WIRELESS NETWORKS

UNIT-1 WIRELESS TRANSMISSION

- WIKELESS TRANSMISSION

UNIT I Syllabus

 Introduction: Applications, Short History of

Wireless Communications, Simplified

Reference Model.

 Wireless Transmission: Frequencies, Signals,

 Wireless Transmission: Freq **UNIT – I Syllabus**
 Introduction: Applications, Short History of

Wireless Communications, Simplified

Reference Model.
 Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Spr **UNIT – I Syllabus**

• Introduction: Applications, Short History of

Wireless Communications, Simplified

Reference Model.

• Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Spr **UNIT – I Syllabus**
 Introduction: Applications, Short History of

Wireless Communications, Simplified

Reference Model.
 Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Spe UNIT-1

IRELESS TRANSMISSION

UNIT – I Syllabus

Dn: Applications, Short History of

Communications, Simplified
-
- **UNIT I Syllabus**

 Introduction: Applications, Short History of

Wireless Communications, Simplified

Reference Model.

 Wireless Transmission: Frequencies, Signals,

 Signal Propagation, Multiplexing, Modulation,

S **UNIT – I Syllabus**

Introduction: Applications, Short History of

Wireless Communications, Simplified

Reference Model.

Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Spread **UNIT – I Syllabus**

Introduction: Applications, Short History of

Wireless Communications, Simplified

Reference Model.

Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Spread

Introduction

-
-
- vacation?
-
-
- **Introduction**

 Now a days, most of the computers will certainly be **portable.**

 How will users access networks with the help of computers or

other communication devices?

 An ever-increasing number without any wires **Introduction**
Now a days, most of the computers will certainly be portable.
How will users access networks with the help of computers or
other communication devices?
An ever-increasing number without any wires, i.e., wire **Community: Consumeration**
 Community and the computers will certainly be portable.

How will users access networks with the help of computers or

other communication devices?

An ever-increasing number without any wir **intelligent traffic signs and sensors.**

• Thow will users access networks with the help of computers or

other communication devices?

• An ever-increasing number without any wires, i.e., wireless.

How will people spend **Introduction**

Now a days, most of the computers will certainly be **portable**.

How will users access networks with the help of computers or

other communication devices?

An ever-increasing number without any wires, i.e.
-

Introduction

-
- 8/30/2024

 There are two different kinds of mobility: User Mobility

 User Mobility

 User Mohility refers to a user who has access to the same

or similar telecommunication services at different places,

i.e., the use **and Device portability.** • There are two different kinds of mobility: User Mobility
and Device portability.
• User Mobility refers to a user who has access to the same
or similar telecommunication services at different pl **SAU SET ASSEM SET ASSEM SET ASSEMATION SET ASSEMATION There are two different kinds of mobility: User Mobility**
 Or similar telecommunication services at different places,
 Or similar telecommunication services at diff 8/30/2024
 Introduction

There are two different kinds of mobility: User Mobility

and Device portability.

User Mobility refers to a user who has access to the same

or similar telecommunication services at different pl 8/30/2024
 Introduction

There are two different kinds of mobility: User Mobility

and Device portability.

User Mobility refers to a user who has access to the same

or similar telecommunication services at different pl 8/30/2024
 Contain Control Co
- **Example 19 The Conduction School Computer desktops supportion**
 Computer desktops supporting roaming roaming roaming roaming relations supporting roaming relations supporting roaming is the communication device and the s 8/30/2024
 Introduction

There are two different kinds of mobility: User Mobility

and Device portability.

User Mobility refers to a user who has access to the same

or similar telecommunication services at different pl 8/30/2024
 Introduction

There are two different kinds of mobility: User Mobility

and Device portability.

User Mobility refers to a user who has access to the same

User Mobility refers to a user who has access to the **Consumer Solution Internation**
 Consumer Solution

There are two different kinds of mobility: User Mobility

User Mobility refers to a user who has access to the same

or smallar telecommunication services at different **Introduction**
There are two different kinds of mobility: User Mobility
and Device portability.
 User Mobility refers to a user who has access will follow him

Le., the user can be mobile, and the services will follow hi **Introduction**
 Introduction

There are two different kinds of mobility: User Mobility

and Device portability.

Or similar telecommunication services at different places,

i.e., the user can be mobile, and the services **Introduction**
 There are two different kinds of mobility: User Mobility
 Nuser Mobility reders to a user who has access to the same

or similar telecommunication services at different places,

the user can be mobile, **Introduction**
There are two different kinds of mobility: User Mobility
User Mobility refers to a user who has access to the same
or similar telecommunication services at different places,
the user can be mobile, and the s

- Vehicles
- Emergencies
- Business
- Replacement of wired networks
- Infotainment and more
- Location dependent services
- Mobile and wireless devices

- Emergencies –
-
- Ambulance with a high-quality wireless **Applications**
 Confidence Connection to a hospital.
 Connection to a hospital.
 Connection to a hospital.
 Connection in the case of natural disasters such as **hurricanes or earthquakes. Applications**
 CERT CONTEX CONT 8/30/2024
 Applications
 Emergencies –
 Ambulance with a high-quality wireless

connection to a hospital.

Wireless networks are the only means of

communication in the case of **natural**

disasters such as hurricanes **disasters such as a hypericular such as hypercondity of the superiorist Connection to a hospital.**
 Connection to a hospital.

Wireless networks are the only means of communication in the case of **natural**

disasters su

-
- 8/30/2024
 Replacement of wired networks

► In some cases, wireless networks can also be

used to replace wired networks, e.g., remote

sensors, for tradeshows, or in historic buildings.

► Due to economic reasons, it **Applications**
 Applications
 Physics
 Ph
- **Applications**
 Explacement of wired networks

In some cases, wireless networks can also be

used to replace wired networks, e.g., remote
 Sensors, for tradeshows, or in **historic buildings**.

Due to economic reasons, **Solution Specifical Spensors, and Solution**
 Solution S
 **Conomic cases, wireless networks can also be used to replace wired networks, e.g., remote

sensors, for tradeshows, or in historic buildings.

Due to economic r Applications**
Replacement of wired networks
In some cases, wireless networks can also be
used to replace wired networks, e.g., remote
sensors, for tradeshows, or in **historic buildings**.
Due to economic reasons, it is 8/30/20:
 Applications
 Replacement of wired networks

In some cases, wireless networks can also be

used to replace wired networks, e.g., remote
 sensors, for tradeshows, or in **historic buildings**.

Due to economic **Applications**
 Applications
 Applications
 \triangleright In some cases, wireless networks can also be

used to replace wired networks, e.g., remote

sensors, for tradeshows, or in historic buildings.
 \triangleright Due to economic **Applications**
 Replacement of wired networks

In some cases, wireless networks can also be

used to replace wired networks, e.g., remote
 sensors, for tradeshows, or in historic buildings.

Due to economic reasons, it **Applications**
 Replacement of wired networks
 Example 8 to replace wireless networks, e.g., remote

used to replace wirel networks, e.g., remote
 Sensors, for tradeshows, or in **historic buildings**.
 Example 10 w **Applications**
Replacement of wired networks
In some cases, wireless networks, e.g., remote
sensors, for tradeshows, or in historic buildings.
Due to economic reasons, it is often impossible to
wire remote sensors for we **Applications**
Replacement of wired networks
In some cases, wireless networks can also be
used to replace wired networks, e.g., remote
sensors, for tradeshows, or in **historic buildings**.
Due to economic reasons, it is
-
-

- Location dependent services
- Follow-on services
- Location aware services
- \triangleright Privacy
- \triangleright Information services
- Support services

- Mobile and Wireless devices
- Sensor : Automatic Door Openers
- Embedded Controllers : TV, Washing Machines
- \triangleright Pager: Displays short text message.
- Mobile phones
- Personal Digital Assistant
- Pocket Computer
- E-Notebook/Laptop

A Short history of Wireless Communication

-
- **A Short history of Wireless Communication**

 In ancient times, the **light** was either modulated' using mirrors

to create a certain light on/light of pattern.

 The use of smoke signals for communication is mentioned b **A Short history of Wireless Communication**
 to create a certain light on/light off pattern. • The use of smoke signals for communication is mentioned by
 c The use of smoke signals for communication is mentioned by
 8/30/2024
 A Short history of Wireless Communication

In ancient times, the light was either modulated' using mirrors

to create a certain light on/light off pattern.

The use of smoke signals for communication is mentio **A Short history of Wireless Communication**

In ancient times, the light was either modulated' using mirrors

to create a certain light on/light off pattern.

The use of smoke signals for communication is mentioned by

Po 8/30/2024
 A Short history of Wireless Communication

In ancient times, the light was either modulated' using mirrors

to create a certain light on/light off pattern.

The use of smoke signals for communication is mentio **Signal towards to the capitol Change of Microsofterm Change (Signal towards to create a certain light on/light off pattern.**

The use of smoke signals for communication is mentioned by

The use of smoke signals for commu 8/30/2024
 A Short history of Wireless Communication

In ancient times, the light was either modulated' using mirrors

to create a certain light on/light off pattern.

The use of smoke signals for communication is menti **A Short history of Wireless Communication**

• In ancient times, the light was either modulated' using mirrors

to create a certain light on/light off pattern.

• The use of smoke signals for communication is mentioned by 8/30/2024
 A Short history of Wireless Communication

In ancient times, the light on/light off pattern.

The use of smoke signals for communication is mentioned by

Polyblius, Greece, as early as 150 Bc. It is also repor A Short history of Wireless Communication

In ancient times, the light was either modulated' using mirrors

to create a certain light on/light off pattern.

The use of smoke signals for communication is mentioned by

Polyb **A Short history of Wireless Communication**
 • In ancient times, the light was either modulated' using mirrors

to create a certain light on/light off pattern.

•• The use of smoke signals for communication is mentioned **A Short history of Wireless Communication**
In ancient times, the light was either modulated' using mirrors
to create a certain light on/light off pattern.
The use of smoke signals for communication is mentioned by
Polybiu A Short history of Wireless Communication

In ancient times, the light was either modulated' using mirrors

to create a certain light on/light off pattern.

The use of smoke signals for communication is mentioned by

Polyb
- introduced.
- succeed.
-

A Simplified Reference Model

- **Example 18 Simplified Reference Model**
 Physical layer:

 This is the lowest layer in a communication system and is

responsible for the conversion of a stream of bits into
 signals that can be transmitted on the send A Simplified Reference Model
 Reference Model
 Reference Model
 Reference
 Reference
 **This is the lowest layer in a communication system and is

Express to the conversion of a stream of bits into

Signals that Signal signals that can be transmitted on the sender side.** • This is the lowest layer in a communication system and is responsible for the conversion of a stream of bits into signals that can be transforms the receiver **Simplified Reference Model**
 Physical layer:

• This is the lowest layer in a communication system and is

responsible for the conversion of a stream of bits into

signals that can be transmitted on the sender side.

• 8/
 A Simplified Reference Model
 Reference Model
 Reference Model
 References
 **Referen A Simplified Reference Model

Physical layer:**

This is the lowest layer in a communication system and is

responsible for the conversion of a stream of bits into

signals that can be transmitted on the sender side.

The **A Simplified Reference Model

Physical layer:**

This is the lowest layer in a communication system and is

responsible for the conversion of a stream of bits into

signals that can be transmitted on the sender side.

Th **A Simplified Reference Model

Physical layer:**

• This is the lowest layer in a communication system and is

responsible for the conversion of a stream of bits into

signals that can be transmitted on the sender side.

• **A Simplified Reference Model**

Physical layer:

This is the lowest layer in a communication system and is

responsible for the conversion of a stream of bits into

signals that can be transmitted on the sender side.

The **A Simplified Reference Model**
 Physical layer:

• This is the lowest layer in a communication system and is

responsible for the conversion of a stream of bits into

signals that can be transmitted on the sender side.

-
- syaras Jack nito a Jin Sire
For wireless communication, the physical layer is
responsible for
frequency selection,
modulation of data onto a carrier frequency
modulation of data onto a carrier frequency
and (depending on t
-
-
-
-
-

A Simplified Reference Model

-
-
-
-
- frequency selection,

generation of the carrier frequency,

signal detection

modulation of data onto a carrier frequency

and (depending on the transmission scheme) encryption.

 A Simplified Reference Model

 signal detection

signal detection

modulation of data onto a carrier frequency

and (depending on the transmission scheme) encryption.

 A Simplified Reference Model

 Data link layer:

• The main tasks of this lay signal detection

modulation of data onto a carrier frequency

and (depending on the transmission scheme) encryption.

 A Simplified Reference Model

Data link layer:

• The main tasks of this layer include
 \triangleright acce frame).
- modulation of data onto a carrier frequency

and (depending on the transmission scheme) encryption.

 A Simplified Reference Model

Data link layer:

 The main tasks of this layer include
 \triangleright accessing the medium **A Simplified Reference Model**
 Data link layer:

• The main tasks of this layer include
 \triangleright accessing the medium,
 \triangleright multiplexing of different data streams,
 \triangleright correction of transmission errors,
 \triangleright a **A Simplified Reference Model**
 A Simplified Reference Model
 The main tasks of this layer include

accessing the medium,

multiplexing of different data streams,

correction of transmission errors,

and synchronizatio **A Simplified Reference Model**
 A simplified Reference Model
 The main tasks of this layer include

accessing the medium,

multiplexing of different data streams,

correction of transmission errors,

carrection of a da **A Simplified Reference Model**

Ita link layer:

The main tasks of this layer include

accessing the medium,

multiplexing of different data streams,

correction of transmission errors,

and synchronization (i.e., detectio

A Simplified Reference Model

Network layer:

This third layer is responsible for

-
- **A Simplified Reference Model**
 Reference Model
 Reference Model
 Reference Model
 Reference Model
 Reference Model
 Proventy packets through a network or
 Proventy of the intermediate systems.
 Proventant
- **Example 18 Simplified Reference Model**
 Example 18 Simplified Reference Model
 Network layer:

This third layer is responsible for
 \triangleright routing packets through a network or
 \triangleright establishing a connection betwee 8/30/2024
 A Simplified Reference Model
 Contains the system of Simplified Reference Model

Statistic layer is responsible for
 Property of Simple Systems
 Contains a connection between two entities
 Contains a co 8/30/2024
 A Simplified Reference Model

Network layer:

This third layer is responsible for

≻ routing packets through a network or

≻ setablishing a connection between two entities

over many other intermediate system location, and handover between different networks.
-

A Simplified Reference Model

Transport layer:

Figureal topics are addressing, roding, device
 \triangleright and handover between different networks.

 A Simplified Reference Model
 Transport layer:

This layer is used in the reference model to establish an

end-to-end A Simplified Reference Model

Transport layer:

This layer is used in the reference Model

Transport layer:

This layer is used in the reference model to establish an

end-to-end connection.

Control are relevant,
 \triangleright **A Simplified Reference Model

Transport layer:**

This layer is used in the reference model to establish an

end-to-end connection.

Topics like
 \triangleright Quality of Service,
 \triangleright flow and congestion
 \triangleright control are

-
-
-
-
- **A Simplified Reference Model

Transport layer:**

This layer is used in the reference model to establish an

end-to-end connection.

 Topics like

→ Quality of Service,

→ flow and congestion

→ control are relevant,

→ **Control are relevant**
 Control are relevant
 Control are relevant
 Control are relevant
 Control are relevant,
 Control are relevant,
 \triangleright control are relevant,
 \triangleright control are relevant,
 \triangleright especial **A Simplified Reference Model**
 A Simplified Reference Model

Is layer is used in the reference model to establish an

Topics like

Quality of Service,

Quality of Service,

flow and congestion

control are relevant,

es link.

A Simplified Reference Model

- **A Simplified Reference Model**
 Application layer:

 Finally, the applications (complemented by additional

layers that can support applications) are situated on top

of all transmission oriented layers.

 Topics of in 8/30/2024
 A Simplified Reference Model
 pplication layer:
 Finally, the applications (complemented by additional

layers that can support applications) are situated on top

of all transmission oriented layers.

Topi **A Simplified Reference Model**
 Application layer:

• Finally, the applications (complemented by additional

layers that can support applications) are situated on top

of all transmission oriented layers.

• Service Loc A Simplified Reference Model

Application layer:

• Finally, the applications (complemented by additional

layers that can support applications) are situated on top

of all transmission oriented layers.

• Topics of intere **A Simplified Reference Model**
 Application layer:
 Complemented by additional applications
 Complemented by additional

layers that can support applications) are situated on top

of all transmission oriented layers **A Simplified Reference Model Application layer:**
 A Simplified Reference Model Applications (complemented by additional layers that can support applications) are situated on top of all transmission oriented layers.

• 8/30/2024
 A Simplified Reference Model
 pplication layer:
 finally, the applications (complemented by additional

layers that can support applications) are situated on top

of all transmission oriented layers.

Top **A Simplified Reference Model**
 Application layer:

• Finally, the applications (complemented by additional

layers that can support applications) are situated on top

of all transmission oriented layers.

• Topics of i **A Simplified Reference Model**
 Application layer:

• Finally, the applications (complemented by additional

layers that can support applications) are situated on top

of all transmission oriented layers.

• Topics of i **A Simplified Reference Model**
pplication layer:
Finally, the applications (complemented by additional
layers that can support applications) are situated on top
of all transmission oriented layers.
Topics of interest in th
-
-
-
-
- device.
-

WIRELESS TRANSMISSION

- Frequencies,
- \triangleright Signals,
- Antennas,
-
- Multiplexing,
- Modulation,
-
- MIRELESS TRANSMISSION

> Frequencies,

> Signals,

> Antennas,

> Signal Propagation,

> Multiplexing,

> Modulation,

> Spread Spectrum,

> Cellular Systems: Frequency Management

and Channel Assignment, types of hand-off WIRELESS TRANSMISSION

> Frequencies,

> Signals,

> Antennas,

> Signal Propagation,

> Mudtiplexing,

> Modulation,

> Spread Spectrum,

> Cellular Systems: Frequency Management

and Channel Assignment, types of hand-off **WIRELESS TRANSMISSION**
Frequencies,
Signals,
Antennas,
Antennas,
Signal Propagation,
Multiplexing,
Modulation,
Spread Spectrum,
Cellular Systems: Frequency Management
and Channel Assignment, types of hand-off
and their ch **MIRELESS TRANSMISSION**

Frequencies,

Signals,

Antennas,

Signal Propagation,

Multiplexing,

Modulation,

Spread Spectrum,

Cellular Systems: Frequency Management

and Channel Assignment, types of hand-off

and their ch

-
- **Example 19 SET Alternative S**
	-
- **Frequencies**
• Radio transmission can take place using many different
frequency bands.
• Directly coupled to the frequency is the wavelength λ via
the equation:
• For traditional wired networks, frequencies of up to **Frequencies**

Radio transmission can take place using many different

frequency bands.

Directly coupled to the frequency is the wavelength λ via

the equation:
 $\lambda = cf$, where $c \approx 3 \times 10^8$ m/s and f the frequency.
 8/30/2024
 Frequency and the frequency is the wavelength λ via
 frequency bands.

• Directly coupled to the frequency is the wavelength λ via
 he equation:
 $λ = c/f$, where $c ≅ 3x10⁶ m/s$ and f the frequency.

- **Example 19** S/30/2024
 Example 10 Constant and the place using many different

frequency bands.

Directly coupled to the frequency is the wavelength λ via

the equation:
 $\lambda = cf$, where $c \approx 3X10^8 \text{ m/s}$ and f the f **Example 19** S/30/2024
 Example 19 Constant Example 19 Constant Con Example 19 S/30/2024
 Example 10 Constant Trequency bands.

Directly coupled to the frequency is the wavelength λ via

the equation:
 $\lambda = c/f$, where $c \approx 3 \times 10^8$ m/s and f the frequency.

For traditional wired ne
- **Example 19 Follow The School School School School**
 Example 19 Follow Theorem School Several hundred MHz are used for traditional wires Example 10 m
 Example 100 m Frequency bands.

• Firectity coupled to the frequency is the wavelength λ via

the equation:

• Firecty coupled to the frequency is the wavelength λ via

the equation:

• For traditi **Frequencies**

Radio transmission can take place using many different

frequency bands.

Directly coupled to the frequency is the wavelength λ via

the equation:
 $\lambda = cf,$

For traditional wired networks, frequencies of **Frequencies**

Radio transmission can take place using many different

frequency bands.

Directly coupled to the frequency is the wavelength λ via

the equation:
 $\lambda = c/f$, where $c \approx 3 \times 10^8$ m/s and f the frequency.
 red).

-
- ^{8/30/2024}
• **Radio transmission** starts at several kHz, the very low
frequency (VLF) range.
• These are very long waves. Waves in the **Low Frequency (LF)**
range are used by Submarines, because they can penetrate
water an **Frequencies**

• Radio transmission starts at several kHz, the very low

frequency (VLF) range.

• These are very long waves. Waves in the Low Frequency (LF)

• These are very long waves. Waves in the Low Frequency (LF)

r **Example 19 Set of the Submarines are used by Submarines are used by Submarines, because they can penetrate and can follow the earth's surface. Some radio stations that are used by Submarines, because they can penetrate wa EPEQUENCIES**
 EPEQUENCIES
 Radio transmission starts at several kHz, the **very low**
 Frequency (VLF) range.

These are very long waves. Waves in the **Low Frequency (LF)**
 These are very long waves. Waves in the **Solution State of the Solution State of the Solution State of the State of the State Tequency (VLF) range.**
 State are very low
 State are very low state in the Low Frequency (LF)
 These are very long waves. Waves i
- **EVALUATE SET ASSEM SET ASSEMUTE AND SET ASSEM SET ASSEM SERVICUS THE CHARGE AND THE CHARGE AND THE CHARGE AND THE CHARGE AND THE CHARGE WAT AS THE WAT AS STELL IS ON HIGH FREQUENCY THE WATER WATER WAT A STELL USE THE MEDI Example 19 Example 10**
 Example 2
 Example 10
 Example 10
 Example 10
 Example 10
 E 8/30/2024
 EFEQUENCIES
 Radio transmission starts at several kHz, the very low

freequency (VLF) range.

These are very long waves. Waves in the Low Frequency (LF)

range are used by Submarines, because they can penetr 8/30/2024
 ETEQUENCIES

Radio transmission starts at several kHz, the very low

frequency (VLF) range.

These are very long waves. Waves in the Low Frequency (LF)

range are used by submanines, because they can penetrate **Frequencies**
 Frequency (VLF) range.
 Frequency (VLF) range.

These are very long waves. Waves in the Low Frequency (LF)

range are used by submarines, because they can penetrate

range are used by submarines, becaus **Frequencies**
 Radio transmission starts at several kHz, the very low
 Frequency (VIF) range. Waves in the Low Frequency (IF)

range are used by Submarines, because they can penetrate

water and can follow the earth's **Frequencies**
 Radio transmission starts at several kHz, the very low

frequency (VLF) range.

These are very long waves. Waves in the Low Frequency (LF)

range are used by Submarines, because they can penetrate

water a **Frequencies**
 Radio transmission starts at several kHz, the very low

frequency (VLF) range.

These are very long waves. Waves in the Low Frequency (LF)

These are very long waves. Waves in the Low Frequency (LF)

water **Frequencies**
 Radio transmission starts at several kHz, the very low

frequency (VLF) range.

These are very long waves. Waves in the Low Frequency (LF)

range are used by Submarines, because they can penetrate

water a
-
-

Frequencies

- The Medium Frequency (MF) and High Frequency (HP) ranges
as amplitude modulation (AM) between 520 kHz and 1605.5
thtz, as Short Wave (SW) between 57.5 MHz and 26.1 MHz, or as
tequency modulation (FM) between 57.5 MHz and Free typical for transmission of hundreds of radio stations either
the stand 1605.5
Hz, as Short Wave (SW) between 5.9 MHz and 26.1 MHz, or as
Hz, as Short Wave (SW) between 5.9 MHz and 26.1 MHz, or as
requency modulation as amplitude modulation (AM) between 520 kHz and 1605.5

anglikide modulation (FM) between 87.5 MHz and 26.1 MHz, or as

requency modulation (FM) between 87.5 MHz and 108 MHz.

The frequencies limiting these ranges are typ Here the context (SW) between **5.3 MHz and 26.1 MHz**, or as

requency modulation (FM) between **87.5 MHz** and 108 MHz.

The frequencies limiting these ranges are typically fixed by

anational regulation and, vary from count requencies limiting these ranges are typically fixed by
The frequencies limiting these ranges are typically fixed by
antional regulation and, vary from country to country.
 Nother waves are typically used for (anateur) ra The frequencies limiting these ranges are typically fixed by

intrindiction and, vary from country to country.

Short waves are typically used for (amateur) radio

consphere. Transmit power is up to 500 KW – which is quite reusing some of the old frequencies for analog NHz, 1710–1880 MHz, 2020–2025 MHz, 2020–2025 MHz, 2020–2035 MHz, 2020 MHz of the UNIT Street et all frequencies for analog TV. is transmitted in ranges of 174–200 MHz and 470 Framession around the wond, enable by renettion at the displacements of the 1 W of a mobile phone.
 Frequencies
 Frequencies
 Conventional analog TV is transmitted in ranges of 174—230 MHz and 470–790 MHz using the Solomber Constant (The United Barrow Theorem Considered to the 1 W of a mobile phone.

The Conventional analog TV is transmitted in ranges of 174–230 MHz and 470–790 MHz using the very high frequency

(VHF) and ultra high From the Decrementation of currently being the **Example 19:**
 Example 10: Conventional analog TV is transmitted in ranges of 174–230 MHz and 470–790 MHz using the very high frequency (VHF) and ultra high frequency (UHF) bands. In this range, Digital Audio Broadcast **Frequencies**
 Conventional analog TV is transmitted in ranges of 174–230 MHz and 470–790 MHz using the very high frequency

(VHF) and ultra high frequency (UHF) bands. In this

range, Digital Audio Broadcasting (DAB) ta **Frequencies**
• **Conventional analog TV** is transmitted in ranges of 174–230 MHz and 470–790 MHz using the very high frequency (VHF) and ultra high frequency (VHF) bands. in this range, Digital Audio Broadcasting (DAB) ta **Frequencies**
 Conventional analog TV is transmitted in ranges of 174–230 MHz and 470–790 MHz using the very high frequency

(VHF) and ultra high frequency (UHF) bands. In this

renge, Digital Audio Broadcasting (DAB) ta
- more.
-

- **Super High Frequencies (SHF)** are typically used for directed microwave links (approx. 2–40 GHz) and fixed satellite services in the C-band (4 and 6 GHz), Ku-band (11 and 14 GHz), or Ka-band (19 and 29 GHz). The system 8/30/2024
 Erequencies (SHF) are typically used for

directed microwave links (approx. 2–40 GHz) and fixed

satellite services in the C-band (4 and 6 GHz), Ku-band

(11 and 14 GHz), or Ka-band (19 and 29 GHz).

Some syst 8/30/2024
 Super High Frequencies (SHF) are typically used for

directed microwave links (approx. 2–40 GHz) and fixed

satellite services in the C-band (4 and 6 GHz), Ku-band

(11 and 14 GHz), or Ka-band (19 and 29 GHz). (11 and 14 GHz), or Ka-band (19 and 29 GHz), we chand (4 and 6 GHz), Ku-band (11 and 14 GHz), or Ka-band (19 and 29 GHz). Ku-band (11 and 14 GHz), or Ka-band (19 and 29 GHz).

Some systems are planned in the Extremely Hig **Frequencies (SHF)** are typically used for directed microwave links (approx. 2–40 GHz) and fixed satellite services in the C-band (4 and 6 GHz), Ku-band (11 and 14 GHz), or Ka-band (19 and 29 GHz), Ku-band Frequence, e.g. **EXECT SERVIF COVER FROM REGULATION**
 EXECUTE: Suppose links (approx. 2-40 GHz) and fixed

directed microwave links (approx. 2-40 GHz), Ku-band

(11 and 14 GHz), or Ka-band (19 and 29 GHz).

• Some systems are planned i **Example 18 Solution Space Scale Space Scale Space Sp Example 12 FR Example 10 COMET ALTER CONTROM CONTROM CONTROM CONTROM SIGUPTON (Support 2–40 GHz)** and **fixed** (11 and 14 GHz), or Ka-band (19 and 29 GHz). Ku-band (11 and 14 GHz), or Ka-band (19 and 29 GHz).

• Some **Frequencies**
 Super High Frequencies (SHF) are typically used for

directed microwave links (approx. 2–40 GHz) and fixed

satellite services in the C-band (4 and 6 GHz), Ku-band

(11 and 14 GHz), or Ka-band (19 and 29
-
-
-
-

Frequencies

Regulations

- All radio requences are regulated to avoid interference,
• E. The next step into higher frequencies involves optical
transmission, which is not only used for fiber optical links
but also for wireless communications.
• In e.g., the German regulation covers 9 kHz-275 GHz.
The next step into higher frequencies involves optical
transmission, which is not only used for fiber optical links
but also for wireless communications.
 Infra Red (IR) t The next step into higher frequencies involves optical
transmission, which is not only used for fiber optical links
but also for wireless communications.
 Infra Red (IR) transmission is used for directed links, e.g.,
 t The Hammin Sion, which is not only used for fiber optical links

but also for wireless communications.

• Infra Red (IR) transmission is used for directed links, e.g.,
 to connect different buildings via laser links.

• **Infra Red (IR) transmission is used for directed links, e.g.,**
 Infra Red (IR) transmission is used for directed links, e.g.,
 to connect different buildings via laser links.
 The International Telecommunications Uni Infra Red (IR) transmission is used for directed links, e.g.,

to connect different buildings via laser links.
 Frequencies
 Frequencies
 Frequencies
 Frequencies
 Frequencies
 Frequencies
 Frequencies
 Fr for International Representation and to the method communications
 Frequence S
 Regulations
 Representational Relecommunications Union (ITU) located in

Geneva is responsible for worldwide coordination of

telecommun **Frequencies**
Explaining The International Telecommunications Union (ITU) located in
Geneva is responsible for worldwide coordination of
telecommunication activities (wired and wireless). ITU is a sub-
organization of th **Frequencies**
 Frequencies
 Frequencies
 The International Telecommunications Union (ITU) located in
 Geneva is responsible for worldwide coordination of

telecommunication of the UN.

Organization of the UN.

The **Regulations**
 Regulations

The International Telecommunications Union (ITU) located in

Geneva is responsible for worldwide coordination of

detecommunication activities (wired and wireless). ITU is a sub-

organizatio **Frequencies**
 The International Telecommunications Union (ITU) located in

Geneva is responsible for worldwide coordination of

telecommunication activities (wired and wireless). ITU is a sub-

organization of the UN.
 Frequencies
 Regulations
 Chemetrical Telecommunications Union (ITU) located in
 Chemetrical Telecommunication activities (wired and wireless). ITU is a sub-

organization of the UN.
 The ITU Radio communication Example 12 compresses
 Regulations

The International Telecommunications Union (ITU) located in

denomination activities (wire and wireless). ITU is a sub-

organization of the UN.

The ITU Radio communication sector,
-
-
-
-
-

Regulations

- ^{8/30/2024}
 Frequencies
 **Within these regions, national agencies are responsible for

turther regulations, e.g., the Federal Communications**

 Several nations have a common agency such as European

 Conference f **Frequencies**
 Frequencies
 Solutions

Within these regions, national agencies are responsible for

Within these regulations, e.g., the **Federal Communications**
 Commission (FCC) in the US.

Several nations have a co **Example 19 Follows**
 Example 19 Follows
 Commission (FCC) in the US.

Untim these regions, national agencies are responsible for

trivier regulations, e.g., the **Federal Communications**

Commission (FCC) in the US.

C 8/30/2024
 Erequencies
 Explaining Symbiology and Symbilger Symbility and Telecommunications
 Conference for Posts and Telecommunications
 Conference for Posts and Telecommunications (CEPT) in
 Conference for Post
- Europe.
-
- ^{8/30}/2024
 Erequencies
 Regulations

 Within these regions, national agencies are responsible for

turther regulations, e.g., the Federal Communications

 Several nations have a common agency such as European
 Con (example) any of the regulations of the regulations of the regulations, e.g., the Federal Communications (confusion fFCC) in the US.

Several nations, e.g., the Federal Communications (CPPI) in Communications have a commo **Example 18 Example 18 Example 18 Example 18 Example 18 Example 10:**
 Standards Institute 18 Example 10:
 Commission (FCC) in the US.
 Commission (FCC) in the US.
 Several nations have a common agency such as Europe Frequencies
 Sylutions
 Sylutions
 Sylution these regions, ational agencies are responsible for

further regulations, e.g., the **Federal Communications**
 Commission (FCC) in the US.
 Conference for Posts and Tel Example 18 Example 18 Symbon Symbon Symbon Symbon
Furthin these regions, national agencies are responsible for
further regulations, e.g., the Federal Communications
Comference for Posts and Telecommunications (CEPT) in
E **Frequencies**
 **Examplement Synch and Synch and Synch Synch Synch Synch Synch in these regions, e.g., the Federal Communications Commission (FCC) in the US.

Several nations have a common agency such as European Conference**

Signals

Fourier: **Signals**

Sine waves are of special interest, as it is possible to

construct every periodic signal g by using only sine and

cosine functions according to a fundamental equation of

Fourier:
 $g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a$ **Signals**

Sine waves are of special interest, as it is possible to

construct every periodic signal g by using only sine and

cosine functions according to a fundamental equation of

Fourier:
 $g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a$ **Sigmals**

Sine waves are of special interest, as it is possible to

construct every periodic signal g by using only sine and

cosine functions according to a fundamental equation of

Fourier:
 $g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a$ **Sigmals**

Sine waves are of special interest, as it is possible to

construct every periodic signal g by using only sine and

cosine functions according to a fundamental equation of

Fourier:
 $g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a$ **Signals**

Sine waves are of special interest, as it is possible to

construct every periodic signal g by using only sine and

cosine functions according to a fundamental equation of

Fourier:
 $g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a$

$$
g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)
$$

Signals

-
- 8/30/2024
 Signals
 Representation of Signals
 CEPT TEMP IS THE PEAT OF SIGNAL SET ASSEM
 Representation known from an oscilloscope.
 CEPT TEQUENCES, Here the amplitude of a certain frequency Danain- if a signal ^{8/30/2024}
 Signals
 Representation of Signals

• **Time Domain –** Having One frequency, This is also the

typical representation known from an **oscilloscope.**

• **Frequencies, Here the amplitude of a certain frequency** 8/30/2024
 Signals
 Representation of Signals

• Time Domain – Having One frequency, This is also the

typical representation known from an oscilloscope.

• Frequencies, Here the amplitude of a certain frequency

part **Signals**
 Signals
 Signals
 Fine Domain – Having One frequency, This is also the typical representation known from an oscilloscope.
 **Frequencies, Here the amplitude of a certain frequency

Frequencies, Here the**
- 8/30/2024
 Signals
 Signals
 Signals
 Signal – Having One frequency, This is also the
 typical representation known from an oscilloscope.
 Frequency Domain if a signal consists of many different
 Frequencies Signals
 Signals
 Signals
 Time Domain – Having One frequency, This is also the

typical representation known from an **oscilloscope.**
 Frequencies is a signal consists of many different

frequencies, Here the am **Signals**
 Signals
 Representation of Signals
 • Time Domain – Having One frequency, This is also the typical representation known from an oscilloscope.

• **Frequency Domain** – if a signal consists of many different **Signal's**
 Signal's
 Signal's
 Signal's
 Time Domain – Having One frequency, This is also the

typical representation known from an **oscilloscope.**
 Frequencies, Here the amplitude of a certain frequency
 Frequ Signals
Signals
Signals
Time Domain – Having One frequency, This is also the typical representation known from an oscilloscope.
Frequencies, Here the amplitude of a certain frequency
part of the signal is shown **Signals**
 Signals
 Signals
 Coordination of Signals
 **Coordination and the coordination were discussed the vector

Explication From the vector representation**
 Explicit also the signal consists of many different Sigmals
 Representation of Signals
 • Time Domain – Having One frequency, This is also the typical representation known from an **oscilloscope.**

• **Frequency Domain** - if a signal consists of many different frequenc **Sigmals**
 Phase Science Science Sigmals
 Phase only the Domain- Having One frequency, This is also the

typical representation known from an **oscilloscope.**
 Phase Domain- if a signal consists of many different

fr **Signals**
 Signals
 Time Domain – Having One frequency, This is also the

typical representation known from an **oscilloscope**.
 Frequency Domain - if a signal consists of many different
 Frequencies, Here the ampli
-
-

- ^{8/30/2024}
• In wireless networks, the **signal has no wire to determine**
the direction of propagation, whereas signals in wired
networks only travell along the wire.
• One can precisely determine the behavior of a **sign** 8/30/2024
 Signal Propagation

In wireless networks, the signal has no wire to determine

the direction of propagation, whereas signals in wired

networks only travel along the wire.

Cone can precisely determine the beh Signal Propagation

• In wireless networks, the signal has no wire to determine

the direction of propagation, whereas signals in wired

networks only travel along the wire.

• One can precisely determine the behavior of a Signal Propagation

In wireless networks, the signal has no wire to determine

the direction of propagation, whereas signals in wired

networks only travel along the wire.

Cone can precisely determine the behavior of a si **Signal Propagation**

• In wireless networks, the signal has no wire to determine

the direction of propagation, whereas signals in wired

networks only travel along the wire.

• One can precisity determine the behavior o 8/30/2024
 Signal Propagation

In wireless networks, the **signal has no wire to determine**

detection of **propagation**, whereas signals in wired

networks only travel along the wire.

. One can precisely determine the be sender and the receiver.

Signal Propagation

Signal Propagation

the direction of propagation, whereas signals in wired

the direction of propagation, whereas signals in wired

ravelling along this wire, e.g., received p 8/30/2024
 Signal Propagation

In wireless networks, the signal has no wire to determine

the direction of propagation, whereas signals in wired

inetworks only travel along the wire.

. One can precisely determine the b Sigmal Propagation

In wireless networks, the signal has no wire to determine

the direction of propagation, whereas signals in wired

Travelling along this wire,

1. One can precisely determine the behavior of a signal

t **Signal Propagation**

In wireless networks, the signal has no wire to determine

direction of propagation, whereas signals in wired

networks only travel along this wire, e.g., received power

depending on the length.

For **Signal Propagation**

In wireless networks, the signal has no wire to determine

the direction of propagation, whereas signals in wired

networks only travel along the wire.

Che can precisely determine the behavior of a s
-
-
-

- 8/30/2024
 Signal Propagation

 Transmission range: Within a certain radius of the

sender transmission is possible, i.e., a receiver receives

the signals with an **error rate low** enough to be able to
 Detection r Signal Propagation

Signal Propagation

Transmission range: Within a certain radius of the

sender transmission is possible, i.e., a receiver receives

the signals with an **error rate low** enough to be able to
 Detection Signal Propagation

Signal Propagation

Transmission range: Within a certain radius of the

sender transmission is possible, i.e., a receiver receives

the signals with an error rate low enough to be able to

communicate a
- 8/30/2024

Signal Propagation

Transmission range: Within a certain radius of the

sender transmission is possible, i.e., a receiver receives

the signals with an error rate low enough to be able to

communicate and can al 8/30/2024
 Signal Propagation

• Transmission range: Within a certain radius of the

sender transmission is possible, i.e., a receiver receives

the signals with an **error rate low** enough to be able to
 contrained rang Signal Propagation
 Signal Propagation
 Transmission range: Within a certain radius of the

sender transmission is possible, i.e., a receiver receives

the signals with an **error rate** low enough to be able to
 Comm Signal Propagation
 Signal Propagation
 Transmission range: Within a certain radius of the

sender transmission is possible, i.e., a receiver receives

the signals with an error rate low enough to be able to
 Commu communication.
- **Signal Propagation**
 Consumerence Transmission range: Within a certain radius of the

sender transmission is possible, i.e., a receiver receives

the signals with an error rate low enough to be able to

communicate and **Signal Propagation**
 Transmission range: Within a certain radius of the

sender transmission is possible, i.e., a receiver receives

the signals with an **error rate low** enough to be able to
 Communicate and can also a Transmission range: Within a certain radius of the **Ernantission** ranges: Within a certain radius of the signals with an error rate low enough to be able to communicate and can also act as sender. **Detection range:** With **Signal Propagation**
 Transmission range: Within a certain radius of the signals with an error rate low enough to be able to communicate and can also act as sender.
 Detection range: Within a second radius, detection o signals. **the transmission is possible, i.e., the transmitted power

is large enough to differ from background noise.**

However, the error rate is too high to establish

communication.

• Interference range: Within a third even lar Free space radio signals and the space radio signals communication.
 • Interference range: Within a third even larger radius, the
 • Interference range: Within a third even larger radius, the

sender may interfere wit If any contained the error rate is to onligh to establish

communication.

Interference range: Within a third even larger radius, the

sender may interfere with other transmission by adding

sender may interfere with othe However, the error rate is too high to establish
 Interference range: Within a third even larger radius, the

sender may interfere with other transmission by adding

to the background noise. A receiver will not be able communication.

• Interference range: Within a third even larger radius, the

sender may interfere with other transmission by adding

to the background noise. A receiver will not be able to

detect the signals, but the si **Interfere range:** wurnt a time developed and even larger radius, the
sender may interfere with other transmission by adding
to the background noise. A receiver will not be able to
detect the signals, but the signals may d received power Pr Friene with other transmission by adding

and noise. A receiver will not be able to

als, but the signals may disturb other

signals

signals

signals

signals propagate as light does (independently of

the signal propagat to the background noise. A receiver will not be able to
detect the signals, but the signals may disturb other
signals.

Path loss of Radio Signals

Path loss of Radio Signals

Path loss of Radio Signals

Path there

- **Signals.**

Signals.

Signals.
 Signals The signals in the signals in the signals of the signals

In free space radio signals propagate as light line (besides gravitational

defects), if such a straight line exists betw **Signals.**
 Signal Propagation
 Conditive System Conditive Condition of the space radio signals propagate as light does (independently of their frequency), i.e., they follow a straight line (beside gravitational eff **Sigmal Propagation**
 th loss of Radio Signals

In free space radio signals propagate as light does (independently of

their frequency), i.e., they follow a straight line (besides gravitational

defects). If such a strai **• Sigmal Propagation**
• The frequency, i.e., they follow a straight line (besides gravitational
effects). If such a straight line exists between a sender and a receiver it is
called tine-0-5 ight (LOS). However, the stat **Signal Propagation**
 th loss of Radio Signals

In free space radio signals propagate as light does (independently of

their frequency), i.e., they follow a straight line (besides gravitational

deflects), if such a str **Signal Propagation**
 th loss of Radio Signals

In free space radio signals propagate as light does (independently of

their frequency), i.e., they follow a straight line (besides gravitational

called Line-Of-Sight (LOS
-
-
- antenna.
-
-

- Signal Propagation

Radio waves can exhibit three Fundamental Propagation

Radio waves can exhibit three Fundamental Propagation

 Ground wave (<2 MHz): Waves with low frequencies

follow the earth's surface and can propa **Signal Propagation**
 Signal Propagation

dio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:
 Ground wave (<2 MHz): Waves with low frequencies

follow the earth's surface and Signal Propagation

Radio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:

Ground wave (<2 MHz): Waves with low frequencies

follow the earth's surface and can propagate long

dista Signal Propagation

dio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:

Ground wave (<2 MHz): Waves with low frequencies

follow the earth's surface and can propagate long

distanc
- **Signal Propagation**

dio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:
 Ground wave (<2 MHz): Waves with low frequencies

follow the earth's surface and can propagate long

di 8/30/2024

Signal Propagation

dio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:

Ground wave (<2 MHz): Waves with low frequencies

follow the earth's surface and can propagate lo **Signal Propagation**
 Signal Propagation

Radio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:
 • Ground wave (<2 MHz): Waves with low frequencies

follow the earth's surface **Signal Propagation**
 Signal Propagation

dio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:
 Ground wave (2-3 MHz): Waves with low frequencies

distances. These waves are use **Signal Propagation**

dio waves can exhibit three Fundamental Propagation

dio waves can exhibit three Fundamental Propagation
 Ground wave ($\epsilon 2$ **MHz):** Waves with low frequencies
 Ground wave ($\epsilon 2$ **MHz):** Waves are **Signal Propagation**
 Signal Propagation

dio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:
 Ground wave (<2 MHz): Waves with low frequencies

follow the earth's surface and
- 8/30/2024
 Signal Propagation

dio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:
 Ground wave (<2 MHz): Waves with low frequencies
 Ground wave (<2 MHz): Waves with low freq **Signal Propagation**

Radio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:
 e Ground wave (<2 MHz): Waves with low frequencies

follow the earth's surface and can propagate long **Signal Propagation**
dio waves can exhibit three Fundamental Propagation
behaviors depending on their frequency:
Ground wave (<2 MHz): Waves with low frequencies
follow the earth's surface and can propagate long
distances. **Signal Propagation**

dio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:

Ground wave ($\epsilon \geq NMRz$): Waves with low frequencies

distances. These waves are used for, e.g., Submarine **Signal Propagation**
dio waves can exhibit three Fundamental Propagation
behaviors depending on their frequency:
Ground wave (<2 MHz): Waves with low frequencies
follow the earth's surface and can propagate long
distances. **Signal Propagation**
dio waves can exhibit three Fundamental Propagation
behaviors depending on their frequency:
Ground wave (<2 MHz): Waves with low frequencies
follow the earth's surface and can propagate long
distances. **Signal Propagation**

dio waves can exhibit three Fundamental Propagation

behaviors depending on their frequency:
 Ground wave (<2 **MHz):** Waves with low frequencies

follow the earth's surface and can propagate long

d

- **Signal Propagation**
 Additional Signal Propagation
 Additional Signal Propagation effects
 An extreme form of attenuation is blocking or shadowing of radio

signals due to large obstacles (see Figure 2.12, left sid **Signal Propagation**
 Additional Signal Propagation effects

• An extreme form of attenuation is blocking or shadowing of radio

• signals due to large obstacles (see Figure 2.12, left side). The higher the

frequency of **Signal Propagation**
 Signal Propagation
 Signals due to large obstacles (see Figure 2.12, left side). The higher the

An extreme form of attenuation is blocking or shadowing of radio
 Signals due to large obstacles **Signal Propagation**
 Signal Propagation
 Signal Propagation
 A extreme form of attenuation is blocking or shadowing of radio

signals due to large obstacles (see Figure 2.12, left side). The higher the

frequency of 8/30/2024
 Signal Propagation
 ditional Signal Propagation effects

An extreme form of attenuation is blocking or shadowing of radio

signals due to large obstacles (see Figure 2.12, left side). The higher the

frequen **Signal Propagation**
 Signal Propagation

• An externe form of attenuation is blocking or shadowing of radio

signals due to large obstacles (see Figure 2.12, left side). The higher the

signals due to large obstacles (8/30/2024
 Signal Propagation
 Comparison of the state of the state is and the state of the state of the state is and the frequency of a signal, the more it behaves like light. Even small frequency of a signal, the more Signal Propagation
Signal Propagation
Signal Propagation effects
An externe form of attenuation is blocking or shadowing of radio
signals due to large obstacles (see Figure 2.12, left side). The higher the
frequency **Signal Propagation**
 Signal Propagation effects

• An extreme form of attenuation is blocking or shadowing of radio

signals due to large obstacles (see Figure 2.12, left side, The higher the

frequency of a signal, th solary of the signal's power. • The refraction effects of the signal **Propagation** effects \cdot An extreme form of attenuation is blocking or shadowing of radio frequency of a signal, the more it behaves like light. Even Sigmal **Propagation**

Sigmal propagation effects

An extreme form of attenuation is blocking or shadowing of radio

An extreme form of attenuation is blocking or shadowing of radio

signals due to large obstacles (see Figu **Sigmal Propagation**
 C. • An extreme from of attenuation is blocking or shadowing of radio

signals due to large obstacles (see Figure 2.12, left side). The higher the

frequency of a signal, the into it the hosts like **Signal Propagation**
 Signal Propagation effects

An externe form of attenuation is blocking or shadowing of radio

signals due to large obstacles (see Figure 2.12, left side). The higher the

frequency of a signal, the **Sigmal Propagation**
 Iditional Signal Propagation effects

An extreme form of attenuation is blocking or shadowing of radio

signals due to large obstacts (see Figure 2.12, let side). The higher the

frequency of a sign
-
-
-
- ground.

Multi-Path Propagation

- **Signal Propagation**
 Signal Propagation
 More consider that each impulse should represent a symbol, and that Now consider that each impulse should represent a bit. The energy intended for one symbol now spills over to Cause of the control of the channel. • The sender may first transmitted by the constrained one symptots could represent a bit. The energy intended for one symptot in one symptot in the energy intended for one symptot inv **Signal Propagation**
When the receiver that each impulse should represent a symbol, and that
one or several symbols could represent a bit. The energy intended for
called there symbol new splils over to the adjacent symbol, **Signal Propagation**
 Consider that each impulse should represent a symbol, and that

Now consider that each impulse should represent a bit. The energy intended for

one symbol now spills over to the adjacent symbol, an
- other.
-
-
- distortion.

- Signal Propagation

Multi-Path Propagation

 While ISI and delay spread already occur in the case of fixed

radio transmitters and receivers, the situation is even worse if

 Then the channel characteristics change over
- ^{8/30}/2024
 Signal Propagation

 While ISI and delay spread already occur in the case of fixed

radio transmitters and receivers, the situation is even worse if

receivers, or senders, or both, move.

Then the channe 8/30/2024
 Signal Propagation
 Ilti-Path Propagation

While ISI and delay spread already occur in the case of fixed

radio transmitters and receivers, the situation is even worse if

receivers, or senders, or both, mov **Signal Propagation**
 Signal Propagation
 Constrained Constrained Constrained characteristics characteristics and receivers, the situation is even worse if

receivers, or senders, or both, move.
 Constrained change ov 8/30/2024
 Signal Propagation
 Signal Propagation

While ISI and delay spread already occur in the case of fixed

while ISI and delay spread already occur in the case of fixed

receivers, or senders, or both, move.
 T Signal Propagation

Signal Propagation

Ulti-Path Propagation

While ISI and delay spread already occur in the case of fixed

radio transmitters and receivers, the situation is even worse if

receivers, or senders, or both 8/30/2024

Signal Propagation

ulti-Path Propagation

while ISI and delay spread already occur in the case of fixed

radio transmitters and receivers, the stituation is even worse if

receivers, or senders, or both, move.
 8/30/2024
 Signal Propagation
 Compagation
 Compagat 8/30/2024
 Signal Propagation

While ISI and delay spread already occur in the case of fixed

radio transmitters and receivers, the situation is even worse if

receivers, or senders, or both, move.

Then the channel char 8/30/2024
 Signal Propagation
 ulti-Path Propagation

While ISI and delay spread already occur in the case of fixed

while ISI and delay spread already occur in the case of fixed

raciolo transmitters and receivers, th **Signal Propagation**
 Signal Propagation

While IS and delay spread already occur in the case of fixed

radio transmitters and receivers, the situation is even worse if

receivers, or senders, or both, move.

Then the ch **Signal Propagation**

ulti-Path Propagation

while ISI and delay spread already occur in the case of fixed

radio transmitters and receivers, the situation is even worse if

receivers, or senders, or both, move.

Then the **Signal Propagation**
 Signal Propagation

• While ISI and delay spread already occur in the case of fixed

radio transmitters and receivers, the situation is even worse if

receivers, or senders, or both, move.

• Then t
-
-
-

Space Division Multiplexing **Multiplexing**
 Multiplexing
 Condition is the conditional of the conditional) space simplexing
 Condition is first type of multiplexing, **Space Division**
 **Multiplexing (SDM), the (three dimensional) space s_i is
** is a set of \mathbf{I} **also show the shown. Here show the shown.**
 also shown. Here show the control of the space is represented via circles indicating Multiplexing. Space Division Multiplexing (SDM), the (three dimensional) space s_i is also Example:

• The interference range of the separation of the separation of the separation of the difference range.

• For this first type of multiplexing. Space Division Multiplexing (SDM), the (three dimensional) space s **Multiplexing**
 Example 18 and 1 All tiplexing
 All tiplexing

(all tiplexing

(all tiplexing space Division

(a) the (three dimensional) space s, is

space is represented via circles indicating

nge.

to k₃ can be mapped onto the three

thich clear **Complementary of the mapped onto the mapped onto the mapped onto the mapped onto the three dimensional) space** s_i **is
s represented via circles indicating
the different channels achieved?
can be mapped onto the three
lea Multiplexing**
 Example 18.1
 Example 18.1 Multiplexing
 Conditively
 Conditively of multiplexing, Space Division

g (SDM), the (three dimensional) space s, is

is. Here space is represented via circles indicating

separation of the different channels achiev **Prevention Space Controllering**
 Preventive ranges from the interference ranges from the interference ranges from overlapping. Space bivision Multiplexing (SDM), the (three dimensional) space s, is so so the interfere CONTITY: Multiplexing
 Space Division Multiplexing

• For this first type of multiplexing. Space Division

Multiplexing (SDM), the (three dimensional) space s_i is

also shown. Here space is represented via circles indicating **The Second Section Space Section**

imensional) space s_i is

thed via circles indicating

rent channels achieved?

napped onto the three

parate the channels and

m overlapping.

Ice ranges is sometimes

ace is needed i (a)

(a) space s, is

ia circles indicating

thannels achieved?

ed onto the three

the channels and

ralpping.

nges is sometimes
 s needed in all four

(b) three additional

(b) three additional

(b) that each driver **Space Division Multiplexing**

• For this first type of multiplexing, Space Division
 Multiplexing (SDM), the (three dimensional) space s₁ is

also shown. Here space is represented via circles indicating

the interfer **Multiplexing**
 Example 18
 Example 18
 Example 18
 Example 18
 Example 18
 COMM
 Example 18
 Example 18

- ^{8/30/2024}
• The main **advantage of CDM** for wireless transmission is
that it **gives good protection against interference and**
tapping.
• Different codes have to be assigned, but **code space** is
huge compared to the fr 8/30/2024
 Multiplexing

The main **advantage of CDM** for wireless transmission is

that it gives good protection against interference and

tapping.

Different codes have to be assigned, but code space is

huge compared t tapping. 8/30/2024

• The main advantage of CDM for wireless transmission is

that it gives good protection against interference and

tapping.

Different codes have to be assigned, but code space is

bufferent codes have to be assi **Multiplexing**

• The main **advantage of CDM** for wireless transmission is

that it gives good protection against interference and
 tapping.

• Different codes have to be assigned, but code space is
 huge compared to th Example 19 Solution Scheme is the main advantage of CDM for wireless transmission is
tapling.

• Different codes have to be assigned, but code space is

• Different codes have to be assigned, but code space is

• Assigni **Multiplexing**

• The main advantage of CDM for wireless transmission is

that it gives good protection against interference and

huge compared to the frequency space.

• A receiver has to be assigned, but code space is

• **Example 19 The main advantage of CDM** for wireless transmission is
The main advantage of CDM for wireless transmission is
that it gives good protection against interference and
tapping.
Different codes have to be assigned **Composed of CDM** for wireless transmission is that it gives good protection against interference and hup compared to the frequency space.

• Different codes have to be assigned, but code space is hugger organization of th **Multiplexing**
The main advantage of CDM for wireless transmission is
that it gives good protection against interference and
tapping.
Different codes have to be assigned, but code space is
Assigning individual codes to eac
-
-
-
-
-

Modulation • The main disadvantage of this scheme is the relatively

• The nomplexity of the receiver.

• A receiver has to know the code and must separate the

channel with user data from the background noise.

• Composed of other s The **main disadvantage of this scheme** is the **relatively**
 high complexity of the receiver.

A receiver has to know the code and must separate the

channel with user data from the background noise

composed of other sig needed. • A receiver has to know the code and must separate the
composed of other signals and environmental noise.
• Additionally, a receiver must be precisely synchronized
with the transmitter to apply the decoding correctly.
*
 data into analog signals and environmental noise

composed of other signals and environmental noise.

Additionally, a receiver must be precisely synchronized

with the transmitter to apply the decoding correctly.

 Modul Anditionally, a receiver must be precisely synchronized
with the transmitter to apply the decoding correctly.
The moderation of a computer of this system a modern is
needed.
The modern then performs the translation of d **Modulation**

For wired networks is the old analog telephone system –

to connect a computer to this system a modem is

needed.

The modem then performs the translation of digital

data into analog signals and vice versa.
 Modulation

For wired networks is the old analog telephone system –

to connect a computer to this system a modem is

needed.
 Ata into analog signals and vice versa.

Digital transmission is used, for example, in wire **Modulation**

For wired networks is the old analog telephone system –

to connect a computer to this system a modem is

meeded.

The modem then performs the translation of digital

data into analog signals and vice versa.
 Modulation

• For wired networks is the old analog telephone system –

to connect a computer to this system a modem is

needed.

• The modem then performs the translation of digital

• The modem then performs the transl **Modulation**

• For wired networks is the old analog telephone system –

to connect a computer to this system a modem is

needed.

• The modem then performs the translation of digital

data into analog signals and vice ve **Modulation**

• For wired networks is the old analog telephone system –

to connect a computer to this system a modem is

needed.

• The modem then performs the translation of digital

data into analog signals and vice ver

Modulation

- 8/30/2024
• Apart from the translation of digital data into analog
signals, wireless transmission requires an additional
modulation, an analog modulation that shifts the center
frequency of the baseband signal generated by 8/30/2024
 Modulation

Apart from the translation of digital data into analog

signals, wireless transmission requires an additional

modulation, an analog modulation that shifts the center

digital modulation up to the **Modulation**
Modulation
Apart from the translation of digital data into analog
Agrals, wireless transmission requires an additional
modulation, an analog modulation that shifts the center
frequency of the baseband signal **Modulation**
Apart from the translation of digital data into analog
signals, wireless transmission requires an additional
modulation, an analog modulation that shifts the center
frequency of the baseband signal generated **Modulation**
 Example, digital modulation
 Example, digital modulation transl 8/30/2024
 Modulation

Apart from the translation of digital data into analog

signals, wireless transmission requires an additional

modulation, an analog modulation that shifts the center

digital modulation up to the **Modulation**
 Modulation
 Apart from the translation of digital data into analog signals, wireless transmission requires an additional modulation, an analog modulation that shifts the center frequency of the baseband si
-
-
- **be different in a wireless system:** Apart from the translation of digital data into analog signals, wireless transmission requiries an additional modulation, an analog modulation that shifts the center frequency of the 8/30/2024
 Modulation

Apart from the translation of digital data into analog

signals, wireless transmission requires an additional

modulation, an analog modulation that shifts the center

frequency of the baseband sig **Example 10 Modulation**
Apart from the translation of digital data into analog signals, wireless transmission requires an additional modulation, an analog modulation that sink the center frequency of the baseband signal **Modulation**
Apart from the translation of digital data into analog
signals, wireless transmission requires an additional
modulation, an analog modulation that shifts the center
digital modulation up to the radio carrier. **Modulation**
Apart from the translation of digital data into analog signals, wireless transmission requires an additional modulation, an analog modulation that shifts the center frequency of the baseband signal generated b **Modulation**
Apart from the translation of digital data into analog
signals, wireless transmission requires an additional
modulation, an analog modulation that shifts the center
frequency of the baseband signal generated b

Modulation

- **There are several reasons why this baseband signal cannot**
 be directly transmitted in a wireless system:
 Antennas: As shown, an antenna must be the order of

magnitude of the signal's wavelength in size to be

effec the directly transmitted in a wireless system:

De directly transmitted in a wireless system:

The directly contribute of the signal's wavelength in size to be

effective. For the 1 MHz signal in the example this would

ne **Example 10** The signal's wavelength in size to define

magnitude of the signal's wavelength in size to be

effective. For the 1 MHz signal in the example this would

result in an antenna some hundred meters high, which is magnitude of the signal's wavelength in size to be
effective. For the 1 singal in the example this volid
effective. For the 1 MHz signal in the example this would
result in an antenna some hundred meters high, which is
obv Frequence For the 1 MHz signal in the example this would
result in an antenna some hundred meters high, which is
result in an antenna some hundred meters high, which is
GHz, antennas a few centimeters in length can be used signals. Figure 1.1 Considers the mandel of the signal of the signal of the signal of the signal considers. With a GHz, antennas a few centimeters in length can be used.

• Frequency division multiplexing: Using only baseband

tr **Modulation**
 Control Control Effects depending the multiplexing: Using only baseband
transmission, FDM could not be applied. Analog
modulation shifts the baseband signals to different carrier
frequencies as required. The higher the carrier frequency **Modulation**
 Frequency division multiplexing: Using only baseband
 transmission, FDM could not be applied. Analog

modulation shifts the baseband signals to different carrier

frequencies as required. The higher the c **Modulation**
 Exergency division multiplexing: Using only baseband
 Erraymenties as required. The higher the carrier frequencies

the more bandwidth that is available for many baseband

signals.
 Modular characterist
-
- etc.

Modulation-Amplitude Shift Keying

-
- ^{8/30/2024}
• The two binary values, 1 and 0, are represented by two
different amplitudes.
• In the example, one of the amplitudes is 0 (representing the
binary 0).
• This simple scheme only requires low bandwidth, but is **Modulation-Amplitude Shift Keying**

• The two binary values, 1 and 0, are represented by two

different amplitudes.

• In the example, one of the amplitudes is 0 (representing the

binary 0).

• This simple scheme only re
-
-
- 8/30/2024
 Modulation-Amplitude Shift Keying

The two binary values, 1 and 0, are represented by two

different amplitudes.

In the example, one of the amplitudes is 0 (representing the

binary 0).

This simple scheme on S/30/2024

S/30/2024

S/30/2024

The two binary values, 1 and 0, are represented by two

different amplitudes.

In the example, one of the amplitudes is 0 (representing the

binary 0).

Inis simple scheme only requires low **Modulation-Amplitude Shift Keying**

• The two binary values, 1 and 0, are represented by two

different amplitudes.

• In the example, one of the amplitudes is 0 (representing the

binary 0).

• This simple scheme only r 8/30/2024
 Modulation-Amplitude Shift Keying

The two binary values, 1 and 0, are represented by two

different amplitudes.

In the example, one of the amplitudes is 0 (representing the

binary 0).

This simple scheme on transmission. **Modulation-Amplitude Shift Keying**

• The two binary values, 1 and 0, are represented by two

different amplitudes.

• In the example, one of the amplitudes is 0 (representing the

binary 0).

• This simple scheme only r **Modulation-Amplitude Shift Keying**

The two binary values, 1 and 0, are represented by two

different amplitudes.

binary 0).

binary 0).

This simple scheme only requires low bandwidth, but is very

susceptible to interf **Modulation-Amplitude Shift Keying**
The two binary values, 1 and 0, are represented by two
different amplitudes.
In the example, one of the amplitudes is 0 (representing the
binary 0).
This simple scheme only requires low **Modulation-Amplitude Shift Keying**

The two binary values, 1 and 0, are represented by two

different amplitudes.

• This ismple scheme only requires low bandwidth, but is very

• This ismple scheme only requires low band **Modulation-Amplitude Shift Keying**
The two binary values, 1 and 0, are represented by two
different amplitudes.
In the example, one of the amplitudes is 0 (representing the
binary 0).
His simple scheme only requires low b
-
-
-

Modulation-Frequency shift keying

- **Modulation-Frequency shift keying**
• A modulation scheme often used for wireless transmission is
frequency shift keying (FSK). The simplest form of FSK, also
called binary FSK (BFSK), assigns one frequency f_1 to the
b **Modulation-Frequency shift keying**
A modulation scheme often used for wireless transmission is
frequency shift keying (FSK). The simplest form of FSK, also
called binary FSK (BFSK), assigns one frequency f_1 to the
bin **Modulation-Frequency shift keying**
A modulation scheme often used for wireless transmission is
frequency shift keying (FSK), The simplest form of SK, also
called binary FSK (BFSK), assigns one frequency f_1 to the
bina $8/30/2024$

Sision is
 K, also

to the

en two

vith f2,

quency **Modulation-Frequency shift keying**
A modulation scheme often used for wireless transmission is
frequency shift keying (FSK). The simplest form of FSK, also
called binary 1 and another frequency f_2 to the binary 1 and **Modulation-Frequency shift keying**

• A modulation scheme often used for wireless transmission is

frequency shift keying (FSK). The simplest form of FSK, also

called binary FSK (BFSK), assigns one frequency f_1 to th **Modulation-Frequency shift keying**
A modulation scheme often used for wireless transmission is
frequency shift keying (FSK). The simplest form of FSK, also
called binary 1 and another frequency f_2 to the binary f_1 **Modulation-Frequency shift keying**

• A modulation scheme often used for wireless transmission is

frequency shift keying (FSK). The simplest form of FSK, also

called binary FSK (BFSK), assigns one frequency f_1 to th **Modulation-Frequency shift keying**
 Modulation scheme often used for wireless transmission is

A modulation scheme often used for wireless transmission is
 called binary 1 and another frequency \mathbf{f}_1 to the pinar **Modulation-Frequency shift keying**

• A modulation scheme often used for wireless transmission is

frequency shift keying (FSK). The simplest form of FSK, also

called binary Tax (BFSK), assigns one frequency f_1 to th **Modulation-Frequency shift keying**

• A modulation scheme often used for wireless transmission is

frequency shift keying (FSK). The simplest form of FSK, also

called binary FAK (BFSK), assigns one frequency f_1 to th **Modulation-Frequency shift keying**
A modulation scheme often used for wireless transmission is
frequency shift keying (FSK). The simplest form of FSK, also
called binary FSK (BFSK), assigns one frequency f_1 to the
bin **The part of Solution School School School School School School**
First, The simplest form of FSK, also
assigns one frequency f_1 to the
enery f_2 to the binary 0.
tement FSK is to switch between two
frequency f1 and t **• Modulation-Frequency shift keying**
• A modulation scheme often used for wireless transmission is
frequency shift keying (FSK). The simplest form of FSK, also
called binary T and another frequency f₁ to the binary 1.
 Modulation-Frequency shift keying

• A modulation scheme often used for wireless transmission is

requency shift keying (FSK). The simplest form of FSK, also

called binary 1 and another frequency \mathbf{f}_2 to the binar **Modulation-Frequency shift keying**
A modulation scheme often used for wireless transmission is
frequency shift keying (FSK). The simplest form of FSK, also
called binary FSK (BFSK), assigns one frequency f_1 to the
bin
-
- used.
-
- .
-
-

Modulation-Phase Shift Keying

- **Modulation-Phase Shift Keying**
• Finally, phase shift keying (PSK) uses shifts in the phase of
a signal to represent data. Figure 2.25 shows a phase shift
of 180° or π as the 0 follows the 1 (the same happens as
the 1 **Modulation-Phase Shift Keying**

Finally, phase shift keying (PSK) uses shifts in the phase of

a signal to represent data. Figure 2.25 shows a phase shift

of 180° or π as the 0 follows the 1 (the same happens as

the 8/30/2024
 Modulation-Phase Shift Keying

Finally, phase shift keying (PSK) uses shifts in the phase of

a signal to represent data. Figure 2.25 shows a phase shift

of 180° or π as the 0 follows the 1 (the same happens **Modulation-Phase Shift Keying**

• Finally, phase shift keying (PSK) uses shifts in the phase of

a signal to represent data. Figure 2.25 shows a phase shift

of 180° or π as the 0 follows the 1 (the same happens as

t **Modulation-Phase Shift Keying**

• Finally, phase shift keying (PSK) uses shifts in the phase of

a signal to represent data. Figure 2.25 shows a phase shift

of 180° or *n* as the 0 follows the 1 (the same happens as

th **Modulation-Phase Shift Keying**
Finally, phase shift keying (PSK) uses shifts in the phase of
a signal to represent data. Figure 2.25 shows a phase shift
of 180° or π os the 0 follows the 1 (the same happens as
the 1 f **Modulation-Phase Shift Keying**

• Finally, phase shift keying (PSK) uses shifts in the phase of

a signal to represent data. Figure 2.25 shows a phase shift

of 180° or π as the 0 follows the 1 (the same happens as

t **Modulation-Phase Shift Keying**
Finally, phase shift keying (PSK) uses shifts in the phase of
a signal to represent data. Figure 2.25 shows a phase shift
of 180° or *n* as the 0 follows the 1 (the same happens as
the 1 fol **Modulation-Phase Shift Keying**

• Finally, phase shift keying (PSK) uses shifts in the phase of

a signal to represent data. Figure 2.25 shows a phase shift

of 180° or *n* as the 0 follows the 1 (the same happens as

th **Modulation-Phase Shift Keying**
Finally, phase shift keying (PSK) uses shifts in the phase of
a gignal to represent data. Figure 2.25 shows a phase shift
of 180° or π os the 0 follows the 1 (the same happens as
the 1 fo
-
-
-
-

- 8/30/2024

Modulation-Advanced Frequency Shift Keying

A famous FSK scheme used in many wireless

systems is Minimum Shift Keying (MSK).

MSK is basically BFSK without abrupt phase
- 8/30/2024

 A famous FSK scheme used in many wireless

 A famous FSK scheme used in many wireless

systems is Minimum Shift Keying (MSK).

 MSK is basically BFSK without abrupt phase

changes, i.e., it belongs to CPM sc
- Salam **Modulation-Advanced Frequency Shift Keying**
 Changes, i.e., it belongs to CPM schemes.
 Changes, i.e., it belongs to CPM schemes.
 Changes, i.e., it belongs to CPM schemes.
 Changes, i.e., it belongs to CPM scheme Modulation-Advanced Frequency Shift Keying

A famous FSK scheme used in many wireless

systems is **Minimum Shift Keying (MSK).**
 MSK is basically BFSK without abrupt phase
 changes, i.e., it belongs to CPM schemes.
 doubled.
- **Modulation-Advanced Frequency Shift Keying**
• A famous FSK scheme used in many wireless
systems is **Minimum Shift Keying (MSK).**
• **MSK is basically BFSK without abrupt phase**
changes, i.e., it belongs to CPM schemes.
• ring

ring

reless

hase

even

peing

, the

ency, **Modulation-Advanced Frequency Shift Keying**
A famous FSK scheme used in many wireless
systems is **Minimum Shift Keying (MSK).**
MSK is basically BFSK without abrupt phase
changes, i.e., it belongs to CPM schemes.
In a f Frequency Shift Keying

used in many wireless

t Keying (MSK).

without abrupt phase

o CPM schemes.

are separated into even

tion of each bit being

wo frequencies: f_1 , the

the higher frequency, **Modulation-Advanced Frequency Shift Keying**

A famous FSK scheme used in many wireless

systems is Minimum Shift Keying (MSK).

MSK is basically BFSK without abrupt phase

changes, i.e., it belongs to CPM schemes.

In a **ation-Advanced Frequency Shift Keying**

bus FSK scheme used in many wireless

is is Minimum Shift Keying (MSK).
 basically BFSK without abrupt phase
 s, i.e., it belongs to CPM schemes.
 is tep, data bits are separ .

-
- **Figure 2.28 QPSK** in the time domain

The basic BPSK scheme only uses one possible phase

shift of 180°.

The left side of Figure 2.27 shows BPSK in the phase

comain (which is typically the better representation

compar **Andulation-Advanced Phase Shift Keying**
The basic BPSK scheme only uses one possible phase
shift of 180°.
The left side of Figure 2.27 shows BPSK in the phase
domain (which is typically the better representation
compared
-
-
-

- variants.
- 8/30/2024
 Modulation-Advanced Phase Shift Keying

 QPSK (and other PSK schemes) can be realized in two

variants.

 The phase shift can always be relative to a **reference**
 ignal (with the same frequency).

 If thi ^{8/30/2024}
 Modulation-Advanced Phase Shift Keying

• QPSK (and other PSK schemes) can be realized in two

variants.

• The phase shift can always be relative to a reference

signal (with the same frequency).

• If this
-
- **Solution Advanced Phase Shift Keying**

Solution CPSK (and other PSK schemes) can be realized in two

variants.

The phase shift can always be relative to a reference

signal (with the same frequency).

If this scheme is **Modulation-Advanced Phase Shift Keying**

• QPSK (and other PSK schemes) can be realized in two

variants.

• The phase shift can always be relative to a reference

signal (with the same frequency).

• If this scheme is u **8/30/2024**
 Solution-Advanced Phase Shift Keying

QPSK (and other PSK schemes) can be realized in two

variants.

The phase shift can always be relative to a reference

signal (with the same frequency).

If this scheme 8/30/2024
 Odulation-Advanced Phase Shift Keying

QPSK (and other PSK schemes) can be realized in two

variants.

The phase shift can always be relative to a reference

signal (with the same frequency).

the signal is i **8/30/2024**
 CONTEX (and other PSK schemes) can be realized in two

variants.

• The phase shift can always be relative to a reference

signal (with the same frequency).

• If this scheme is used, a phase whit the refer **Modulation-Advanced Phase Shift Keying**

• QPSK (and other PSK schemes) can be realized in two

variants.

• The phase shift can always be relative to a **reference**

signal (with the same frequency).

• If this scheme is **Columistant Control Control Control Control Control Control Control Control Control Contributions**
 Contrigued Signal (with the same frequency).

If this scheme is used, a phase shift of 0 means that

the signal is in p
-
-

-
- 8/30/2024

 One could now think of extending the scheme to more

 One could now think of extending the scheme to more

 For instance, one can think of coding 3 bits per phase

 Additionally, the PSK scheme could be com
- **Modulation-Advanced Phase Shift Keying**

 One could now think of extending the scheme to more
 and more angles for shifting the phase.

 For instance, one can think of coding 3 bits per phase

 Additionally, the PSK Sales and **Modulation-Advanced Phase Shift Keying**

• One could now think of extending the scheme to more
 and more angles for shifting the phase.

• For instance, one can think of coding 3 bits per phase

shift using 8 **Andiverse School School** 8/30/2024
 Modulation-Advanced Phase Shift Keying

One could now think of extending the scheme to more

and more angles for shifting the phase.

For instance, one can think of coding 3 bits per phase

shift using 8 angle (expansion) 8/30/2024
 Modulation-Advanced Phase Shift Keying

• One could now think of extending the scheme to more
 and more angles for shifting the phase.

• For instance, one can think of coding 3 bits per phase
 Modulation-Advanced Phase Shift Keying

• One could now think of extending the scheme to more
 and more angles for shifting the phase.

• For instance, one can think of coding 3 bits per phase

shift using 8 angles.
 Andulation-Advanced Phase Shift Keying

One could now think of extending the scheme to more

and more angles for shifting the phase.

For instance, one can think of coding 3 bits per phase

shift using 8 angles.

ASK as **Modulation-Advanced Phase Shift Keying**

• One could now think of extending the scheme to more
 and more angles for shifting the phase.

• For instance, one can think of coding 3 bits per phase

• Additionally, the PSK **Andulation-Advanced Phase Shift Keying**
One could now think of extending the scheme to more
and more angles for shifting the phase.
For instance, one can think of coding 3 bits per phase
Additionally, the PSK scheme could
-
-
-

-
- ^{8/30}/2024
 Modulation-Advanced Phase Shift Keying

A more advanced scheme is a hierarchical modulation as used in the

digital TV standard DVB-T.

 The right side of Figure 2.29 shows a 64 QAM that contains a QPSK

mo **Modulation-Advanced Phase Shift Keying**

A more advanced scheme is a hierarchical modulation as used in the

digital TV standard DVB-T.

The right side of Figure 2.29 shows a 64 QAM that contains a QPSK

modulation. A 64 **Modulation-Advanced Phase Shift Keying**
A more advanced scheme is a hierarchical modulation as used in the
digital TV standard DVB-T.
The right side of Figure 2.29 shows a 64 QAM that contains a QPSK
mosdulation. A 64 QAM 8/30/2024
 Modulation-Advanced Phase Shift Keying

A more advanced scheme is a hierarchical modulation as used in the

digital TV standard DVB-T.

The right side of Figure 2.29 shows a 64 QAM that contains a QPSK

modula **Modulation-Advanced Phase Shift Keying**

• A more advanced scheme is a hierarchical modulation as used in the

digital TV standard DVB-T.

• The right side of Figure 2.29 shows a 64 QAM chan doe 6 bit per symbol. Here th **Modulation-Advanced Phase Shift Keying**

• A more advanced scheme is a hierarchical modulation as used in the
 digital TV standard DVB-T.

• The right side of Figure 2.29 shows a 64 QAM that contains a QPSK

modulation **Modulation-Advanced Phase Shift Keying**

• A more advanced scheme is a hierarchical modulation as used in the

digital TV standard DVB-T.

• The right side of Figure 2.29 shows a 64 QAM that contains a QPSK

• modulation 8/30/2024
 **A more advanced scheme is a hierarchical modulation as used in the digital TV standard DVB-T.

The right site of Figure 2.29 shows a 64 QAM that contains a QPSK

The right side of Figure 2.29 shows a 64 QAM th** 8/30/2024
 Modulation-Advanced Phase Shift Keying

• A more absenced scheme is a hierarchical modulation as used in the
 digital TV standard DVB-T.

• The right side of Figure 2.29 shows a 64 QAM that contains a QPSK
 Andulation-Advanced Phase Shift Keying
A more advanced scheme is a hierarchical modulation as used in the
digital TV standard DVB-T.
The right side of Figure 2.29 shows a 64 QAM that contains a QPSK
modulation. A 64 QAM **Modulation-Advanced Phase Shift Keying**

• A more advanced scheme is a hierarchical modulation as used in the digital TV standard DVB-T.

The right side of Figure 2.29 shows a 64 QAM that contains a QPSK modulation. A 64
-
-
- two most significant bits. The remaining 4 bits represent low priority data.
- priority.
- received.

Modulation

Multi-Carrier Modulation

- Under poor reception conditions, e.g., with moving receivers, only the

 A high priority data stream in DVB-T is coded with QPSK using the

two most significant bits. The remaining 4 bits represent low priority

 For (PSK portion can be resolved.

A high priority data stream in DVB-T is coded with QPSK using the

two most significant bits. The remaining 4 bits represent low priority

for TV this could mean that the standard resolution A high priorily data stream in DWH-T is coded with QPSK using the
two most significant bits. The remaining 4 bits represent low priority
for TV this could mean that the standard resolution data stream is
coded with high pr two most significant bits. The remaining 4 bits represent low proonly
diata.

Tor TV this could mean that the standard resolution information with low

priority.

The signal is distorted, at least the standard TV resolutio **Modulation**
 Stream before the stream being sent using an independent carrier Modulation
 COPDM
 OFDM
 OFD • If, for example, n symbols/s have to be transmitted, each subcarrier **Modulation**
 Multi-Carrier Modulation

Apart from the others, multi-carrier modulation (MCM), orthogonal

frequence) division multiplexing (OFDM) or coded OFDM

cOFDM) that are used in the context of the European digit **Example 11.1 Carrier Modulation**
 Apart from the others, multi-carrier modulation (MCM), orthogonal
 (COFDM) that are used in the context of the European digital radio

system DAB and the WLAN standards IEEE 802.11 **Modulation**
 Carrier Modulation

Apart from the others, multi-carrier modulation (MCM), orthogonal
 frequency division multiplexing (OFDM) or coded OFDM

(COFDM) that are used in the context of the European digital ra
-
-
- frequency.
-
-

Modulation- Multi-Carrier Modulation

-
-
-
-

- **Spread Spectrum**
• As the name implies, spread spectrum techniques involve spreading
the bandwidth needed to transmit data which does not make sense at
• first sight.
• Speeding the bandwidth has several advantages. Th **Spread Spectrum**

As the name implies, spread spectrum

As the name implies, spread spectrum techniques involve spreading

the bandwidth needed to transmit data – which does not make sense at

first sight.

Spreading the **Spread Spectrum**
• As the name implies, spread spectrum techniques involve spreading the bandwidth needed to transmit data – which does not make sense at first sight.
• Spreading the bandwidth has several advantages. T **Spread Spectrum**
 Example 18

As the name implies, spread spectrum techniques involve spreading

the bandwidth necded to transmit data – which does not make sense at

first sight.

Spreading the bandwidth has several a **Spread Spectrum**

Spread experiment techniques involve spreading

the bandwidth needed to transmit data – which does not make sense at

first sight.

Spreading the bandwidth has several advantages. The main advantage

is **Spread Spectrum**
narrow between the signal into a broadband signal into a broadband signal.
The bandwidth needed to transmit data – which does not make sense at this the bandwidth needed to transmit data – which does
-
-
-
-
-
- **Spread Spectrum**

As the name implies, spread spectrum techniques involve spreading the bandwidth needed to transmit data —which does not make sense at first sight.
 Spreading the bandwidth has several advantages. The **Spread spectrum**

As the name implies, spread spectrum techniques involve spreading

the bandwidth needed to transmit data – which does not make sense at

first sight.

Spreading the bandwidth has several advantages. The **Spread Spectrum**
As the name implies, spread spectrum techniques involve spreading
the bandwidth necded to transmit data – which does not make sense at
Siretaing the bandwidth has several advantages. The main advantage
i noise. **• Spread Spectrum**
• As the name implies, spread spectrum techniques involve spreading the bandwidth needed to transmit data – which does not make sense at first sight.
• Spreading the bandwidth has several advantages. T **Spread Spectrum**
As the name implies, spread spectrum techniques involve spreading
the bandwidth needed to transmit data – which does not make sense at
first sight.
Specialize to narrowband interference.
In Figure 2.32,
-

- **Spread Spectrum**
• During transmission, narrowband and broadband
interference add to the signal in **step iii).**
• The sum of interference and user signal is received.
• The receiver now knows how to despread the signal i
-
- **interference add to the signal in step iii).** The sum of interference and user signal is received.

 The sum of interference and user signal is received.

 The receiver now knows how to despread the signal i**v**) , co **Spread Spectrum**

During transmission, narrowband and broadband

interference add to the signal in **step iii**).

The sum of interference and user signal is received.

Checker now knows how to despread the signal iv),

co **Spread Spectrum**

• During transmission, narrowband and broadband interference add to the signal in step iii).

• The sum of interference and user signal is received.

• The receiver now knows how to despread the signal
-
- frequencies and reconstruction of the narrow and receiver and the narrow of the narrow of the narrow of the narrow knows how to despread the signal iv). The sum of interference and user signal in seceiver can reconstruct t **Spread Spectrum**

During transmission, narrowband and broadband

interference add to the signal in step iii).

The sum of interference and user signal is received.

The receiver now knows how to despread the signal iv),
 Spread Spectrum
During transmission, narrowband and broadband
interference add to the signal in step iii).
The sum of interference and user signal is received.
The receiver now knows how to despread the signal iv),
conve interference.

-
-
-
- **Spread Spectrum**
 Spread spectrum
 Spread spectrum
 Spread spectrum is now applied to all narrowband signals. To
 Spread chifferent channels. CDM is now used instead of FDM.
 Lach channel is allotted its own cod Spread Spectrum

Spread Spectrum

Spread spectrum

Spread spectrum

Separate different channels, CDM is now used instead of FDM.

Each channel is allotted its own code, which the receivers

have to apply to recover the s **Spread Spectrum**
 Expansive Spread spectrum is now applied to all narrowband signals. To separate different channels, CDM is now used instead of FDM.
 Exact channel is allotted its own code, which the receivers have t **Spread Spectrum**

Spread spectrum is now applied to all narrowband signals. To

separate different channels, CDM is now used instead of FDM.

Each channel is allotted its own code, which the receivers

This is the securit **Spread Spectrum**

Spread spectrum is now applied to all narrowband signals. To

separate different channels, CDM is now used instead of FDM.

Each channel is allotted its own code, which the receivers

have to apply to re
-
-
-

-
-

Direct Sequence Spread Spectrum

- **Spread Spectrum-**
 Direct Sequence Spread Spectrum
 Direct sequence spread Spectrum
 Direct sequence spread spectrum
 Direct sequence and perform an (XOR) with a so-called

chipping sequence as shown in Figure 2.
- **Spread Spectrum-**
 Spread Spectrum-

Direct Sequence Spread Spectrum

Direct sequence spread spectrum (DSSS) systems take a

user bit stream and perform an (XOR) with a so-called

othpiping sequence as shown in Figure **Spread Spectrum-**
 Chipping sequence as shown in Figure 2.35.

Theret sequence are shown in Figure 2.35.

The example shows that the result is either the sequence as shown in Figure 2.35.

The example shows that the re **Spread Spectrum-**

Direct Sequence Spread Spectrum

Direct sequence spread spectrum

Direct sequence spread spectrum (DSSS) systems take a

user bit stream and perform an (XOR) with a so-called

chipping sequence as show **Spread Spectrum-**
 Spread Spectrum-
 Direct Sequence Spread Spectrum

• Direct sequence spread spectrum (DSSS) systems take a user bit stream and perform an (XOR) with a so-called chipping sequence as shown in Figure **and Spectrum**
 d Spectrum
 DSSS) systems take a

ROR with a so-called

ROR with a so-called

re 2.35.

is either the sequence

ts complement 1001010

, the chipping sequence

s, with a duration t_c .

I properly it a **Spread Spectrum-**
 Spread Spectrum-

Direct Sequence Spread Spectrum

Direct sequence spread spectrum (DSSS) systems take a

user bit stream and perform am (XOR) with a so-called

chipping sequence as shown in Figure 2 **Spread Spectrum-**
 Direct Sequence Spread Spectrum
 Direct sequence spread spectrum
 Direct sequence spread spectrum
 ODENT SET CONS with a so-called
 using sequence as shown in Figure 2.35.

The example shows **Spread Spectrum-**
Direct Sequence Spread Spectrum
Direct sequence spread spectrum (DSSS) systems take a
user bit stream and perform an (XOR) with a so-called
chipping sequence as shown in Figure 2.35.
The example shows **Spread Spectrum-**

Direct Sequence Spread Spectrum

• Direct sequence spread spectrum (DSSS) systems take a

user bit stream and perform an (XOR) with a so-called

obipping sequence as shown in Figure 2.35.

• The exampl **Spectrum-**
 Spectrum
 Spectrum
 OSSS) systems take a

orm an (XOR) with a so-called

in Figure 2.35.

the result is either the sequence

lals 0) or is complement 1001010

duration t_0 , the chipping sequence

ge **Spread Spectrum-**

Direct Sequence Spread Spectrum

• Direct sequence spread spectrum (DSSS) systems take a

user bit stream and perform an (XOR) with a so-called

chipping sequence as shown in Figure 2.35.

• The cample **Spread Spectrum-**
Direct Sequence Spread Spectrum
Direct sequence spread apectrum (DSSS) systems take a
user bit stream and perform an (XOR) with a so-called
chipping sequence as shown in Figure 2.35.
The example shows
- .
- noise sequence.
-
-

Spread Spectrum- Direct Sequence Spread Spectrum

- While each user bit has a duration t₁, the chipping sequence

 If the chipping sequence is generated properly it appears as

random noise: this sequence is also sometimes called **pseudo-**
 • The spreading factor s consists of smaller pulses, called chips, with a duration t_c
fif the chipping sequence is generated properly it appears as
random noise: this sequence is also sometimes called pseudo-
moise sequence.
The spreading facto If the chipping sequence is generated properly it appears as

random noise .equence is also sometimes called **pseudo-**
 noise sequence.
 **the spreading factor s = t_i/t_c determines the bandwidth of

the resulting si** rations use: this sequence is also sometimes called **pseudo-**
 **The spreading factor s = t₀/t_c determines the bandwidth of

the resulting signal.

The original signal needs a bandwidth w, the resulting signal

needs s Example, the sequence 10110111000**, a so-called Barker codes example, the resulting signal.

If the original signal, received a bandwidth w, the resulting signal
 Example, Supplementary and Spectrum—

Direct Sequence S For the original signal needs a bandwidth w, the resulting signal
needs s'w after spreading.
 Spread Spectrum

Unite the **spreading factor** of the very simple example is only 7

(and the chipping sequence 0110101 is not **Spread Spectrum-**
 Direct Sequence Spread Spectrum
 While the spreading factor of the very simple example is only 7

(and the chipping sequence 0110101 is not very random), civil

applications use spreading factors be **Spread Spectrum-**

Direct Sequence Spread Spectrum

While the spreading factor of the very simple example is only 7

(and the chipping sequence 0110101 is not very random), civil

applications use spreading factors betwee
-
-
-

Sumpling Carlier Care and Sequence Care and Sequence Sequence Spread Spectrum-

Direct Sequence Spread Spectrum

Transmitter

The first step in a DSSS transmitter, Figure 2.36 is the

spreading of the user data with the ch Figure 2.36 DSSS Transmitter

Spread Spectrum-

Direct Sequence Spread Spectrum

Transmitter

The first step in a DSSS transmitter, Figure 2.36 is the

first step in a DSSS transmitter, Figure 2.36 is the

operading of the Figure 2.36 DSSS Transmitter

Direct Sequence Spread Spectrum

At Transmitter

• The first step in a DSSS transmitter, Figure 2.36 is the

spreading of the user data with the chipping sequence

(digital modulation). The s **Spread Spectrum-**

Direct Sequence Spread Spectrum

Transmitter

The first step in a DSSS transmitter, Figure 2.36 is the

spreading of the user data with the chipping sequence

(digital modulation). The spread signal is **Spread Spectrum-**
Direct Sequence Spread Spectrum
Transmitter
The first step in a DSSS transmitter, Figure 2.36 is the
spreading of the user data with the chipping sequence
digital modulation). The spread signal is th **Spread Spectrum-**
 Direct Sequence Spread Spectrum
 Transmitter

The first step in a DSSS transmitter, Figure 2.36 is the

spreading of the user data with the chipping sequence

(digital modulation). The spread signal **Spread Spectrum-**
Direct Sequence Spread Spectrum
Transmitter
The first step in a DSSS transmitter, Figure 2.36 is the
Spreading of the user data with the chipping sequence
(digital modulation). The spread signal **Spread Spectrum-**
 Direct Sequence Spread Spectrum
 Consumption: Transmitter

The first step in a DSSS transmitter, Figure 2.36 is the

spreading of the user data with the chipping sequence

(digital modulation). The Spread Spectrum- Direct Sequence Spread Spectrum

$\begin{tabular}{l|c|c|c} \hline \textbf{Radio} & \textbf{Chiping} \\ \hline \textbf{sequence} & \textbf{sequence} \\ \hline \end{tabular} \vspace{0.5em} \begin{tabular}{l} \hline \textbf{Figure 2.37 DSSS Receiver} \\ \hline \end{tabular} \vspace{0.5em} \begin{tabular}{l} \hline \textbf{D direct Sequence Spread Spectrum} \\ \hline \end{tabular} \vspace{0.5em} \begin{tabular}{l} \hline \textbf{F} \\ \hline \textbf{F} \\ \hline \textbf{F} \\ \hline \textbf{F} \\ \textbf{H} \\ \textbf{D}} \\ \hline \$ Figure 2.37 DSSS Receiver

Spread Spectrum-

Direct Sequence Spread Spectrum

The DSSS receiver is more complex than the transmitter.

The receiver orly has to perform the inverse functions of the two

transmitter modulati **Spread Spectrum-**
Spread Spectrum-
Direct Sequence Spread Spectrum
The DSSS receiver is more complex than the transmitter.
The receiver only has to perform the inverse functions of the two
transmitter modulation steps **Spread Spectrum-**
Spread Spectrum-
Direct Sequence Spread Spectrum
The DSSS receiver is more complex than the transmitter.
The receiver only has to perform the inverse functions of the two
transmitter modulation steps **Spread Spectrum-**
Direct Sequence Spread Spectrum
The DSSS receiver is more complex than the transmitter.
The receiver only has to perform the inverse functions of the two
transmitter modulation steps.
However, noise an **Spread Spectrum-**
 Direct Sequence Spread Spectrum

The DSSS receiver is more complex than the transmitter.

The receiver only has to perform the inverse functions of the two

transmitter modulation steps.

However, noi **Spread Spectrum-**

Direct Sequence Spread Spectrum

The DSSS receiver is more complex than the transmitter.

The receiver only has to perform the inverse functions of the two

transmitter modulation steps.

However, noise **Spread Spectrum-**
The DSSS receiver is more complex than the transmitter.
The receiver only has to perform the inverse functions of the two
transmitter modulation steps.
However, noise and multi-path propagation require a **Spread Spectrum-**

The DSSS receiver is more complex than the transmitter.

The receiver only has to perform the inverse functions of the two

transmitter modulation steps.

However, noise and multi-path propagation requi **Spread Spectrum-**
Direct Sequence Spread Spectrum
The DSSS receiver is more complex than the transmitter.
The receiver conly has to perform the inverse functions of the two
transmitter modulation steps.

However, noise **Spread Spectrum-**
Direct Sequence Spread Spectrum
The DSSS receiver is more complex than the transmitter.
The receiver only has to perform the inverse functions of the two
transmitter modulation steps.
However, noise an Spread Spectrum- Direct Sequence Spread Spectrum

Direct Sequence Spread Spectrum

- ^{8/30/2024}
 Spread Spectrum-
 • During a bit period, which also has to be

derived via synchronization, an integrator
 • Calculating the products of chips and signal, Spread Spectrum-

Direct Sequence Spread Spectrum

During a bit period, which also has to be

derived via synchronization, an integrator

adds all these products.

Calculating the products of chips and signal,

and adding
- added Spectrum-

Spread Spectrum-

Direct Sequence Spread Spectrum

 During a bit period, which also has to be

derived via synchronization, an integrator

added all these products of chips and signal,

and adding the pro 8/30/2024
 Spread Spectrum-

Direct Sequence Spread Spectrum

During a bit period, which also has to be

derived via synchronization, an integrator
 adds all these products.

Calculating the products of chips and signa 8/30/2024
 Spread Spectrum-

Direct Sequence Spread Spectrum

During a bit period, which also has to be

derived via synchronization, an integrator

adds all these products.

Calculating the products of chips and signal, correlator.
- **Spread Spectrum-**
 Spread Spectrum-
 Direct Sequence Spread Spectrum
 • During a bit period, which also has to be derived via synchronization, an integrator adds all these products.

 Calculating the products of ch **Spread Spectrum-**

Direct Sequence Spread Spectrum

During a bit period, which also has to be

derived via synchronization, an integrator

adds all these products.

Calculating the products of chips and signal,

and addin **Spread Spectrum-**

Direct Sequence Spread Spectrum

During a bit period, which also has to be

derived via synchronization, an integrator

adds all these products.

Calculating the products of chips and signal,

and addin **Spread Spectrum-**

Direct Sequence Spread Spectrum

During a bit period, which also has to be

derived via synchronization, an integrator

adds all these products.

Calculating the products of chips and signal,

and addin

and adding the products in an **integrator** is

also called correlation, the device a

correlation, the device a
 • Finally, in each bit period a decision unit
 • samples the sums generated by the

integrator and decide **also called correlation, the device a**
 correlator.

Finally, in each bit period a **decision unit**
 samples the sums generated by the
 integrator and decides if this sum represents
 a binary 1 or a 0.
 Spread Sp Examples the sums generated by the integrator.
 **Finally, in each bit period a decision unit samples the sums generated by the integrator and decides if this sum represents a binary 1 or a 0.

Spread Spectrum-**

Direct **Simples Scheme Sch EXECUTE:**
 EXECUTE:
 EXEC 1011011100001001000111. **Example 15 The receiver side, the receiver side, the real of the receiver** $\frac{1}{2}$ **is** $\frac{1}{2}$ **is** $\frac{1}{2}$ **in the receiver and receiver are perfectly synchromized and the signal is not too distorted by noise or multia binary 1 or a 0.**
 Spread Spectrum-

Direct Sequence Spread Spectrum

If transmitter and receiver are perfectly synchronized and

the signal is not too distorted by noise or multi-path

paragation, DSSS works perfect sequence. **Spread Spectrum-**
 First Sequence Spread Spectrum
 If transmitter and receiver are perfectly synchronized and
 the signal is not too distorted by noise or multi-path
 propagation, DSSS works perfectly well accordi Spread Spectrum-
 Condition I If transmitter and receiver are perfectly synchronized and the signal is not too distorted by noise or multi-path propagation, DSSS works perfectly well according to the simple scheme Spread Spectrum-
Direct Sequence Spread Spectrum
If transmitter and receiver are perfectly synchronized and
the signal is not too distorted by noise or multi-path
propagation, DSSS works perfectly well according Spread Spectrum-

Direct Sequence Spread Spectrum

If transmitter and receiver are perfectly synchromized and

the signal is not too distorted by noise or multi-path

propagation, DSSS works perfectly well according to Spread Spectrum-Direct Sequence Spread Spectrum

Spread Spectrum- Direct Sequence Spread Spectrum

- **Spread Spectrum-

Direct Sequence Spread Spectrum

 But what happens in case of multi-path propagation?**

 Then several paths with different delays exist between a

transmitter and a receiver.

 In this case, using so-8/30/2024

Spread Spectrum-

Direct Sequence Spread Spectrum

But what happens in case of multi-path propagation?

Then several paths with different delays exist between a

In this case, using so-called Rake Receivers prov Spread Spectrum-

Direct Sequence Spread Spectrum

• But what happens in case of multi-path propagation?

• Then several paths with different delays exist between a

• In this case, using so-called Rake Receivers provides Spread Spectrum-

Direct Sequence Spread Spectrum

• But what happens in case of multi-path propagation?

Then several paths with different delays exist between a

transmitter and a receiver.

• In this case, using so-call 8/30/2024

• **Spread Spectrum-**

• **Direct Sequence Spread Spectrum**

• **But what happens in case of multi-path propagation?**
 Then several paths with different delays exist between a
 transmitter and a receiver.

• In
-
- paths.
-
- **Spread Spectrum-**
 Direct Sequence Spread Spectrum

 But what happens in case of multi-path propagation?

Then several paths with different delays exist between a

transmitter and a receiver.

 In this case, using **Spread Spectrum-**
Direct Sequence Spread Spectrum
But what happens in case of multi-path propagation?
Then several paths with different delays exist between a
transmitter and a receiver.
In this case, using so-called **Spread Spectrum-**
 Direct Sequence Spread Spectrum
 Then several paths with different delays exist between a
 transmitter and a receiver.
 the correlator with the correlator are possible solution.
 A Rake Receive Spread Spectrum-

Direct Sequence Spread Spectrum

But what happens in case of multi-path propagation?

Then several paths with different delays exist between a

transmitter and a receiver.

In this case, using so-called
-

Spread Spectrum-

Frequency Hopping Spread Spectrum (FHSS)

- paths.

Each correlator is synchronized to the transmitter plus

the delay on that specific path.

As soon as the receiver detects a new path which is

As soon as the cereiver detects a new path, it assigns this

new path ach correlator is synchronized to the transmitter plus

is edelay on that specific path.

S soon as the receiver detects a new path which is

ronger than the currently weakest path, it assigns this

ew path to the correlat and other than is sylutionized to the transmitter pus
is education in sylution
into a soon as the receiver detects a new path which is
ronger than the currently weakest path, it assigns this
the output of the correlators a In the space of the correct correct content of the correlator with the weakest path.

In the correlator with the weakest path.

In early weakest path.

In early of the correlators are then combined and fed

Into the decisi From the current with the weakest path.

The output of the correlator with the weakest path.

the output of the correlators are then combined and fed

to the decision unit.
 Spread Spectrum-

Frequency Hopping Spread Spe and the correlator with the weakest path.

the output of the correlators are then combined and fed

to the decision unit.

For Frequency Hopping Spread Spectrum

For Frequency Hopping Spread Spectrum

(FHSS) systems, the t Incouput of the correlators are then combined and ted

into the decision unit.

• For Evequency Hopping Spread Spectrum

• For Frequency Hopping Spread Spectrum

(FHSS) systems, the total available bandwidth is

split into **Spread Spectrum-**
 Spread Spectrum
 For Frequency Hopping Spread Spectrum
 (FHSS) systems, the total available bandwidth is
 split into many channels of smaller bandwidth is
 plus guard spaces between the channel Spread Spectrum-
Frequency Hopping Spread Spectrum (FHSS)
For Frequency Hopping Spread Spectrum
(FHSS) systems, the total available bandwidth is
split into many channels of smaller bandwidth
plus guard spaces between the
-
-
- hopping.

Frequency Hopping Spread Spectrum (FHSS)

- **Spread Spectrum-**
 Frequency Hopping Spread Spectrum (FHSS)
 Fast Hopping
 For fast hopping systems, the transmitter changes the frequency several times during the transmitter changes the frequency several times duri ^{8/30/2024}
 • Frequency Hopping Spread Spectrum-
 Fast Hopping

• For fast hopping systems, the transmitter changes the

frequency several times during the transmitter changes the

In the example of Figure 2.38, the t **Spread Spectrum-**
Frequency Hopping Spread Spectrum
Frequency Hopping Spread Spectrum (FHSS)
st Hopping
For fast hopping systems, the transmitter changes the
frequency several times during the transmitter hops three 8/30/2024
 Spread Spectrum-
 Frequency Hopping Spread Spectrum (FHSS)
 st Hopping
 St Hopping
 St Hopping systems, the transmitter changes the
 frequency several times during the transmitter hops three
 transm
- Spread Spectrum-

Frequency Hopping Spread Spectrum (FHSS)

Fast Hopping

 For fast hopping systems, the transmitter changes the

frequency several times during the transmission of a single bit.

In the example of Figure 8/30/2024
 Spread Spectrum-
 Frequency Hopping Spread Spectrum (FHSS)
 of Hopping

For fast hopping systems, the transmitter changes the

frequency several times during the transmission of a single bit.

In the examp 8/30/2024
 Spread Spectrum-

Frequency Hopping Spread Spectrum (FHSS)

st Hopping

for fast hopping systems, the transmitter changes the

frequency several times during the transmission of a single bit.

In the example o **Spread Spectrum-**
Exertion Spread Spectrum
Exertions
Fast Hopping systems, the transmitter changes the
root rate hopping systems, the transmitter changes the
defence of Figure 2.38, the transmitter hops three
the s 8/30/2024
 Spread Spectrum-
 Frequency Hopping Spread Spectrum (FHSS)
 st Hopping
 st Hopping systems, the transmitter changes the

frequency several times during the transmission of a single bit.

In the example o **Spread Spectrum-**
Fraguency Hopping Systems, the transmitter changes the
Four dast hopping systems, the transmitter changes the
Fraguency several times during the transmitter hops three
times during a bit period. Spread Spectrum-
 Strain Frequency Hopping Syrends Spectrum (FHSS)
 Extra shopping systems, the transmitter changes the
 Frequency several times during the transmission of a single bit.

In the example of Figure 2. **Spread Spectrum-**
Frequency Hopping Spread Spectrum (FHSS)
st Hopping
for fast hopping systems, the transmitter changes the
frequency several times during the transmission of a single bit.
In the example of Figure 2.38, t
-
-

Frequency Hopping Spread Spectrum (FHSS)

- **Spread Spectrum-**
 Frequency Hopping Spread Spectrum (FHSS)

 The first step in an FHSS transmitter is the modulation of user data

according to one of the digital-to-analog modulation schemes, e.g.,
 FISK or BPSK.
 8/30/2024
 Spread Spectrum-

Frequency Hopping Spread Spectrum (FHSS)

The first step in an FHSS transmitter is the modulation of user data

according to one of the digital-to-analog modulation schemes, e.g.,

FSK or BPS **Spread Spectrum-**
 Frequency Hopping Spread Spectrum (FHSS)

• The first step in an FHSS transmitter is the modulation of user data

rescording to one of the digital-to-analog modulation schemes, e.g.,

• This results **Spread Spectrum-**
Frequency Hopping Spread Spectrum (FHSS)
The first step in an FHSS transmitter is the modulation of user data
according to one of the digital-to-analog modulation schemes, e.g.,
FSK or BPSK.
This resu **Spread Spectrum**-
Frequency Hopping Spread Spectrum (FHSS)

The first step in an FHSS transmitter is the modulation of user data

according to one of the digital-to-analog modulation schemes, e.g.,

FSK or BPSK.

This **Spread Spectrum-**
 Spread Spectrum
 Frequency Hopping Spread Spectrum (FHSS)
 the first step in an FHSS transmitter is the modulation of user data
 recording to one of the digital-to-analog modulation schemes, e.g Spread Spectrum-
Spread Spectrum-
Frequency Hopping Spread Spectrum (FHSS)
The first step in an FHSS transmitter is the modulation of user data
according to one of the digital-to-analog modulation schemes, e.g.,
FSK **Spread Spectrum**-
 Frequency Hopping Spread Spectrum (FHSS)
 The first step in an FHSS transmitter is the modulation of user data

according to one of the digital-to-analog modulation schemes, e.g.,

FSK or BPSK.

Th **Spread Spectrum**-
 Spread Spectrum-
 Frequency Hopping Spread Spectrum (FHSS)

The first step in an FIISS transmitter is the modulation of user data

according to one of the digital-to-analog modulation schemes, e.g. **Spread Spectrum-**
Frequency Hopping Spread Spectrum (FHSS)
The first step in an FHSS transmitter is the modulation of user data
according to one of the digital-to-analog modulation schemes, e.g.,
This results in a narr **S/30/2024**
 Spread Spectrum-
 Iopping Spread Spectrum (FHSS)
 n FHSS transmitter is the modulation of user data

of the digital-to-analog modulation schemes, e.g.,
 representing the strength of the strength of the Spread Spectrum-
 Frequency Hopping Spread Spectrum (FHSS)
 Frefers teen in an FIISS transmitter is the modulation of user data

according to one of the digital-to-analog modulation schemes, e.g.,

FSK or BPSK. This **Spread Spectrum-**
Frequency Hopping Spread Spectrum (FHSS)
The first step in an FHSS transmitter is the modulation of user data
recording to one of the digital-to-analog modulation schemes, e.g.,
FSK or BPSK.
This resu **Spread Spectrum-**

Frequency Hopping Spread Spectrum (FHSS)

The first step in an FHSS transmitter is the modulation of user data

exceeding to one of the digital-to-analog modulation schemes, e.g.,

Fix results in a nar
-
-
- .
-
-
- sequences

Frequency Hopping Spread Spectrum (FHSS)

- ^{8/30}/2024
 Spread Spectrum-

 The receiver of an FHSS system has to know the hopping

 The receiver of an FHSS system has to know the hopping

 Equence and must stay synchronized.

 It then performs the inverse o
-
- Spread Spectrum-

Frequency Hopping Spread Spectrum (FHSS)

 The receiver of an FHSS system has to know the hopping

sequence and must stay synchronized.

 It then performs the inverse operations of the modulation

to re Spread Spectrum-

Frequency Hopping Spread Spectrum (FHSS)

• The receiver of an FHSS system has to know the hopping

sequence and must stay synchronized.

• It then performs the inverse operations of the modulation

to re 8/30/2024
 Spread Spectrum-

Frequency Hopping Spread Spectrum (FHSS)

The receiver of an FHSS system has to know the hopping

sequence and must stay synchronized.

It then performs the inverse operations of the modulati 8/30/2024
 Spread Spectrum-
 Frequency Hopping Spread Spectrum (FHSS)

The receiver of an FHSS system has to know the hopping

sequence and must stay synchronized.

to reconstruct user almores operations of the modulat 8/30/2024
 Spread Spectrum-

Frequency Hopping Spread Spectrum (FHSS)

• The receiver of an FIISS system has to know the hopping

sequence and must stay synchronized.

It then performs the inverse operations of the modul 8/30/2024
 Spread Spectrum-

Frequency Hopping Spread Spectrum (FHSS)

• The receiver of an FHSS system has to know the hopping

sequence and must stay synchronized.

• It then performs the inverse operations of the modu **Spread Spectrum-**
 **The receiver of an FHSS system has to know the hopping

sequence and must stay syspectronized.**
 Compared Figs. • It then performs the inverse operations of the modulation

to reconstruct user data. **Spread Spectrum-**
Frequency Hopping Spread Spectrum (FHSS)
The receiver of an FHSS system has to know the hopping
sequence and must stay synchronized.
It then performs the inverse operations of the modulation
to reconstru **Spread Spectrum-**
Frequency Hopping Spread Spectrum (FHSS)
The receiver of an FHSS system has to know the hopping
sequence and must stay synchronized.
It then performs the inverse operations of the modulation
to reconstru
-
-
-

Cellular Systems

Advantages of cellular systems with small cells are the following:

 \triangleright Higher capacity

 \triangleright Less transmission power

Local interference only

Example Figure Figuress Figures

Small cells also have some Disadvantages:

 \triangleright Infrastructure needed

- \triangleright Handover needed
- \triangleright Frequency planning

- SDM.
- Cellular Systems
• Cellular systems for mobile communications implement
• SDM.
• Each transmitter, typically called a base station, covers a
• Cell radii can vary from tens of meters in buildings,
- **Cellular Systems**

 Cellular systems for mobile communications implement

 Each transmitter, typically called a base station, covers a

 Cell radii can vary from tens of meters in buildings,

 Cell radii can vary from
- cellular Systems

cellular systems

Cellular systems

SDM.

Exact area, a cell.

ertain area, a cell.

cell radii can vary from tens of meters in buildings,

cell radii can vary from tens of meters in buildings,

and hundr 8/30/2024

Cellular Systems

Cellular Systems

Exponent

SDM.

Each transmitter, typically called a base station, covers a

certain area, a cell.

Cell radii can vary from tens of meters in buildings,

and hundreds of mete 8/30/2024
 Cellular Systems

Cellular systems

Cellular systems

SDM.

Each transmitter, typically called a base station, covers a

certain area, a cell.

Cell radii can vary from tens of meters in buildings,

cell radii 8/30/2024

Cellular Systems

Cellular systems

Cellular systems

Cellular systems

Each transmitter, typically called a base station, covers a

certain area, a cell.

Cell radii can vary from tens of meters in buildings,

- 8/30/2024

Cellular Systems

SDM.

Cellular systems

SLOM.

Each transmitter, typically called a base station, covers a

certain area, a cell.

Cell radii can vary from tens of meters in buildings,

and hundreds of meters **Cellular Systems**
Cellular systems for mobile communications implement
SDM.
Each transmitter, typically called a base station, covers a
certain area, a cell.
Cell radii can vary from tens of meters in buildings,
kilometer **Cellular Systems**
Cellular systems for mobile communications implement
SDM.
Each transmitter, typically called a base station, covers a
certain area, a cell.
Cell radii can vary from tens of meters in buildings,
cand hund combined with TDM the hopping pattern has to be coordinated. • Cellular Systems
• Cellular systems for mobile communications implement
• Each transmitter, typically called a base station, covers a
• certain area, a cell.
• Cell radii can vary from tens of meters in buildings,
and hu **Cellular Systems**
Cellular systems for mobile communications implement
SDM.
Each transmitter, typically called a base station, covers a
ecrtain area, a cell.
Cell radii can vary from tens of meters in buildings,
and hundr
-

Frequency Management and Channel Assignment

CELLULAR MODELS

- ^{8/30/2024}
 Cellular Systems
 Frequency Management and Channel Assignment
 CELLULAR MODELS

 Two possible models to create cell patterns with minimal

interference are shown in Figure 2.41.

 Cells are combine $8/30/2024$

signment

with minimal
 e three cells
 a cluster.

requencies.

, another cell

k somewhat

ple way of

renetition of
-
-
- **interference are shown in Figure 2.41.**
 interference are shown in Figure 2.41.
 CELLULAR MODELS
 i Two possible models to create cell patterns with minimal

interference are shown in Figure 2.41.
 Cells are combi Form a cluster seven cells for the right side seven cells for the right side seven cells for a cluster. • All cells are combined in clusters – on the left side three cells form a cluster, on the right side seven cells f On the left side, one cell in the cluster uses set f_1 , another cell f_2 , and the third cell f_3 . .
- different.
- 8/30/2024

Cellular Systems

Trequency Management and Channel Assignment

LLULAR MODELS

wo possible models to create cell patterns with minimal

terference are shown in Figure 2.41.

ells are combined in clusters on the **EVALUAR MODELS**
 Cellular Systems
 CELLULAR MODELS
 CELLULAR MODELS
 CELLULAR MODELS
 CELLULAR MODELS
 CELLULAR MODELS
 CELLULAR MODELS
 CELLER ANOTELS
 CELLER ANOTELS
 CELLER ANOTELS
 CELLER ANOTELS Cellular Systems
 Frequency Management and Channel Assignment
 CELLULAR MODELS

• Two possible models to create cell patterns with minimal

interference are shown in Figure 2.41.

• Cells are combined in clusters – **incerty Colludar Systems**
 ELLULAR MODELS
 ELLULAR MODELS

Two possible models to create cell patterns with minimal

interference are shown in Figure 2.41.

Cells are combined in clusters – on the left side three cell **Cellular Systems**
 CELLULAR MODELS

• Two possible models to create cell patterns with minimal

interference are shown in Figure 2.41.

• Cells are combined in clusters – on the left side three cells
 form a cluster Cellular Systems
 Frequency Management and Channel Assignment
 ELLULAR MODELS

Two possible models to create cell patterns with minimal

interference are shown in Figure 2.41.

Cells are combined in **clusters – on th**
-

Frequency Management and Channel Assignment

- ^{8/30/2024}
• **Cellular Systems**
• **The fixed assignment and Channel Assignment**
• **The fixed assignment of frequencies to cell clusters and cells**
• respectively, is not very efficient if traffic load varies. For
instance 8/30/2024
 Cellular Systems

Frequency Management and Channel Assignment

The fixed assignment of frequencies to cell clusters and cells

respectively, is not very efficient if traffic load varies. For

instance, in the **Example 18 Solution**
 Example 18 Systems
 Example 18 Systems

The fixed assignment and Channel Assignment

The fixed assignment of frequencies to cell clusters and cells

respectively, is not very efficient if traffic 8/30/2024
 Cellular Systems

Frequency Management and Channel Assignment

The fixed assignment of frequencies to cell clusters and cells

respectively, is not very efficient if traffic load varies. For

instance, in the 8/30/2024
 Cellular Systems
 Frequency Management and Channel Assignment

The fixed assignment of frequencies to cell clusters and cells

respectively, is not very efficient if traffic load varies. For

in a neighborin **Example 18**
 Example 18 Example 18 S/30/2024
 Cellular Systems
 Cellular Systems
 Cellular Systems

The fixed assignment of frequencies to cell clusters and cells

respectively, is not very efficient if traffic load varies. For

im a nei **Cellular Systems**
 Cellular Systems
 Cellular Systems
 Cellular Channel Assignment
 CE in the case of a heavy loading to cell clusters and cells

respectively, is not very efficient if traffic load varies. For

i **but it is required to the careful traffic analysis before installation**. The fixed assignment of frequencies to cell clusters and cells respectively, is not very efficient if traffic load varies. For instance, in the cas 8/30/2024
 Cellular Systems
 Frequency Management and Channel Assignment

The fixed assignment of frequencies to cell clusters and cells

respectively, is not very efficient if traffic load varies. For

in a neighborin **Cellular Systems**

Frequency Management and Channel Assignment

The fixed assignment of frequencies to cell clusters and cells

respectively, is not very efficient if traffic load varies. For

instance, in the case of a h **Cellular Systems**

• The fixed assignment and Channel Assignment

• The fixed assignment of frequencies to cell clusters and cells

respectively, is not very efficient if traffic load varies. For

instance, in the case of **Cellular Systems**
 Frequency Management and Channel Assignment

The fixed assignment of frequencies to cell clusters and cells

respectively, is not very elficient if traffic load varies. For

instance, in the case of a **Cellular Systems**
 Cellular Systems

The fixed assignment and Channel Assignment

The fixed assignment of frequencies to cell clusters and cells

respectively, is not very efficient if traffic load varies. For

in a nei
-
-
-

Cell Breathing

- ^{8/30/2024}
 Cellular Systems

Cell Breathing

Cellular systems using CDM instead of FDM do not need

such elaborate channel allocation schemes and complex

frequency planning.

Here, users are separated through the code 8/30/2024
 Such all Strates Coll Breathing

Cell Breathing

Cellular systems using CDM instead of FDM do not need

such elaborate channel allocation schemes and complex

Frequency planning.

Here, users are separated thr **for the code of the code through the code through**
-
-
- S/30/2024
 Cellular Systems

Cell Breathing

Cell Breathing

Cell and Systems

Cell and the frequency planning.

There, users are separated through the code they use, not

through the frequency.

Cell planning faces anot **Cellular Systems**

Cellular Systems

Cellular systems

Cellular systems

current local and CDM instead of FDM do not need

such claborate channel allocation schemes and complex

frequency planning.

Here, users are separa 8/30/2024
 Cellular Systems

Cell Breathing

Cellular systems using CDM instead of FDM do not need

such claborate channel allocation schemes and complex

frequency planning.

Here, users are separated through the code 8/30/2024
 Shrinks International Collinsor Science Sc 8/30/2024
 Cellular Systems

Cell Breathing

Cell Breathing

Cell Breathing

Such claborate channel allocation schemes and complex

frequency planning.

There, users are separated through the code they use, not

through **Cellular Systems**

Cell Breathing

Cell Breathing

Cell Breathing

such elaborate channel allocation schemes and complex

frequency planning.

Here, users are separated through the code they use, not

through the frequenc **Cellular Systems**

Cell Breathing

Cellular systems using CDM instead of FDM do not need

such elaborate channel allocation schemes and complex

frequency planning.

Here, users are separated through the code they use, no
-
-

Types of Hand-off and their Characteristics

Types of Handoff

- Hard Handoff
- Soft Handoff
- Delayed Handoff
- Mobile-Assisted Handoff

Cellular Systems

Types of Hand-off and their Characteristics

• Mobile-Assisted Handoff
• When the assisted Handoff
Types of Hand-off and their Characteristics
Hard Handoff
• When there is an actual break in the connectivity while switching
tion one Base Station and MSC because the **From the Base Station one Base Station to another Base Station.**
Types of Hand-off and their Characteristics
when there is an actual break in the connectivity while switching
from one Base Station to another Base Station.

Types of Hand-off and their Characteristics

Cellular Systems
Types of Hand-off and their Characteristics
Delayed Handoff
• Delayed handoff occurs when no base station is available
for accepting the transfer. The call continues until the
signal strength reaches a a **Cellular Systems**
Types of Hand-off and their Characteristics
slayed Handoff
Delayed handoff occurs when no base station is available
for accepting the transfer. The call continues until the
signal strength reaches a thre **Cellular Systems**
Types of Hand-off and their Characteristics
Delayed handoff
of andoff occurs when no base station is available
for accepting the transfer. The call continues until the
signal strength reaches a threshold **Cellular Systems**
Types of Hand-off and their Characteristics
dayed Handoff
Delayed handoff occurs when no base station is available
for accepting the transfer. The call continues until the
signal strength reaches a thres **Cellular Systems**
Types of Hand-off and their Characteristics
Layed Handoff
Delayed handoff occurs when no base station is available
for accepting the transfer. The call continues until the
signal strength reaches a thres

MAC

- 8/30/2024

 Medium Access Control(MAC) comprises all

mechanisms that regulate user access to a medium

using SDM, TDM, FDM, or CDM.

 MAC is thus similar to traffic regulations in the

highway/multiplexing.

 The fact 8/30/2024

Medium Access Control(MAC) comprises all

mechanisms that regulate user access to a medium

using SDM, TDM, FDM, or CDM.

MAC is thus similar to traffic regulations in the

highway/multiplexing.

Crossing in TDM
- highway/multiplexing.
- **MAC**

 Medium Access Control(MAC) comprises all

mechanisms that regulate user access to a medium

using SDM, TDM, or CDM.

MAC is thus similar to traffic regulations in the

highway/multiplexing.

 The fact that severa 8/30/2024

• Medium Access Control(MAC) comprises all

mechanisms that regulate user access to a medium

using SDM, TDM, FDM, or CDM.

• MAC is thus similar to traffic regulations in the

highway/multiplexing.

• The fact 8/30/2024

Medium Access Control(MAC) comprises all

mechanisms that regulate user access to a medium

using SDM, TDM, FDM, or CDM.

MAC is thus similar to traffic regulations in the

highway/multiplexing.

The fact that s 8/30/2024
 Collisions; one mechanisms that regulate user access to a medium

mechanisms that regulate user access to a medium

using SDM, TDM, FDM, or CDM.

MAC is thus similar to traffic regulations in the

highway/mult **MAC**

• Medium Access Control(MAC) comprises all

meichanisms that regulate user access to a medium

using SDM, TDM, FDM, or CDM.

• MAC is thus similar to traffic regulations in the

highway/multiplexing.

• The fact tha **MAC**

MAC

Medium Access Control(MAC) comprises all

mechanisms that regulate user access to a medium

suing SDM, TDM, FDM, or CDM.

MAC is thus similar to traffic regulations in the

highway/multiplexing.

MAC is thus si **CONTE CONTROVER CONTR MAC**

Medium Access Control(MAC) comprises all

mechanisms that regulate user access to a medium

suing SDM, TDM, FDM, or CDM.

MAC is thus similar to traffic regulations in the

highway/multiplexing.

The fact that sever **MAC**

Medium Access Control(MAC) comprises all

mechanisms that regulate user access to a medium

using SDM, TDM, FDM, or CDM.

MAC is thus similar to traffic regulations in the

highway/multiplexing.

The fact that seve
-
-

Motivation

-
- Let us consider various device the same server that is the considerations; one mechanism to enforce these rules is traffic lights.

 MAC belongs to layer 2, the data link control layer (DLC). Layer 2 is subdivided into collisions; one mechanism to enforce these rules is

traffic lights.
 Collisions; one mechanism to enforce these rules is
 COLC), Layer 2 is subdivided into the logical link

control (LLC), layer 2, and the MAC, layer **MAC belongs to layer 2**, the data link control layer

(DLC), layer 2 is subdivided into the logical link

control (LLC), layer 2b, and the MAC, layer 2a.

The task of DLC is to establish a reliable point to point

or poi (DLC). Layer 2 is subdivided into the logical link

control (LLC), layer 2b, and the MAC, layer 2a.

• The task of DLC is to establish a reliable point to point

or point to multi-point connection between different

devic
-
-
- In task or Dut. Is to establish a reliable point to point
or point to multi-point connection between different
devices over a wired or wireless medium.

 Let us consider carrier sense multiple access with
collision dete **Motivation**

• Let us consider carrier sense multiple access with

collision detection, (CSMA/CD) which works as follows.

• A sender senses the medium (a wire or coaxial cable) to

see if it is free. If the medium is bus **Motivation**
Let us consider carrier sense multiple access with
collision detection, (CSMA/CD) which works as follows.
A sender senses the medium (a wire or coaxial cable) to
see if it is free. If the medium is busy, the s **Motivation**
Let us consider carrier sense multiple access with
collision detection, (CSMA/CD) which works as follows.
A sender senses the medium (a wire or coaxial cable) to
see if it is free. If the medium is busy, the s **Motivation**
Let us consider carrier sense multiple access with
collision detection, (CSMA/CD) which works as follows.
A sender senses the medium (a wire or coaxial cable) to
see if it is free. If the medium is busy, the s

Motivation

-
- metrical and the same can happen to the collision detection.

 The same can happen to the collision detection.

 The sender detects no collision and assumes that

the data has been transmitted without errors, but

a coll **Motivation**

The same can happen to the collision detection.

The sender detects no collision and assumes that

the data has been transmitted without errors, but

a collision might actually have destroyed the data

at the **Motivation**

The same can happen to the collision detection.

The sender detects no collision and assumes that

the data has been transmitted without errors, but

a collision might actually have destroyed the data

at the
- **Motivation**

 The same can happen to the collision detection.

 The sender detects no collision and assumes that

the data has been transmitted without errors, but

a collision might actually have destroyed the data

at **SEANT THE SAME CONCIVER THE SAME CONCIVED THE SAME CONCIVED THE SAME SCHEMENT OF SAME Area of the data has been transmitted without errors, but a collision might actually have destroyed the data at the receiver.
Collision** 8/30/2024
 Motivation

The same can happen to the collision detection.

The sender detects no collision and assumes that

the data has been transmitted without errors, but

at collision might actually have destroyed the **Motivation**

• The same can happen to the collision detection.

• The same can happen to the collision and assumes that

the data has been transmitted without errors, but

a collision might actually have destroyed the dat **Motivation**
The same can happen to the collision detection.
The sender detects no collision and assumes that
the data has been transmitted without errors, but
a collision might actually have destroyed the data
at the rece
-

Motivation- Hidden and Exposed Terminals

-
- 8/30/2024
 Motivation-Hidden and Exposed Terminals

 Consider the scenario with three mobile phones as

shown in Figure 3.1.

 The transmission range of A reaches B, but not C (the

detection range does not reach C eit Sample 1976

Sample 1976

Sample 3.1. • The transmission range of A reaches B, but not C (the

detection range does not reach C either). The

transmission range of C reaches B, but not A. Finally, the

transmission range o 8/30/2024
 Motivation-Hidden and Exposed Terminals

Consider the scenario with three mobile phones as

shown in Figure 3.1.

The transmission range of A reaches B, but not C (the

detection range does not reach C either) 8/30/2024
 Motivation-Hidden and Exposed Terminals

Consider the scenario with three mobile phones as

shown in Figure 3.1.

The transmission range of A reaches B, but not C (the

detection range does not reaches B, but 8/30/2024
 Motivation-Hidden and Exposed Terminals

Consider the scenario with three mobile phones as

shown in Figure 3.1.

The transmission range of A reaches B, but not C (the

detection range does not reaches A and C **Motivation-Hidden and Exposed Terminals**

• Consider the scenario with three mobile phones as

shown in Figure 3.1.

• The transmission range of A reaches B, but not C (the

detection range doces not reach C either). The 8/30/2024
 Motivation-Hidden and Exposed Terminals

Consider the scenario with three mobile phones as

shown in Figure 3.1.

The transmission range of A reaches B, but not C (the

detection range does not reach C either) 8/30/2024
 Motivation-Hidden and Exposed Terminals

• Consider the scenario with three mobile phones as

• The transmission range of A reaches B, but not C (the

detection range does not reach C either). The

transmissio **Motivation-Hidden and Exposed Terminals**
Consider the scenario with three mobile phones as
shown in Figure 3.1.
The transmission range of A reaches B, but not C (the
detection range of C reaches B, but not A. Finally, the **Motivation-Hidden and Exposed Terminals**
Consider the scenario with three mobile phones as
shown in Figure 3.1.
The transmission range of A reaches B, but not C (the
detection range does not reach C either). The
transmiss **Motivation-Hidden and Exposed Terminals**
Consider the scenario with three mobile phones as
shown in Figure 3.1.
The transmission range of A reaches B, but not C (the
detection range does not reach C either). The
transmiss
-
-

SDMA

- 8/30/2024

 Space Division Multiple Access (SDMA) is used for
 **allocating a separated space to users in wireless

networks.**

 A typical application involves assigning an optimal base
 xation to a mobile phone user. T 8/30/2024
 SDMA

Space Division Multiple Access (SDMA) is used for
 allocating a separated space to users in wireless
 networks.

A typical application involves assigning an optimal base

receive several base station networks.
-
- 8/30/2024
• Space Division Multiple Access (SDMA) is used for
allocating a separated space to users in wireless
networks.
A typical application involves assigning an optimal base
station to a mobile phone user. The mobile 8/30/2024
 SDMA

Space Division Multiple Access (SDMA) is used for
 allocating a separated space to users in wireless
 networks.
 **atypical application involves assigning an optimal base

station to a mobile phone u SDMA**
 SPACE STATE STATE STATE STATE STATE STATE STATE SPACE STATE SPACE SPACE SPACE SPACE SPACE SPACE SPACE SPACE STATION of a mobile phone user. The mobile phone may receive several base stations with different quality 8/30/2024
 SDMA

Space Division Multiple Access (SDMA) is used for
 allocating a separated space to users in wireless
 networks.
 **A typical application involves assigning an optimal base

receive several base statio** 8/30/2024
 SDMA
 SPACE STAGE SOMA
 SPACE SPACE SCIVE SPACE SP S/30/2024

SDMA

SDMA

SDMA

SPMA allocating a separated space to users in wireless

networks.

networks

networks application involves assigning an optimal base

station to a mobile phone user. The mobile phone may

rece **SDMA**

• Space Division Multiple Access (SDMA) is used for
 allocating a separated space to users in wireless
 exhign to a mobile phone user. The mobile phone may

receive several base stations with different quality. **SDMA**

Space Division Multiple Access (SDMA) is used for

allocating a separated space to users in wireless

station to a mobile phone user. The mobile phone may

station to a mobile phone user. The mobile phone may

rece **SDMA**
 Space Division Multiple Access (SDMA) is used for
 allocating a separated space to users in wireless
 A typical application involves assigning an optimal base
 A typical application involves assigning an opt
-
-

FDMA

- ^{8/30/2024}
• Again, both partners have to know the
frequencies in advance; they cannot just listen
into the medium.
• The two frequencies are also known as **uplink**, 8/30/2024
Again, both partners have to know the
frequencies in advance; they cannot just listen
into the medium.
The two frequencies are also known as uplink,
i.e., from mobile station to base station or
- **into the medium.**

 Again, both partners have to know the

frequencies in advance; they cannot just listen

into the medium.

 The two frequencies are also known as uplink,
 i.e., from mobile station to base station o 8/30/2024
 FDMA

Again, both partners have to know the

frequencies in advance; they cannot just listen

into the medium.

The two frequencies are also known as uplink,
 i.e., from mobile station to base station or
 f 8/30/2024
 FDMA

Again, both partners have to know the

frequencies in advance; they cannot just listen

into the medium.

The two frequencies are also known as uplink,

i.e., from mobile station to base station or

from 8/30/2024
 EDMA

Again, both partners have to know the

frequencies in advance; they cannot just listen

into the medium.

The two frequencies are also known as uplink,
 i.e., from mobile station to base station or

fr **FDMA**
Again, both partners have to know the
frequencies in advance; they cannot just listen
into the medium.
The two frequencies are also known as uplink,
i.e., from mobile station to base station or
from ground control t

FDMA

-
- 8/30/2024

 All uplinks use the band between 890.2 and 915 MHz, all
 commissions to 505.2 to 960 MHz.

 According to FDMA, the base station, shown on the right

side, allocates a certain frequency for up- and downlink
 EDMA

• All uplinks use the band between 890.2 and 915 MHz, all

downlinks use 935.2 to 960 MHz.

• According to FDMA, the base station, shown on the right

side, allocates a certain frequency for up- and downlink

to e
- **S/30/2024**
**Side, all uplinks use the band between 890.2 and 915 MHz, all downlinks use 935.2 to 960 MHz.
According to FDMA, the base station**, shown on the right side, allocates a certain frequency for up- and downlink **EDMA**

• All uplinks use the band between 890.2 and 915 MHz, all

downlinks use 935.2 to 960 MHz.

• According to FDMA, the base station, shown on the right

side, allocates a certain frequency for up- and downlink

to e **FDMA**
FDMA
All uplinks use the band between 890.2 and 915 MHz, all
downlinks use 935.2 to 960 MHz.
According to FDMA, the base station, shown on the right
side, allocates a certain frequency for up- and downlink
to 8/30/2024
FDMA
All uplinks use the band between 890.2 and 915 MHz, all
downlinks use 935.2 to 960 MHz.
According to FDMA, the base station, shown on the right
side, allocates a certain frequency for up- and downlink
t 8/30/2024

MHz for a certain of the band between 890.2 and 915 MHz, all

downlinks use 935.2 to 960 MHz.

According to FDMA, the base station, shown on the right

side, allocates a certain frequency for up-and downlink

t **FDMA**

• All uplinks use the band between 890.2 and 915 MHz, all
 downlinks use 935.2 to 960 MHz.

• According to FDMA, the base station, shown on the right

ties, allocates a certain frequency for up- and downlink

to **EDMA**
Constant Arts are solution and between 890.2 and 915 MHz, all
downlinks use 935.2 to 960 MHz.
According to FDMA, the base station, shown on the right
side, allocates a certain frequency for up- and downlink
to **FDMA**
All uplinks use the band between 890.2 and 915 MHz, all
downlinks use 935.2 to 960 MHz.
According to FDMA, the base station, shown on the right
According to FDMA the base station, shown on the right
tide, allocat
-
-

TDMA

- Fequency is fu = 890 MHz + n-0.2 MHz, the downlink

frequency is fu = 890 MHz + n-0.2 MHz, the downlink

frequency is fd = fu + 45 MHz, i.e., fd = 935 MHz + n-0.2

MHz for a certain channel, n.

The base station selects t Trequency is fol = 000 mine that the column of frequency is fol = 0 + 45 MHz, i.e., fol = 935 MHz + n·0.2

MHz for a certain channel, n.

The base station selects the channel. Each channel

(uplink and downlink) has a ban requency is on $=$ 10 + 3 bitter, i.e., i.e. 3 33 bitter i.o.2

MHz for a certain channel, n.

The base station selects the channel. Each channel

(uplink and downlink) has a bandwidth of 200 kHz.

This illustrates the use For communication, i.e., communication, i.e., communication, i.e., compared to provide the subset of FDM for multiple access (124 channels per direction are available at 900 MHz) and duplex according to a predetermined sch Uplink and dowlink, it as a bandwidth of 200 kind.
This illustrates the use of FDM for multiple access (124
channels per direction are available at 900 MHz) and
duplex according to a predetermined scheme.
TDMA
Compared to • Inis illustrates the use of FUM for multiple access (124

channels per direction are available at 900 MHz) and

duplex according to a predetermined scheme.

• Compared to FDMA, time division multiple access

(TDMA) offer **TDMA**

Compared to FDMA, time division multiple access

(TDMA) offers a much more flexible scheme, which

comprises all technologies that allocate certain time

slots for communication, i.e., controlling TDM.

Now tuning FIDMA

• Compared to FDMA, time division multiple access

(TDMA) offers a much more flexible scheme, which

comprises all technologies that allocate certain time

slots for communication, i.e., controlling TDM.

• Now tuni **TDMA**
 Compared to FDMA, time division multiple access
 CIDMA) offers a much more fexible scheme, which

comprises all technologies that allocate certain time

slots for communication, i.e., controlling TDM.

Now tuni **TDMA**

Compared to FDMA, time division multiple access

(TDMA) offers a much more flexible scheme, which

comprises all technologies that allocate certain time

slots for communication, i.e., controlling TDM.

Now tuning
-
-
-

TDMA

-
- ^{8/30/2024}
• Now synchronization between sender and receiver has
to be achieved in the time domain.
• Again this can be done by using a fixed pattern similar to
FDMA techniques, i.e., allocation ga certain time slot for a
- **TDMA**

 Now synchronization between sender and receiver has

to be achieved in the time domain.

 Again this can be done by using a fixed pattern similar to

FDMA techniques, i.e., allocating a certain time slot for a
 8/30/2024
 TDMA

Now synchronization between sender and receiver has

to be achieved in the time domain.

Again this can be done by using a fixed pattern similar to

FDMA techniques, i.e., allocating a certain time slot **Channel Schannel Schannel Schannel Schannel Schannel Scheme.**
 channel Schannel, or by using a fixed pattern similar to

FDMA techniques, i.e., allocating a circuit time slot for a

channel, or by using a dynamic alloca 8/30/2024
 EDMA

Now synchronization between sender and receiver has

to be achieved in the time domain.

Again this can be done by using a fixed pattern similar to

EDMA techniques, i.e., allocating a certain time slot
- 8/30/2024
 TDMA

Now synchronization between sender and receiver has

to be achieved in the time domain.

Again this can be done by using a fixed pattern similar to

FDMA techniques, i.e., **allocating a certain time slot has to be announced beforehand.** • Mac addresses are quite often used before and the time domain. • Again this can be done by using a fixed pattern similar to FDMA techniques, i.e., allocating a certain time slot for a ch 8/30/2024
 TDMA

Now synchronization between sender and receiver has

to be achieved in the time domain.

Again this can be done by using a fixed pattern similar to

FDMA techniques, i.e., allocating a certain time slot **TDMA**
Now synchronization between sender and receiver has
to be achieved in the time domain.
Again this can be done by using a fixed pattern similar to
FDMA techniques, i.e., allocating a certain time slot for a
channel message. **FIDMA**

• Now synchronization between sender and receiver has

to be achieved in the time domain.

• Again this can be done by using a fixed pattern similar to

• FDMA techniques, i.e., allocating a certain time slot for **TDMA**

Now synchronization between sender and receiver has

to be achieved in the time domain.

Again this can be done by using a dixed patter in similar to

FDMA techniques, i.e., allocating a certain time slot for a

ch
- requirements.

-
-
-

- ^{8/30/2024}
• Figure 3.4 shows how these fixed TDM
• Figure 3.4 shows how these fixed TDM patterns are used to
implement multiple access and a duplex channel between a
base station and mobile station.
• Assigning different 8/30/2024
 TDMA-Fixed TDM

Figure 3.4 shows how these fixed TDM patterns are used to

implement multiple access and a duplex channel between a

base station and mobile station.

Sasigning different slots for uplink and d **base station and mobile station**
 base station and mobile station.
 base station and mobile station.
 c Assigning different slots for uplink and downlink using the
 c Assigning different slots for uplink and downl **SAME FREAT SAMES FREAT SAME FREAT SAME FREAT SAME FREAT SAME FREAT SAME FREAT SAME TO ASSIGNING duplex channel between a base station and mobile station.**
 As shown in the figure, the base station uses one out of 12
 A 8/30/2024
 SCALUT TENT TERT TEAM TERM

Figure 3.4 shows how these fixed TDM patterns are used to

implement multiple access and a duplex channel between a

base station and mobile station.

Sargining different slots for 8/30/2024
 TDMA- Fixed TDM

ws how these fixed TDM patterns are used to

Iltiple access and a duplex channel between a

d mobile station.

y is called time division duplex (TDD).
-
-
-
-
-
- **SAU SET ALL CONTROVER SET SET AND SET AND SET AND SET AND SET AND SERVIDENT SET AND THE UPLINE SCRIB TO THE UPLINE SCRIB (TO THE ASSIGNT).**
 CONTROVER SET AND SET AND SET AND SET AND SET AND SET AND ARE SERVIDE ARE AND from the matter is scheme. • Figure 3.4 shows these fixed TDM patterns are used to implement multiple access and a duplex channel between a base station and mobile station. • As shown in the figure, the base station use **TDMA-Fixed TDM**
Figure 3.4 shows how these fixed TDM patterns are used to
implement multiple access and a duplex channel between a
base station and mobile station.
Assigning different slots for uplink and downlink using t **TDMA-Fixed TDM**
Figure 3.4 shows how these fixed TDM patterns are used to
implement multiple access and a duplex channel between a
base station and mobile station.
Singing different slots for uplink and downlink using the **Figure 3.4 shows how these fixed TDM**
Figure 3.4 shows how these fixed TDM patterns are used to
base station and mobile station.
Assigning different slots for uplink and downlink using the
As shown in the figure, the base **TDMA-Fixed TDM**
Figure 3.4 shows how these fixed TDM patterns are used to
implement multiple access and a duplex channel between a
base station and mobile station.
Saigning different slots for uplink and downlink using th From the downlink, whereas the mome station uses one

out of 12 different slots for the uplink.

• Uplink and downlink are separated in time.

• Up to 12 different mobile stations can use the same

• Frequency without in out of 12 contract solos for the upins.

Uplink and downlink are separated in time.

Up to 12 different mobile stations can use the same

frequency without interference using this scheme.

Each connection is allotted its o Uplink and downlink are separated in time.

Up to 12 different mobile stations can use the same

frequency without interference using this scheme.

Each connection is allotted its own up- and downlink pair.

In the example • Up to 12 different mobile stations can use the same.

• Frequency without interference using this scheme.

• Each connection is allotted its own up- and downlink pair.

• In the example below, which is the standard case frequency without interference using this scheme.

• In the example below, which is the standard case for the DECT

cordels phone system, the pattern is repeated every 10 ms,

i.e., each slot has a duration of 417 μ s. T In the example below, which is the standard case for the DECT

cordless phone system, the pattern is repeated every 10 ms,

i.e., each slot has a duration of 417 *µs. This repetition*
 guarantees access to the medium ever cordies phone system, the **patter** is repeated every 10 ms, independent
i.e., each slot has a duration of 417 *us*. This repetition
guarantees access to the medium every 10 ms, independent
of any other connections.
TDMA-C n the figure, the base station uses one out of 12

e downlink, whereas the mobile station uses one

fferent slots for the uplink.

downlink are separated in time.

different mobile station can use the same

uithout inter

- guarantees access to the medium every 10 ms, independent
of any other connections.
 TDMA-Classical Aloha

 As mentioned above, TDMA comprises all mechanisms

controlling medium access according to TDM. But what

the phe **TDMA- Classical Aloha**
As mentinged above, TDMA comprises all mechanisms
controlling medium access according to TDM. But what
happens if TDM is applied without controlling access?
which was invented at the of several stat **TDMA- Classical Aloha**
• As mentioned above, TDMA comprises all mechanisms
controlling medium access according to TDM. But what
happens if TDM is applied without controlling access?
• This is exactly what the classical **COMPA-Classical Aloha**
 Controlling medium access according to TDM. But what
 happens if TDM is applied without controlling access?

This is searchly what the classical Aloha scheme does, a scheme

which was invented **TDMA- Classical Aloha**
As mentioned above, TDMA comprises all mechanisms
controlling medium access according to TDM. But what
thappens if TDM is applied without controlling access?
This is exactly what the classical Aloha
-
-
-
- stations.
-
-

-
- ^{8/30}/2024

 Several versions of CSMA exist.

 In non-persistent CSMA, stations sense the carrier and start

 In non-persistent CSMA, stations sense the carrier and start

sending immediately if the medium is idle. If 8/30/2024
 TDMA- Carrier Sense Multiple Access

Several versions of CSMA exist.

In non-persistent CSMA, stations sense the carrier and start

In non-persistent CSMA, stations sense the carrier and start

sensing the med 8/30/2024
 TDMA- Carrier Sense Multiple Access

Several versions of CSMA exist.

In **non-persistent CSMA**, stations sense the carrier and start

busy, the station pauses a random amount of time before

busy, the station **SAUND EXECT SENSING THE MEDIT AGAINS THE MEDIT AGAINS SENSING THE MEDIT AGAINS SENSING THE MEDIT AND REPEAT AND REPEAT AND REPEAT AND REPEAT AND REPEAT AND A P-PEAT AND A P-PEAT AND A P-PEAT AND A P-PEAT AND A Systems no** 8/30/2024
 TDMA- Carrier Sense Multiple Access

Several versions of CSMA exist.

In non-persistent CSMA, stations sense the carrier and start

In non-persistent CSMA, stations sense the medium is

sus, the station pauses 8/30/2024
 TDMA- Carrier Sense Multiple Access

Several versions of CSMA exist.

In **non-persistent CSMA, stations sense the** carrier and start

sending immediately if the medium is idle. If the medium is

busy, the stat
-
- 8/30/2024
 TDMA- Carrier Sense Multiple Access

Several versions of CSMA exist.

In non-persistent CSMA, stations sense the carrier and start

sending immediatly if the medium is idle. If the medium is

busy, the station **EDMA- Carrier Sense Multiple Access**

Several versions of CSMA exist.

In non-persistent CSMA, stations sense the carrier and start

slending immediately if the medium is ide. If the medium is

susy, the station pauses a 8/30/2024
 TDMA- Carrier Sense Multiple Access

Several versions of CSMA exist.

In non-persistent CSMA, stations sense the carrier and start

sending immediately if the medium is idle. If the medium is

busy, the statio **TDMA- Carrier Sense Multiple Access**
Several versions of CSMA exist.
In non-persistent CSMA, stations sense the carrier and start
in ompersistent CSMA station is idle. If the medium is
busy, the station pauses a random am **TDMA- Carrier Sense Multiple Access**
Several versions of CSMA exist.
In **non-persistent CSMA, stations sense** the carrier and start
buse, the mediately if the medium is idle. If the medium is
busy, the station pauses a ra **TDMA- Carrier Sense Multiple Access**
Several versions of CSMA exist.
In non-persistent CSMA, stations sense the carrier and start
handling immediately if the medium is idle. If the medium is
sensing the medium again and r **TDMA- Carrier Sense Multiple Access**
Several versions of CSMA exist.
In non-persistent CSMA, stations sense the carrier and start
busy, the station pauses a random is idle. If the medium is
busy, the station pauses a rand **TDMA- Carrier Sense Multiple Access**
Several versions of CSMA exist.
In non-persistent CSMA, stations sense the carrier and start
sensing immediately if the medium is idle. If the medium is
sensing the medium again and re or only transmir with a probability or p, with the station
deferring to the next slot with the probability 1-p, i.e., access
is slotted in addition.
Access its much avoids a systems, all stations wishing to transmit
acces Solismic metallarial and interesting this patternit.

In p-persistent CSMA systems nodes also sense the medium,

but only transmit with a probability of p, with the station

deferring to the next slot with the probability

- erimig to the react solved in addition.

s slotted in addition.

1 **a persister CSMA systems, all stations wishing to transmit

nather scales the medium at the same time, as soon as it becomes

dle. This will cause many co** In 1-persistent CSMA systems, all stations wishing to transmitude and the same time, as soon as it becomes
the medium at the same time, as soon as it becomes
the cent and block each other. To create some fairness for stati **Example 12**
 Example 12 dle. This will cause many collisions if many stations wish to
enced and block each other. To create some fairness for stations
availing for a longer time, back-off algorithms can be
throduced, which are sensitive to waitin stations. warm, our buring the mainty busine that the sensitive to waiting time as this is done
for standard Ethernet (Halsall, 1996).
TDMA- Carrier Sense Multiple Access
• CSMA with collision avoidance (CSMA/CA) is one of the
ac
- **included Example 11**
 non-present Confidence CSMA/CA)
 non-presentation avoidance (CSMA/CA) is one of the
 access schemes used in wireless LANs following the

standard IEEE 802.11. Here sensing the carrier is

combi **TDMA- Carrier Sense Multiple Access**

CSMA with collision avoidance (CSMA/CA) is one of the

access schemes used in wireless LANs following the

standard IEEE 802.11. Here sensing the carrier is

combined with a back-off TDMA- Carrier Sense Multiple Access

CSMA with collision avoidance (CSMA/CA) is one of the

access schemes used in wireless LANs following the

standard IEEE 802.11. Here sensing the carrier is

combined with a back-off sc **TDMA- Carrier Sense Multiple Access**
CSMA with collision avoidance (CSMA/CA) is one of the
access schemes used in wireless LANs following the
standard IEEE 802.11. Here sensing the carrier is
combined with a back-off sche **TDMA- Carrier Sense Multiple Access**

CSMA with collision avoidance (CSMA/CA) is one of the

access schemes used in wireless LANs following the

standard LEE 802.11. Here sensing the carrier is

combined with a back-off s **TDMA- Carrier Sense Multiple Access**
CSMA with collision avoidance (CSMA/CA) is one of the
access schemes used in wireless LANs following the
standard LEE 802.11. Here sensing the carrier is
combined with a back-off schem **TDMA- Carrier Sense Multiple Access**
CSMA with collision avoidance (CSMA/CA) is one of the
access schemes used in wireless LANs following the
standard IEEE 802.11. Here sensing the carrier is
combined with a back-off sche

- 8/30/2024
 TDMA- Demand assigned multiple access

 A general improvement of Aloha access systems can

also be achieved by **reservation** mechanisms and

combinations with some (fixed) TDM patterns.

 These schemes typic ^{8/30/2024}
 DMA- Demand assigned multiple access

• A general improvement of Aloha access systems can

also be achieved by **reservation** mechanisms and

combinations with some (fixed) TDM patterns.

• These schemes typi 8/30/2024
 MA- Demand assigned multiple access

A general improvement of Aloha access systems can

also be achieved by **reservation** mechanisms and

combinations with some (fixed) TDM patterns.

These schemes typically h **COMA - Demand assigned multiple access**
 Combinations with some (fixed) TDM patterns.

These schemes typically have a reservation period
 Combinations with some (fixed) TDM patterns.
 Combinations with some (fixed) T
	-
	-
	- followed by a transmission period. During the reservation period, stations can reserve **Solution Scheme Schemes Schemes Schemes Schemes Schemes Schemes Schemes Scheme Scheme Scheme Scheme Scheme Scheme Scheme Sc** 8/30/2024
 MA- Demand assigned multiple access

	A general improvement of Aloha access systems can

	also be achieved by **reservation** mechanisms and

	combinations with some (fixed) TDM patterns.

	These schemes typically h
	-
	- **BMA- Demand assigned multiple access**

	 A general improvement of Aloha access systems can

	also be achieved by reservation mechanisms and

	combinations with some (fixed) TDM patterns.

	 These schemes typically have a re **DMA- Demand assigned multiple access**

	• A general improvement of Aloha access systems can

	combinations with some (fixed) TDM patterns.

	• These schemes typically have a reservation period

	• Olliwed by a transmission pe **MA- Demand assigned multiple access**
A general improvement of Aloha access systems can
also be achieved by reservation mechanisms and
combinations with some (fixed) TDM patterns.
These schemes typically have a reservation **MA- Demand assigned multiple access**
A general improvement of Aloha access systems can
also be achieved by reservation mechanisms and
combinations with some (fixed) TDM patterns.
These schemes typically have a reservation

Furture slots in the transmission period.

• While, depending on the scheme, collisions may occur

during the reservation period, the transmission period

can then be accessed without collision.

• Alternatively, the trans Fucture constraints and the scheme, collisions may occur
during the reservation period, the transmission period
dant then be accessed without collision.
Alternatively, the transmission period can be split into
periods with • While, depending on the scheme, collisions may occur
during the reservation period, the transmission period
can then be accessed without collision.
• Alernatively, the transmission period can be split into
periods with a can then be accessed without collision.

Alternatively, the transmission period can be split into

periods with and without collision.

In general, these schemes cause a higher delay under a

light load (first the reservat \nAlternatively, the transmission period can be split into periods with and without collision.\nIn general, these schemes cause a higher delay under a light load (first the reservation has to take place), but allow higher throughput due to less collisions.\nObviously higher throughput due to less collisions.\nOne basic scheme is demand assigned multiple access (DAMA) also called reservation Aloha, a scheme typical for satellite systems. DAMA, as shown in Figure 3.7 has two modes.\nDumia content by the second solution of the second solution can try to reserve the following the slotted Aloha scheme, all stations can try to reserve access time for satellite transmission.\nCollisions during the reservation phase do not destroy data transmission, but only the short request for data transmission for the success of a second version. If successful, a time slot in the future is reserved, and no other station is therefore, the satellite collects all successful requests (the others are destroyed) and sends transmission, but only the short requests for data transmission, but allow higher throughput due to less collisions.

TDMA- Demand assigned multiple access (DAMA) also caled reservation has a scheme typical for statilitie ight load (first the reservation has to take place), but

allow higher throughput due to less collisions.

One basic scheme is demand assigned multiple access (DAMA) also

called reservation Aloha, a scheme typical for sat **DMA - Demand assigned multiple access**

One basic scheme is demand assigned multiple access (DAMA) also

called reservation Aloha, a scheme typical for satellite systems.

DAMA, as shown in Figure 3.7 has two modes.

DAMA **FDMA-Demand assigned multiple access**

• One basis csheme is demand assigned multiple access (DAMA) also

called reservation Aloha, a scheme typical for scelific systems.

• DAMA, as shown in Figure 3.7 has two modes.

• **DMA- Demand assigned multiple access**

One basic scheme is demand assigned multiple access (DAMA) also

called reservation Aloha, a scheme typical or satellite systems.

DAMA, as shown in Figure 3.7 has two modes.

Extati **Synchronized from the synchronized from the system of the systems.**

• One basic scheme is demand assigned multiple access (DAMA) also called reservation Alohs, a scheme typical for satellite systems.

• During a contenti **DMA- Demand assigned multiple access**
One basic scheme is demand assigned multiple access (DAMA) also
called reservation Aloha, a scheme typical for satellite systems.
DAMA, as shown in Figure 3.7 has two modes. For examp For During the reservation period, stations can reserve
future slots in the transmission period.

• While, depending on the scheme, collisions may occur

during the reservation period, the transmission period

can then be

- 8/30/2024
 TDMA- Reservation TDMA

en more fixed pattern that still allows some

m access is exhibited by reservation TDMA (see
 3.9).

Med TDM scheme N mini-slots followed by N·k 8/30/2024

• An even more fixed pattern that still allows some

random access is exhibited by reservation TDMA (see

Figure 3.9).

• In a fixed TDM scheme N mini-slots followed by N·k

data-slots form a frame that is repea 8/30/2024
 TDMA- Reservation TDMA

An even more fixed pattern that still allows some

random access is exhibited by reservation TDMA (see

Figure 3.9).

In a fixed TDM scheme N mini-slots followed by N·k

data-slots form 8/30/2024
 TDMA- Reservation TDMA

• An even more fixed pattern that still allows some

random access is exhibited by reservation TDMA (see
 Figure 3.9).

• In a fixed TDM scheme N mini-slots followed by N·k

• data-sl **TDMA- Reservation TDMA**

• An even more fixed pattern that still allows some

random access is exhibited by reservation TDMA (see

Figure 3.9).

• In a fixed TDM scheme N mini-slots followed by N·k

data-slots form a fra **TDMA- Reservation TDMA**

• An even more fixed pattern that still allows some

random access is exhibited by reservation TDMA (see

Figure 3.9).

• In a fixed TDM scheme N mini-slots followed by N·k

data-slots form a fra **FIDMA - Reservation TDMA**

• An even more fixed pattern that still allows some

random access is exhibited by reservation TDMA (see

Figure 3.9).

• In a fixed TDM scheme N mini-slots followed by N·k

bata-slots form a fr **EXECT TOMA - Reservation TDMA**

• An even more fixed pattern that still allows some

random access is exhibited by reservation TDMA (see

Figure 3.9).

• In a fixed TDM scheme N mini-slots followed by N·k

• data-slots fo TDMA-Reservation TDMA
An even more fixed pattern that still allows some
Frandom access is exhibited by reservation TDMA (see
Figure 3.9).
In a fixed TDM scheme N mini-slots followed by N·k
data-slots form a frame that is r
-
-
-
-
- scheme.

- 8/30/2024

TDMA- Multiple access with collision avoidance

Multiple access with collision avoidance

(MACA) presents a simple scheme that solves

the hidden terminal problem, does not need a 8/30/2024

• Multiple access with collision avoidance

• Multiple access with collision avoidance

(MACA) presents a simple scheme that solves

the hidden terminal problem, does not need a

base station, and is still a ran 8/30/2024
 EDMA- Multiple access with collision avoidance
 Multiple access with collision avoidance
 (MACA) presents a simple scheme that solves
 the hidden terminal problem, does not need a
 base station, and is 8/30/2024
 TDMA- Multiple access with collision avoidance
 Multiple access with collision avoidance
 (MACA) presents a simple scheme that solves
 the hidden terminal problem, does not need a
 base station, and is 8/30/2024
 EDMA- Multiple access with collision avoidance
 Multiple access with collision avoidance
 (MACA) presents a simple scheme that solves
 the hidden terminal problem, does not need a
 base station, and is scheme – but with dynamic access with collision avoidance

• Multiple access with collision avoidance

(MACA) presents a simple scheme that solves

the hidden terminal problem, does not need a

base station, and is still a 8/30/2024
 TDMA- Multiple access with collision avoidance
 (MACA) presents a simple scheme that solves
 the hidden terminal problem, does not need a
 base station, and is still a random access Aloha

scheme – but w **FOMA- Multiple access with collision avoidance**
 (MACA) presents a simple scheme that solves
 the hidden terminal problem, does not need a
 base station, and is still a random access Aloha

scheme – but with dynamic FDMA- Multiple access with collision avoidance

(MACA) presents a simple scheme that solves

the hidden terminal problem, does not need a

base station, and is still a random access Aloha

scheme – but with dynamic reserva TOMA- Multiple access with collision avoidance

Multiple access with collision avoidance

(MACA) presents a simple scheme that solves

the hidden terminal problem, does not need a

base station, and is still a random acces
-
-

- 8/30/2024

 With MACA, A does not start its transmission at once, but

sends a request to send (RTS) first. B receives the RTS that

contains the name of sender and receiver, as well as the

length of the future transmiss 8/30/2024
 **SEPTEMA CONTEX THE RTS that

Finis RTS is not heatter transmission.

This RTS** 8/30/2024
 COMA- Multiple access with collision avoidance

With MACA, A does not start its transmission at once, but

sends a request to send (RTS) first. B receives the RTS that

contains the name of sender and receiver **TDMA- Multiple access with collision avoidance**

• With MACA, A does not start its transmission at once, but

sends a request to send (RTS) first. B receiver, as well as the

contains the name of sender and receiver, as 8/30/2024
 TDMA- Multiple access with collision avoidance

• With MACA, A does not start its transmission at once, but

sends a request to send (RTS) first. B receives the RTS that

tontains the name of sender and receiv 8/30/2024
 EDMA- Multiple access with collision avoidance

With MACA, A does not start its transmission at once, but

sends a request to send (RTS) first. B receives the RTS that

contains the name of sender and receiver **EDMA- Multiple access with collision avoidance**

• With MACA, A does not start its transmission at once, but

sends a request to send (RTS) first. **B** receives the RTS that

contains the name of sender and receiver, as w 8/30/2024
 TDMA- Multiple access with collision avoidance

with MACA, A does not start its transmission at once, but

sends a request to send (RTS) first. **B** receives the RTS that

contains the name of sender and recei **TDMA- Multiple access with collision avoidance**

with MACA, A does not start its transmission at once, but

sends a request to send (RTS) first. **B receives the RTS that**

length of the future transmission.

This RTS i **FDMA- Multiple access with collision avoidance**
With MACA, A does not start its transmission at once, but
sends a request to send (RTS) first. B receives the RTS that
contains the future transmission.
This RTS is not hear **TOMA- Multiple access with collision avoidance**
With MACA, A does not start its transmission at once, but
sends a request to send (RTS) first. **B** receives the RTS that
contains the name of sender and receiver, as well as 8/30/2024
 TDMA- Multiple access with collision avoidance

With MACA, A does not start its transmission at once, but

sends a request to send (RTS) first. B receives the RTS that

contains the name of sender and receiver
-
- transmission. From B, called clear to send (CTS).

From B, called clear to send (CTS).

The CTS again contains the names of sender (A) and receiver

transmission.

This CTS is now heard by C and the medium for future use by

A is now re
-
-
- From Signar contains the remines of sendic type and the between

the series of a shall be length of the future

transmission.

This CTS is now heard by C and the medium for future we by

This CTS is now heard by C and allo

- RTS.
-
- **This CTS is now heard by C** and the medium for future use by
A disnow reserved for the duration of the transmission.
After receiving a CTS, C is not allowed to send anything for the
dollision cannot occur at B during da
- Nuration indicated in the CTS toward B.

Acollision cannot occur at B during data transmission, and the

Acollision cannot occur at B during data transmission, and the

ridden terminal problem is solved provided that the exactor measurement of the solution cannot occur at B during data transmission, and the
hidden terminal problem is solved – provided that the
transmission conditions remain the same.

• Still, collisions can occur during t Transmission conditions remain the same.
 COMA- Multiple access with collision avoidance

Still, collisions can occur during the sending of an

RTS.

Both A and C could send an RTS that collides at B.

RTS is very small TDMA- Multiple access with collision avoidance

• Still, collisions can occur during the sending of an

RTS.

• Both A and C could send an RTS that collides at B.

• RTS is very small compared to the data

transmission, so **TDMA- Multiple access with collision avoidance**

• Still, collisions can occur during the sending of an

• Both A and C could send an RTS that collides at B.

• RTS is very small compared to the data

transmission, so the **DMA- Multiple access with collision avoidance**
Still, collisions can occur during the sending of an
RTS.
Both A and C could send an RTS that collides at B.
RTS is very small compared to the data
transmission, so the proba
- CTS.
-

- 8/30/2024
 TDMA- Polling
 ITOMA- Pollin • Where one station is to be heard by all others (e.g., the base
station of a mobile phone network or any other dedicated
station), polling schemes (known only other dedicated
mainframe/terminal world) can be applied.
• 8/30/2024

Station of a mobile phone network or any other dedicated

station of a mobile phone network or any other dedicated

station), polling schemes (known from the

mainframe/terminal world) can be applied.

Folling i 8/30/2024
 Station of a mobile phone network or any other decisions

Station of a mobile phone network or any other dedicated

station), polling schemes (known from the

mainframe/terminal world) can be applied.

Folling
-
- **TDMA-Polling**

 Where one station is to be heard by all others (e.g., the base

station of a mobile phone network or any other dedicated

station), polling is a strictly centralized scheme with one master
 P polling i **Solution and Solution and Solution and Solution**
 Solution and several station of a mobile phone network or any other dedicated

station), polling schemes (known from the

mainframe/terminal world) can be applied.

• P 8/30/2024
 TDMA-Polling

Where one station is to be heard by all others (e.g., the base

station), polling schemes (known from the

station), polling is a trictly centralized scheme with one master

mainframe/terminal wo 8/30/2024
 TDMA- Polling

Where one station is to be heard by all others (e.g., the base

station of a mobile phone network or any other dedicated

mainframe/terminal world) can be applied.

mainframe/terminal world) can **Class Fig. 7 Classroom example with political students)** enter the master of a mobile phone network or any other dedicated station), polling schemes (known from the maintrane/terminal world) can be applied. • Polling i **TDIMA- Polling**

• Where one station is to be heard by all others (e.g., the base

station of a mobile phone network or any other dedicated

mainframe/terminal world) can be applied.

• Polling is a strictly centralized **TDMA-Polling**
 Example possible phone network or any other dedicated

station of a mobile phone network or any other dedicated

station), polling schemes (known from the

mainframe/terminal world) can be applied.

Polli
-
-
-

CDMA-Spread Aloha Multiple Access

-
- 8/30/2024
 CDMA-Spread Aloha Multiple Access

 Spread Aloha Multiple access (SAMA) is a
 combination of CDMA and TDMA.

 SAMA works as follows: each sender uses the

same spreading code (in the example shown **CDMA-Spread Aloha Multiple Access**

• Spread Aloha Multiple access (SAMA) is a

combination of CDMA and TDMA.

• SAMA works as follows: each sender uses the

same spreading code (in the example shown

in Figure 3.19 this 8/30/2024
 SPINA-Spread Aloha Multiple Access

Spread Aloha Multiple access (SAMA) is a

combination of CDMA and TDMA.

SAMA works as follows: each sender uses the

same spreading code (in the example shown

in Figure 3. **CDMA-Spread Aloha Multiple Access**

• Spread Aloha Multiple access (SAMA) is a

• CMAA works as follows: each sender uses the
 • SAMA works as follows: each sender uses the

same spreading code (in the example shown

in **EDMA-Spread Aloha Multiple Access**

• Spread Aloha Multiple access (SAMA) is a

combination of CDMA and TDMA.

• SAMA works as follows: each sender uses the

same spreading code (in the example shown

in Figure 3.19 this **CDMA-Spread Aloha Multiple Access**
Spread Aloha Multiple access (SAMA) is a
combination of CDMA and TDMA.
SAMA works as follows: each sender uses the
same spreading code (in the example shown
in Figure 3.19 this is the co **COMA-Spread Aloha Multiple Access**
Spread Aloha Multiple access (SAMA) is a
combination of CDMA and TDMA.
SAMA works as follows: each sender uses the
same spreading code (in the example shown
in Figure 3.19 this is the co
-
-

CDMA-Spread Aloha Multiple Access(SAMA)

- **CDMA-Spread Aloha Multiple Access(SAMA)**
• The same data could also be sent with higher power for a shorter period as shown in the middle, but now spread spectrum is used to spread the shorter signals, i.e., to increase **Shorter period as shown in the middle, shorter period as shown in the middle, but now spread
shorter period as shown in the middle, but now spread
spectrum is used to spread the shorter signals, i.e., to
increase the ban SPECT ASSET ASSET ASSET ASSET ASSET ASSET ASSET ASSET ASSET AS SPECTRE SIGNAL The same data could also be sent with higher power for a shorter period as shown in the middle, but now spread spectrum is used to spread the** 8/30/2024
 DMA-Spread Aloha Multiple Access(SAMA)

The same data could also be sent with higher power for a

shorter period as shown in the middle, but now spread

spectrum is used to spread the shorter signals, i.e., to example). **CDMA-Spread Aloha Multiple Access(SAMA)**
• The same data could also be sent with higher power for a
shorter period as shown in the middle, but now spread
spectrum is used to spread the shorter signals, i.e., to
increase 8/30/2024
 SMA-Spread Aloha Multiple Access(SAMA)

The same data could also be sent with higher power for a

shorter period as shown in the middle, but now spread

spectrum is used to spread the shorter signals, i.e., to 8/30/2024
 DMA-Spread Aloha Multiple Access(SAMA)

The same data could also be sent with higher power for a

shorter period as shown in the middle, but now spread

spectrum is used to spread the shorter signals, i.e., t **S/30/2024**
 SPARE COMPT COMPT COMPT CONTEX CONTEX CONTEX CONTEX CONTEX SERVENT TO SUSPERENT TO SUSPERENT IN SURFACT BURGENTS (FOR 10 an uns DMA-Spread Aloha Multiple Access(SAMA)
The same data could also be sent with higher power for a
shorter period as shown in the middle, but now spread
spectrum is used to spread the shorter signals, i.e., to
increase the **DMA-Spread Aloha Multiple Access(SAMA)**
The same data could also be sent with higher power for a
shorter period as shown in the middle, but now spread
spectrum is used to spread the shorter signals, i.e., to
increase the **DMA-Spread Aloha Multiple Access(SAMA)**
The same data could also be sent with higher power for a
shorter period as shown in the middle, but now spread
spectrum is used to spread the shorter signals, i.e., to
increase the
-
-
- slightly. Separation of the two signals is still possible if one
receiver is synchronized to sender A and another one to
sender B.
The signal of an unsynchronized sender appears as noise.
The probability of a 'collision'

CDMA-Spread Aloha Multiple Access(SAMA)

-
- Finding and another one to
sender B.
The signal of an unsynchronized sender appears as noise.
The probability of a 'collision' is quite low if the number
of simultaneous transmitters stays below 0.1–0.2s
(Abramson, 1996). ne signal of an unsynchronized sender appears as noise.

In grobability of a 'collision' is quite low if the number

If simultaneous transmitters stays below 0.1–0.25

bramson, 1996). This also depends on the noise level o The simultaneous transmitters stays below if the number

If simultaneous transmitters stays below 0.1–0.2s

obtains and 1996). This also depends on the noise level of

the environment.
 MA-Spread Aloha Multiple Access (SA of simultaneous transmitters stays below 0.1-0.2s

(Abramson, 1996). This also depends on the noise level of

the environment.

• The main problem in using this approach is

finding good chipping sequences.

• Clearly, the
-
- **DMA-Spread Aloha Multiple Access(SAMA)**

 The main problem in using this approach is

finding good chipping sequences.

 Clearly, the code is not orthogonal to itself it

should have a good autocorrelation but, at th **MA-Spread Aloha Multiple Access(SAMA)**
The main problem in using this approach is
finding good chipping sequences.
Clearly, the code is not orthogonal to itself – it
should have a good autocorrelation but, at the
differs **MA-Spread Aloha Multiple Access(SAMA)**
The main problem in using this approach is
finding good chipping sequences.
Clearly, the code is not orthogonal to itself – it
should have a good autocorrelation but, at the
same tim **MA-Spread Aloha Multiple Access(SAMA)**
The main problem in using this approach is
finding good chipping sequences.
Clearly, the code is not orthogonal to itself – it
should have a good autocorrelation but, at the
same tim

REVIEW

- 8/30/2024
 Introduction: Applications, Short History of

Wireless Communications, Simplified Reference

Model.
 Example 18 November 18 November 18 November 2018
 Example 2018
 Example 2018
 Example 2018
 Example 8/30/2024
 REVIEW

Introduction: Applications, Short History of

Wireless Communications, Simplified Reference

Model.

Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation, Model. 8/30/2024

Martidian: Applications, Short History of

Wireless Communications, Simplified Reference

Model.

Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Spread Spectrum, and 8/30/2024
 REVIEW

Introduction: Applications, Short History of

Wireless Communications, Simplified Reference

Model.
 Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Sprea 8/30/2024
 REVIEW

Introduction: Applications, Short History of

Wireless Communications, Simplified Reference

Model.
 Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Sprea 8/30/2024

Matroduction: Applications, Short History of

Wireless Communications, Simplified Reference

Model.

Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Spread Spectrum, REVIEW

Introduction: Applications, Short History of

Wireless Communications, Simplified Reference

Model.

Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Spread Spectrum, and **REVIEW**

Introduction: Applications, Short History of

Wireless Communications, Simplified Reference

Model.

Wireless Transmission: Frequencies, Signals,

Signal Propagation, Multiplexing, Modulation,

Spread Spectrum, a
-
-

UNIT-1 ENDS THANK YOU