
Problem Solving using Programming, Unit-4

UNIT – IV

FILES

 A file is an external collection of related data treated as a unit.

 The purpose of a file is to keep a record of data.

 We need to store data permanently since data present in the main memory is lost

when the computer is shut down.

 Files are stored in secondary storage device like disk and tapes.

 When the computer reads the data it is moved from external device to memory and

memory to external device.

 The movement of data uses a special work area called buffer.

 A buffer is a temporary storage area that holds data for a short period of time.

 The data is read from the file until it reaches end of file marker.

 The operating system should have a set of rules to name a file.

 A program reads or writes files need to know different information about the file like

filename, position, etc.

 It has predefined file structure present in stdio.h header file and its type is FILE.

 “A file is a place on the disk where a group of related data is stored”.

STREAMS

 A stream is a sequence of characters.

 It can be data input and data output.

 It is associated with physical devices.

Text and Binary Streams

 There are two types of streams: Text and Binary.

 A text streams consists of sequence of characters divided into lines with each line

terminated by a new line.

 A binary stream consists of a sequence of data values such as integers, real, etc.

Stream File Processing

 A file exists with a name known to operating system.

 A stream is an entity created by program.

 To use a file we must associate the stream with the file name.

 There are four steps for processing a file:

 Creating a stream

 Opening a file

 Using the stream name

 Closing the stream

Problem Solving using Programming, Unit-4

Creating a Stream

Stream is created when it is declared. The declaration uses the FILE type.

FILE *file_pointer;

Opening a File

When a stream is created we associate it to file. We use a standard function to open a file.

FILE * file_pointer;

file_pointer = fopen(“filename”, “mode”);

Using the Stream File

After creating a stream we can use the stream pointer in all functions to access the file for

input or output.

Closing the Stream

When the file processing is completed then we close the file. Closing a file will break the link

of the stream pointer of the file. It is done by using fclose() function.

fclose(file_pointer);

System Created Streams

 A terminal can be a keyboard or monitor.

 It can be a source or destination of a text stream.

 Three streams are created and associated to communicate with a terminal.

 The stream pointers are defined in the stdio.h header file. They are:

 stdin – points to standard input stream

 stdout – points to standard output stream

 stderr – points to standard error stream

 The association is done automatically.

STANDARD LIBRARY INPUT / OUTPUT FUNCTIONS

 The stdio.h header file contains several input / output functions.

 They are grouped into eight categories.

 File open / close

 Formatted input / output

 Character input / output

 Line input / output

 Block input / output

 File positioning

 System file operations

 File status

Problem Solving using Programming, Unit-4

FUNCTIONS FOR F I LE HANDLING

There are many functions in the C library to open, read, write, search and close the file. A list
of file functions are given below:

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from the file

6 fclose() closes the file

7 fseek() sets the file pointer to given position

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the beginning of the file

File Open / Close Functions

If we want to store data in a file in the secondary memory, we must specify certain things

about the file to the operating system. They are

1. Filename

2. Data structure

3. Purpose

Filename is a string of characters that make up a valid filename. Data structure of a file is

defined as FILE in the library of standard I/O function definition. Therefore all files should be

declared as type FILE before they are used. FILE is a defined data type. When we open a file

we must specify what we want to do with the file. For example we may write data to the file

or read the already existing data.

Problem Solving using Programming, Unit-4

The General Format for Declaring and Opening a File

The fopen() function has the following prototype:

FILE *fopen(const char *filename, const char *mode);

Example:

FILE * fp;

fp = fopen(“TEST”, “w”);

The above code uses fopen() to open a file named TEST for output. The first statement

declares the variable fp as a pointer to the data type FILE. The second statement opens the

file, named file name and assigns an identifier to the FILE type pointer fp. This pointer

contains all the information about the file when subsequently used as a communication link

between the system and the program. The second statement also specifies the purpose of

opening this file. Mode can be one of the following:

Mode Description

r opens a text file in read mode

w opens a text file in write mode

a opens a text file in append mode

r+ opens a text file in read and write mode

w+ opens a text file in read and write mode

a+ opens a text file in read and append mode

rb opens a binary file in read mode

wb opens a binary file in write mode

ab opens a binary file in append mode

rb+ opens a binary file in read and write mode

wb+ opens a binary file in read and write mode

ab+ opens a binary file in read and append mode

The fopen function works in the following way.

 Firstly, it searches the file to be opened.

 Then, it loads the file from the disk and place it into the buffer.

 It sets up a character pointer which points to the first character of the file.

Problem Solving using Programming, Unit-4

Both the filename and mode are specified as strings. They should be enclosed in double

quotation marks. When trying to open the file, the following things may happen:

1. When the purpose is writing, a file with the specified name is created if the file does

not exist. The contents are deleted if the file already exists.

2. When the purpose is appending, the file is opened with the current contents safe. A

file with the specified name is created if the file does not exist.

3. If the purpose is reading and if it exists then the file is opened with the current

contents safe. Otherwise an error occurs.

Closing a File: A file must be closed as soon as all operations on it have been completed. We

have to close a file so that we can reopen the same file in different mode. The syntax is as

follows:

int fclose(FILE *fp);

Example:

 FILE *fp1,*fp2;

 fp1=fopen(“salary.txt”,”r”);

 fp2=fopen(“employee.txt”,”w”);

 …….

 …….

 fclose(fp1);

 fclose(fp2);

All files are closed automatically whenever a program terminates. However closing a file as

soon as you are done with it is good programming habit.

Terminal and File Character Input / Output Functions

getc and fgetc Functions

They read next character from the file stream which can be a user defined stream or stdin

and convert it to integer. If read detects end of file it returns EOF. The syntax of these

functions are: int getc(FILE *fp);

int fgetc(FILE *fp);

putc and fputc Functions

They are used to write a character to the file stream specified which can be a user defined

stream or stdout or stderr. The first parameter is a character and second parameter is the

file pointer. The syntax of these functions are:

int putc(int ch, FILE *fp);

int fputc(int ch, FILE *fp);

Problem Solving using Programming, Unit-4

Working with Strings: fputs() and fgets()

In addition to getc() and putc(), C supports the related functions fgets() and fputs(), which

read and write character strings from and to a disk file. These functions work just like putc()

and getc(), but instead of reading or writing a single character, they read or write strings.

They have the following prototypes:

int fputs(const char *str, FILE *fp);
char *fgets(char *str, int length, FILE *fp);

The fputs() function writes the string pointed to by str to the specified stream. It returns

EOF if an error occurs.

The fgets() function reads a string from the specified stream until either a newline

character is read or length–1 characters have been read. If a newline is read, it will be part

of the string (unlike the gets() function). The resultant string will be null terminated. The

function returns str if successful and a null pointer if an error occurs.

The following program demonstrates fputs(). It reads strings from the keyboard and writes

them to the file called TEST. To terminate the program, enter a blank line. Since gets() does

not store the newline character, one is added before each string is written to the file so that

the file can be read more easily.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(void)
{

char str[80];
FILE *fp;
if((fp = fopen("TEST", "w"))==NULL)
{

printf(''Cannot open file.\n");
exit(1);

}
do
 {

printf("Enter a string (CR to quit):\n");
gets(str);
strcat(str, "\n"); /* add a newline */
fputs(str, fp);

} while(*str!='\n');
return 0;

}

Formatted File Input / Output Functions

fscanf() and fprintf() functions can be used with any text files. These functions behave

exactly like printf() and scanf() except that they operate with files. The prototypes of

fprintf() and fscanf() are:

Problem Solving using Programming, Unit-4

int fprintf(FILE *fp, const char *control_string, . . .);

int fscanf(FILE *fp, const char *control_string, . . .);

where fp is a file pointer returned by a call to fopen(). fprintf() and fscanf() direct their I/O

operations to the file pointed to by fp.

The fscanf() function is used to read set of characters from file. It reads a word from the file

and returns EOF at the end of file.

The fprintf() function is used to write set of characters into file. It sends formatted output to

a stream.

As an example, the following program reads a string and an integer from the keyboard and

writes them to a disk file called TEST. The program then reads the file and displays the

information on the screen. After running this program, examine the TEST file. As you will

see, it contains human readable text.

/* fscanf() - fprintf() example */
#include <stdio.h>
#include <io.h>
#include <stdlib.h>
int main(void)
{

FILE *fp;
char s[80];
int t;
if((fp=fopen("test", "w")) == NULL)
{

printf(''Cannot open file.\n");
exit(1);

}
printf("Enter a string and a number: ");
fscanf(stdin, "%s%d", s, &t); /* read from keyboard */
fprintf(fp, "%s %d", s, t); /* write to file */
fclose(fp);
if((fp=fopen("test","r")) == NULL)
{

printf("Cannot open file.\n");
exit(1);

}
fscanf(fp, "%s%d", s, &t); /* read from file */
fprintf(stdout, "%s %d", s, t); /* print on screen */
return 0;

}

Problem Solving using Programming, Unit-4

BINARY INPUT / OUTPUT

TEXT VERSUS BINARY STREAMS

For text input/output, we convert a data type to a sequence of characters but for binary

input/output we transfer data without changing memory representation.

Text and Binary Files

Files are used for storage and extraction of data. Files are divided into two types based on

the storing format. They are as follows:

 Text files

 Binary files

Text Files

 The text file is a file in which data is stored using characters only.

 They are used to store textual information such as alphabets, numbers, special

symbols, etc.

 This data is easily understood by humans.

 Actually the ASCII code of the textual characters is stored in text files. Since data in

the storage device is stored in binary format hence the text file contents have to be

converted first into binary format and then stored in the storage device.

 A text file can store different character sets such as

 Upper case letters (A…Z)

 Lower case letters (a...z)

 Numeric characters (1,2,...9)

 Special symbols (%,$,…)

 Punctuation characters (, : ? …)

 The examples of text files are C source program code and files with .txt extension.

 Several operations that are used to manipulate data in text files with the help of in

built functions of C language are creating a new file, open an existing file, reading a

file, writing a file etc.

Binary files

 A binary file is a collection of data stored in internal format of the computer.

 They are read and written using block functions.

 The binary files stores information in binary form that is understood by the machine.

Problem Solving using Programming, Unit-4

 The use of binary file will eliminate the conversion from text to binary format for

storage purpose.

 The disadvantage of binary files is that it cannot be understood by the humans.

 Any data that is stored in the form of bytes is a binary file. Every exe file is a binary

file.

 The examples of binary files are video streams, image files, etc. The operations

performed on binary files are read, write and append with the help of inbuilt

functions.

Differences between Text and Binary Files

Text Files

 All data in text file is human readable form

 Each line of data is ended with a new line character

 There is a special character called EOF at the end of the file

Binary Files

 Data are stored in same format as they are stored in memory

 There are no new line characters

 There is a special character called EOF at the end of the file

State of a File

 A file that is opened can be in read or write or error state.

 If we want to read then the file must be in read state

 If we want to write then the file must be in write state

 The error state result when error occurs. For example, if file is opened in write state

and if we want to perform read.

 If the file is error state then we cannot read or write.

 To open a file in read state we must specify read mode in the open statement.

 If file exists then read mode will be success otherwise it fails.

 A file can be opened in write state using write or append mode.

 Apart from these three modes we also have the update mode. It allows both reading

and writing. It is used with + sign.

Opening Binary Files

 The open operation for the binary files is the only change in the mode.

 The syntax is: FILE *fopen(const char *filename, const char *mode);

Problem Solving using Programming, Unit-4

 The file name is the name of the file as first parameter and the second parameter is

the mode that can be read, write or both and append

 To indicate that a file is binary, we add a binary indicator ‘b’ to the mode.

 The binary file modes are:

 read binary (rb)

 write binary (wb)

 append binary (ab)

 update read binary (rb+ or r+b)

 update write binary (wb+ or w+b)

 update append binary (ab+ or a+b)

Closing Binary Files

 The binary files are closed as they are needed.

 The syntax is: int fclose(FILE *sp);

STANDARD LIBRARY FUNCTIONS FOR BIRNARY FILES

Block Input / Output Functions

 These functions are used for read and write data to binary files

 When we read and write binary files the data are transferred as found in memory

 No format conversion is required

 The block read function is fread and block write function is fwrite

File Read: fread()

 The fread function reads a specified number of bytes from a binary file and places

them into memory at the specified location

 The syntax is: size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);

 The first parameter, buffer is a pointer to the input area in memory. It is a generic

pointer and any pointer type can be passed to the function

 The num_bytes and count are multiplied to determine how much data are to be

transferred

 The size is determined by using sizeof operator and count is used when reading

structures

 The last parameter is associated stream

Problem Solving using Programming, Unit-4

File Write: fwrite()

 The fwrite function writes a specified number of items to a binary file

 The syntax is:

size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

 The first parameter, buffer is a pointer to the output area in memory. It is a generic

pointer and any pointer type can be passed to the function

 The num_bytes and count are multiplied to determine how much data are to be

transferred

 The size is determined by using sizeof operator and count is used when reading

structures

 The last parameter is associated stream

File Status Functions

 There are three status functions:

 Test end of file

 Test error

 Clear error

Test end of file: feof function

 This function can be used to test for an end of file condition.

 It takes a file pointer as an argument and returns a non-zero integer value if all of the

data from the specified file has been read and returns zero otherwise. The syntax is:

int feof(FILE *fp);

The following routine reads a file until the end of the file is encountered:

while(!feof(fp)) ch = getc(fp);

This method can be applied to text files as well as binary files.

Test error: ferror Function

 The ferror() function determines whether a file operation has produced an error.

The ferror() function has this prototype,

 int ferror(FILE *fp);

 It also takes a file pointer as its argument and returns a non-zero integer value if an

error has been detected upto that point during processing it and returns zero

otherwise. Because each file operation sets the error condition, ferror() should be

called immediately after each file operation; otherwise, an error may be lost.

Problem Solving using Programming, Unit-4

Positioning Functions

 It is used for two purposes:

 Random processing of data in disk files

 To change the file state

Rewind Files: rewind Function

 The rewind() function resets the file position indicator to the beginning of the file

specified as its argument. That is, it "rewinds" the file. Its prototype is:

void rewind(FILE *fp); where fp is a valid file pointer.

Current Location: ftell Function

 You can determine the current location of a file using ftell(). Its prototype is:

long int ftell(FILE *fp);

 It returns the location of the current position of the file associated with fp. If a failure

occurs, it returns –1.

Set Position: fseek() and Random-Access I/O

 It is used to move the file position to a desired location within the file. It takes the

following form:

int fseek(FILE *fp, long int offset, int position);

 Here ‘fp’ is a pointer to the file, ‘offset’ is a number or variable of type ‘long int’, and

position is an integer variable. The offset specifies the positions (bytes) to be moved

from the location specified by position.

Value Meaning

 0 Beginning of the file

 1 Current position

 2 End of the file

 The Offset may be ‘+’ve meaning move forward, or ‘-‘ ve meaning move backward.

Example:

fseek(fp,0L,0) Go to the beginning (Similar to rewind)

fseek(fp,m,0) Move (m+1)th byte in the file from the beginning

fseek (fp,m,1) Go forward by ‘m’ bytes from the current position

fseek (fp,-m,1) Go backward by ‘m’ bytes from the current position

fseek(fp,-m,2) Go backward by m bytes from the end

Problem Solving using Programming, Unit-4

The getw and putw functions

The getw and putw are integer oriented functions. They are similar to getc and putc

functions and are used to read and write integer values. These functions would be useful

when we deal with only integer data. The general forms of getw and putw are:

 putw(integer, fp);

 getw(fp);

/*Program to write contents to a file and display them on the screen*/

#include<stdio.h>

int main()

{

 FILE *fp;

 char ch;

 fp=fopen("data1.txt","w");

 while((ch=getchar())!=EOF)

 putc(ch,fp);

 fclose(fp);

 fp=fopen("data1.txt","r");

 while((ch=getc(fp))!=EOF)

 putchar(ch);

 fclose(fp);

 return 0;

}

OUTPUT:

/*Program to read the numbers from DATA file and then to write all odd numbers to ODD

file and all even numbers to EVEN file*/

include<stdio.h>

int main()

{

 FILE *fp1,*fp2,*fp3;

 int x,i;

 fp1=fopen("DATA.txt","w");

Problem Solving using Programming, Unit-4

 for(i=1;i<=10;i++)

 {

 scanf("%d",&x);

 putw(x,fp1);

 }

 fclose(fp1);

 fp1=fopen("DATA.txt","r");

 fp2=fopen("ODD.txt","w");

 fp3=fopen("EVEN.txt","w");

 while((x=getw(fp1))!=EOF)

 {

 if(x%2==0)

 putw(x,fp3);

 else

 putw(x,fp2);

 }

 fclose(fp1);

 fclose(fp2);

 fclose(fp3);

 fp2=fopen("ODD.txt","r");

 fp3=fopen("EVEN.txt","r");

 printf("\nContents of ODD File\n");

 while((x=getw(fp2))!=EOF)

 printf("%d ",x);

 printf("\nContents of EVEN File\n");

 while((x=getw(fp3))!=EOF)

 printf("%d ",x);

 fclose(fp2);

 fclose(fp3);

 return 0;

}

OUTPUT:

Problem Solving using Programming, Unit-4

/*Program that uses the functions ftell and fseek*/

#include<stdio.h>

int main()

{

 FILE *fp;

 long int n;

 char ch;

 fp=fopen("RANDOM.txt","w");

 while((ch=getchar())!=EOF)

 putc(ch,fp);

 printf("Number of characters entered = %ld\n",ftell(fp));

 fclose(fp);

 fp=fopen("RANDOM.txt","r");

 n = 0L;

 while(feof(fp)==0)

 {

 fseek(fp,n,0); /*Position to (n+1)th character*/

 printf("Position of %c is %ld\n",getc(fp),ftell(fp));

 n = n+5L;

 }

 putchar('\n');

 fseek(fp,-1L,2);

 printf("\nPosition is %ld\n",ftell(fp));

 do

 {

 putchar(getc(fp));

 }while(!fseek(fp,-2L,1));

 fclose(fp);

 return 0;

}

OUTPUT:

ABCDEFGHIJKLMNOPQRSTUVWXYZ^Z

Number of characters entered = 26

Position of A is 0

Position of F is 5

Position of K is 10

Position of P is 15

Position of U is 20

Position of Z is 25

Position of is 30

ZYXWVUTSRQPONMLKJIHGFEDCBA

Problem Solving using Programming, Unit-4

/* Write a program to copy the contents of one file into another file*/

#include<stdio.h>

main()

{

 FILE *fs,*ft;

char ch;

fs=fopen(“Source.txt”, “r”);

if(fs==NULL)

{

 printf(“Source.txt file cannot be opened”);

exit(0);

}

ft=fopen(“Target.txt”, “w”);

if(ft==NULL)

{

 printf(“Target.txt file cannot be opened”);

fclose(fs);

exit(0);

}

while((ch=getc(fs))!=EOF)

{

putc(ch,ft);

}

fclose(fs);

fclose(ft);

printf(“the file copy operation performed successfully”);

}

/* Write a program to read the list of integers from two different files and merge and

store them in a single file/third file */

#include<stdio.h>

main()

{

 FILE *fs,*ft;

int c;

fs=fopen(“Source1.txt”, “r”);

if(fs==NULL)

{

 printf(“Source1.txt file cannot be opened”);

exit(0);

}

ft=fopen(“Target.txt”, “w”);

if(ft==NULL)

{

Problem Solving using Programming, Unit-4

 printf(“Target.txt file cannot be opened”);

fclose(fs);

exit(0);

}

for(; fscanf(fs, “%d”, &c)!=EOF ;)

fprintf(ft, “%d”, c);

fclose(fs);

fclose(ft);

fs=fopen(“Source2.txt”, “r”);

if(fs==NULL)

{

 printf(“Source2.txt file cannot be opened”);

exit(0);

}

ft=fopen(“Target.txt”, “r+”);

if(ft==NULL)

{

 printf(“Target.txt file cannot be opened”);

fclose(fs);

exit(0);

}

fseek(ft,0L,2);

for(; fscanf(fs, “%d”, &c)!=EOF ;)

fprintf(ft, “%d”, c);

fclose(fs);

fclose(ft);

printf(“Files merged successfully now you can open target.txt file to check the

contents”);

}

MEMORY ALLOCATION FUNCTIONS

 There are two types of memory allocations: static allocation and dynamic allocation

 Static allocation refers to allocation of memory for a variable at compile time. They

need declarations and definitions specified in the source program. The number of

bytes reserved cannot be changed.

 Dynamic allocation refers to allocation of memory for a variable at run time. They

use predefined functions to allocate and de-allocate memory for data while the

program is running. Memory is allocated from heap through pointer.

 stdlib.h header file is included when dynamic memory allocation functions are used

in the program.

Problem Solving using Programming, Unit-4

Dynamic Memory Management

Consider an array: int marks [100];

Such a declaration is used to store 100 student’s marks in memory. The moment we make

declaration, 200 bytes are reserved in memory for storing 100 integers in it. However it may

so happen that, when we actually run the program we might be interested in storing only 30

students’ marks, which would result in wastage of memory.

Other way round there always exists a possibility that when you run the program you need

to store more than 100 students’ marks, in this case the array would fall short in size.

Moreover there is no way to increase or decrease the array size during execution. This can

done by dynamic data structures along with dynamic memory management techniques.

Dynamic Memory Allocation

The process of allocating memory at run time is known as dynamic memory allocation. The

C programming does not have this feature. But it offers through memory management

functions. The memory management functions are used to allocate and de-allocate storage

during program execution. The functions are:

1. malloc 2. calloc 3. free 4. realloc

Memory Allocation Process

The storage for a C program is shown below:

Local Variables

Stack

Free Memory Heap

Global Variables
 Permanent Storage Area

C Program Instructions

The program instructions and the global variables as well as the static variables are stored in

the region known as permanent storage area. The local variables are stored in the in the

area called stack. The memory space between these two is the free area called heap.

The allocation or de-allocation of the space takes place from the heap. Therefore the size of

the heap increases or decreases depending on the allocation and de-allocation of variables.

If there is no space for allocation then the functions return NULL.

Problem Solving using Programming, Unit-4

malloc()

This function is used to allocate one block of storage. It reserves the size specified by the

pointer and returns void. The syntax for malloc is as follows:

ptr = (cast-type *) malloc (byte-size);

Example: x = (int *) malloc (100 * sizeof(int));

It is also used to allocate storage for complex data such as structures.

calloc()

This function is used to allocate multiple blocks of memory. It is used to store run time data

types such as arrays and structures. It allocates storage for multiple blocks and initializes

them all to zero and the pointer will point to the first byte of the first block. Here all blocks

are same size. The syntax is as follows:

ptr = (cast-type *) calloc (n, element-size);

Example: x = (int *) calloc(n, sizeof(int));

free()

Whenever we are not in need of the variable for which the storage is allocated dynamically

then such variable storage is removed. It is done by using free function. The syntax is as

follows: free (ptr);

realloc()

Reallocation is done when:

1. Storage allocated to a variable is not sufficient so as to modify the variable’s storage.

2. If the storage is allocated more than the required storage then also we need to alter

the storage.

The process that is carried in the above situations is called reallocation.

ptr = realloc (ptr, newsize);

ARRAYS OF POINTERS

 Another useful structure that uses arrays and pointers is array of pointers.

 This is useful when the number of elements in the array is variable.

 For example,

Problem Solving using Programming, Unit-4

32 18 12 24

13 11 16 12 42 19 14

22

13 13 14

11 18

 The table contains 5 rows and 7 columns. It is a 2-D array.

 It is called ragged array because it has different sized elements in each row

 If we use 2-D array we waste lot of memory

 The solution is to create a five 1-D arrays that are joined through array of pointers.

 For example the implementation is

int **table;

table = (int **) calloc(rownum+1, sizeof(int *));

table[0] = (int *) calloc(4, sizeof(int));

table[1] = (int *) calloc(7, sizeof(int));

table[2] = (int *) calloc(1, sizeof(int));

table[3] = (int *) calloc(3, sizeof(int));

table[4] = (int *) calloc(2, sizeof(int));

table[5] = NULL;

PROGRAMMING APPLICATION

1) To find sum of two numbers using dynamic memory allocation

#include<stdio.h>

#include<stdlib.h>

Problem Solving using Programming, Unit-4

int main()

{

 int *p,*q,*r;

 p=(int *)malloc(sizeof(int));

 q=(int *)malloc(sizeof(int));

 r=(int *)malloc(sizeof(int));

 printf("Enter two numbers: ");

 scanf("%d%d",p,q);

 *r=*p+*q;

 printf("Sum: %d",*r);

 free(p);

 free(q);

 free(r);

 return 0;

}

OUTPUT:

2) To find the sum of n elements entered by user using dynamic memory allocation

function calloc().

#include <stdio.h>

#include <stdlib.h>

#include<malloc.h>

int main()

{

int n, i, *a, sum = 0;

printf("Enter number of elements: ");

scanf("%d", &n);

a = (int*) calloc(n, sizeof(int));

if(a == NULL)

{

 printf("memory not allocated.");

 exit(0);

}

printf("Enter %d elements of array", n);

for(i = 0; i < n; ++i)

{

 scanf("%d", &a[i]);

Problem Solving using Programming, Unit-4

 sum =sum+a[i];

}

printf("sum is %d\n", sum);

free(a);

return 0;

}

PREPROCESSOR COMMANDS

“A C preprocessor is a program that processes our source program before it is passed to

the compiler”.

 The compiler is made up of two components: a preprocessor and a translator.

 The preprocessor uses commands to prepare the source program for compilation.

 The translator converts the C statements into machine code.

 Both the preprocessor and translator work together.

 All preprocessors start with a pound sign(#).

 They can be placed anywhere but normally before main().

 There are three major tasks of preprocessor:

o File Inclusion,

o Macro Definition and

o Conditional Compilation

File Inclusion

 The file inclusion directive causes one file to be included into another file.

 The preprocessor command for the file inclusion looks as shown below:

#include “filename”

 From the above syntax we say that the entire contents of the filename to be inserted

into the source code at point in the program.

 When and why this feature is used?

 If we have very large program, the best way is to divide the code into different files

each containing a set of related functions. These functions are #included at the

beginning of the main program.

 There are some functions and macro definitions that are needed in all programs.

They are stored in a file and that file is included in every program.

 The files that are included should have an extension .h. The Extension stands for

header files.

Problem Solving using Programming, Unit-4

 It is written at the beginning of the program. We can have two ways of writing the

#include statements:

#include<filename>

#include”filename”

The meaning of the above two is as follows:

 #include<filename> means it searches only the list of the specified/standard

directories

 #include”filename” means it searches not only in current directory but also in the

specified list of directories.

Macro Definition

 A macro definition command associates a name with a sequence of tokens.

 The name is the macro name and the tokens are referred as macro body.

 It is of the form #define name body

 Consider the following program to explain about macro expansion

#include<stdio.h>

#define UPPER 25

main()

{

 int i;

for(i=0;i<UPPER;i++)

 printf(“%d”,i);

}

In the above program instead of writing 25 in the for loop we have written UPPER which is

already defined before main through the statement #define UPPER 25

This statement is called macro definition and simply we can call it as macro also. What is its

purpose? During preprocessing the preprocessor replaces every occurrence of UPPER in the

program with 25. In the above program UPPER is called the macro template and 25 is the

macro expansion.

When we compile a program, before it is passed to the compiler it is examined by the

preprocessor for any macro definitions. When the preprocessor sees the #define directive it

goes through the entire program in search of macro template and replaces the macro

template with appropriate macro expansion. Then it is handed to the compiler. There is a

space between macro template and macro expansion. The space between # and define is

optional.

Problem Solving using Programming, Unit-4

Points to remember about #define directive

 A #define directive is many a times used to define operators.

 A #define directive could be used even to replace a condition.

 A #define directive could be used to replace even an entire C statement.

Macro with Arguments

Macros can have arguments just like functions have. To explain let us consider an example.

#include<stdio.h>

#define AREA(x) (3.14*x*x)

main()

{

 float r1=6.25,a;

a=AREA(r1)

printf(“Area of the circle%f”, a);

}

In the above program, when the preprocessor finds the AREA(x) it expands it into the

statement (3.14*x*x). The variable r1 is substituted for x. Therefore the assignment would

be (3.14*r1*r1)

Macros versus Functions

In macro call the preprocessor replaces the macro template with its macro definition. But in

case of function call the control is transferred to the called function and perform some

calculations and return some value back to the function.

Macros run the program faster but it uses bulk memory. But in case of functions, they run

slowly and need only small memory.

If we use macro hundred times then macro expansion goes hundred times into the source

program in search of the macro definition. But in functions, the function is written only once

and but how many times you call it we refer the same function.

Nested Macros

 It is possible to nest macros.

 For example,

#define product(a, b) (a) * (b)

#define square(a) product(a, a)

Problem Solving using Programming, Unit-4

The expansion of x = square(5); might result as x = product(5, 5);

then x = (5) * (5);

Undefining Macros

 Once a macro defined it cannot be redefined.

 Any attempt will result in error.

 It is possible to redefine a macro by first undefining it using #undef and defining it

again.

 For example,

#define x 10

#undef x

#define x 20

Conditional Compilation

The conditional compilation preprocessor commands are:

#ifdef and #endif directives

The general format is

#ifdef macroname

 statement1;

statement2;

#endif

#if and #elif directives

The #if is used to test an expression to evaluate zero or nonzero value. If the result of the

expression is nonzero then the lines upto #else, #elif or #endif are compiled otherwise they

are skipped.

main()

{

#if TEST<=5

statement1;

statement2;

#else

statement3;

statement4;

#endif

}

Problem Solving using Programming, Unit-4

Other commands

Error command

It is used to print the message detected by the preprocessor. It is of the form:

#error message

#Pragma Directive

This directive is used to turn off or turn on certain features. Pragma varies from compiler to

compiler. Some of these pragma directives are

#pragma startup and #pargma exit

These directives allow us to specify functions that are called upon program start up and

program exit.

#pargma warn

On compilation the compiler reports errors or warnings in the program. Errors provide

programmers with no options so that we have to correct them. Warnings on the other hand

they offer the programmer a message.

#pragma warn directive tells the compiler whether or not we want to suppress a specific

warning.

COMMAND LINE ARGUMENTS (argc and argv— Arguments to main())

Sometimes it is useful to pass information into a program when you run it. Generally, you

pass information into the main() function via command line arguments. A command line

argument is the information that follows the program's name on the command line of the

operating system. For example, when you compile a program, you might type something

like the following after the command prompt,

C:\> program_name

where program_name is a command line argument that specifies the name of the program

you wish to compile.

Two special built-in arguments, argc and argv, are used to receive command line arguments.

The argc parameter holds the number of arguments on the command line and is an integer.

It is always at least 1 because the name of the program qualifies as the first argument. The

argv parameter is a pointer to an array of character pointers. Each element in this array

points to a command line argument. All command line arguments are strings— any numbers

will have to be converted by the program into the proper binary format, manually.

Here is a simple example that uses a command line argument. It prints Hello and your name

on the screen, if you specify your name as a command line argument.

Problem Solving using Programming, Unit-4

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

if(argc!=2)
{
printf(''You forgot to type your name.\n");
exit(1);
}
printf("\nHello %s\n", argv[1]);
return 0;

}

If you called this program name and your name was Srinivas, you would type name Srinivas

to run the program. The output from the program would be Hello Srinivas.

In many environments, each command line argument must be separated by a space or a

tab. Commas, semicolons, and the like are not considered separators.

Usually, you use argc and argv to get initial commands into your program that are needed at

startup. For example, command line arguments often specify such things as a filename, an

option, or an alternate behavior. Using command line arguments gives your program a

professional appearance and facilitates its use in batch files.

The names argc and argv are traditional but arbitrary. You may name these two parameters

to main() anything you like.

When a program does not require command line parameters, it is common practice to

explicitly declare main() as having no parameters. This is accomplished by using the void

keyword in its parameter list.

/*Program to copy the contents of one file to another file using Command Line

Arguments*/

#include<stdio.h>

int main(int argc,char *argv[])

{

 FILE *fp1,*fp2;

 char ch;

 printf("Number of command line arguments: %d\n",argc);

 fp1=fopen(argv[1],"r");

Problem Solving using Programming, Unit-4

 fp2=fopen(argv[2],"w");

 while((ch=getc(fp1))!=EOF)

 putc(ch,fp2);

 fclose(fp1);

 fclose(fp2);

 return 0;

}

OUTPUT:

