
Software Engineering Unit-III

Mr. John Blesswin Page 1

system
description

analysis
model

design
model

UNIT III

ANALYSIS MODELLING

Requirements Analysis – Analysis Modeling approaches – data modeling concepts – Object
oriented Analysis – Scenario based modeling – Flow oriented Modeling – Class based modeling –
creating a behavior model.

Requirements Analysis

Requirement Analysis results in the specification of software’s operational characteristics;
indicates software’s interface with other system element; and establishes constraints that
software must need. Throughout analysis modeling the software engineer’s primary focus is
on what not how.

RA allows the software engineer (called an analyst or modeler in this role) to:

 Elaborate on basic requirements established during earlier requirement engineering
tasks

 Build models that depict user scenarios, functional activities, problem classes and
their relationships, system and class behavior, and the flow of data as it is
transformed.

Overall Objectives

The analysis model must achieve three primary objectives:

1. To describe what the customer requires

2. To establish a basis for the creation of a software design, and

3. To define a set of requirements that can be validated once the software is built.

Software Engineering Unit-III

Mr. John Blesswin Page 2

The analysis model bridges the gap between a system-level description that describes overall

functionality as it is achieved by applying software, hardware, data, human, and other

system elements and a software design that describes the software application architecture.

Analysis Rules of Thumb

 The model should focus on requirements that are visible within the problem or

business domain. The level of abstraction should be relatively high.

 Each element of the analysis model should add to an overall understanding of

software requirements and provide insight into the information domain, function and

behavior of the system.

 Delay consideration of infrastructure and other non-functional models until design.

o For example, a database may be required, but the classes necessary to

implement it, the functions required to access it, and the behavior that will be

exhibited as it is used should be considered only after problem domain

analysis has been completed.

 Minimize coupling throughout the system.

o The level of interconnectedness between classes and functions should be

reduced to a minimum.

 Be certain that the analysis model provides value to all stakeholders.

o Each constituency has its own use for the model.

 Keep the model as simple as it can be.

o Ex: Don’t add additional diagrams when they provide no new information.

o Only modeling elements that have values should be implemented.

Domain Analysis

Software domain analysis is the identification, analysis, and specification of common
requirements from a specific application domain, typically for reuse on multiple projects
within that application domain . . . [Object-oriented domain analysis is] the identification,
analysis, and specification of common, reusable capabilities within a specific application
domain, in terms of common objects, classes, subassemblies, and frameworks

 Define the domain to be investigated.
 Collect a representative sample of applications in the domain.
 Analyze each application in the sample.
 Develop an analysis model for the objects

Software Engineering Unit-III

Mr. John Blesswin Page 3

Analysis Modeling Approaches

One view of analysis modeling, called structural analysis, considers data and the processes
that transform the data as separate entities. Data objects are modeled in a way that defines
attributes and relationships. Processes that manipulate data objects are in a manner that
shows how they transform data as data objects flow through the system.

A second approach to analysis modeling called object-oriented analysis focuses on the
definition of classes and the manner in which they collaborate with one another to affect
customer requirements. UML and the Unified Process are predominantly Object Oriented.

Data Modeling Concepts

Data Objects

A data object is a representation of almost any composite information that must be
processed by software. By composite, we mean something that has a number of different
properties and attributes.

– “Width” (a single value) would not be a valid data object, but dimensions
(incorporating height, width and depth) could be defined as object.

A data object encapsulates data only – there is no reference within a data object to
operations that act on the data. Therefore, the data can be represented as a table below.

object: automobile
attributes:

make
model
body type
price
options code

Data Attributes

Data attributes define the properties of a data object and take one of three different
characteristics. They can be used to:

1. Name an instance of the data object.

2. Describe the instance, or

3. Make reference to another instance in another table.

Software Engineering Unit-III

Mr. John Blesswin Page 4

In addition, one or more of the attributes, must be defined as an identifier, i.e., the identifier
attribute becomes a “key” when we want to find an instance of the data object. Values for
the identifier(s) are unique, although this is not a requirement.

Referring to the data object car, a reasonable identifier might be the ID number.

Relationships

Indicates “connectedness”; a "fact" that must be "remembered" by the system and cannot or
is not computed or derived mechanically

 several instances of a relationship can exist

 objects can be related in many different ways

We can define a set of object/relationship pairs that define the relevant relationships. For
example:

 A person owns a car.

 A person is insured to drive a car.

The relationship owns and insured to drive define the relevant connections between person
and car.

Object-Oriented Analysis

The intent of Object Oriented Analysis (OOA) is to define all classes (and the relationships
and behavior associated with them that are relevant to the problem to be solved.

To accomplish this, a number of tasks must occur:

1. Basic user requirements must be communicated between the customer and the
software engineer.

2. Classes must be defined.

3. A class hierarchy is defined

4. Object-to-object relationships should be represented.

5. Object behavior must be modeled.

6. 1 – 5 are repeated iteratively until the model is complete.

Software Engineering Unit-III

Mr. John Blesswin Page 5

external entities

things

occurrences roles
organizational units

places
structures

class name

attributes:

operations:

OOA builds a class-oriented model that relies on an understanding of OO concepts.

 Classes and objects
 Attributes and operations
 Encapsulation and instantiation
 Inheritance

Object-Oriented thinking begins with the definition of a class, often defined as:
 template
 generalized description
 “blueprint” ... describing a collection of similar items
 a metaclass (also called a superclass) establishes a hierarchy of classes once a class

of items is defined, a specific instance of the class can be identified.

Building a class

class name

attributes:

operations:
attributes:

operations

Software Engineering Unit-III

Mr. John Blesswin Page 6

ChairTable Desk

PieceOfFurniture (superclass)

Encapsulating and Hiding

Class Hierarchy

Methods (a.k.a. Operations, Services)

An executable procedure that is encapsulated in a class and is designed to operate on one or
more data attributes that are defined as part of the class.

A method is invoked via message passing.

The object encapsulates both data

and the logical procedures required

To manipulate the data

 method

1
data

method
2

method
4

method
5

method
6

method
3

Software Engineering Unit-III

Mr. John Blesswin Page 7

Scenario-Based Modeling

“[Use-cases] are simply an aid to defining what exists outside the system (actors) and what
should be performed by the system (use-cases).” Ivar Jacobson

The concept is relatively easy to understand- describe a specific usage scenario in
straightforward language from the point of view of a defined actor.

Writing Use-Cases

(1) What should we write about?

Inception and elicitation provide us the information we need to begin writing use cases.

(2) How much should we write about it?

(3) How detailed should we make our description?

(4) How should we organize the description?

Use Cases:

 A scenario that describes a “thread of usage” for a system.

 Actors represent roles people or devices play as the system functions.

 Users can play a number of different roles for a given scenario.

Quality Function Deployment and other R.E. mechanisms are used to identify stakeholders,
define the scope of the problem, specify overall operational goals, outline all known
functional requirements, and describe the object that will be manipulated by the system.

Developing an Activity Diagram

 What are the main tasks or functions that are performed by the actor?

 What system information will the actor acquire, produce or change?

 Will the actor have to inform the system about changes in the external environment?

 What information does the actor desire from the system?

 Does the actor wish to be informed about unexpected changes?

Software Engineering Unit-III

Mr. John Blesswin Page 8

h o m e o w n e r

A c c e s s c a m e r a
s u r v e i l la n c e v i a t h e

In t e r n e t

C o n f i g u r e S a f e H o m e
s y s t e m p a r a m e t e r s

S e t a la r m

c a m e r a s

S a f e H o m e

e n t e r p a ssw o r d
a n d u se r ID

se le c t m a jo r f u n c t io n

va lid pass w or ds / ID

p r o m p t f o r r e e n t r y

inva lid passw or ds / ID

input t r ies r em ain

no input
t r ies r em ain

se le c t su r v e illa n c e

ot her f unc t ions
m ay al so be

se lec t ed

t hum bnail v iew s s elec t a spec i f ic cam er a

se le c t c a m e r a ic o n

p r o m p t f o r
a n o t h e r v ie w

se le c t sp e c if ic
c a m e r a - t h u m b n a ils

ex it t his f unc t ion see anot her c am er a

v ie w c a m e r a o u t p u t
in la b e lle d w in d o w

Software Engineering Unit-III

Mr. John Blesswin Page 9

enter password
and user ID

select m ajor funct ion

valid p asswo r d s/ ID

prom pt for reent ry

in valid
p asswo r d s/ ID

in p u t t r ies
r em ain

n o in p u t
t r ies r em ain

select surveillance

o t h er f u n ct io n s
m ay also b e

select ed

t h u mb n ail views select a sp ecif ic cam er a

select camera icon

generate v ideo
output

select specif ic
camera - thumbnails

exit t h is
f u n ct io n

see
an o t h er
cam er a

h o m e o w n e r c a m e ra i n t e rf a c e

prom pt for
another v iew

view cam era output
in labelled window

Swimlane Diagrams

The UML swimlane diagram is a useful variation of the activity diagram and allows the
modeler to represent the flow of activities described by the user-case and at the same time
indicate which actor or analysis class has responsibility for the action described by an
activity rectangle.

Responsibilities are represented as parallel segments that divide the diagram vertically, like
the lanes in a swimming pool.

Software Engineering Unit-III

Mr. John Blesswin Page 10

Flow-Oriented Modeling

Represents how data objects are transformed as they move through the system.

A data flow diagram (DFD) is the diagrammatic form that is used to complement UML
diagrams.

Considered by many to be an ‘old school’ approach, flow-oriented modeling continues to
provide a view of the system that is unique.

The DFD takes an input-process-output insight into system requirements and flow.

Data objects are represented by labeled arrows and transformations are represented by
circles (called bubbles).

Creating a Data Flow Model

The DFD diagram enables the software engineer to develop models of the information
domain and functional domain at the same time.

As the DFD is refined into greater levels of detail, the analyst performs an implicit functional
decomposition of the system.

Guidelines:

1. The level 0 data DFD should depict the software/system as a single bubble.

2. Primary I/O should be carefully noted.

3. Refinement should begin by isolating candidate processes, data objects, and data
stores.

4. All arrows and bubbles should be labeled with meaningful names.

5. Information flow continuity must be maintained from level to level.

6. One bubble at one time should be refined.

Information continuity must be maintained at each level as DFD level is refined. This mean
that input and output at one level must be the same as input and output at a refined level.
Figures show how DFD works.

The flow Model

computer
based
system

input output

Software Engineering Unit-III

Mr. John Blesswin Page 11

external entity

process

data flow

data store

compute
triangle

area

base

height

area

Flow Modeling Notations

External Entity

A producer or consumer of data

Example: computer-based system

Data must always originate somewhere and must always be sent to something

Process

A data transformer (changes input to output)

Examples: compute taxes, determine area, format report, display graph

Data must always be processed in some way to achieve system function

Data Flow

Data flows through a system, beginning as input and be transformed into output.

Data Stores

Data is often stored for later use.

Software Engineering Unit-III

Mr. John Blesswin Page 12

look-up
sensor

data

sensor #

report required

sensor #, type,
location, age

sensor data

sensor number

type,
location, age

user
processing

request

video
source NTSC

video signal

digital
video

processor

requested
video
signal

monitor

Data Flow Diagramming:

Constructing a DFD—I

 Review the data model to isolate data objects and use a grammatical parse to determine
“operations”

 Determine external entities (producers and consumers of data)

 Create a level 0 DFD

Level 0 DFD Example

Constructing a DFD—II

 Write a narrative describing the transform

 Parse to determine next level transforms

 “Balance” the flow to maintain data flow continuity

 Develop a level 1 DFD

 Use a 1:5 (approx.) expansion ratio

Software Engineering Unit-III

Mr. John Blesswin Page 13

PSPEC
narrative
pseudocode (PDL)
equations
tables
diagrams and/or charts

bubble

The Data Flow Hierarchy

Pa bx y

p1
p2

p3
p4 5

a

bd
e

f

g

level 0

level 1

Flow Modeling Notes

 Each bubble is refined until it does just one thing

 The expansion ratio decreases as the number of levels increase

 Most systems require between 3 and 7 levels for an adequate flow model

 A single data flow item (arrow) may be expanded as levels increase (data dictionary
provides information)

The Process Specification

The Process Specification (PSPEC) is used to describe all flow model processes that appear
at the final level of refinement. It is a “mini” specification for each transform at the lowest
refined of a DFD.

Software Engineering Unit-III

Mr. John Blesswin Page 14

Maps intoanalysis model

design model

DFDs: A Look Ahead

Control Flow Diagrams

The diagram represents “events” and the processes that manage these events.

An “event” is a Boolean condition that can be ascertained by:

 Listing all sensors that are "read" by the software.

 Listing all interrupt conditions.

 Listing all "switches" that are actuated by an operator.

 Listing all data conditions.

 Recalling the noun/verb parse that was applied to the processing narrative, review all
"control items" as possible CSPEC inputs/outputs.

The Control Model

 The control flow diagram is "superimposed" on the DFD and shows events that control
the processes noted in the DFD.

 Control flows—events and control items—are noted by dashed arrows.

 A vertical bar implies an input to or output from a control spec (CSPEC) — a separate
specification that describes how control is handled.

Software Engineering Unit-III

Mr. John Blesswin Page 15

 A dashed arrow entering a vertical bar is an input to the CSPEC

 A dashed arrow leaving a process implies a data condition.

 A dashed arrow entering a process implies a control input read directly by the process.

 Control flows do not physically activate/deactivate the processes—this is done via the
CSPEC.

Control Flow Diagram

Class-Based Modeling

This section describes the process of developing an object-oriented analysis (OOA) model.
The generic process described begins with guidelines for identifying potential analysis
classes, suggestions for defining attributes and operations for those classes, and a
discussion of the Class-Responsibility-Collaborator (CRC) model. The CRC card is used as
the basis for developing a network of objects that comprise the object-relationship model.

Identifying Analysis Classes

 Identify analysis classes by examining the problem statement

 Use a “grammatical parse” to isolate potential classes

 Identify the attributes of each class

 Identify operations that manipulate the attributes

read
operator

input

create
user

displays
perform
problem
diagnosis

reload
process

manage
copying

beeper on/off

start

copies done

display panel enabled

full

problem light

empty

jammed

Software Engineering Unit-III

Mr. John Blesswin Page 16

needed services

multiple attributes

common attributes

common operations

essential requirements

retained information

Analysis Classes manifest themselves in one of the following ways:

 External entities (e.g., other systems, devices, people) that produce or consume
information to be used by a computer-based system.

 Things (e.g., reports, displays, letters, signals) that are part of the information domain
for the problem.

 Occurrences or events (e.g., a property transfer or the completion of a series of robot
movements) that occur within the context of system operation.

 Roles (e.g., manager, engineer, salesperson) played by people who interact with the
system.

 Organizational units (e.g., division, group, and team) that are relevant to an
application.

 Places (e.g., manufacturing floor or loading dock) that establish the context of the
problem and the overall function of the system.

 Structures (e.g., sensors, four-wheeled vehicles, or computers) that define a class of
objects or related classes of objects.

Performing a “grammatical parse” on a processing narrative for a problem helps extracting
the nouns. After identifying the nouns, a number of potential classes are proposed in a list.
The list will be continued until all nouns in the processing narratives have been considered.
Each entry is in the list is a potential object.

How do I determine whether a potential class should, in fact, become an analysis class?

Software Engineering Unit-III

Mr. John Blesswin Page 17

1. Retained Information: The potential class will be useful during analysis only if
information about it must be remembered so that the system can function.

2. Needed Services: The potential class must have a set of identifiable operations that
can change the value of its attributes in some way.

3. Multiple attributes: During R.A., the focus should be on “major” information; a class
with a single attribute may, in fact, be useful during design, but is probably better
represented as an attribute of another class during the analysis activity.

4. Common attributes: a set of attributes can be defined for the potential class, and
these attributes apply to all instances of the class.

5. Common operations: a set of operations can be defined for the potential class, and
these operations apply to all instances of the class.

6. Essential Requirements: External entities that appear in the problem space and
produce or consume information essential to the operation of any solution for the
system will almost always be defined as classes in the requirement model.

 To be considered a legitimate class for inclusion in the requirements model, a potential
class should satisfy all of these characteristics.

Specifying Attributes

Attributes are set of data objects that fully define the class within the context of the problem
space.

System

program()
display()
reset()
query()
modify()
call()

systemID
verificationPhoneNumber
systemStatus
delayTime
telephoneNumber
masterPassword
temporaryPassword
numberTries

Class name

attributes

operations

Software Engineering Unit-III

Mr. John Blesswin Page 18

To develop a meaningful set of attributes for an analysis class, a software engineer can
study a use-case and select those “things” that “reasonably” belong to the class. An
important question that should be answered for each class: what data items fully define the
class in the context of the problem at hand.

Defining Operations

Operations define the behavior of an object divided into 4 broad categories:

1. Operations that manipulate data (adding, deleting, selecting, reformatting.)

2. Operations that perform a computation.

3. Operations that inquire about the state of an object.

4. Operations that monitor an object for the occurrence of a controlling event.

Class Diagram

FloorPlan

determineType ()
positionFloorplan
scale()
change color()

type
name
outsideDimensions

Cam era

det erm ineType ()
t ranslateLocat ion ()
display ID()
displayV iew()
displayZoom ()

t ype
ID
locat ion
f ieldView
panAngle
ZoomSet t ing

WallSegm ent

type
start Coordinates
stopCoordinates
nextWallSem ent

determineType ()
draw()

Window

type
s tartCoordinates
s topCoordinat es
nex tWindow

determineType ()
draw()

is placed wit hin

Wall

type
wallDim ens ions

determineType ()
computeDimensions ()

Door

t ype
s tartCoordinates
s topCoordinates
nex tDoor

determineType ()
draw()

is par t of

is used t o buildis used to build

is used to build

Software Engineering Unit-III

Mr. John Blesswin Page 19

Class:
Description:

Responsibility: Collaborator:

Class:
Description:

Responsibility: Collaborator:

Class:
Description:

Responsibility: Collaborator:

Class: FloorPlan
Description:

Responsibility: Collaborator:

incorporates walls, doors and windows

shows position of video cameras

defines floor plan name/type

manages floor plan positioning

scales floor plan for display
scales floor plan for display

Wall

Camera

Class Responsibility Collaborator (CRC) Modeling

Class-Responsibility-Collaborator (CRC) Modeling provides a simple means for identifying
and organizing the classes that are relevant to system or product requirement.

CRC modeling is described as follows:

“A CRC model is really a collection of standard index cards that represent classes. The
cards are divided into three sections. Along the top of the card you write the name of the
class. In the body of the card you list the class responsibilities on the left and the
collaborators on the right.”

Responsibilities are the attributes and operations that are relevant for the class. “Anything
the class knows or does.”

Collaborators are those classes that are required to provide a class with the information
needed to complete a responsibility.

In general, collaboration implies either a request for information or a request for some
action.

Classes:

The taxonomy of class types can be extended by considering the following categories:

 Entity classes, also called model or business classes, are extracted directly from the
statement of the problem (e.g., FloorPlan and Sensor).

 Boundary classes are used to create the interface (e.g., interactive screen or printed
reports) that the user sees and interacts with as the software is used.

Software Engineering Unit-III

Mr. John Blesswin Page 20

 Controller classes manage a “unit of work” [UML03] from start to finish. That is,
controller classes can be designed to manage

o the creation or update of entity objects;

o the instantiation of boundary objects as they obtain information from entity
objects;

o complex communication between sets of objects;

o Validation of data communicated between objects or between the user and the
application.

Responsibilities

1. System intelligence should be distributed across classes to best address the needs of the
problem

2. Each responsibility should be stated as generally as possible

3. Information and the behavior related to it should reside within the same class

4. Information about one thing should be localized with a single class, not distributed
across multiple classes.

5. Responsibilities should be shared among related classes, when appropriate.

Collaborations

 Classes fulfill their responsibilities in one of two ways:

1. A class can use its own operations to manipulate its own attributes, thereby
fulfilling a particular responsibility, or

2. A class can collaborate with other classes.

 Collaborations identify relationships between classes

 Collaborations are identified by determining whether a class can fulfill each
responsibility itself

 Three different generic relationships between classes [WIR90]:

1. the is-part-of relationship

2. the has-knowledge-of relationship

3. the depends-upon relationship

Software Engineering Unit-III

Mr. John Blesswin Page 21

Player

PlayerHead PlayerArms PlayerLegsPlayerBody

Reviewing the CRC Model

1. All participants in the review (of the CRC model) are given a subset of the CRC model
index cards. Cards that collaborate should be separated (i.e., no reviewer should have
two cards that collaborate).

2. All use-case scenarios (and corresponding use-case diagrams) should be organized into
categories.

3. The review leader reads the use-case deliberately. As the review leader comes to a
named object, she passes a token to the person holding the corresponding class index
card.

4. When the token is passed, the holder of the class card is asked to describe the
responsibilities noted on the card. The group determines whether one (or more) of the
responsibilities satisfies the use-case requirement.

5. If the responsibilities and collaborations noted on the index cards cannot accommodate
the use-case, modifications are made to the cards. This may include the definition of
new classes (and corresponding CRC index cards) or the specification of new or revised
responsibilities or collaborations on existing cards.

Associations and Dependencies

 Two analysis classes are often related to one another in some fashion

o In UML these relationships are called associations

Software Engineering Unit-III

Mr. John Blesswin Page 22

WallSegm ent Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

o Associations can be refined by indicating multiplicity (the term cardinality is
used in data modeling)

 In many instances, a client-server relationship exists between two analysis classes.

o In such cases, a client-class depends on the server-class in some way and a
dependency relationship is established

Analysis Packages

 Various elements of the analysis model (e.g., use-cases, analysis classes) are
categorized in a manner that packages them as a grouping

 The plus sign preceding the analysis class name in each package indicates that the
classes have public visibility and are therefore accessible from other packages.

 Other symbols can precede an element within a package. A minus sign indicates that
an element is hidden from all other packages and a # symbol indicates that an
element is accessible only to packages contained within a given package.

CameraDisplayWindow

{password}

<<access>>

Software Engineering Unit-III

Mr. John Blesswin Page 23

Creating a Behavioral Model

 The behavioral model indicates how software will respond to external events or
stimuli. To create the model, the analyst must perform the following steps:

o Evaluate all use-cases to fully understand the sequence of interaction within
the system.

o Identify events that drive the interaction sequence and understand how these
events relate to specific objects.

o Create a sequence for each use-case.

o Build a state diagram for the system.

o Review the behavioral model to verify accuracy and consistency.

 State Representations

 In the context of behavioral modeling, two different characterizations of states must
be considered:

o the state of each class as the system performs its function and

o the state of the system as observed from the outside as the system performs its
function

 The state of a class takes on both passive and active characteristics [CHA93].

Environment

+Tree
+Landscape
+Road
+Wall
+Bridge
+Building
+VisualEffect
+Scene

Characters

+Player
+Protagonist
+Antagonist
+SupportingRole

RulesOfTheGame

+RulesOfMovement
+ConstraintsOnAction

package name

Software Engineering Unit-III

Mr. John Blesswin Page 24

o A passive state is simply the current status of all of an object’s attributes.

 The active state of an object indicates the current status of the object as it undergoes
a continuing transformation or processing.

The States of a System

 State—a set of observable circumstances that characterizes the behavior of a system
at a given time

 State transition—the movement from one state to another

 Event—an occurrence that causes the system to exhibit some predictable form of
behavior

 Action—process that occurs as a consequence of making a transition

reading

locked

select ing

password
ent ered

comparing

password = incorrect
& numberOfTries < maxTries

password = correct

act ivat ion successfu l

key hit

do: val idat ePassword

numberOfTries > maxTries

t imer < lockedTime

t imer > lockedTime

