
Software Engineering Unit-I

Mr. John Blesswin Page 1

UNIT I

SOFTWARE PROCESS MODELS

The Evolving role of Software – Software – The changing Nature of Software – Legacy software ––

A generic view of process– A layered Technology – A Process Framework – The Capability

maturity Model Integration (CMMI) – Process Assessment – Personal and Team Process Models –

Product and Process – Process Models – The Waterfall Model – Incremental Process Models –

Incremental Model – The RAD Model – Evolutionary Process Models – Prototyping – The Spiral

Model – The Concurrent Development Model – Specialized Process Models – the Unified Process.

THE EVOLVING ROLE OF SOFTWARE

Nowadays, software plays a major role with dual activity. It is a product like a vehicle. As a

product, it delivers the computing potential embodied by computer hardware or a network of

computers that are accessible by local hardware. Whether the product or software resides

within a mobile phone or operates inside a mainframe computer, software is an information

transformer likely to produce, manage, acquire, modify, display or transmit the information.

Dual role of Software

 A Product

- Information transformer- producing, managing and displaying

 A Vehicle for delivering a product

- Control of computer (operating system),the communication of information

(networks) and the creation of other programs

The software

 provides good product with useful information

 transforms the data so that it can be more useful in a local context

 manages business information to enhance competitiveness

 provides a gateway to worldwide networks like internet

The role of computer software has undergone significant change over a time span of little more

than 50 years.

The software has seen many changes since its inception. After all, it has evolved over the period

of time against all odds and adverse circumstances. Computer industry has also progressed at

a break-neck speed through the computer revolution, and recently, the network revolution

Software Engineering Unit-I

Mr. John Blesswin Page 2

triggered and/or accelerated by the explosive spread of the internet and most recently the web.

Computer industry has been delivering exponential improvement in price performance, but the

problems with software have not been decreasing. Software still come late, exceed budget and

are full of residual faults. As per the latest IBM report, “31% of the projects get cancelled before

they are completed, 53% over-run their cost estimates by an average of 189% and for every 100

projects, there are 94 restarts” .

SOFTWARE

Software is defined as

Instructions

- Programs that when executed provide desired function

Data structures

-Enable the programs to adequately manipulate information

Documents

-Describe the operation and use of the programs.

Definition of Engineering

-Application of science, tools and methods to find cost effective solution to problems

Definition of SOFTWARE ENGINEERING

- SE is defined as systematic, disciplined and quantifiable approach for the development,

operation and maintenance of software

Software is the set of instructions encompasses programs that execute within a computer of

any size and architecture, documents that encompass hard-copy and virtual forms, and data

that combine numbers and text. It also includes representations of pictorial, video, and audio

information. Software engineers can build the software and virtually everyone in the

industrialized world uses it either directly or indirectly. It is so important because it affects

nearly every aspect of our lives and has become pervasive in our commerce, our culture, and

our everyday activities. The steps to build the computer software is as the user would like to

build any successful product, by applying a process that leads to a high-quality result that

meets the needs of the people who will use the product. From the software engineer’s view, the

product is may be the programs, documents, and data that are computer software. But from

the user’s viewpoint, the product is the resultant information that somehow makes the user’s

world better. Software’s impact on the society and culture continues to be profound. As its

importance grows, the software community continually attempts to develop technologies that

will make it easier, faster, and less expensive to build high-quality computer programs. Some of

Software Engineering Unit-I

Mr. John Blesswin Page 3

these technologies are targeted at a specific application domain like web-site design and

implementation; others focus on a technology domain such as object oriented systems and still

others are broad-based like operating systems such as LINUX. However, a software technology

has to develop useful information. The technology encompasses a process, a set of methods,

and an array of tools called as software engineering.

THE CHANGING NATURE OF SOFTWARE

Seven Broad Categories of software are challenges for software engineers

 System software

 Application software

 Engineering and scientific software

 Embedded software

 Product-line software

 Web-applications

 Artificial intelligence software

System software is a collection of programs written to service other programs

 Embedded software

-- resides in read-only memory

--is used to control products and systems for the consumer and industrial markets.

 Artificial intelligence software. Artificial intelligence (AI) software makes use of

nonnumeric algorithms to solve complex problems that are not amenable to

computation or straightforward analysis

 Engineering and scientific software. Engineering and scientific software have been

characterized by "number crunching" algorithms

LEGACY SOFTWARE

Legacy software are older programs that are developed decades ago. The quality of legacy

software is poor because it has inextensible design, convoluted code, poor and nonexistent

documentation, test cases and results that are not achieved.

• Support core business functions

• Have longevity and business criticality

Software Engineering Unit-I

Mr. John Blesswin Page 4

• Exhibit poor quality

– Convoluted code, poor documentation, poor testing, poor change management

As time passes legacy systems evolve due to following reasons:

 The software must be adapted to meet the needs of new computing environment or

technology.

 The software must be enhanced to implement new business requirements.

 The software must be extended to make it interoperable with more modern systems or

database

 The software must be re-architected to make it viable within a network environment.

A GENERIC VIEW OF PROCESS– A LAYERED TECHNOLOGY

 Software engineering encompasses a process, the management of activities, technical

methods, and use of tools to develop software products.

 Fritz Bauer defined Software engineering as the “establishment and use of sound

engineering principles in order to obtain economically software that is reliable and works

efficiently on real machines. “

 IEEE definition of software engineering (1) the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of software; that

is, the application of engineering to software. (2) The study of approaches as in (1).

 We need discipline but we also need adaptability and agility.

 Software Engineering is a layered technology as shown below. Any engineering approach

must rest on an organizational commitment to quality.

 The bedrock that supports software engineering is a quality focus.

Software Engineering Unit-I

Mr. John Blesswin Page 5

The foundation for S/W eng is the process layer. It is the glue that holds the technology layers

together and enables rational and timely development of computer S/W.

 Process defines a framework that must be established for effective delivery of S/W eng

technology.

 The software process forms the basis for management control of software projects and

establishes the context in which technical methods are applied, work products (models,

documents, data, reports, etc.) are produced, milestones are established, quality is

ensured, and change is properly managed.

 S/W eng methods provide the technical “how to’s” for building S/W. Methods

encompass a broad array of tasks that include communication, req. analysis, design,

coding, testing and support.

 S/W eng tools provide automated or semi-automated support for the process and the

methods.

 When tools are integrated so that info. Created by one tool can be used by another, a

system for the support of S/W development called computer-aided software engineering

is established.

A PROCESS FRAMEWORK

Software process models can be prescriptive or agile, complex or simple, all-encompassing or

targeted, but in every case, five key activities must occur. The framework activities are

applicable to all projects and all application domains, and they are a template for every process

model.

 Software process

 Process framework

 Umbrella activities

 Framework activity #1

 Software Engineering action

Software Engineering Unit-I

Mr. John Blesswin Page 6

Each framework activity is populated by a set of S/W eng actions – a collection of related tasks

that produces a major S/W eng work product (design is a S/W eng action). Each action is

populated with individual work tasks that accomplish some part of the work implied by the

action.

The following generic process framework is applicable to the vast majority of S/W projects.

 Communication: involves heavy communication with the customer (and other

stakeholders) and encompasses requirements gathering.

 Planning: Describes the technical tasks to be conducted, the risks that are likely,

resources that will be required, the work products to be produced and a work schedule.

 Modeling: encompasses the creation of models that allow the developer and customer to

better understand S/W req. and the design that will achieve those req.

 Construction: combines code generation and the testing required uncovering errors in

the code.

 Deployment: deliver the product to the customer who evaluates the delivered product

and provides feedback.

Each S/W eng action is represented by a number of different task sets – each a collection of

S/W eng work tasks, related work products, quality assurance points, and project milestones.

The task set that best accommodates the needs of the project and the characteristics of the

team is chosen.

The framework described in the generic view of S/W eng is complemented by a number of

umbrella activities. Typical activities include:

 S/W project tracking and control: allows the team to assess progress against the

project plan and take necessary action to maintain schedule.

 Risk Management: Assesses the risks that may affect the outcome of the project or the

quality.

 Software quality assurance: defines and conducts the activities required to ensure

software quality.

 Formal Technical Review: uncover and remove errors before they propagate to the next

action.

 Measurement: defines and collects process, project, and product measures that assist

the team in delivering S/W that meets customers’ needs.

Software Engineering Unit-I

Mr. John Blesswin Page 7

 Software configuration management: Manages the effect of change throughout the

S/W process

 Reusability management: defines criteria for work product reuse.

 Work product preparation and production: encompasses the activities required to

create work products such as models, documents, etc.

THE CAPABILITY MATURITY MODEL INTEGRATION

 The Software Engineering Institute (SEI) has developed a comprehensive process meta-

model that is predicated on a set of system and software eng capabilities that should be

present as organizations reach different levels of process capability and maturity.

 The CMMI defines each process area in terms of “specific goals” and the “specific

practices” required to achieve these goals.

 Specific goals establish the characteristics that must exist if the activities implied by a

process area are to be effective.

 Specific practices refine a goal into a set of process-related activities.

The CMMI is from the Software Engineering Institute (SEI)

• Level 0: Incomplete (process is not performed or does not achieve all goals defined for

• Level 1: Performed (work tasks required to produce required work products are being

conducted)

• Level 2: Managed (people doing work have access to adequate resources to get job done,

stakeholders are actively involved, work tasks and products are monitored, reviewed, and

evaluated for conformance to process description)

• Level 3: Defined (management and engineering processes documented, standardized, and

integrated into organization-wide software process)

• Level 4: Quantitatively Managed (software process and products are quantitatively understood

and controlled using detailed measures)

• Level 5: Optimizing (continuous process improvement is enabled by quantitative feedback

from the process and testing innovative ideas)

Software Engineering Unit-I

Mr. John Blesswin Page 8

PROCESS ASSESSMENT

The process should be assessed to ensure that it meets a set of basic process criteria that have

been shown to be essential for a successful software engineering. This is used by industry

professionals.

The PSP model is good from the perspective that an individual software engineer can use it to

improve his or her personal productivity and work product quality. Both models are largely

iterative or evolutionary in their approach to software development. PSP and TSP are

interesting, but are not pivotal to an understanding of process issues. A key point of this

section is that individuals and teams should measure their work and the errors they make and

act to improve their approach so that the causes of errors are eliminated.

PERSONAL AND TEAM SOFTWARE PROCESS

The Personal Software Process (PSP) model is good from the perspective that an individual

software engineer can use it to improve his or her personal productivity and work product

quality.

PSP process model defines five framework activities: planning, high-level design, high-level

design review, development, and postmortem. It stresses the need to identify errors early and

to understand the types of errors.

Planning: it isolates reqs. And a project schedule is created.

High-level design: Prototypes are built when uncertainty exists.

High-level design review: Formal verification methods are applied to uncover errors in the

design.

Development: Code is generated, reviewed, compiled, and tested.

Postmortem: using the measures and metrics collected, the effectiveness of the process is

determined.

TEAM SOFTWARE PROCESS (TSP):

The goal of TSP is to build a “self-directed” project team that organizes itself to produce high-

quality s/w.

Each project is “launched” using a “script” that defines the tasks to be accomplished.

Teams are self-directed.

Measurement is encouraged.

Measures are analyzed with the intent of improving the team process.

Software Engineering Unit-I

Mr. John Blesswin Page 9

PROCESS MODELS

 The Waterfall Model

The classical waterfall model is intuitively the most obvious way to develop

software. Though the classical waterfall model is elegant and intuitively obvious,

it is not a practical model in the sense that it can not be used in actual software

development projects. Thus, this model can be considered to be a theoretical way

of developing software. But all other life cycle models are essentially derived from

the classical waterfall model. So, in order to be able to appreciate other life cycle

models it is necessary to learn the classical waterfall model.

Classical waterfall model divides the life cycle into the following phases as shown

in fig.

Feasibility Study

The main aim of feasibility study is to determine whether it would be financially

and technically feasible to develop the product.

� At first project managers or team leaders try to have a rough

understanding of what is required to be done by visiting the client side. They

study different input data to the system and output data to be produced by the

system. They study what kind of processing is needed to be done on these data

and they look at the various constraints on the behavior of the system.

Software Engineering Unit-I

Mr. John Blesswin Page 10

� After they have an overall understanding of the problem they investigate

the different solutions that are possible. Then they examine each of the solutions

in terms of what kind of resources required, what would be the cost of

development and what would be the development time for each solution.

� Based on this analysis they pick the best solution and determine whether

the solution is feasible financially and technically. They check whether the

customer budget would meet the cost of the product and whether they have

sufficient technical expertise in the area of development.

Requirements Analysis and Specification

The aim of the requirements analysis and specification phase is to

understand the exact requirements of the customer and to document them

properly. This phase consists of two distinct activities, namely

� Requirements gathering and analysis, and

� Requirements specification

The goal of the requirements gathering activity is to collect all relevant

information from the customer regarding the product to be developed. This is

done to clearly understand the customer requirements so that incompleteness

and inconsistencies are removed.

The requirements analysis activity is begun by collecting all relevant data

regarding the product to be developed from the users of the product and from

the customer through interviews and discussions. After all ambiguities,

inconsistencies, and incompleteness have been resolved and all the requirements

properly understood, the requirements specification activity can start. During

this activity, the user requirements are systematically organized into a Software

Requirements Specification (SRS) document.

The customer requirements identified during the requirements gathering

and analysis activity are organized into a SRS document. The important

Software Engineering Unit-I

Mr. John Blesswin Page 11

components of this document are functional requirements, the nonfunctional

requirements, and the goals of implementation.

Design

The goal of the design phase is to transform the requirements specified in

the SRS document into a structure that is suitable for implementation in some

programming language. In technical terms, during the design phase the software

architecture is derived from the SRS document. Two distinctly different

approaches are available: the traditional design approach and the object-oriented

design approach.

� Traditional design approach

Traditional design consists of two different activities; first a structured

analysis of the requirements specification is carried out where the detailed

structure of the problem is examined. This is followed by a structured design

activity. During structured design, the results of structured analysis are

transformed into the software design.

� Object-oriented design approach

In this technique, various objects that occur in the problem domain and the

solution domain are first identified, and the different relationships that exist

among these objects are identified. The object structure is further refined to

obtain the detailed design.

Coding and Unit Testing

The purpose of the coding and unit testing phase (sometimes called the

implementation phase) of software development is to translate the software

design into source code. Each component of the design is implemented as a

program module. The end-product of this phase is a set of program modules that

have been individually tested.

Software Engineering Unit-I

Mr. John Blesswin Page 12

During this phase, each module is unit tested to determine the correct

working of all the individual modules. It involves testing each module in isolation

as this is the most efficient way to debug the errors identified at this stage.

Integration and system testing: -

Integration of different modules is undertaken once they have been coded

and unit tested. During the integration and system testing phase, the modules

are integrated in a planned manner. The different modules making up a software

product are almost never integrated in one shot. Integration is normally carried

out incrementally over a number of steps. During each integration step, the

partially integrated system is tested and a set of previously planned modules are

added to it. Finally, when all the modules have been successfully integrated and

tested, system testing is carried out. The goal of system testing is to ensure that

the developed system conforms to its requirements laid out in the SRS

document. System testing usually consists of three different kinds of testing

activities:

� α – testing: It is the system testing performed by the development team.

� β – testing: It is the system testing performed by a friendly set of

customers.

� acceptance testing: It is the system testing performed by the customer

himself after the product delivery to determine whether to accept or reject the

delivered product.

Maintenance

Maintenance of a typical software product requires much more than the

effort necessary to develop the product itself. Many studies carried out in the

past confirm this and indicate that the relative effort of development of a typical

software product to its maintenance effort is roughly in the 40:60 ratio.

Software Engineering Unit-I

Mr. John Blesswin Page 13

Maintenance involves performing any one or more of the following three kinds of

activities:

� Correcting errors that were not discovered during the product

development phase. This is called corrective maintenance.

� Improving the implementation of the system, and enhancing the

functionalities of the system according to the customer’s requirements. This is

called perfective maintenance.

� Porting the software to work in a new environment. For example, porting

may be required to get the software to work on a new computer platform or with

a new operating system. This is called adaptive maintenance.

Incremental Process Models

The process models in this category tend to be among the most widely used (and

effective) in the industry.

a. The Incremental Model

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign c ode

t es t

increment # 1

increment # 2

delivery of

1st increment

delivery of

2nd increment

delivery of

nt h increment

increment # n

project calendar t ime

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign c ode

t es t

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign
c ode

t es t

Software Engineering Unit-I

Mr. John Blesswin Page 14

 The incremental model combines elements of the waterfall model applied in an

iterative fashion. The model applies linear sequences in a staggered fashion as

calendar time progresses.

 Each linear sequence produces deliverable “increments” of the software. (Ex: a

Word Processor delivers basic file mgmt., editing, in the first increment; more

sophisticated editing, document production capabilities in the 2nd increment;

spelling and grammar checking in the 3rd increment.

 When an increment model is used, the 1st increment is often a core product. The

core product is used by the customer.

 As a result of use and / or evaluation, a plan is developed for the next increment.

 The plan addresses the modification of the core product to better meet the needs of

the customer and the delivery of additional features and functionality.

 The process is repeated following the delivery of each increment, until the complete

product is produced.

 If the customer demands delivery by a date that is impossible to meet, suggest

delivering one or more increments by that date and the rest of the Software later.

b. The RAD Model

Rapid Application Development (RAD) is an incremental software process model that

emphasizes a short development cycle.

RAD is a “high-speed” adaptation of the waterfall model, in which rapid development is

achieved by using a component based construction approach.

If requirements are well understood and project scope is constrained, the RAD process

enables a development team to create a fully functional system within a short period of

time.

Software Engineering Unit-I

Mr. John Blesswin Page 15

Communicat ion

Planning

Mode ling
business modeling

dat a modeling

process modeling

Const ruct ion
component reuse

aut omat ic code

 generat ion

t est ing

De ployme nt

6 0 - 9 0 days

Team # 1

Mod eling
business m odel ing

dat a m odel ing

process m odel ing

Co nst ruct ion
com ponent reuse

aut om at ic code

 generat ion

t est ing

M o d e lin g
business m odeling

data m odeling

process m odeling

Co n st ru ct io n
com ponent reuse

autom at ic code

 generat ion

test ing

Team # 2

Team # n

int egrat ion

delivery

feedback

What are the drawbacks of the RAD model?

1. For large, but scalable projects, RAD requires sufficient human resources to

create the right number of RAD teams.

2. If developers and customers are not committed to the rapid-fire activities

necessary to complete the system in a much abbreviated time frame, RAD project

will fail.

3. If a system cannot properly be modularized, building the components necessary

for RAD will be problematic.

Software Engineering Unit-I

Mr. John Blesswin Page 16

EVOLUTIONARY PROCESS MODELS

Software evolves over a period of time; business and product requirements often change

as development proceeds, making a straight-line path to an end product unrealistic.

Software Engineering needs a process model that has been explicitly designed to

accommodate a product that evolves over time. Evolutionary process models are

iterative. They produce increasingly more complete versions of the Software with each

iteration.

a. Prototyping

Customers often define a set of general objectives for Software, but doesn’t identify

detailed input, processing, or input requirements. Prototyping paradigm assists the

Software engineering and the customer to better understand what is to be built when

requirements are fuzzy.

Communicat ion

Qu ick p lan

Const ruct ion

of

prot ot ype

Mod e ling

 Qu ick d e sig n

De live ry

& Fe e dback

Deployment

The prototyping paradigm begins with communication where requirements and goals of

Software are defined. Prototyping iteration is planned quickly and modeling in the form

of quick design occurs. The quick design focuses on a representation of those aspects of

the Software that will be visible to the customer “Human interface”. The quick design

leads to the Construction of the Prototype.

Software Engineering Unit-I

Mr. John Blesswin Page 17

The prototype is deployed and then evaluated by the customer. Feedback is used to

refine requirements for the Software. Iteration occurs as the prototype is tuned to

satisfy the needs of the customer, while enabling the developer to better understand

what needs to be done. The prototype can serve as the “first system”. Both customers

and developers like the prototyping paradigm as users get a feel for the actual system,

and developers get to build Software immediately. Yet, prototyping can be problematic:

1. The customer sees what appears to be a working version of the Software,

unaware that the prototype is held together “with chewing gum. “Quality, long-

term maintainability.” When informed that the product is a prototype, the

customer cries foul and demands that few fixes be applied to make it a working

product. Too often, Software development management relents.

2. The developer makes implementation compromises in order to get a prototype

working quickly. An inappropriate O/S or programming language used simply

b/c it’s available and known. After a time, the developer may become comfortable

with these choices and forget all the reasons why they were inappropriate.

The key is to define the rules of the game at the beginning. The customer and the

developer must both agree that the prototype is built to serve as a mechanism for

defining requirements.

b. The Spiral Model

The spiral model is an evolutionary Software process model that couples the iterative

nature of prototyping with the controlled and systematic aspects of the waterfall model.

It has two distinguishing features:

a. A cyclic approach for incrementally growing a system’s degree of definition and

implementation while decreasing its degree of risk.

Software Engineering Unit-I

Mr. John Blesswin Page 18

b. A set of anchor point milestones for ensuring stakeholder commitment to feasible

and mutually satisfactory solutions.

Using the spiral model, Software is developed in a series of evolutionary releases.

During early stages, the release might be a paper model or prototype. During later

iterations, increasingly more complete versions of the engineered system are produced.

A spiral model is divided into a set of framework activities divided by the Software

engineering team. As this evolutionary process begins, the Software team performs

activities that are implied by a circuit around the spiral in a clockwise direction,

beginning at the center. Risk is considered as each revolution is made.

Anchor-point milestones – a combination of work products and conditions that are

attained along the path of the spiral- are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a

prototype and then progressively more sophisticated versions of the Software. Each

pass through the planning region results in adjustments to the project plan. Cost and

schedule are adjusted based on feedback derived from the customer after delivery.

Unlike other process models that end when Software is delivered, the spiral model can

be adapted to apply throughout the life of the Software.

communication

planning

modeling

construction
deployment

 delivery

 feedback

start

analysis

design

code

test

estimation

scheduling

risk analysis

Software Engineering Unit-I

Mr. John Blesswin Page 19

THE CONCURRENT DEVELOPMENT MODEL

The concurrent development model, sometimes called concurrent engineering, can be

represented schematically as a series of framework activities, Software engineering

actions of tasks, and their associated states. The concurrent model is often more

appropriate for system engineering projects where different engineering teams are

involved.

Figure above provides a schematic representation of one Software engineering task

within the modeling activity for the concurrent process model. The activity – modeling-

may be in any one of the states noted at any given time. All activities exist concurrently

but reside in different states. For example, early in the project the communication

activity has completed its first iteration and exists in the awaiting changes state. The

modeling activity which existed in the none state while initial communication was

completed now makes a transition into underdevelopment state. If, however, the

customer indicates the changes in requirements must be made, the modeling activity

moves from the under development state into the awaiting changes state. The

concurrent process model defines a series of events that will trigger transitions from

state to state for each of the Software engineering activities, actions, or tasks.

Under review

Baselined

Done

Under

revision

Await ing

changes

Under

development

none

Modeling act ivit y

represents the state

of a software engineering

act ivity or task

Software Engineering Unit-I

Mr. John Blesswin Page 20

SPECIALIZED PROCESS MODELS

a. Component Based Development

Commercial off-the-shelf (COTS) Software components, developed by vendors who offer

them as products, can be used when Software is to be built. These components provide

targeted functionality with well-defined interfaces that enable the component to be

integrated into the Software. The component-based development model incorporates

many of the characteristics of the spiral model.

The component-based development model incorporates the following steps:

 Available component-based products are researched and evaluated for the

application domain in question.

 Component integration issues are considered.

 Software architecture is designed to accommodate the components.

 Components are integrated into the architecture.

 Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to Software reuse, and reusability

provides Software engineers with a number of measurable benefits.

b. The Formal Methods Model

The Formal Methods Model encompasses a set of activities that leads to formal

mathematical specifications of Software. Formal methods enable a Software engineer to

specify, develop, and verify a computer-based system by applying a rigorous,

mathematical notation. A variation of this approach, called clean-room Software

engineering is currently applied by some software development organizations.

Software Engineering Unit-I

Mr. John Blesswin Page 21

Although not a mainstream approach, the formal methods model offers the promise of

defect-free Software. Yet, concern about its applicability in a business environment has

been voiced:

 The development of formal models is currently quite time-consuming and

expensive.

 B/C few software developers have the necessary background to apply formal

methods, extensive training is required.

 It is difficult to use the methods as a communication mechanism for technically

unsophisticated customers.

THE UNIFIED PROCESS

A “use-case driven, architecture-centric, iterative and incremental” software process

closely aligned with the Unified Modeling Language (UML). The UP is an attempt to

draw on the best features and characteristics of conventional software process models,

but characterize them in a way that implements many of the best principles of agile

software development. The UP recognizes the importance of customer communication

and streamlined methods for describing the customer’s view of a system. It emphasizes

the important role of software architecture and “helps the architect focus on the right

goals, such as understandability, reliance to future changes, and reuse.” UML provides

the necessary technology to support Object Oriented Software Engineering practice, but

it doesn’t provide the process framework to guide project teams in their application of

the technology. The UML developers developed the Unified Process, a framework Object

Oriented Software Engineering using UML.

Phases of the Unified Process

The figure below depicts the phases of the UP and relates them to the generic activities.

Software Engineering Unit-I

Mr. John Blesswin Page 22

soft ware increment

Release

Incept ion

Elaborat ion

const ruct ion

t ransit ion

product ion

The Inception phase of the UP encompasses both customer communication and

planning activities. By collaborating with the customer and end-users, business

requirements for the software are identified, a rough architecture for the system is

proposed, and a plan for the iterative, incremental nature of the ensuing project is

developed.

A use-case describes a sequence of actions that are performed by an actor (person,

machine, another system) as the actor interacts with the Software. The elaboration

phase encompasses the customer communication and modeling activities of the generic

process model. Elaboration refines and expands the preliminary use-cases that were

developed as part of the inception phase and expands the architectural representation

to include five different views of the software - the use-case model, the analysis model,

the design model, the implementation model, and the deployment model.

The construction phase of the UP is identical to the construction activity defined for the

generic software process. Using the architectural model as input, the construction

phase develops or acquires the software components that will make each use-case

operational for end-users.

Software Engineering Unit-I

Mr. John Blesswin Page 23

Incept ion Elaborat ion Const ruct ion Transit ion Product ion

UP Phases

Workflows

Requirements

Analysis

Design

Implementation

Test

Iterations #1 #2 #n-1 #n

Support

The transition phase of the UP encompasses the latter stages of the generic construction

activity and the first part of the generic deployment activity. Software is given to end-

users for beta testing, and user feedback reports both defects and necessary changes.

At the conclusion of the transition phase, the software increment becomes a usable

software release “user manuals, trouble-shooting guides, and installation procedures.)

The production phase of the UP coincides with the development activity of the generic

process. The on-going use of the software is monitored, support for the operating

environment is provided and defect reports and requests for changes are submitted and

evaluated.

A Software Engineering workflow is distributed across all UP phases.

