are named with an initial capital letter. Words are concatenated together
when the class name is longer than one word. Capital letters within the name show
where these words have been joined together. Eg : SalesOrderProxy.

 Attributes are named with an initial lower case letter. The same approach is taken as
for classes by concatenating words together. Eg: customerOrderRef. for classes by concatenating words together. Eg: customerOrderRef.

 Operations are named in the same way as attributes. Eg: getOrderTotal()

Consistent naming standards also make it easier to trace requirements from an
through design to implementation. This is particularly important for class, attri and
operation names.

The following are the reasons for documenting code.

 Think of the next person. Someone else may be maintaining the code you written.
 Your code can be an educational tool. Good code can help others, but without
comments complicated code can be difficult to understand.
 No language is self-documenting. However good your naming conventions, you
can always provide extra help to someone reading your code.
You can automate its production means by using javadoc program generates
HTML code from your comments.

2. Component diagrams

In a large project there will be many files that make up the system. These files
will have dependencies on one another. The nature of these dependencies will depend
on the language or languages used for the development and may exist at compile-
time, at link-time or at run-time. There are also dependencies between source code
files and the executable files or bytecode files that are derived from them by
compilation. Component diagrams are one of the two types of implementation diagram
in UML. Component diagrams show these dependencies between software
components in the system. Stereotypes can be used to show dependencies that are

Two types implementation diagrams in UML Terminology are
1. Component Diagrams
2. Deployment diagrams

components in the system. Stereotypes can be used to show dependencies that are
specific to particular languages also.

A component diagram shows the allocation of classes and objects to
components in the physical design of a system. A component diagram may represent
all or part of the component architecture of a system along with dependency
relationships.

The dependency relationship indicates that one entity in a component
diagram uses the services or facilities of another.
Dependencies in the component diagram represent compilation dependencies.
The dependency relationship may also be used to show calling dependencies among
components, using dependency arrows from components to interfaces on other
components.

Different authors use component diagrams in different ways.
Fowler suggests that components correspond exactly to packages of the system.

Muller suggests that packages contain components as well as other packages.
Strictly in UML packages should be used for model management: for organizing
models into convenient parts that contain types of diagram or sub-systems.
Here We have the following distinction between them.

• Components in a component diagram should be the physical components of a
system.

• During analysis and the early stages of design, package diagrams can be used to
show the logical grouping of class diagrams or of models that use other kinds of
diagrams into packages relating to sub-systems.

• During implementation, package diagrams can be used to show the grouping of
physical components into sub-systems .

• component diagrams can also be combined with deployment diagrams to show the
physical location of components of the system. The classes in one logical package
may be distributed across physical locations in a physical system, and the
component diagram and deployment diagram can be used to show this.

If component diagrams are used , it is better to keep separate sets of diagrams to
show compile-time and run-time dependencies. However, this is likely to result in a
large number of diagrams. Component diagrams show the components as types. If
you wish to show instances of components you can use a deployment diagram.

The following figure shows a component diagram that represents the
dependency of a C++ source code file on the associated header file, the dependency
of the object file on both and the dependency of an executable on the object file.
Stereotypes can be used to show the types of different components.

An alternative representation of part of the diagram above is to use the UML
interface notation to show the specification of a class (the header file in C++) as
an interface and the body as the component, which is shown below.

This notation can be used in Java to show the dependency of classes on the
interfaces of other classes. This is particularly appropriate for distributed systems interfaces of other classes. This is particularly appropriate for distributed systems
using CORBA in which applications running on a client are dependent on the
interfaces of classes that are actually implemented on other machines on the
network. Component diagrams need not be used at this low level, but can be used to
show dependencies between large-scale components within a system as shown
below.

In Java, component diagrams can be used to show the dependency of
classes on packages that contain the classes that they import also. This is particularly
important in a language such as Java where the availability of packages of classes at
run-time is critical to the running of a program. Active objects, typically processes
running on a separate thread, can be shown in a component diagram. An example of
this is shown below.

: PrintManager

3. Deployment diagrams :

Two types implementation diagrams in UML Terminology are

1. Component Diagrams

2. Deployment diagrams

The second type of implementation diagram provided by UML is the
deployment diagram. Deployment diagrams are used to show the configuration of
run-time processing elements and the software components and processes that are
located on them.

Deployment diagrams are made up of nodes and communication
associations. Nodes are typically used to show computers and the communication
associations show the network and protocols that are used to communicate between
nodes. Nodes can be used to show other processing resources such as people or
mechanical resources.

Nodes are drawn as 3D views of cubes or rectangular prisms, and the
following figure shows a simplest deployment diagram where the nodes connected
by communication associations .by communication associations .

Deployment diagrams can show either types of machine or particular instances as
in the above figure swift is the name of a PC.

Swift:PC Aardvark:DECAlpha

Deployment diagrams can be shown with components and active objects within the
nodes to indicate their location in the run-time environment also. The following figure
shows the location of the Sales database on the server and some components on
client PCs.

Deployment diagrams show the physical architecture of the system. If all the
components of a system in deployment diagrams are represented within the
component then they are likely to become very large or difficult to read. They can
serve the purpose of communicating information about the location of key
components to other members of the team or to users. Generally , most of the
computer professionals will have to draw an informal diagram like this at some time
in their working lives to show where different parts of a system are to be located.

If purpose of component and deployment diagrams is to illustrate principles
about the way that the new system will be structured, then they are fine as diagramming
technique. However, if the aim of drawing implementation diagrams is provide a
complete specification of the dependencies between components at compile time and
run-time and the location of all software components in the implementation system.

Having implemented a system in Java that uses class files, classes from a
visual editor, JDBC drivers, CORBA and ObjectStore Persistent Storage Engine on
PCs, and a Oracle on a workstation, we know that keeping track of all these
dependencies and documenting which components have to be on which machines is not
a trivial task. For most systems, this information may be easier to maintain in a tabular
fomat and a spreadsheet may be the best way of doing this. fomat and a spreadsheet may be the best way of doing this.

Component diagrams can be replaced by a table that shows a list of all the
software components down the rows and the same list across the top of the columns. It
may be best to keep up to three tables for compile-time, link-time and run-time
dependencies. For each case where a component is dependent on another, place a
mark where the row of the dependent component intersects with the column of the
component on which it is dependent.

A simple example of this way of representation in the form of tabular format
separately for each is shown below.

Campaign Database – Compile Time dependencies

JDBC

Sun.jdbc.*

Campaign.

java

Campaign.
broker.java

Campaign.proxy.

java

JDBC

Sun.jdbc.*

Campaign.

java

Campaign.
broker.java

broker.java

Campaign.
proxy.java

In the same way, deployment diagrams can be replaced by a table that
lists components down the rows and either types of machines or particular
instances across the top of the columns. A mark is entered in the row-column
intersection for every component that has to be on a particular machine or type of
machine. If the exact location of components in a directory structure is important,
then that location can be entered into the table.

This is shown in the following figure. Later this will form the basis of the
information required for installing software onto users machines for testing and
evntual deployment.

Campaign Databse – Run – time locations

Client Pc Database Server

JDBC.sun.jdbc.* C:\jdbc

Campaign.class C: \Agate\campaign

CampaignBroker.class C: \Agate\campaign

CampaignProxy.class C: \Agate\campaign

SQL * Net
OCI Listener

4. SOFTWARE TESTING

Who carries out the testing?
One view of testing is that it is too important to be left to the programmers

who have developed the software for the system. Here important fact is testing is
carried out by someone whose assessment of the software will be objective and
impartial. It is often difficult for programmers to see the faults in the program code
that they have written. An alternative is provided by Extreme Programming (XP).

XP is an approach to rapid application development in which programmers
are expected to write test harnesses for their programs before they write any code.
Every piece of code can then be tested against its expected behaviour, and if a
change is made can easily be retested. change is made can easily be retested.

The analysts who carried out the initial requirements analysis will be
involved in testing the system as it is developed. The analysts will have an
understanding of the business requirements for the system and will be able to
measure the performance of the system against functional and non-functional
requirements.

The systems analysts will use their knowledge of the system to draw up a
test .This will specify what is to be tested, how it is to be tested, the criteria by which
it is possible to decide whether a particular test has been passed or failed, and the
order in which tests are to take place. Based on their knowledge of the requirements,
the analysts will also draw up sets of test data values that are to be used.

The other key players in the process of testing new software are the
eventual users of the system or their representatives. Users may be involved in
testing the system against its specification, and will almost certainly take part in
final user acceptance tests before the system is signed off and accepted by the
clients. If a use-case-driven approach to testing is used, the use cases are used to
provide scenarios to form the basis of test scripts. Testers should also watch out for
unexpected results.

What is tested?
In testing any component of the system, find out whether its requirements

have been met or not. One kind of testing needs to answer the following questions. have been met or not. One kind of testing needs to answer the following questions.

 Does it do what it's meant to do?
 Does it do it as fast as it's meant to do it?

This type of testing for functional specifications of the system known as
black box testing because the software is treated as a black box. Test put into it and
it produces some output, but the testing does not investigate how processing is
carried out. Black box testing tests the quality of performance of software. It is also
necessary to check how well the software has been designed internally.

The second type of testing known as white box testing in which we need answer
for the following question.

Is it not just a solution to the problem, but a good solution?

because it tests the internal workings of the software whether the software
works as specified. White box testing tests the quality construction of the
software. In a project where reusable components are used, may not be possible
to apply white box testing to these components, as they may provided as
compiled object code.

Ideally, testers will use both white box and black box testing methods together
to ensure: to ensure:

 completeness (black box and white box),
 correctness (black box and white box),
 reliability (white box), and
 maintainability (white box).

The aim of any kind of testing is always to try to get the software to fail -find
errors- rather than to confirm that the software is correct. For this reason the
test data should be designed to test the software at its limits, not merely to
show that it copes acceptably with routine data.

Testing can take place at as many as five levels:

1. Unit Testing

2. Integration testing

3. Sub-system testing

4. System testing

5. Acceptance Testing
In an object-oriented system, the units are likely to be individual classes. Testing
of classes should include an initial desk check, in which the tester manually
walks the source code of the class before compilation. The class should then be
compiled, and the compilation should be clean with no errors or warnings. To compiled, and the compilation should be clean with no errors or warnings. To
test the running of a class the tester will require some kind of test program that
will create one or more instances of a class, populate them with data and invoke
both instance methods and class methods. If pre-conditions and post-conditions
have been specified for operations, then the methods that have been
implemented will be tested to ensure that they comply with the pre-conditions
and that the post-conditions are met when they have completed. State chart
diagrams can be used to check that classes are conforming to the behaviour in
the specification or not.
Unit testing merges into integration testing when groups of classes are tested
together. The obvious test unit for this purpose is the use case only. The
interaction between classes can be tested against the specification of the
sequence diagrams and collaboration diagrams.

Testing is generally place at three levels.
LEVEL - I
 Tests individual modules (e.g. classes).
 Then tests whole programs (e.g. use cases).
 Then tests whole suites of programs (e.g. Agate system).
LEVEL - II
 Also known as Alpha testing or verification.
 Executes programs in a simulated environment.
 Particularly tests for all the inputs

 negative values when positive ones are expected (and vice
versa),

LEVEL – III
 Also known as Beta testing or validation .
 Tests programs in live user environment:

versa),
 out of range or close to range limits, or
 invalid combinations.

 for response and execution times,
 with large volumes of data,
 for recovery from error or failure.

A final stage of testing is user acceptance testing during which the
system is evaluated by the users against the original requirements before the
client signs the project off.

Test documentation
Thorough testing requires careful documentation of what is planned and

what is achieved. This includes the expected outcomes for each test, the actual
outcomes, and for any test that is failed, details of the retesting.

the following figure shows part of a test plan for the Agate case study. It
shows details of each test and its expected outcomes. The results of the actual tests
will be documented in a separate, but similar format, with columns to show the actual
result of each instance of each test and the date when each test was passed, and to
document problems. Many organizations have standard forms for these documents
or may use spreadsheets or databases to keep this information.

Test no. Test description Test data Expected result Test no. Test description Test data Expected result

234 Create a new campaign Campaign Estimated Cost
is set to null

235 Add Advert 1 to
Campaign.

Advert
Estimated Cost
= $500.00

Campaign Estimated Cost
is set to $500.00

5. Data Conversion

Data from existing systems will have to be entered into a new system
when it is introduced. The organization may have a mixture of existing manual and
computerized systems that will be replaced by the new system. The data from these
systems must be collated and converted into the necessary format for the new
system. The timing of this will depend on the implementation strategy that is used,
but it is likely to be a costly task, involving the use of staff time, the employment of
temporary staff or the use of software to convert data from existing computer
systems. These costs should have been identified in any cost benefit analysis that
was carried out at the inception of the project.

If data is being collected from existing manual systems, it may be
necessary to gather it from different sources. Data may be stored in different files,
on index cards, in published documents, such as catalogues, or in other paper-
based systems. If this data is going to be entered manually into the new system, by
users keying it in, then the designers should draw up paper forms that can be used
to collate the information so that it is all in one place when it is keyed in. Some data
will only ever be entered when the system is started up, for example codes that are
used in the system and will not be altered. Special data entry windows will be
required for this kind of one-off activity.

Data from existing computer systems will have to be extracted from
existing files and databases and reformatted to be usable with the new system.
This provides an opportunity to clean up the data: removing out-of-date records
and arranging orderly the values that are stored. The work of converting the data
may be done by using special programs written by the developers of the system,

The tasks involved in data conversion are given as follows.

 Creating and validating the new files, tables or database.

 Checking for and correcting any format errors.

 Preparing the existing data for conversion:

 Importing or inputting the data.

 Verifying the data after it has been imported or input.

verifying the existing data for correctness,

collating data in special forms for input,

obtaining specially written programs to convert and enter the data.

All the converted data may have to be ready for entry into the new system to meet
a tight deadline, or it may be possible to enter it over a period of time.

6. User Documentation and training
User manuals :

While preparing the technical documentation for the system, analysts will be
involved in producing manuals for end-users. The technical documentation will be
required by the system manager and other staff responsible for running the system, and
by staff who have to maintain the system.

Ordinary users of the system, who will be using it to carry out their daily work
tasks, require a different kind of documentation. Users will require two kinds of manuals.

During training they will need training materials that are organized around the
tasks that they have to carry out with the new system. These may be in the form of self-
study tutorials that users can work through independently of any formal training that is
provided.

The users will also need a reference manual that they can refer to while they
are using the system. The reference manual should be a complete description of the
system in non-technical language. Many software companies assigns technical authors
to write manuals in language that users can understand.

The manual should be organized in a easy way for usage. This involves the author
understanding how the user will carry out their tasks and the kind of problem that they will face. The
reference manual may be replicated in the on-line help so that the users can refer to it while they
are using the system. However, it should also be available as a paper manual that the users can
refer to if there is a problem with the system,

User training

Temporary staff and existing staff will have to be trained in the tasks that
they will carry out on the new system. Analysts are also to be involved in the design
of the training program, the development of training materials, the planning of the
training sessions and the delivery of the training itself.

Training programs should be designed with clear learning objectives for the
trainees. They will be using the system, and it is important that the training is
practical and geared to the tasks that they will be performing. If it is too theoretical
or technical, they will not find it useful.

Training should be delivered 'just in time' -when the users need it-as they
will forget much of what they are told within a short space of time, so training
delivered a few weeks before it is required is likely to be wasted. On-line computer-
based training using video and audio materials that users can refer to when they
need it is likely to be of most use. If formal training sessions are used, then trainees
should be given learning tasks to take away and carry out in their workplace. This
implies that they will be allocated adequate time for training. Staff will not get the
best out of the system and are likely to become frustrated if they do not understand
how to work the system. It is often worth following up after users have started using
a new system to check that they are using it correctly.

7. Implementation Strategies :

There are four main strategies for switching over to the new system:
1. Direct changeover;
2. Parallel running;
3. Phased changeover;
4. Pilot project.

The following figure shows three of these changeover strategies in diagram
form. Each of them has its advantages and disadvantages.

Old system

New System

Direct changeover :

New System

Old system

New System

New system – Phase I

New system - Phase II
New system - Phase III

Parallel running :

Phased changeover :

Direct changeover means that on an agreed date users stop using the old system
and start using the new system. Direct changeover is usually timed to happen over a
week-end to allow some time for data conversion and implementation of the new
system. Direct changeover is suitable for small-scale systems and other systems
where there is a low risk of failure such as the implementation of established
package software. The advantages and disadvantages of this approach are:

+ the new system will bring immediate business benefits to the organization, so
should start paying for itself straightaway;

+ it forces users to start working with the new system, so they will not be able to
undermine it by using the old system; undermine it by using the old system;

+ it is simple to plan;

- there is no fallback if problems occur with the new system;

- contingency plans are required to cope with unexpected problems;

- the plan must work without difficulties for it to be a success.

Parallel running allows the existing system to continue to run alongside the new
system. Parallel running should be used in situations where there is a high level of
risk associated with the project and the system is central to the business operations
of the organization.

The advantages and disadvantages of this approach are:

+ there is a fallback if there are problems with the new system;

+ the outputs of the old and new systems can be compared-so testing can continue;

- there is a high cost as the client must pay for two systems during the overlap
period, and this includes the staffing necessary to maintain information in the old
system as well as the new;

-there is a cost associated with comparing the outputs of the two systems;

- users may not be committed to the new system as it is easier to stick with the
familiar system.

In a phased changeover, the system is introduced in stages. The nature of the
stages depends on the sub-systems within the software, but introduction into one
department at a time may be appropriate. Phased changeover is suitable for large
systems in which the sub-systems are not heavily dependent on one another.

The advantages and disadvantages are:

+ attention can be paid to each individual sub-system as it is introduced;

+ if the right sub-systems can be chosen for the first stages then a fast return on
invest-ment can be obtained from those sub-systems;

+ thorough testing of each stage can be carried out as it is introduced;

- disaffection and rumour can spread through the organization ahead of the imple-
mentation if there are problems with the early phases;

-there can be a long wait before the business benefits of later stages are achieved.

8. Review and Maintenance
The work of analysts, designers and programmers will continue after a

system has been implemented also. There is a continuing requirement for staff to
work on the new system.

First, it is important that the organization reviews both the 'finished' product
and the process which was undertaken to achieve it. This is just for to check that the
product meets requirements. However, there is a growing recognition of the need for
organizations to learn from experience and to record and manage the organizational
knowledge which results from this learning. If there were any problems during the
lifetime of the project, then these should be reviewed and conclusions drawn about
how they might be avoided in the future. The amount of time spent on different tasks
during the project can be used as the basis for metrics to estimate the amount of time during the project can be used as the basis for metrics to estimate the amount of time
that will be required for similar tasks in future projects.

Second, it is unlikely that the system will be working perfectly according to
the users' requirements, and further work will have to be done.

Third, in an object-oriented project, the design should be reviewed to identify
candidate components for future reuse.

The review process and evaluation report :
The review process will normally be carried out by the systems analysts who

have been involved in the project from the start and outside consultants in the process
also. They will normally be supported by representatives of users and user
management. The various stakeholders who have invested time, money and
commitment in the project will all have an interest in the content of the evaluation report.
The report can be very detailed or can provide an overview evaluation-like everything
else in the project, there will be a cost associated with producing it.

The report's authors should consider the following areas.

Cost benefit analysis. The evaluation should refer back to criteria that were set for the
project at its inception. It may not be possible to determine whether all the benefits project at its inception. It may not be possible to determine whether all the benefits
projected in the cost benefit analysis have been achieved, but most of the costs of
development, installation, data conversion and training will have been incurred and can
be compared with the projections.

Functional requirements. It is important to check that the functional requirements of
the system have been met. Clearly, this is something that should have been taking place
throughout the lifetime of the project, but a summary can now be produced. Any actions
that were taken to reduce the functional requirements, perhaps to keep the project within
budget or on schedule, should be documented for future action under the heading of
maintenance. If large areas of functionality were removed to bring the project in on
schedule or within budget, a new project should be considered.

Non-functional requirements. The system should be reviewed to ensure that it meets
the targets for non-functional requirements that were documented during the
requirements analysis stage.

User satisfaction. Both quantitative and qualitative evaluations of the users'
satis-faction with the new system can be undertaken, using questionnaires or interviews
or both.

Problems and issues. This is an important part of the evaluation process. Problems
that occurred during the project should be recorded. These problems may have been
technical or political, and it is important to handle the political issues with tact.

Positive experiences. It is all too easy to focus on the negative aspects of a completed
project. It is worth recording what parts of the project went well and to give credit to
those responsible.

Quantitative data for future planning. The evaluation report provides a place in which
to record information about the amount of time spent on different tasks in the project,
and this information can be used as the basis for drawing up future project plans. The
quantitative data should be viewed in the light of the problems and issues that arose
during the project, as the amount of time spent on a difficult task that was being tackled
for the first time will not necessarily be an accurate predictor of how much time will be
required for the same task in the future.

Candidate components for reuse. If these have not already been identified during
the project itself, then they should be identified at this stage. There will be different
issues to be addressed, depending on whether the project has been carried out by
in-house development staff or external consultants.

For in-house projects, the reuse of software components should be viewed
as a process of recouping some of the investment made and being able to apply those
reusable elements of the system in future projects.

For projects undertaken by external consultants, it may highlight legal issues
about who owns the finished software that should have been addressed in the
contract at the start of the project.

Future developments. Any requirements for enhancements to the system or for bugs
to be fixed should be documented. If possible, a cost should be associated with each
item. Technical innovations that are likely to become mature technologies in the near
future and that could be incorporated into the system in an upgrade should also be
identified.

Actions. The report should include a summary list of any actions that need to be
undertaken as a result of carrying out the review process, with an indication of who is
responsible for carrying out each such action and proposed timescales.

Maintenance Activities :

Very few systems are completely finished at the time that they are
delivered and implemented, and there is a continuing role for staff in ensuring that
the system meets the requirements. Next maintenance of the system includes
providing initial and on-going training, particularly for new staff ; improving
documentation; solving simple problems; implementing simple reports that can be
achieved using SQL or OQL without the need for changes to the system software
and documenting bugs that are reported; and recording requests for enhancements
that will be dealt with by maintenance staff.

Maintenance involves more significant changes to a system once it is up Maintenance involves more significant changes to a system once it is up
and running. The following are the reasons for the maintenance :

• There will almost certainly be bugs in the software that will require fixing. The use
of object-oriented encapsulation should mean that it is easier to fix bugs without
creating knock-on problems in the rest of the system. It is sometimes suggested
that – bug fixing involves spending as much time fixing bugs that were introduced
by the previous round of maintenance as it does in fixing bugs in the original
system.
• In an iterative life cycle, parts of the system may be in use while further
development undertaken. Subsequent iterations may involve maintaining what has
already developed

• users request enhancements to systems virtually from day one after
implementation. some of these will be relatively simple, such as additional reports,
and may be dealt with by support staff, while others will involve significant changes to
the software and will require the involvement of a maintenance team.
• In some cases, changes in the way that the business operates or in its environment,
for example new legal representative for the system, will result in the need for
changes to the system.
• Similarly, changes in the technology that is available to implement a system may
result in the need for changes in that system.
• Disasters such as fires that result in catastrophic system failure or loss of data may
result in the need for maintenance, staff to be involved in restoring the system from
data back-ups. Procedures for handling disastrous system failure should be put in data back-ups. Procedures for handling disastrous system failure should be put in
place before disasters take place.

In each of these cases, it is necessary to document the changes that are required. In
the same way as it is necessary to have a system in place during a project for
handling users' requests for changes to the requirements (a change control system), it
is necessary - to have a system for documenting requests for changes and the
response of the maintenance team.

This should include the following elements.

Bug reporting database. Bugs should be reported and stored in a database. The
screen forms should encourage users to describe the bug in as much detail as possible.
In particular, it is necessary to document the circumstances in which the bug occurs so
that the maintenance team can try to replicate it in order to work out the cause.

Requests for enhancements. These should describe the new requirement in similar
amount of detail. Users should rate enhancements on a scale of priorities that the
maintenance team can decide how important they are.
Feedback to users. There should be a mechanism for the maintenance team to feed
back to users on bug reports and requests for enhancements. Assuming that bugs the
agreed functionality of the system, users will expect them to be fixed as part of original
contract or under an agreed maintenance contract. The maintenance team should
provide an indication of how soon each bug will be fixed.

Depending on the contractual situation, enhancements may be carried out
under a maintenance contract or they may be subject to some kind of costing procedure.
Significant enhancements may cost large amounts of money to implement. They will
require the same kind of assessment as the original requirements. They should not be
left to maintenance programmers to implement as they see fit, but should involve
analysts and designers to ensure that the changes fit into the existing system and do not
have repercussions on performance or result in changes to sub-systems that affect
others. This process itself may incur significant costs just in order to work out how much
an enhancement will cost to implement.

Implementation plans. The maintenance team will decide how best to implement
changes to the system, and this should be carried out in a planned way. For example,
significant additions to a class that affect what persistent data is stored in the
database will require changes to the database structure, and may also require all
existing instances of that class to be processed in order to put a value into the new
attribute. This will probably have to take place when the system is not being used, for
example over a weekend.

Technical and user documentation. Changes to a system must be documented in
exactly the same way as the original system. Diagrams and repository entries must
be updated to reflect the changes to the system. If this is not done, then there will be
a growing divergence between the system and its technical documentation; this will
make all future changes more difficult, as the documentation that maintenance
analysts consult will not describe the actual system. Clearly, user documentation,
training and help manuals as well as on-line help must all be updated.

In large organizations with many systems, staff in the information systems
department may spend more time on maintenance of existing systems than they do
on development of new systems.

There is a growing movement for organizations to out source their
maintenance. This means handing over the responsibility for maintenance of a
system to an external software development company under a contractual agreement
that may also involve the provision of support. Some companies now specialize
entirely in maintaining other people's software.

20. Reusable Components
In the system life cycle, implementation is followed by maintenance, when

the new system has any remaining bugs removed and enhancements made to it.
Using object-oriented technology does not make the problems of removing bugs and
enhancing systems go away, but it does add a possible further stage to the life cycle -
the reuse stage, here we need to consider how object-oriented software can be
reused.

1. Why Re-Use?
Reusability is one of the reasons for adopting object-oriented development

techniques and programming languages, for this inheritance and composition are
two techniques that facilitate the develop reusable components, finally reusability as
one characteristics of a good object-oriented design.

Reusable software has been one objectives of developers . Using top-down
functional decomposition of designs in languages such as Fortran or C, the
development of reusable libraries of functions has made it possible for programmers
to save time and effort by reusing others work. The growth of Visual Basic as a
programming language was aided by the ability of controls that could be bought off
the shelf and incorporated into applications to provide functionality that would be
difficult for the less experienced programmer to develop reusable code.

The arguments for reuse are partly economic and partly concerned with quality.

• If some of the requirements of a project can be met by models or software
components that have been developed on a previous project or are bought in from
an outside supplier, then the time and money spent producing those models or
code is saved. Although the saving will be partly offset by the cost of managing a
catalogue of reusable models or code or of paying to buy them from elsewhere.

• If a developer can reuse a design or a component that has been tested and
proved work in another application, then there is a saving in the time spent to test
quality assure the component.

Developers of object-oriented systems are often end-users of reusable
components, when they use packages, libraries, classes, or controls in their
chosen development environment. However, object-oriented systems have not
achieved the level of reuse that was expected of them in terms of generating
reusable components that can applied again within the same organization. There
are a number of reasons for this . some are technical and some are concerned
with organizational culture.

1. Inappropriate choice of projects for reuse. Not all organizations or projects
within those organizations are necessarily suitable to take advantage of or act as
to sources of reusable components.

2. Planning for reuse too late. If reuse is appropriate, it is something that needs to be
planned for even before a project starts, not an after project starts. By the time a
project has been completed, it is likely that anything that might have been reusable
will have been designed in such a way that it cannot easily be extracted from the rest
of the system. To achieve reuse, the organization needs to be structured to support
it, with the people and tools in place to make it possible.

3. level of coupling between different classes in an object-oriented design. Many
people have thought of classes as the unit of reuse in object-oriented developments.
However, when we come to design classes for different systems, it may be possible
to identify similar classes that could be developed in a way that makes them of use in
more than one system, but more often than not, the implementations of these
classes will include attributes and associations that tie them into other classes in the classes will include attributes and associations that tie them into other classes in the
particular application of which they are a part.

4. lack of standards for reusable components. This has changed recently with
developments in the technology of repositories in which to store components and the
introduction of standards such as the Object Management Group's CORBA version
2.0 and the W3C's SOAP (Simple Object Access Protocol).

1.Choice of Project
Not all projects are necessarily suitable for the development of reusable

components. The two main factors that influence this are the nature of the business
within which the software development is taking place and the maturity of the
organization's object-oriented development.

Jacobson et al. identified the following four kinds of software business, which
are suitable candidates for developing reusable components.

• Organizations where creating an RSEB (Re-use Driven Software engineering
Business) improves the business processes within the organization: large
organizations with a considerable information systems infrastructure and a portfolio of
projects to support business activities.

• Organizations producing hardware products that contain embedded software

• Consultancy companies and software houses that develop software for external
clients that have outsourced their information systems development.

• Developers of software products, such as Microsoft, where reusable components
can be applied across a large product range and where end-users can also benefit
from the interoperability of software through mechanisms such as DCOM (Distributed
Component Object Model).

If, an outside consultancy company is doing the development for both Agate and
FoodCo, then there are a number of areas where reuse may be applicable. A software
company looking at the two systems would identify areas such as managing
information about staff that are common to both.

2 Organizational structure
Jacobson et al. based on experience at Hewlett-Packard, describe organizations

as typically going through six stages of development of a reuse culture. At each stage
some benefit is to be gained, but it is unlikely that an organization can leap from a
situation in which there is no reuse of design models or software taking place to one in
which there is a complete organizational culture of reuse and the structures and the
tools are in place to support the consistent reuse of components in a way that brings
the kind of business benefits from re-usability. the kind of business benefits from re-usability.

The six stages are as follows :
1. None. No code reuse takes place; everything is developed from scratch.
2. Informal code reuse. Developers trust each other enough to begin to reuse each

other's code in order to save time on development.
3.Black-box code reuse. Particular pieces of code are engineered for reuse, and all

developers are encouraged or required to use them to ensure a consistent approach
and reduce maintenance costs.

4.Managed work product reuse. An organizational structure is developed to manage
reusable code, to maintain versions, to document functionality and to train developers.

5.Architected reuse. In order to ensure that components work together, a common
architecture is designed and applied to all development processes.

6. Domain-specific reuse-driven organization. The organization's software
development is geared to the production of reusable components for the business domain
and the culture and structure of the organization supports this approach.

To gain the benefits of an RSEB requires an incremental process of change
within the organization, involving technical experts to argue the technical case and
develop the software architecture, management experts who believe in the business
benefit and will provide the support and investment to allow the change to take place, and
the development of support structures within the organization. Among these, the first is
the most critical: to achieve effective reuse, the elements of the software architecture
must be common across different systems.

One of the most significant requirements for support structures is that if
developers are to use reusable components in their code they need some way of finding
out what components are available and what their specifications are. This requires
software tools to manage a repository of components and staff to maintain the
components in the repository and to document them.

Allen and Frost (1998) place a repository at the centre of their model of the
development process for reusable components. The following figure shows this
with the two complementary processes: sowing reusable components during
development and harvesting reusable components for reuse in other projects.

COMPONENT

USER SERVICES

SOLUTION PROCESSHARVEST

REPOSITORY

USER SERVICES

MANAGMENT

BUSINESS
SERVICES

DATA
SERVICES

COMPONENT PROCESS
SOW

The SELECT Perspective service-based process

To develop reusable components while achieving the development of a system to meet
users' needs, the Perspective approach breaks the development process into two parts:

1.The solution process focuses on specific business needs and delivering services to
meet the users' requirements. Its products have immediately definable business value.
During the solution process, developers will draw on the component process in their
search for reusable components that can be applied to the project.
2.The component process focuses on developing reusable components in packages that
group together families of classes to deliver generic business services. During the
component process, the developers produce components that can be reused in the
solution process. The component process also searches out opportunities to reuse
services from existing legacy systems and legacy databases and from other packages of
components.

Allen and Frost used, the analogy of sowing and harvesting reusable services:
the component process sows reuse and the solution process harvests services.

Software support is needed for effective component reuse to take place. This
support takes the form of repository-based component management software.
Components are placed in the repository as a means of publishing them and making
them available to other users. The repository is made up of catalogues and the
catalogues contain details of components, their specifications and their interfaces.
Component management software tools provide the functionality for adding components
to the repository and for browsing and searching for components. Component
management software may be integrated with CASE tools to allow the storage of
analysis and design models as well as source code and executables.

3. Appropriate unit of reuse
If we consider the case studies, there is a need for a Client or customer class

both in the Agate system and in the FoodCo system. During analysis, these two
classes may look very similar, but as we move into design, the associations between
these classes and others in their system will be resolved into specific attributes.

The Agate Client class will have attributes to link it to Campaigns while the
FoodCo Customer class will be linked to SalesOrders. If the development of both
systems is being carried out by the same software company, then it requires a novel
style of project management and organization to recognize this commonality in two
different projects. If the commonality is recognized, then there is no guarantee of
successful reuse unless a suitable architecture is developed that will support the reuse
of the common elements of the Client class and allow it to be tailored to the of the common elements of the Client class and allow it to be tailored to the
requirements of the individual systems.

For example, either a Client class can be obtained from else where and
subclassed differently for each project, or a Client class can be written that is
domain-neutral and then subclassed for each different project. This inheritance-based
approach also helps to solve a problem that is common with software that is tailored to
the needs of different customers of the software house: it clearly separates those parts
of the that are common to all users from those that have been tailored to specific
needs. This helps with the installation of upgrades and prevents the changes made for
customer being implemented for all customers.

However, even if we can reuse the Client class in both applications by
extending functionality through inheritance, there are going to be other aspects of the
Client class that we may or may not want to take through into another system. These
include control classes and the business logic associated with the management of
clients related boundary classes and the mechanisms that manage the persistent
storage instances of Client in some kind of database. So we cannot reuse the class on
their own decisions. Because class is the wrong level of granularity at which to apply for
reuse. And reuse should take place at the level of components rather than classes.

According to Allen and Fost , A component is an executable unit of code that provides
physical black-box encapsulation of related services. Its services can only be accessed
through a consistent, published interface that includes an interaction standard. A
component must be capable of being connected other components (through a component must be capable of being connected other components (through a
communications interface) to form a larger group.

According to Jacobson et al. define a component as follows.
A component is a type, class or any other work product that has been

specifically engineered to be reusable. This definition is more useful, as it does not limit
the developer to only considering executable code for reuse. The intermediate products
of the development life cycle - use case model, analysis model, design model, test
model-can all be considered as candidates for reuse. There are two outcomes from this
view .
First, we may choose to reuse as components sub-systems that provide more
functionality than just a single class.
Second, we may choose to reuse intermediate products.

Jacobson et al. Suggests the following are different mechanisms for reusing
components.

 Inheritance , composition and Aggregation .
 the «include» relationship between use cases
 extensions and extension points in use cases and classes,
 parameterization, including the use of template classes,
 building applications by configuring optional components into systems and
 generation of code from models and templates.

The last two are considerable in development processes rather than
specific design structures, and make reuse easier to achieve. specific design structures, and make reuse easier to achieve.

4.Component standards

In we want to consider black-box reuse, the potential for reuse depends on
the software mechanisms for reusable components. If we want to consider white-box
reuse, then the potential depends on the mechanisms for exchanging software
models. In the second approach, UML is a candidate for exchangeable, reusable
software models, especially if CASE tool vendors implement the XMI (XML Metadata
Interchange). In the first case, we are dependent on the developers of programming
languages and software development infrastructure to deliver appropriate tools to
the development community to enable them to develop reusable components.

A number of programming languages and development environments provide
mechanisms by which developers can package software into components. The
following figure lists some of these.

A sample of languages and development environments with mechanisms for reuse

Language or
development environment

Mechanism for component reuse

Microsoft Visual Basic .vbx files-Visual Basic Extensions

.ocx files

Microsoft Windows .ole files - Object Linking and Embedding

DDE - Dynamic Data Exchange

.dll files - Dynamic Link Libraries

COM-Common Object Model

DCOM-Distributed Common Object Model

Java .jar files - Java Archive packages

JavaBeans

CORBA .idl files - Interface Definition Language

lOP - inter-ORB Protocol

The above table shows that the search for ways of promoting reuse
through some kind of modular architecture is not new in the software development
industry. Reuse has been an objective that has driven the design of programming
languages and has informed the development of programming styles. However, the
potential for developing reusable components has been increased recently by three
factors.

• The development of CORBA as a standard for interoperability of components
written in different languages and running on different platforms.

• The promotion ofJava as an object-oriented language with relatively
straightforward mechanisms for producing software in packages to deliver straightforward mechanisms for producing software in packages to deliver
different services.

• The growth of the Internet and the WWW, which has made it possible for people
to make their software components easily available to a wide marketplace of
potential reusers.

. NET, which is emerging at the time of writing, together with C#, the new language from
Microsoft, may provide an alternative to Java. In particular, it provides a mechanism based on the
SOAP Contract Language (SCL) to discover the services offered by Web Services, which describe
themselves using XML.

.NET also defines extensions to Microsoft's Portable Executable (PE) format so that
metadata is stored with the byte code in Microsoft Intermediate Language (MSIL) executables,
allowing them to provide information about the services they offer in response to requests in the
correct format. Microsoft will provide

2. Planning a strategy for Reuse

In some organizations, reuse may just be about making use of reusable
components from elsewhere, In others, reuse will be about the kind of organizational
change .

The following are two approaches to the introduction of a reuse strategy .

1 The SELECT Perspective
Allen and Frost describes the SELECT Perspective approach to the

developers of reusable components. At the level of practical techniques, this includes
guidelines for the modelling of business-oriented components and for wrapping legacy
software in component wrappers. They distinguish between reuse at the level of software in component wrappers. They distinguish between reuse at the level of
component packages, which consist of executable components grouped together, and
service packages, which are abstractions of components that group together business
services.

The focus of this approach is to identify the services that belong together and
classes that implement them. Service classes in a single package should have a high
level of internal interdependency and minimal coupling to classes in other packages .

In order to develop reusable components while achieving the development of
a system to meet users' needs, the Perspective approach breaks the development
process into two parts: 1. The solution process

2. The component process.
These two parts run in parallel and feed off each other.

Allen and Frost placed a repository at the centre of their model of the
development process for reusable components. The following figure shows this
with the two complementary processes: sowing reusable components during
development and harvesting reusable components for reuse in other projects.

COMPONENT

USER SERVICES

SOLUTION PROCESSHARVEST

REPOSITORY

USER SERVICES

MANAGMENT

BUSINESS
SERVICES

DATA
SERVICES

COMPONENT PROCESS
SOW

The SELECT Perspective service-based process

• The solution process focuses on specific business needs and delivering services to
meet the users' requirements. Its products have immediately definable business value.
During the solution process, developers will draw on the component process in their
search for reusable components that can be applied to the project.

• The component process focuses on developing reusable components in packages
that group together families of classes to deliver generic business services. During the
component process, the developers produce components that can be reused in the
solution process. The component process also searches out opportunities to reuse
services from existing legacy systems and legacy databases and from other packages
of components.

Allen and Frost used, the analogy of sowing and harvesting reusable Allen and Frost used, the analogy of sowing and harvesting reusable
services: the component process sows reuse and the solution process harvests
services.

Software support is needed for effective component reuse to take place. This
support takes the form of repository-based component management software.
Components are placed in the repository as a means of publishing them and making
them available to other users. The repository is made up of catalogues and the
catalogues contain details of components, their specifications and their interfaces.
Component management software tools provide the functionality for adding
components to the repository and for browsing and searching for components.
Component management software may be integrated with CASE tools to allow the
storage of analysis and design models as well as source code and executables.

2 . Reuse-driven Software Engineering Business
Jacobson et al. describe an approach to developing reusable software

components with RSEB, which is based on practical experience within Ericsson and
Hewlett-Packard.

Unlike Allen and Frost, who consider components as executables or as
packages of executables designed to deliver a particular service, Jacobson et al.
consider reuse in terms of any of the work products of systems development. This
means that models that are produced before the finished program code are
candidates for reuse, and that artefacts other than classes, for example use cases,
can be reused. However, the key point of this approach is that the design of systems
to make use of reusable components requires an architectural process right from the
start. And that means changing the way the business operates. start. And that means changing the way the business operates.

Jacobson et al. explains an approach to business process reengineering
that is based on OOSE and Objectory. The task of developing a reuse business is a
reengineering task that can be modelled using object-oriented business engineering,
and that leads to the development of systems to support the RSEB. And they
suggests that the end result is a business consisting of the following competence
units:

 Requirements Capture Unit,
 Design Unit, Testing Unit,
 Component Engineering Unit,
 Architecture Unit,
 Component Support Unit

These competence units are groupings of staff with particular skill sets and the
business and documents for which they are responsible.

The emphasis in RSEB is to design an architecture for systems that support
reuse from the start. This is done through three engineering processes:

1. Application Family Engineering
2. Component System Engineering
3. Application System Engineering.

Application Family Engineering (AFE) is an architectural process that captures the
requirements for a family of systems and turns them into a layered architecture ,
consisting of an application system and a supporting component system.

Component System Engineering (CSE) is the process of focusing on the requirements
for the component system and developing the use cases, analysis models and
design for reusable components to support application development.

Application System Engineering (ASE) is the process of developing the requirements
for applications and developing the use cases, analysis models and design produce
application software that makes use of the reusable component systems developed
by CSE.

The life cycle for this kind of project is an iterative one. The engineering
processes run concurrently, with the emphasis changing as the project progresses.

3. Commercially available Componentware

Most commercially available components took the form of utilities or graphical
user interface components. The best example of this is the wide variety of controls that
are available for use with Microsoft Visual Basic. Originally these were supplied as
add-ins in the form of .vbx files which could be included in the Visual Basic toolbar in the
same way as the built-in controls, or in the form of OLE (Object Linking and Embedding)
objects which allowed the functionality of other software packages such as word-
processors to be embedded in applications. With introduction of ActiveX, based on the
Microsoft COM architecture, these add-ins are now available as .ocx files.

If catalogue of a good software supplier who sells development tools is
considered, then you will find pages of ActiveX controls that be used in your considered, then you will find pages of ActiveX controls that be used in your
applications and that provide the developer with the possibility of building a wide range
of different functions into their software without having reinvent the wheel.

Examples include:
1. serial communications ,
2. computer-aided design,
3. project management including Gantt charts,
4. spreadsheets,
5. scientific charts ,
6. barcode reading and printing.

The use of standardized mechanisms to access the functionality of these controls
has meant that other software companies can also write interfaces to them.

For applications written in Java, however, there is another mechanism that can
be used; the JavaBean. JavaBeans are components written in Java that typically
combine a graphical element with the functionality to support it. Beans support the
Component-Container model in the Java Abstract Windowing Toolkit , which means that
Beans that encapsulate access to particular domain objects can be added into
applications in the same way as other visual components can be added to the
applications. Most of these add-in controls provide generic capabilities rather than
reusable components for particular types of business operations.

The San Francisco project provides distributed, server-based components for
different types of business processes. San Francisco uses a layered architecture as
shown in the following figure.

The Foundation layer provides a programming model to support distributed
transactions, and uses a set of distributed object services and utilities written entirely in
Java. It also provides an optional GUI framework written using JavaBeans. The common
Business Objects layer implements general purpose business objects together with the
facts and rules required for any business application. This includes business objects
such as company, business partner, address and calendar.
The following are Four components are provided in the Core Business Processes layer.
1.General Ledger.
2.Accounts receivable and accounts payable.
3. Warehouse Management.
4. Order Managment

Common business Objects

General
Ledger

A/R
A/P

Whouse
Mgmnt

Order
Mgmnt ….

Core Business Process

Applications
--

IBM

San

Fransisco

Application
software

Clients and services

Java Virtual Machine

Foundation

Hardware / OS

Platform

Layered architecture of the San Francisco project

These have been built using design patterns, many of which were discovered as
the project developed, and provide support for E-Commerce applications

Applicability :

Use the Facade pattern when

• you want to provide a simple interface to a complex sub-system.

• there are many dependencies between clients and the implementation classes of an
abstraction. Introduce a facade to decouple the sub-system from clients and other
sub-systems, thereby promoting sub-system independence and portability.

• you want to layer your sub-systems .

4. Façade Pattern :
If you want to provide a unified interface to a set of interfaces in a sub-system

of a system then use, Facade pattern which defines a higher-level interface that makes
the sub-system easier to use in a system.

• you want to layer your sub-systems .

The structure of the Facade pattern is shown below

Facade

5. Case Study example

A common feature of many applications is the need to control the access of
members of staff to the different programs that make up a system. A non-functional
requirement for Agate Ltd. is to restrict access of staff to the use cases that they are
permitted to use. This requirement can be summarized as follows .

Each program in the system will be represented by a use case, in the use case
diagram. One or more actors will be associated with each use case, and each actor may
be associated with more than one use case. A member of staff will fill the role of one or
more actors, and each actor will be represented by one or more members of staff. Each
actor will be given access rights to use specific use cases. A member of staff may only
use those use cases (programs) for which one of the roles they fill has been given an use those use cases (programs) for which one of the roles they fill has been given an
access right.

This non-functional requirement in the context of the main systems can be
viewed as the basis for functional requirements in a security sub-system. This sub-
system is a potential candidate for the development of a reusable component.

the following figure shows the use cases for this security sub-system.

Add a Use Case

Add An actor

Add An Access Right

Remove a use case

Application
Developer

Add a StaffMember

Add an Actor Role

Remove a StaffMember

System
Manager

Remove an Actor roleRemove a use case

Remove a user

Remove Access right
LiveSystem

Check User Authorization

Remove an Actor role

Use case diagram for security Management system

It can be modelled in a class diagram in the same way as the business
classes that meet the functional requirements of the system. The following figure
shows the initial domain class diagram for this requirement. Two association
classes ActorRole and AccessRight have been included in the class diagram, as it
was initially considering that there might be some data associated with the creation
of links between instances, for example the data that an access right was given, or
the type of an access right (Read/Write/Update).

Actor
name
password

UseCase
title
passwordnnn n

StaffMember
name
password

n

n

AccessRight

ActorRole

n

n

However, further discussion with users and analysis of the requirements
indicates that this is likely to make the sub-system more complicated than it needs
to be, so they have been removed from figure as shown below , which gives the
analysis class diagram.

Actor
name
password

addNewActor()
removeAnActor()
addStaffMemberiInActorRole()
removeStaffMemberFromActorrole()

UseCase
title
password

addNewUseCase()
removeUseCase()
addAnAccessRightForAnActor()
removeanAccessFromActor()

nn

n

n n

n

StaffMember
name
password

addNEwStaffMember()
removeStaffMember()
changePassWord()

n

nn

n

There are many design alternatives for this part of the system. The
particular design alternative that we choose will affect the detailed design of this
sub-system.

If we are the software company developing software for Agate , then some
of the alternatives are as follows .

• Do we design this sub-system with a set of boundary and control classes to
support the use cases which are in the security sub-system.

• Can we reuse the existing Staff Member class in the business domains of
Agate Ltd.? We do not really want to have to set up data about staff members in
two places.

• What happens if we do reuse the Staff Member class in the business domain
and then want to use this security sub-system to support a system that does not
have Staff Member as an entity class?

• If this security sub-system is to be implemented for all the application software
we develop, then we are going to have to make some classes in the software
(means the control classes) aware of the interface to this sub-system. How do
we extend these control classes: rewrite them, extend them or subclass them?

• How do we provide persistent data storage for this sub-system?

• What parts of this sub-system are we going to make visible to other
applications?

We might choose to design the system so that when a user starts running the
application, they are prompted for their user ID and a password. Alternatively, if they
are required to log into a network anyway, the software could obtain the user's ID from
the network operating system. Each time a user starts a new use case in the main
application, the application will need to check with the security classes whether that
user is authorized to use that particular use case.

The security requirement is not part of the business requirements of the
domain applications, and we want to reuse the security software in other applications,
so it makes sense to separate these classes from the rest of the software and put them
in a package of their own. The security classes will require their own boundary classes,
to allow the actors to carry out the use cases. These will run on client computers and
will be in a separate package within the overall security package. They will have
dependencies on other packages that provide these services. We have created two
packages for control classes, one for classes that will run on the clients and control the
boundary classes, and one for control classes that will run on the server. These control
classes will have a dependency on the core security classes.

The following figure shows these package dependencies. Here also we have
shown a package to represent a business application that will be using the services of
the security package to authenticate users. It is arguable whether this should have a
dependency on the server control classes or on some kind of client package that hides
the implementation. Whatever approach we take, we want to provide a clean interface
to the functionality of the security sub-system for developers to use.

Business Application Java AWT

Security Server Security client

Security sub-system

Package diagram showing security classes and dependencies

Security Core Classes

Security Server
Control Classes

Security Boundary
Classes

Security Client
Control Classes

It should be possible to design and implement a separate security client,
which uses the interface to the security server control classes. Also, programmers
should have a straightforward application programming interface (API) to the
authentication service - the use case Check user authorization.

One way of doing this would be to replace the control classes in the
Security Server Control Classes package with a single control class. This will make
it easier for developers to reuse the package, and application programmers only
need to know the API of this one class. However, that would lead to a single class
with no attributes and a large number of operation implementations.

An alternative approach is to leave the control classes as they are and to
create a Facade class that has the operations from the control classes within the create a Facade class that has the operations from the control classes within the
sub-system but does not contain their implementation.

This second approach is based on a design pattern, called the Facade
pattern. The Facade pattern is a combination of Four structural pattern, and is
described in the following terms.

Intent :

Provide a unified interface to a set of interfaces in a sub-system. Facade
defines a higher-level interface that makes the sub-system easier to use.

Applicability

Use the Facade pattern when

• you want to provide a simple interface to a complex sub-system.

• there are many dependencies between clients and the implementation classes
of an abstraction. Introduce a facade to decouple the sub-system from clients
and other sub-systems, thereby promoting sub-system independence and
portability.

• you want to layer your sub-systems .

The structure of the Facade pattern is shown below The structure of the Facade pattern is shown below

Facade

We could use this structure to add a single class, called SecurityManager
which provides the API to the functionality in the security package. Or we could add
two separate Facade classes, one for the management of the security sub-system
(adding staff members etc.), and one for the authentication service used by business
applications.

This is shown below in the form of class diagram. Here we added other
operations that will be required in order to support the use cases for maintaining the
information in the sub-system, for example to list all the actors for a particular use
case.

SecurityAuthorizer
<< facade >>

SecurityManager

addAccessRight()
addActor()
addActorrole()
addStaffMember()
addUsecase()
listActors()
listStaffMembers()
listUsecases()
removeAccessRight()
removeActor()
removeActorrole()

<<facade>>

The control classes in the Security Server Control Classes package can
probably be designed to be Singletons . The following figure shows the some of
control classes in this package.

AddUsecase

addUSeCase()

AddActor

addActor()

AddStaffMember

addStaffMember()

AddAccessRight

addAccessRight()

AddActorRole

addActorrole()

ListActors

listActors()

RemoveUSecase

removeUSecase()

RemoveActor

removeActor()

In order to make the security package as reusable as possible, it either
needs to make use of whatever data storage mechanisms are used in the
application with which it is supplied, or it needs to have its own mechanism for
persistent storage. The simplest approach is to provide the security package with its
own persistence mechanism. We can use an object-oriented database management
system such as Object Store PSE Pro for Java to provide a persistence mechanism
without having to worry about brokers and proxies.

The following design class diagram , we represented collection classes to provide
entry points from the control classes to the lists of Actors, UseCases and Staff
Members. . We also have added hashtables as collection classes to implement the
associations between the classes. associations between the classes.

Adding a link between a UseCase and an Actor means adding the Actor to the
UseCase. actors hashtable and adding the UseCase to the Actor. useCases
hashtable. Mainly here, the collection classes support operations that have been
added to the facade class and the control classes.

Design class diagram showing collection classes.

ActorCollection
actors : OSHashtable

addActor()
removeActor()
listActors()

Actor
name
staffMembers : OSHashTable
useCase : OSHashtable

addStaffMember()
removeStaffMember()

UseCaseCollection
useCases : OSHashTable

addUSeCase()
removeUseCase()
listUSeCases()
findUSeCaseByTitle()

Usecase
actors
t itle

addActor()
removeActor()
getTitle()
listActors()

listActors()
findActorByName()

StaffMembercollection
staffMembers : OSHashtable

addStaffMember()
removeStaffMember()
listStaffMembers()
findStaffMemberByName()

StaffMember
actors : OSHashtable
login
name
password

addActor()
removeActor()
getName()
getPassword()
setPassWord()

addUseCase()
removeUseCase()
getName()

If we use Java Remote Method Invocation (RMI) to allow client
packages to cannect to the Security package, then we also require the
dependency on the Java RMI package, which is shown in the following figure.
Here also we have , the facade packages in a separate Security Facade
package. All the operations that update the database will require a reference to
an ObjectStore database and must take place in the context of a transaction.
The dependencies on the ObjectStore Database and Transaction classes are
also reflected in the dependencies .

Security Core
Classes

Security Server
Control Classes

Java RMI

Security Facade
Security Boundary

Classes

Security Client

Business
Application

java AWT

Security Server

<< Façade >>
CheckAuthorization

<< Façade >>

Security Client

Security

Control Classes
Security Client
Control Classes

com.ODI com.ODI.util

com.ODI.imp

ObjectStore PSE Pro

<< Façade >>
SecurityMAnager

21. Managing Object-Oriented Projects

Information systems development is a complex activity that requires careful
management. The UML techniques highlights the need to plan and manage the
whole process. There are inter-dependencies between the artifacts of software
development, and their production has to be co-ordinated if the process is to be
efficient.

A large software development project may involve many developers, some with
specialized skills.

1. The specialist in requirements capture is required early in the project.

2. The expert in ODBMS implementation is needed during design and construction

3. The installation and support teams become involved to some extent during
design and construction and more fully when the information system is complete.

The different activities may require different resources whose availability
has to be planned. Here, The timing of the installation may be critical for the
success of the project. The management process is further complicated by the
fact that the sequence of some activities may be significant. For example, testing
of a system can only begin when at least some elements have been constructed,
though of course test scripts and test harnesses may be prepared early in the
project.

1. Resource Allocation and Planning

Given the complexity of project management there is a need for tools and
techniques to support the process. Yourdon identifies three particular areas of the
management of software development where modelling techniques can play a useful
role: in the estimation of money, time and people required;

 in assisting the revision of these estimates as a project continues;
 in helping to track and manage the tasks and activities carried out by a team

of software developers.

Many tools have been developed to support the management of any type of
project, not just those that are focused on software development.

1.1 Critical Path Analysis

The technique known as Critical Path Analysis (CPA) was developed for use
on major weapons development projects for the US Navy. Originally known as Project
(or Program) Evaluation and Review Technique (PERT), it is also called Network
Analysis and it has been widely used on many different types of project.

For the purposes of carrying out a critical path analysis, a project is viewed as
a set of activities or tasks, each of which has an expected duration. Completion of an
activity corresponds to a milestone or event for the project. Each milestone also
represents the start of activities that are directly dependent on the completion of the
predecessor or predecessors.

CPA is based on an analysis of sequential dependencies among the
activities, and uses the expected duration for each task to derive an estimate of the
overall duration of the project. Particularly, it identifies any inter-task dependencies
that are critical to the project duration-collectively these are known as the critical
path. The preparation of a CPA chart involves the following steps.

A. List All project activities and Milestones
A sample list for the development of the Agate Campaign Management

system is shown in the following figure. Each activity is labelled with a letter and has
a short description. The third column in the table contains a milestone number that
represents the completion of that activity.

Activity Description Milestone
Preceding
activities

Expected
duration

Staffing

A Interview users 2 - 5 2

B Prepare use cases 3 - 2 See A

C Review use cases 4 A,B 2 3

D Draft screen layouts 5 C 2 2

E Review screens 6 D 2 2

F Identify classes 7 C 2 3

G CRC analysis 8 F 4 3

H Prepare draft class diagram 9 F 5 3

I Review class diagram 10 G,H 4 4

B. Determine the dependencies among the activities

Some activities cannot start until another has been completed. The
preceding activities are listed in column 4 of the previous figure. For example, the
activity Review use cases must be completed before the activity Identify classes can
begin.
C. Estimate the duration of each activity

There are several different approaches for estimating the duration of each
activity, due to the uncertainty involved in estimating task duration. One that is used
widely is given by the following formula:

ED = MOT+ (4 X MLT) + MPT
66

where ED is the expected duration of a task, MOT is the most optimistic time, MLT is
the most likely time and MPT is the most pessimistic time for its completion. The ED is
thus a weighted average of the three estimates.

Each MOT assumes that a task will not be delayed, even by likely events
such as employee absence. The MPT assumes that most things that can go wrong
will go wrong, and that completion of the activity will be delayed to the maximum
extent. Equipment will arrive late, technical problems will occur and some staff will be
ill. The EDs are entered in the fifth column of the previous table. Note that in this
example the staff requirements for activities A and B have been treated as one since
the two activities are highly interdependent.

D. Draw the CPA chart
Two types of notations can be used for CPA charts –

1. Activity on the node diagrams representation
2. Activity on the arrow diagrams representation.

Both the types gives the same information, but they look very different from
each other. Consider the representing CPA chart by ‘Activity on the arrow' notation. In
this style each milestone is represented by a circle divided into three compartments.
One compartment is labelled with the milestone number, and the other two will hold the
earliest start time (EST) and the latest start time (LST) for all activities that begin at that
milestone. The following figure represents Activity on the arrow diagrams notation.

D11

15
7 8 18

247

EST for activity D

LST for Activity D

Activity LabelMilestone
number

Activity duration

Milestone

CPA notation

The first draft of a CPA chart shows dependencies between activities and
their expected durations, since this information is known or can be estimated before
the diagram is drawn.

The following figure is the partially completed CPA chart which represents
graphically the activity precedence's corresponding to the Agates’ previous table.

2
2

5
9 E 6

11

1
0 A

5

B
2

2

3
5 C

2

D
2

4
7 F

2

7
9

G
4

H

5

5
2

8
13

9
14 I

4 10
18

Dummy
Activity

Here, dummy activity between milestones 8 and 9 (there are others between
2 and 3 and between 6 and 10). This is due to , activities H and G both depend on
milestone 9 (the completion of activity F), and are also both predecessors to milestone
10 (where activity I begins). Since H and G may not necessarily finish at the same
time, an extra milestone is needed for one of these events. In effect, milestone 8
represents the completion of G, regardless of whether or not H has finished. A dummy
activity (with ED of 0) then needs to be introduced in order to connect milestone 8 to
milestone 9, thus preserving the sequence of dependencies.

The next step is to enter an earliest start time for each milestone. This is done
by working through the diagram from the very first milestone to the very last
(sometimes called a forward pass). It is a convention that the EST for the first
milestone is set to 0. The EST for most other milestones is calculated simply by adding
the EST of the immediately preceding activity to its duration. For example, activity C
(the immediate predecessor for D) has an EST of 5 and an ED of 2, therefore the EST
for activity D is 7. Where an activity has two or more predecessors, its EST is
determined by the predecessor that has the latest completion time. For example,
activity I is dependent upon the completion of both G and H, so its EST is set to the
later of the two calculations. In general the EST for any milestone is set to the earliest
time that all predecessor activities can be completed.

The next step requires completing the latest start time for each milestone.
The latest start time is entered by working back from the last milestone (sometimes
this is called a backward pass). The LST for the last milestone is set equal to its
EST. Each preceding LST is then calculated as follows. The LST for most milestones
equals the LST for its successor minus the ED of the intervening activity. For
example, the LST for milestone 9 is 18 - 4 = 14 (the LST for milestone 10 minus the
ED for activity I). Milestone 7 presents more of a problem as this has two successor
activities, G and H. In such cases, two calculations are performed (or more, if there
are more than two successors) and the earlier of the two answers is taken. For
example, if the LST for milestone 7 were determined purely by activity G, this would
give 14 - 4 = 10 (the LST for milestone 8 is 14). This would mean that activity G
could afford to begin as late as time 10 without delaying any other activities. But a
similar calculation for activity H gives 14 - 5 = 9. This means that if H begins later
than time 9, its completion will be delayed beyond time 14, which in turn would delay
milestones 9 and 10 and thus also activity I and the project completion. The LST for
milestone 7 is therefore set to 9. In general, the LST for a milestone is set to the
latest time that allows every activity that begins at that milestone to be completed by
the LST for its succeeding milestone.

Identify critical path
Once all LSTs have been entered onto the diagram, the slack time (or float) for

each activity can be calculated. This is the difference between an activity's EST and its
LST, and it represents the time by which that particular activity can be delayed without
affecting the overall duration of the project. The path through all milestones that have a
slack time of 0 is called the critical path. This is indicated by a double bar across activity
arrows that connect the milestones. These milestones, and their intervening activities,
are critical to the completion of the project on time. Milestones that have an EST that is
different from their LST are not critical, in the sense that they have some scheduling
flexibility. The completed diagram is shown below with critical path for the Agate Ltd.

A CPA chart is an effective tool for identifying those activities whose completion
is critical to the completion of a project on time. If any activity that is on the critical path
falls behind schedule then the project as a whole is behind schedule. However, while
critical activities naturally receive the closest scrutiny, all project activities should be
monitored. Delay even in a non-critical activity can, if it is sufficiently severe, alter the
critical path.

And here, PERT is more elaborate than CPA, using statistical measures in
addition to critical path analysis, but the terms are generally used synonymously. CPA
charts are sometimes known as activity diagrams but this name introduces confusion
with UML activity diagrams.

2. Gantt charts
The Gantt chart is a simple time-charting technique that uses horizontal bars to

represent project activities. The horizontal axis represents time and is often labelled with
dates or week numbers so that the completion of each activity can be monitored easily.
Activities are listed vertically on the left of the chart, and the length of the bar for each
activity corresponds to its ED.

A Gantt chart shows the overlap of activities clearly and this provides an
effective way of considering alternative resource allocations. The Gantt chart can be
drawn with either dashed lines or dashed boxes that show the slack time for non-critical
activities.

A Gantt chart can also be used to convert into a stacked bar graph that can be
used to show the way that the total resource allocation for a project changes over time. used to show the way that the total resource allocation for a project changes over time.
The following Figure shows a Gantt chart and a staffing bar chart for the Agate
advertising sub-system project.

The staffing chart is derived as follows. The final column of project activity table gives
a staff allocation for each activity. The Gantt chart is read vertically for each
successive time interval to calculate the total number of staff required for all project
activities combined. The result is shown as a vertical bar that indicates the total
staffing required at that time.

Activities that are not on the critical path can have their start time adjusted.
For example, activity E cannot begin until time 9 at the earliest, but it could start as
late as time 16 without affecting project completion. A project manager can adjust the
resource profile to accommodate staff availability, a process known as resource
smoothing. For example, activities E, G and H can occur concurrently. H is on the
critical path and cannot be moved, but the slack time for E allows it to begin at time 16
instead of time 9. The manager can minimize the overall resource requirement by instead of time 9. The manager can minimize the overall resource requirement by
rescheduling activity E to begin at time 14. This should be done with care, however, as
it may move an activity onto the critical path.

The following figure shows the smoothed resource profile.

The Gantt chart is a useful tool for resource monitoring. The progress of
each activity can be shown independently and compared against planned progress.
In Previous figure the Gantt chart reflects the current state of a project. Activities A,
B, C and F are complete. D has not been started and will shortly become critical. G
is on schedule but H is behind schedule. Activities D and H need to be investigated
by the project manager. Possible reasons for the delay include:

• an unexpected technical problem;
• staff absence;
• the complexity of the activity has been underestimated

When a critical path activity is behind schedule it may not be possible to regain
the lost time. A project manager then has really only two options, and ideally the choice the lost time. A project manager then has really only two options, and ideally the choice
should be discussed with the client.

1. The project deadline can be moved to accommodate the delay.
2. The scope of the project or the quality of the product can be reduced to

permit completion on time.

The last approach requires an analysis of all uncompleted critical path activities
in order to identify what can be omitted to reduce their EDs. The resultant changes may
alter the critical path, and activities whose completion was not critical before may now
become critical. Any attempt to reduce the scope of a project requires user involvement
to ensure that only non-critical features are omitted, particularly during the first
increment.

2. Managing Iteration

•Prototyping is an iterative development activity.
•We need a criteria to control the number of iterations.
•At the end of an iteration the product, say a prototype, is evaluated against pre- defined
objectives.
•But it is difficult to determine whether the objectives of the iterative activity have been
achieved or not.
• Let us suppose that the interface for the Agate Campaign Management system is to be
developed by prototyping, with the explicit objective of producing an interface with which
the campaign staff are happy.
• Although this objective may be worth-while it is of little use for the management of the
activity.activity.
• Imagine that the users are never completely happy at the end of any iteration.
• They will continue to suggest further improvements without end.
• As the process continues, the nature of the modifications that are suggested at each
iteration will change.
• Over time the improvements will become cosmetic and ultimately peripheral to the
utility of the system.
• It would be sensible to end the iterative process before this point is reached.
A more suitable objective for the exercise might be phrased as follows:

Continue the iterations until fewer than five cosmetic changes are
requested on a single iteration.

• It is still not clear how many iterations will be needed to satisfy this criterion.

• If the project has unlimited time and an unlimited budget this may not be a problem
but this is unlikely to be the case.

• Additional criteria can be added to tighten up the objectives, such as the following.

The prototyping phase must be completed before the end of mentioned month say
October and must not exceed 50 developer-hours.

3. Dynamic Systems Development Method (DSDM) :

The Dynamic Systems Development Method (DSDM) is a management and
control framework for rapid application development (RAD). The distinction between
RAD and prototyping is sometimes unclear. A RAD approach aims to build a working
system rapidly while a prototyping approach also builds rapidly, but usually only
produces a partially complete system, typically to confirm some aspect of the
requirement. Because both approaches aim to build software quickly, similar
development environments are used and one approach to prototyping continues the
development of a prototype incrementally until it becomes a working system. In effect
this is a RAD development approach.

The traditional waterfall approach to systems development has deficiencies,
particularly the time taken to deliver a working system and the inflexibility of the
approach to requirements change. Iterative approaches to development can also be
problematic , As mentioned in the above management of iterations is sometimes difficult
to cease the iterations when they become unproductive.

Later RAD became more popular and was viewed as a way of matching
systems development to the fast changing needs of business. However, there were
until recently no commonly accepted structures for either the use or the management
of RAD.

Later in 1994 the DSDM was formed to produce an industry standard
definition of the RAD process and DSDM was subsequently defined. The DSDM
framework defines structure and controls to be used in a RAD project but does not
specify a development methodology. DSDM may be used with either an object-oriented
or a structured methodology.

DSDM takes a fundamentally different perspective on project control. Rather
than viewing requirements as fixed and attempting to match resources to the project, than viewing requirements as fixed and attempting to match resources to the project,
DSDM fixes resources for the project, fixes the time available and then sets out to
deliver only what can be achieved within these constraints.

DSDM is based upon the following nine principles.

1. Active user involvement is imperative. Many other approaches effectively restrict
user involvement to requirements acquisition at the beginning of the project and
acceptance testing at the end of the project. In DSDM users are members of the
project team and include one known as an 'Ambassador' user.

2. DSDM teams are empowered to make decisions. A team can make decisions that
refine the requirements and possibly even change them without the direct
involve-ment of higher management.

3. The focus is on frequent product delivery. A team is geared to delivering products in
an agreed time period and it selects the most appropriate approach to achieve this.
The time periods are known as timeboxes and are normally kept short (2 to 6
weeks). This helps team members to decide in advance what is feasible. Products
can include analysis and design artefacts as well as working systems.

4. The essential criterion for acceptance of a deliverable is fitness for business
purpose. DSDM is geared to delivering the essential functionality at the specified
time.

5. Iterative and incremental development is necessary to converge on an accurate
business solution. Incremental development allows user feedback to inform the
development of later increments. The delivery of partial solutions is considered
acceptable if they satisfy an immediate and urgent user need. These solutions can acceptable if they satisfy an immediate and urgent user need. These solutions can
be refined and further developed later.

6. All changes during development are reversible. If the iterative development follows
an inappropriate development path then it is necessary to return to the last point
in the development cycle that was considered appropriate. Changes are limited
within a particular increment.

7. Requirements are initially agreed at a high level. Once requirements are fixed at a
high level they provide the objectives for prototyping. The requirements can then
be investigated in detail by the DSD M teams to determine the best way to achieve
them. Normally the scope of the high level requirements is not changed
significantly.

8. Testing is integrated throughout the life cycle. Since a partially complete system may
be delivered it must be tested during development, rather than after completion.
Each software component is tested by the developers for technical compliance and
by user team members for functional appropriateness.

9. A collaborative and co-operative approach between all stakeholders is essential. The
emphasis here is on the inclusion of all stakeholders in a collaborative development
process. Stakeholders not only include team members, but others such as resource
managers and the quality assurance team.

The DSDM life cycle
The DSDM life cycle has the following phases: The DSDM life cycle has the following phases:
 feasibility study,
 business study,
 functional model iteration,
 design and build iteration,
 implementation.

The relationships between the phases are shown graphically in the
following figure, here last three are actually iterative processes.

Simplified model DSDM Life Cycle

1. The feasibility study phase determines whether the project is suitable for a DSDM
approach or not. It typically lasts only weeks, whereas the feasibility stage can last
months on a traditionally run project. The study should also answer the following
questions :

• Is the computerized information system technically possible?
• Will the benefit of the system be outweighed by its costs?
• Will the information system operate acceptably within the organization?

2. The business study phase identifies the overall scope of the project and results in
agreed high level functional and non-functional requirements. Maintainability objectives
are set at this stage and these determine the quality control activities for the remainder
of the project. There are three levels of maintainability: of the project. There are three levels of maintainability:

• maintainable from initial operation;
• not necessarily maintainable when first installed but this can be addressed later;
• short life-span system that will not be subject to maintenance.

3. The functional model iteration phase is concerned with the development of
proto-types to elicit detailed requirements. The intention of DSDM is to develop
prototypes that can ultimately be delivered as operational systems, so these must be
built to be sufficiently robust for operational use and also to satisfy any non-functional
require-ments such as performance. When completed the functional model comprises
high level analysis models and documentation together with prototypes that are
concerned with detailed functionality and usability.

During the functional model iteration the following activities are undertaken:
• the functional prototype is identified;
• a schedule is agreed;
• the functional prototype is created;
• the functional prototype is reviewed.

4. The design and build iteration phase is concerned with developing the prototypes
to the point where they can be used operationally. The distinction between the
functional model iteration and the design and build iteration is not clear-cut and both
phases can run concurrently. The activities for the design and build iteration phase
are very similar to those described above for the functional model iteration phase.

5. The implementation phase deals with the installation of the latest increment 5. The implementation phase deals with the installation of the latest increment
including user training. At this point it is important to review the extent to which the
requirements have been met. If they have been fully satisfied the project is complete.
If some non-functional requirements have yet to be addressed the project may return
to the design and build iteration phase. If some element of functionality was omitted
due to time constraints the project may return to the functional model iteration phase.
If a new functional area is identified the project may return to the business study
phase. The return flows of control are shown with dashed arrows in figure .
Implementation comprises the following iterative activities:

1. producing user guidelines and gaining user approval; 2. training users;
3. implementing the system; 4. reviewing the business requirements

4. Timeboxing
Timeboxing is an approach for fixing the resource allocation for a project or a

part of a project. It limits the time available for the refinement of requirements, design,
con-struction and implementation as appropriate.

A RAD project has a fixed completion date that defines an overall timebox
for the project. A DSDM approach to project management will then identify smaller
timeboxes within this, each with a set of prioritized objectives. Each timebox produces
one or' more deliverables that allow progress and quality to be assessed. Within a
timebox the team have three major concerns. They must first carry out any
investigation needed to determine the direction that should be taken for that part of the
project. They must then develop and refine the specified deliverables. Finally they
must consolidate their work prior to the final deadline.

It is sometimes difficult to prioritize the requirements that will be actioned It is sometimes difficult to prioritize the requirements that will be actioned
during a timebox. One way of doing this is to apply the set of rules that are known as
the MoSCoWrules (for Must ... Should ... Could ... Want).

Must have requirements are crucial. If these are omitted the system will not
operate. In DSDM the set of Must have requirements are known as the minimum
usable subset.

Should have requirements are important but if necessary the system can
operate usefully without them.

Could have requirements are less important and provide less benefit to the
user. Want to have but will not have this time around requirements can reasonably be
left for development in a later increment.

All of these requirements are important for the final system but not to the same
extent. If the full set cannot be addressed within a timebox, the MoSCoW categorization
can be used to focus the requirements in an appropriate way.

5. Extreme Programming

Extreme Programming (XP) is a novel combination of elements of best
practice in systems development. It incor-porates a highly iterative approach to
development. It has become well known in a relatively short period of time for its
use of pair programming though it encompasses various other important ideas.
Pair programming involves writing the program code in pairs and not individually.

Beck identified the following four underlying principles of XP as Beck identified the following four underlying principles of XP as
communication, simplicity, feedback and courage.

Communication. Poor communication is a significant factor in failing projects, XP
highlights the importance of good communication among developers and between
developers and users.

Simplicity. Software developers are sometimes tempted to use technology for
tech-nology's sake rather than seeking the simplest effective solution. Developers
justify complex solutions as a way of meeting possible future requirements. XP
focuses on the simplest solution for the immediate known requirements.

Feedback. Unjustified optimism is common in systems development. Developers
tend to underestimate the time required to complete any particular programming task.
This results in poor estimates of project completion, constant chasing of unrealistic
deadlines, stressed developers and poor product quality. Feedback in XP is geared to
giving the developers frequent and timely feedback from users and also in terms of
test results. Work estimates are based on the work actually completed in the previous
iteration.

Courage. The exhortation to be courageous urges the developer to throwaway code
that is not quite correct and start again rather than trying to fix the unfixable.
Essentially the developer has to leave unproductive lines of development despite
personal investment in the ideas.

Requirements capture in XP is based on user stories that describe the
requirements. These are written by the user and form the basis of project planning
and the development of test harnesses. User stories are very similar to use cases
though some proponents of XP suggest that there are key differences in granularity. A
typical user story is about three sentences long and does not include any detail of
technology. When the developers are ready to start writing the system they get
detailed descriptions of requirements face to face with the customer.

The following are the main Activities in XP

• The planning game involves quickly defining the scope of the next release from
user priorities and technical estimates. The plan is updated regularly as the
iteration progresses.

• The information system should be delivered in small releases that incrementally
build up functionality through rapid iteration.

• A unifying metaphor or high level shared story focuses the development.
• The system should be based on as simple design.
• Programmers prepare unit tests in advance of software construction and

customers define acceptance tests.customers define acceptance tests.
• The programe code should be restructured to remove duplication, simplify the

code and improve flexibility-this is known as refactoring.
• Pair programming means that code is written by two programmers using one

workstation.
• The code is owned collectively and anyone can change any code.
• The system is integrated and built frequently each day. This gives the

opportunity for regular testing and feedback.
• Normally staff should work no more than forty hours a week.
• A user should be a full-time member of the team.
• All programmers should write code according to agreed standards that

emphasize
good communication through the code.

The XP approach is best suited to projects with a relatively small number of
programmers - say no more than ten. In XP it is critical to maintain clear
communicative code and to have rapid feedback. If a project precludes either of
these then XP is not the most appropriate approach. One key feature of XP is that
the code itself is the design documentation. This runs counter to some aspects of the
approach suggested in this book. We have suggested that requirements are
effectively analyzed and suitable designs produced though the use of visual models

using UML.

6. Software Metrics

Planning and managing a software development project requires the Planning and managing a software development project requires the
estimation of the resources required for each of its constituent activities. A resource
estimate for an activity can be based upon subjective perceptions of the activity or it
can be based upon measurements of size and complexity, either of the activity itself
or of the artefact that is produced.

A software metric is a measure of some aspect of software development,
either at project level - usually its cost or its duration - or at the level of the
application - typically its size or its complexity.

Software metrics can be divided broadly into two categories:
1. process metrics that measure some aspect of the development process
2. product metrics that measure some aspect of the software product.

Examples of process metrics are

1. the project cost to date

2. the amount of time spent so far on the project.

Product metrics relate to the information system that is under development. One of the
simplest product metrics is the number of classes in an analysis class diagram.

Software metrics can also be categorized as result metrics or predictor
metrics, which are used respectively to measure outcomes and to quantify estimates.
The current cost of a project is a result metric .

A measure of class size (a crude measure might be a simple count of
attributes and operations) would be a predictor metric, so called because it can be
used as a basis for predicting the time that it will take to produce program code for that
class. Result metrics are also known as control metrics since they are used to
determine how management control should be exercised.

The term 'predictor metric' is generally applied only to a measure of some
aspect of a software product that is used to predict some other aspect of the product or
of the project progress. Predictor metrics are not used individually for estimation. The
results obtained from their application to a project may indicate, for example, that the
system will be difficult to maintain or that it may offer very low levels of reuse. Since
neither outcome is desirable, managers may attempt to change the design for the
system or the process for its development in order to improve the system.

The validity of predictor metrics is based upon three assumptions :

• there is some aspect of a software product that can be accurately
measured;

• there is a relationship between the measurable aspect and some other
relevant characteristics of the product;

• this relationship has been validated and can be expressed in a model or a
formula. The last of these assumptions suggests that a significant volume of historical

data must be collected so that an appropriate statistical analysis can validate the
relationship. In practice this is only feasible if the data collection is automated.

A number of metrics have been identified for use with structured analysis and
design approaches. For example, De Marco developed a complexity metric known as
the Bang Metric for use on structured analysis projects. Other metrics that focused on the Bang Metric for use on structured analysis projects. Other metrics that focused on
the degree of coupling and cohesion between program modules have also been
suggested for use with a structured design approach.

A number of authors have identified metrics for object-oriented systems
development , which includes the following a list of desirable features as part of a
general description of a useful metric given by De Champeaux :

• either it is elementary and focuses on a single well-defined aspect, or it is an
aggregation of elementary metrics;
• it is suitable for automated evaluation;
• gathering the metric data is not too costly;
• the metric can be measured numerically and arithmetic operations are

meaningful.

De Champeaux listed a series of quality metrics, for example, a
dependency metric that provides a measure of the stability of a system. When
applied to a package or a sub-system this measures the degree of inter-package or
inter-sub-system coupling. It is calculated by the following formula:

I = (CE) / (Ca + Ce)
where I is the instability of the system, Ca is the level of afferent coupling

(the number of classes outside the package that depend on classes within the
package), and Ce is the level of efferent coupling (the number of classes outside the
package upon which classes within the package depend).

When I is zero the package is maximally stable and has no dependencies
on classes in other packages. When I is 1 the package is maximally unstable and has on classes in other packages. When I is 1 the package is maximally unstable and has
dependencies only on classes outside itself.

7. Process Patterns
Coplien (1995) has defined a pattern language that is focused on the

development process. The pattern language comprises both organization and
process patterns. As with design patterns , Process patterns capture elements of
experience as problem - solution pairs. The process patterns address issues such as
team selection,
organizational size,
team structure,
the roles of Team members and so on.

Conway's Law discusses how the architecture of the system comes to reflect
the organizational structure or vice versa.

Mercenary Analyst is concerned with producing project documentation
successfully. This pattern suggests that it is frequently more effective to hire a technical
writer who can focus solely on the documentation.

8. Legacy systems

Legacy systems means any computerized information system that has been in
use for some time, that was built with older technologies may be using a different
development approach at different times and, most importantly, that continues to deliver
benefit to the organization. Most computerized information systems interact with other benefit to the organization. Most computerized information systems interact with other
computerized information systems. They may share data, the output from one may be
an input to another and so on. Any new information system is likely to need to interact
with older legacy systems that have not been built using the same technologies.
Redeveloping legacy systems so that they interact appropriately with new systems is
likely to be prohibitively expensive and probably involves too much risk. These legacy
systems may be critical to the operation of the organization. The problem is one of
integrating new object-oriented systems with non-object-oriented systems.

One strategy that enables the interoperation of old and new is the use of an
object wrapper . An object wrapper functions as an interface that surrounds a
non-object-oriented system so that it presents an interface suitable for use with new
object-oriented systems. Essentially the old system appears to be object-oriented. The
form of the wrapper depends on the nature of the legacy system. Where the old system
uses text or form-based screen interfaces the wrapper may involve program code that
reads data from the screen and writes data to the screen (sometimes known as screen
scrapers) using some form of virtual terminal.

When an organization embarks upon object-oriented software development
there may be an intention to migrate all existing software to the new technologies. The
cost and risk involved may constrain this but where it is feasible to migrate systems it is
important to manage the process carefully. Wrappers may be used initially to provide an important to manage the process carefully. Wrappers may be used initially to provide an
object-oriented interface to the system. Then, once the system has been wrapped, it can
be redeveloped without affecting its interface to other systems. A further variation on this
approach is to use the Facade pattern to wrap sub-systems so that they can be
migrated incrementally.

22.System Development Methodologies
1. Method and Methodology

The techniques of system development must be organized into an appropriate
developmental life cycle if they are to work together. For example, once an analyst has
constructed collaboration diagrams for the main use cases, should the next steps be to
convert these into sequence diagrams and write operation specifications, or should he or
she now concentrate on preparing a class diagram and developing inheritance and
composition structures. All of these tasks to be completed at this point,using UML
methods by the Analyst.

The method of a project is the term given to the particular way that the tasks in
that project are organized. Sometimes this is called the process of software that project are organized. Sometimes this is called the process of software
development, although process can also have a more all-embracing meaning, that
includes what the tasks are, how they are carried out and how they are organized.

The words 'method' and 'methodology' are used interchangeably by many
authors, but their meanings actually differ in a significant way. In order to plan and
organize for the next project, project managers must be able to think at a still higher
level. It is at this level that the term 'methodology' applies.

A method is a step-by-step description of the steps involved in doing a job. Since no two
projects are exactly alike, any method is specific to one project. A methodology is a set of general
principles that guide a practitioner or manager to the choice of the particular method suited to a
specific task or project. Or, to put it in familiar object-oriented terms, a methodology is a type while
a method is its instantiation on one project.

The following figure summarizes the different levels of abstraction involved.

Increase level of
abstraction

Example of application Typical product

Task
Developing a first-cut class diagram for
FoodCo.

A specific version of the
FoodCo class diagram.

Technique
Description of how to carry out a
technique, e.g. UML class modelling.

Any UML class
diagram.

Method

Specific techniques used on a particular
project (e.g. FoodCo uses cases, class
model, collaboration diagrams, etc.) that
lead to a specific product.

FoodCo's product
costing system.

Methodology
General selection and sequence of
techniques capable of producing a range
of software products.

A range of object-
oriented business
applications.

Methodology
A methodology in the domain of Information System must cover a number

of aspects of the project, which varies from one to another. A methodology can be
described as a collection of many components . Typically, each methodology has
procedures, techniques, tools and documentation aids that are intended to help the
system developer in his or her efforts to develop an information system. There is
usually also some kind of underlying philosophy that captures a particular view of
the meaning and purpose of information systems development.

Checkland , gave a more general definition that captures well the notion of
methodology as a guide to method. In his view, a methodology is a set of principles
that in any particular situation has to be reduced to a method uniquely suited to that
particular situation. particular situation.

To give some examples of these aspects:

• The UML class diagram is a technique, and so is operation specification.
• Rational Rose is a tool.
• The activity represented by 'find classes by inspecting the use case descriptions'

is an aspect of process. So is the advice that an analyst is usually the best person
to write test plans.

• The advice that 'operation specifications should not be written until the class
model is stable' is an aspect of structure, as it identifies a constraint on the
sequence in which two steps should be performed.

• Analysis and design can be viewed as distinct stages.

A package that contains enough information about each of these aspects of the
overall development process can also be named a methodology. Many attempts have
been made to capture the essence of methodology for software development, and the
resulting methodologies are almost as varied as are the projects themselves.

• The statement 'object-oriented development promotes the construction of
software which is robust and resilient to change' is an element of a systems
development philosophy.

Logical views of a system

At a very abstract level , three complementary views of a real-world system
must be understood in order to model it adequately for the purpose of conducting must be understood in order to model it adequately for the purpose of conducting
software development. These are:

• Data view, that describes the real-world system in terms of attributes and
associations that must be stored within the software;

• Process view, that describes the operations that are(or need to be) carried out on
that data;

• Temporal view, that captures the time sequence and time constraints on
individual processes, and also the possible sequences of events that may impinge
on the system.

2. Why Use a Methodology

Over many decades, IS methodologies have been developed and
introduced specifically to overcome those problems of software development
projects that were perceived to be important at the time. However, to date, no
methodology has been completely successful in fulfilling its objectives, partly
because computing is a highly dynamic field, and the nature of both projects and
their problems is constantly changing. In a changing world, it is unlikely that
yesterday's solution will ever completely solve today's problems.

Advantages of Methodologies :

• The use of a methodology helps to produce a better quality product, in terms of • The use of a methodology helps to produce a better quality product, in terms of
documentation standards, acceptability to the user, maintainability and
consistency of software.

• A methodology can help to ensure that user requirements are met completely.
• Use of a methodology helps the project manager, by giving better control of

project execution and a reduction in overall development costs.
• Methodologies promote communication between project participants, by

defining essential participants and interactions, and by giving a structure to the
whole process .

• Through the standardization of process and documentation, a methodology can
even encourage the transmission of know-how throughout an organization.

3. Different Types Of Software Development Methodologies

3.1 Structured Methodologies :
Early structured methodologies, such as those authored by DeMarco ,Gane

and Sarson , were introduced to overcome some of the problems encountered with
the Traditional Life Cycle. Their objective was to produce a 'structured' specification
of the proposed software, with all functions, data storage, and interfaces between
sub-systems clearly defined. To achieve this, it is necessary to define the techniques
to be used and the deliverables at the end of each stage, as well as the stages of the
life cycle. This all provides a more solid basis for project management, since the
development process is more visible, and progress can be measured in terms of
deliverables.

A project manager using a structured methodology might be able to apply
tests like this: ‘ If the data flow model and entity-relationship diagram have been
approved, then analysis phase is completed ‘ .

However, structured methodologies did not overcome all of the difficulties in
systems development. For example, a manager still sometimes had no sound way of
knowing whether a team was being optimistic in its progress reports or not.

And most structured methodologies focus either on functional or data
aspects of the system being modelled. For example, Yourdon's structured
methodology is primarily process-oriented, while Finkelstein structured methodology ,
is primarily data-oriented. Whichever view holds away, there is a danger of neglecting
important aspects of the other. In this way it is difficult in co-ordinating the models of
the two views.

Some structured methodologies attempted to cater for all views in a
balanced way. One leading example was SSADM (Structured Systems Analysis and
Design Method). SSADM has separate but carefully correlated models of
processes, data and temporal sequence. While SSADM has undoubtedly been very
successful, any methodology that attempts this degree of co-ordination inevitably
tends to grow large and unwieldy, partly due to the need for continual checking and
cross-referencing between the separate models.

SSADM continues to evolve to this day, and a number of changes have
been made in the most recent version, SSADM4+ , to make the methodology more
compatible with an object-oriented development approach. However, the
fundamental models created in SSADM4+ are still organized around a logical fundamental models created in SSADM4+ are still organized around a logical
separation of process and data. At heart, the methodology still appears structured,
rather than object-oriented.

3. 2 Object-oriented development Methodologies
The main difficulty of structured methodologies in general is that most

remain tied to a waterfall life cycle. This runs directly counter to the natural, iterative
style of development for object-oriented software and makes it very difficult for a
structured analysis and design approach to lead to an object-oriented
implementation. In object-oriented development, necessary methodology is iterative
cycle of development which is desirable.

Different types of OO Methodologies are :

1. OPEN methodology (Object–Oriented Process , Environment and Notation).

2. USDP Methodology which combines features of Objectory, Object Modelling
Technique (OMT) and the Booch method , which were earlier three leading object-
oriented methodologies .

1. OPEN Methodology :
OPEN is a methodology which contains different types of elements as

shown below.

Actions Process RepresentationActions Process Representation

Techniques
Life Cycle

MetaModel
Modeling
Language

Methodology

As a package, OPEN consists of a number of components as explained below.

Activities. An activity is a collection of tasks seen from a project manager's
perspective. Activities are similar to stages and phases in other methodologies.
Activities have both pre- and post-conditions, and are carried out within timeboxes.
Some examples of activities are: project initiation, requirements engineering,
analysis and model refinement, project planning and build.

Tasks. Within each activity, one or more tasks are carried out. These primarily
represent the developer's view of the project, although management tasks are also
included in a very comprehensive list ,Some examples of tasks are: (draw) rich
pictures , analyze user require-ments, choose project team, design UI and perform
class testing.class testing.

Techniques. Each technique describes how to carry out one or more tasks. The list
of techniques is also comprehensive, and includes many that are not original to
OPEN. For example, the rich pictures task involves use of the rich picture
technique, and the CRC technique can also be used . Other examples of
techniques are: class internal design and object life cycle histories.

Deliverables. Deliverables are the post-conditions for activities, and often also the
pre-conditions for other activities. Some examples of deliverables are: user
requirements statement , requirements specification ,and many diagrams such as
inheritance diagrams and deployment diagrams.

Notation. For object modelling, OPEN is not tied to any particular notation. UML
may be used but the original specification of the methodology used its own notation,
called COMN (Common Object Modelling Notation).

2. USDP Methodology (Unified Software Development Process)

In the USDP, the resulting software architecture is an essential theme in
modelling from the earliest stages of a project. This is reflected in the stereotyping of
the classes that contribute to realizing a use case as boundary, control and entity
classes.

The following figure shows Phases and workflows involved in USDP. This
figure illustrates the relationship between the phases, iterations and workflows of the figure illustrates the relationship between the phases, iterations and workflows of the
USDP. Here workflows are requirements, analysis, design , Implementation and
Testing.

While an activity is something that has particular meaning for the developers
who carry it out, a phase is considered primarily from the perspective of the project
manager. He or she must necessarily think in terms of milestones that mark the
progress of the project along its way to completion.

Phases are sequential. A project passes through each phase in turn and then
(usually) moves on to the next. The end of a phase is a decision point for the project
management. When each phase is complete, those in charge must decide whether to
begin the next phase or to halt development at that point. The focus of the manager's
attention shifts as the project progresses from one phase to the next.

Phases and Workflows in USDP

1 2 3 4 5 6 7 8

Inception Phase Elaboration construction Transition
Project
Phases

Requirements

Analysis

Design

Implementation

Testing

Workflows
Size of square relative to time spent on workflow

Within each phase, the workflows are essentially the same. All four phases
include the full range of workflows from requirements to testing, but the emphasis that is
given to each workflow changes between the phases. In the earlier phases, the
emphasis lies more on the capture, modelling and analysis of requirements, while in the
later phases the emphasis moves towards implementation and testing.

Inception phase : During the inception phase, the essential decision is that of
assessing the potential risks of the project in comparison with its potential benefits. This
judgement of project viability during the inception phase resembles the feasibility stage
of a waterfall life cycle. The decision will probably be based partly on a similar financial
assessment .

One principal difference at this early stage is that the viability of a USDP project One principal difference at this early stage is that the viability of a USDP project
is much more likely to be judged partly also on the delivery of a small subset of the
requirements as working software. During the inception phase, the main activities are
thus requirements capture and analysis, followed by a small amount of design,
implementation and testing.

Another major difference is that, even at this early stage, there is the likelihood
of iteration. That this is even possible, is due to the fact that the development approach
is object-oriented.

Elaboration phase : During the elaboration phase, attention shifts to the reduction of
cost uncertainties. This is done principally by producing a design for a suitable system
that demonstrates how it can be built within an acceptable timescale and budget. As
the emphasis shifts towards design, the proportion of time spent on design activities
increases signifi-cantly. There is a further small increase in the time spent on
implementation and testing, but this is still small in relation to the analysis and design
activity.

Construction phase : The construction phase concentrates on building, through a
series of iterations, a system that is capable of satisfactory operation within its target
environment. Implementation and testing rapidly become core activities in this phase,
with a move further away from design and towards testing as each iteration gives way with a move further away from design and towards testing as each iteration gives way
to the next.

Transition phase : The transition phase concentrates on achieving the intended full
capability of the system. This deals with any defects or problems that have emerged
late in the project. It could also include system conversion, if an older system is being
replaced

Workers and activities. The USDP differentiates between the real people who are
involved with any project, such as users, analysts, managers and customers, and the
more abstract worker means , someone who plays a specified part in carrying out an
activity. Some examples of workers are: use-case specifier, system architect,
component engineer and integration tester.

Most USDP activities can be partially defined in terms of the workers who
carry them out, and the artefacts that either serve as inputs or are produced as
outputs. These things are shown in the following figure, for the activity Analyze a use
case.

Use case
Model Use case Engineer

Analyze a Use Case

Analysis realization of USe
cases

Outline Description
analysis classes

Model

Non - functional
requirements

Domain
Model

Initial Description of
Architecture

Use case Engineer

And a workflow can be seen as a flow of activities. Since each activity can
be related to a worker who will carry it out, we can identify which workers will need
to participate in the project. The following figure shows the Analysis workflow
broken down into its constituent activities.

Analyze Architecture

Analyse a use case

Architect

Use case Engineer

Analyse a class Analyse a package
Component Engineer

4. Participative Design Approaches

Participatory Design (PD) is the name given to a collection of approaches to
information systems development that share a guiding mechanisms more than they
share any particular tools or techniques.

Sometimes known as co-operative design, PD should perhaps be seen as a
movement rather than as a methodology. The common guide is based on the
assumption that active involvement of users in the design and development activity is
critical to the success of an information system. This is because a successful design for
an information system is said to rely just as much on knowledge and understanding of
the work that is to be supported as it does on knowledge of the possibilities and the work that is to be supported as it does on knowledge of the possibilities and
limitations of the available technology.

• Some approaches to PD, particularly that of Kyng and his collaborators emphasize
the use of use scenarios. In many respects these resemble the use cases of
Objectory and USDP, although there are differences in granularity

• PD approaches usually emphasize prototypes and storyboards, often
low-technology mock-ups drawn on paper or cardboard, for requirements capture.

• The typical PD life cycle is experimental and iterative in nature, in recognition of
the fact that design is always to some extent a learning experience for all
participants.

• The active participation of users in design and development is fundamental to all
PD approaches, usually throughout the project life cycle. An iterative approach to
object-oriented development naturally encourages the involvement of users at
many stages of the life cycle. The DSDM as a project management methodology
that is thoroughly compatible with object-oriented development, and DSDM, like
PD, insists on the active involvement of users in the project team.

Many styles of participative design have been proposed and practised,
Here we are giving one type of Co-operative Design approach developed by
Morten Kyng at..al

The following diagram shows Iifecycle for Co-operative Design .

The diagram illustrates a possible sequence of activities within a project
and also shows whether the degree of responsibility for each activity that lies with
users or with developers. Most activities are shared to some extent between the
two, but we can see that some rely chiefly on the contributions of developers (for
example, building the prototypes) while others rely primarily on the contribution of
users (for example, evaluating the prototypes).

Initial analysis and
design Implement exploratory

prototype

Evaluate Prototype,
Further analysis and

design

Design

Contribution
of users

Contribution of
Developers

Implement
Conventional prototype

Evaluate
Conventional prototype

Traditional specification

Build final System

Build final System

The Figure Iifecycle for Co-operative Design looks like a waterfall life cycle
model, a more careful reading reveals that in fact the underlying life cycle is iterative.
Two cycles of prototyping are shown followed by a final system build, but this can just
as easily be interpreted as three cycles of iterative development.

Part of the background to PD is the belief among its proponents that the
models built during the analysis and design of a proposed system fall into two general
categories.

The first category includes representations of the work that is done by people
who will become users of the system. In the Agate case study, the use case Assign
staff to work on a campaign falls into this category.

The second category includes representations of the system that is being The second category includes representations of the system that is being
designed. In the Agate case study, the sequence diagram for the same use case falls
into this category.

Only a user can really tell whether a given design fully takes into account all
requirements together with the constraints and limitations that are imposed by work
practices, working environment, technology and so on. Thus the activities of system
design also require active user participation.

In practice, since it is important for both users and developers that their
mutual knowledge and understanding should grow as the project progresses, it makes
sense for both groups to share responsibility for the whole project from inception to
completion.

5. Hard Vs Soft Methodologies
Distinction between hard and soft methodologies which arised principally from the
broad systems movement, and summarized in the following figure .

Hard systems view Soft systems view

The activity of IS development is all about
building a technical system that is made only
of software and hardware.

An IS also comprises the social context in
which the technical system (software and
hardware) will be used.

Human factors are chiefly important from the
perspective of the software's usability and
acceptability. Politics and group behaviour are
only an issue for project managers.

A new IS impacts on interpersonal
communication, social organization, working
practices and much more, so human and
social factors are paramount. only an issue for project managers. social factors are paramount.

Organizations exist only to meet rational
objectives, through the application of rational
principles of business management. It is
possible to be both rational and objective
about the requirements for a new system.

Organizations are made up of individuals
with distinct views and motivations, so any
picture of requirements is subjective. It is not
always possible even to reach a consensus.
In practice, this means that the powerful
decide, not the wise.

When requirements are uncertain or unclear,
it is up to management to decide. Setting
objectives is a principal role of management,
and others should follow their lead.

If management has not accommodated the
full range of views in the organization,
encouraging managers to decide on the
requirements may be completely counter-
productive.

Here, 'hard' is usually taken to mean objective, quantifiable or based on rational
scientific and engineering principles , where as 'soft' involves people issues and is
ambiguous and subjective. Both the structured and OO Methodologies all derive
mainly from the hard tradition, although some influence of a soft approach can be
discerned in Participative Design and also in the use case technique, since this aims
at eliciting the practical, context-based requirements of individual users.

On the whole, those methodologies that might be characterized as
principally soft in their orientation tend to focus more on making sure that the 'right'
system is developed, than on how to actually develop the system. Their intellectual
antecedents are diverse. However, in spite of their very different origins, both
provide ways of exploring and agreeing the characteristics of the organization as a
system, before any attempt is made to define a specific information system that will
help users meet their goals.

In certain situations, hard and soft methodologies can complement each
other, and can be used together to help overcome some of the persistant difficulties
in systems development. Flynn proposed a 'contingency framework' which is shown
in the following figure, aims at helping to select an appropriate methodology for a
specific organizational context.

For example, a new system intended primarily to automate an existing
manual system may have relatively low requirements uncertainty. 'Process uncertainty' refers
to the degree of doubt about the best way to build the proposed system. A project intended to
introduce Electronic Commerce to an organization with no experience of it might fall in this
category.

Linear model
(hard)

Integrated
model

(soft + hard)

Evolutionary
and prototyping

approach
(hard)

Soft systems
approach

(soft)

Process
Uncertainty

LOW HIGH

Requirements
Uncertainty

HIGH

LOW

Uncertainty

'Requirements uncertainty' is the extent to which requirements are
unknown or subject to debate or disagreement, and also whether they are expected
to change during development. For example, a new system intended primarily to
automate an existing manual system may have relatively low requirements
uncertainty.

The term 'Linear Model' refers to a sequential life cycle model like the waterfall
model. A project is rated along both dimensions, and this helps to indicate an appropriate
development approach. For example, where both the requirements and process are clear from
the outset, a linear model of development is recommended., which in practice might either
mean using a traditional structured methodology, or procuring a ready-made solution. At the
other extreme, a soft approach is recommended, so that the character of the problem is
clarified before any further action is taken.

