
UNIT IV
Security of ApplicationsSecurity of Applications

Improper Data/Input Validation

• Input validation, also known as data validation, is the proper testing of
any input supplied by a user or application. Input validation prevents
improperly formed data from entering an information system. Because it is
difficult to detect a malicious user who is trying to attack software,
applications should check and validate all input entered into a system.

• Input validation should occur when data is received from an external party,• Input validation should occur when data is received from an external party,
especially if the data is from untrusted sources. Incorrect input validation
can lead to injection attacks, memory leakage, and compromised systems.
While input validation can be either whitelisted or blacklisted, it is
preferable to whitelist data.

• Whitelisting only passes expected data. In contrast, blacklisting relies on
programmers predicting all unexpected data. As a result, programs make
mistakes more easily with blacklisting.

What is input validation attack?

• An input validation attack occurs when an attacker deliberately enters
malicious input with the intention of confusing an application and causing
it to carry out some unplanned action.

• Malicious input can include code, scripts and commands, which if not
validated correctly can be used to exploit vulnerabilities.validated correctly can be used to exploit vulnerabilities.

• The most common input validation attacks include Buffer Overflow, XSS
attacks and SQL injection.

Improper input validation

• Improper input validation or unchecked user input is a type of
vulnerability in computer software and application that may be
used for security exploits.

• When software does not validate input properly, an attacker is • When software does not validate input properly, an attacker is
able to craft the input in a form that is not expected by the rest
of the application/software. This will lead to parts of the
system receiving unintended input, which may result in altered
control flow, arbitrary control of a resource, or arbitrary code
execution.

LIST OF VULNERABILITIES

• Injection: SQL Injection, Blind SQL Injection, nosql Injection, XXE
Injection ,OS Command Injection, XPath Injection, HTTP Injection,
HTML Injection, Null Injection, Server Side Include (SSI) Injection, ORM
Injection, Format String Injection, LDAP Injection, Flash Injection, XML
Injection, IMAP/SMTP Injection, Formula Injection, Code Injection,
Resource InjectionResource Injection

• Cross-site scripting: Stored Cross-site scripting, Reflected Cross-site ,
scripting, DOM Cross-site scripting

• Cross Zone Scripting

• Directory/Path Traversal

• Overflow: Heap Overflow, Stack Overflow, Memory Leak

Authentication and Authorization Attacks

• Authentication and authorization might sound similar, but they are distinct
security processes in the world of identity and access management (IAM).
Authentication confirms that users are who they say they
are. Authorization gives those users permission to access a resource.

Attack types Attack description
• Brute Force Allows an attacker to guess a person's user name,

password, credit card number, or cryptographic keypassword, credit card number, or cryptographic key
by using an automated process of trial and error.

• Insufficient Authentication Allows an attacker to access a web site
containing sensitive content or functions
without having to properly authenticate with
the web site.

• Weak Password Recovery Validation Allows an attacker to access a web
site that provides them with the
ability to illegally obtain, change, or
recover another user's password.

Security Misconfiguration

• Security misconfiguration is the implementation of improper security
controls, such as for servers or application configurations, network devices,
etc. that may lead to security vulnerabilities.

For example, insecure configuration of web applications could lead to

numerous security flaws including:

• Incorrect folder permissions• Incorrect folder permissions

• Default passwords or username

• Setup/Configuration pages enabled

• Debugging enabled

• A security misconfiguration could range from forgetting to disable default
platform functionality that could grant access to unauthorized users such as
an attacker to failing to establish a security header on a web server.

• Security misconfiguration can happen at any level of an application,
including the web server, database, application server, platform, custom including the web server, database, application server, platform, custom
code, and framework.

• The impact of a security misconfiguration in your web application can be
far reaching and devastating. According to Microsoft, cyber security
breaches can now globally cost up to $500 billion per year, with an average
breach costing a business $3.8 million.

Security Misconfiguration Examples

• To give you a better understanding of potential security
misconfigurations in your web application, here are some of the best
examples:

Example #1: Default Configuration Has Not Been Modified /
Updated
• If you have not changed the configuration of your web application,

an attacker might discover the standard admin page on your server
• If you have not changed the configuration of your web application,

an attacker might discover the standard admin page on your server
and log in using the default credentials and perform malicious
actions.

Example #2: Directory Listing is Not Disabled on Your Server
• In such cases, if an attacker discovers your directory listing, they can

find any file. Hackers can find and download all your compiled Java
classes, which they can reverse engineer to get your custom code.
They can then exploit this security control flaw in your application
and carry out malicious attacks.

Example #3: Insecure Server Configuration Can Lead Back to the Users,
Exposing Their Personal Information
• Applications with security misconfigurations often display sensitive

information in error messages that could lead back to the users. This could
allow attackers to compromise the sensitive data of your users and gain
access to their accounts or personal information.

Example #4: Sample Applications Are Not Removed From the Production
Server of the Application
• Many times these sample applications have security vulnerabilities that an

attacker might exploit to access your server.
Example #5: Default Configuration of Operating System (OS)
• The default configuration of most operating systems is focused on

functionality, communications, and usability. If you have not updated or
modified the default configuration of your OS, it might lead to insecure
servers.

Information Disclosure

Information disclosure, also known as information leakage, is when a website

unintentionally reveals sensitive information to its users. Depending on the

context, websites may leak all kinds of information to a potential attacker,

including:

• Data about other users, such as usernames or financial information

• Sensitive commercial or business data

• Technical details about the website and its infrastructure

Some basic examples of information disclosure are as follows:

• Revealing the names of hidden directories, their structure, and their
contents.

• Providing access to source code files via temporary backups

• Explicitly mentioning database table or column names in error messages

• Unnecessarily exposing highly sensitive information, such as credit card
details

• Hard-coding API keys, IP addresses, database credentials, and so on in the
source code

• Hinting at the existence or absence of resources, usernames, and so on via
subtle differences in application behavior

How do information disclosure
vulnerabilities arise?

Information disclosure vulnerabilities can arise in countless different ways, but

these can broadly be categorized as follows:

• Failure to remove internal content from public content. For example,
developer comments in markup are sometimes visible to users in the
production environment.

• Insecure configuration of the website and related technologies. For• Insecure configuration of the website and related technologies. For
example, failing to disable debugging and diagnostic features can
sometimes provide attackers with useful tools to help them obtain sensitive
information. Default configurations can also leave websites vulnerable, for
example, by displaying overly verbose error messages.

• Flawed design and behavior of the application. For example, if a website
returns distinct responses when different error states occur, this can also
allow attackers to enumerate sensitive data, such as valid user credentials.

The impact of information disclosure
vulnerabilities

• Information disclosure vulnerabilities can have both a direct and indirect
impact depending on the purpose of the website and, therefore, what
information an attacker is able to obtain.

• In some cases, the act of disclosing sensitive information alone can have a
high impact on the affected parties. For example, an online shop leaking its
customers' credit card details is likely to have severe consequences.customers' credit card details is likely to have severe consequences.

• On the other hand, leaking technical information, such as the directory
structure or which third-party frameworks are being used, may have little to
no direct impact. However, in the wrong hands, this could be the key
information required to construct any number of other exploits. The
severity in this case depends on what the attacker is able to do with this
information.

Prevent information disclosure
vulnerabilities

Preventing information disclosure completely is tricky due to the huge variety

of ways in which it can occur. However, there are some general best practices

that you can follow to minimize the risk of these kinds of vulnerability

creeping into your own websites.

• Make sure that everyone involved in producing the website is fully aware
of what information is considered sensitive.

• Audit any code for potential information disclosure as part of your QA or
build processes.

• Double-check that any debugging or diagnostic features are disabled in the
production environment.

• Make sure you fully understand the configuration settings, and security
implications, of any third-party technology that you implement.

Buffer Overflow Issues
Buffers are memory storage regions that temporarily hold data while it is being

transferred from one location to another.

A buffer overflow (or buffer overrun) occurs when the volume of data exceeds

the storage capacity of the memory buffer. As a result, the program attempting

to write the data to the buffer overwrites adjacent memory locations.

For example, a buffer for log-in credentials may be designed to expect

username and password inputs of 8 bytes, so if a transaction involves an input

of 10 bytes (that is, 2 bytes more than expected), the program may write the

excess data past the buffer boundary.

• Buffer overflows can affect all types of software. They typically result from
malformed inputs or failure to allocate enough space for the buffer. If the
transaction overwrites executable code, it can cause the program to behave
unpredictably and generate incorrect results, memory access errors, or crashes.

• Buffer Overflow Attack: Attackers exploit buffer overflow issues by
overwriting the memory of an application. This changes the execution path ofoverwriting the memory of an application. This changes the execution path of
the program, triggering a response that damages files or exposes private
information. For example, an attacker may introduce extra code, sending new
instructions to the application to gain access to IT systems.

• If attackers know the memory layout of a program, they can intentionally feed
input that the buffer cannot store, and overwrite areas that hold executable
code, replacing it with their own code. For example, an attacker can overwrite a
pointer (an object that points to another area in memory) and point it to an
exploit payload, to gain control over the program.

• Certain coding languages are more susceptible to buffer overflow than
others. C and C++ are two popular languages with high vulnerability, since
they contain no built-in protections against accessing or overwriting data in
their memory. Windows, Mac OSX, and Linux all contain code written in
one or both of these languages.

• More modern languages like Java, PERL, and C# have built-in features that • More modern languages like Java, PERL, and C# have built-in features that
help reduce the chances of buffer overflow, but cannot prevent it altogether.

Types of Buffer Overflow Attacks

• Stack overflow attack - This is the most common type of buffer overflow
attack and involves overflowing a buffer on the call stack*.

• Heap overflow attack - This type of attack targets data in the open
memory pool known as the heap*.

• Integer overflow attack - In an integer overflow, an arithmetic operation
results in an integer (whole number) that is too large for the integer type results in an integer (whole number) that is too large for the integer type
meant to store it; this can result in a buffer overflow.

• Unicode overflow - A unicode overflow creates a buffer overflow by
inserting unicode characters into an input that expect ASCII characters.

How to protect against buffer overflow
attacks

• Luckily, modern operating systems have runtime protections which help
mitigate buffer overflow attacks. Let’s explore 2 common protections that
help mitigate the risk of exploitation:

• Address space randomization - Randomly rearranges the address space
locations of key data areas of a process. Buffer overflow attacks generally locations of key data areas of a process. Buffer overflow attacks generally
rely on knowing the exact location of important executable code,
randomization of address spaces makes that nearly impossible.

• Data execution prevention - Marks certain areas of memory either
executable or non-executable, preventing an exploit from running code
found in a non-executable area.

Broken authentication and session
management

• Broken Authentication and Session Management as: ‘Application
functions related to authentication and session management are often
not implemented correctly, allowing attackers to compromise
passwords, keys, or session tokens, or to exploit other implementation
flaws to assume other users’ identities.’ In other words, an attacker can
get unauthorized access to a user's data due to flaws in the implementation.get unauthorized access to a user's data due to flaws in the implementation.

• Broken Authentication and Session Management could lead to exposed
user data, such as credentials or critical private data. It could also allow for
privilege escalation attacks.

Broken authentication and session
management

These types of weaknesses can allow an attacker to either capture or bypass

the authentication methods that are used by a web application.

• User authentication credentials are not protected when stored.

• Predictable login credentials.

• Session IDs are exposed in the URL (e.g., URL rewriting).

• Session IDs are vulnerable to session fixation attacks.

• Session value does not timeout or does not get invalidated after logout.

• Session IDs are not rotated after successful login.

• Passwords, session IDs, and other credentials are sent over unencrypted
connections.

The goal of an attack is to take over one or more accounts and for the attacker

to get the same privileges as the attacked user.

Examples

Example #1: URL rewriting

A travel reservations application supports URL rewriting, putting session IDs

in the URL.

http://example.com/sale/saleitems;jsessionid=2P0OC2JSNDLPSKHCJUN2JV

?dest=Hawaii

Example #2: Application’s timeout is not set properly

The user utilizes a public computer to access a site. Instead of selecting

“logout” the user simply closes the browser tab and walks away. An attacker

uses the same browser an hour later, and that browser is still authenticated.

Example #3: Passwords are not properly hashed and salted

An insider or external attacker gains access to the system’s

password database. User passwords are not properly hashed and

salted, exposing every user’s password.

Example #4: Predictable login credentials

Username and Password values that are easy to guess or that are

used frequently can be guessed by attackers to obtain

unauthorized access.

How to Prevent Broken Authentication and
Session Management

SESSION MANAGEMENT

• Credentials should be protected: User authentication credentials should be
protected when stored using hashing or encryption.

• Do not expose session ID in the URL: Session IDs should not be exposed
in the URL (e.g., URL rewriting).

• Session IDs should timeout: User sessions or authentication tokens should • Session IDs should timeout: User sessions or authentication tokens should
be properly invalidated during logout.

• Recreate session IDs: Session IDs should be recreated after successful
login.

• Do not send credentials over unencrypted connections: Passwords, session
IDs, and other credentials should not be sent over unencrypted connections.

BROKEN AUTHENTICATION
• Password length: Minimum password length should be at least eight (8)

characters long. Combining this length with complexity makes a password
difficult to guess using a brute force attack.

• Password complexity: Passwords should be a combination of alphanumeric
characters. Alphanumeric characters consist of letters, numbers,
punctuation marks, mathematical and other conventional symbols.

• Username/Password Enumeration: Authentication failure responses should
not indicate which part of the authentication data was incorrect. For
example, instead of "Invalid username" or "Invalid password", just use
"Invalid username and/or password" for both. Error responses must be truly "Invalid username and/or password" for both. Error responses must be truly
identical in both display and source code.

• Protection against brute force login: Enforce account disabling after an
established number of invalid login attempts (e.g., five attempts is
common). The account must be disabled for a period of time sufficient to
discourage brute force guessing of credentials, but not so long as to allow
for a denial-of-service attack to be performed.

Improper Error Handling

• Improper handling of errors can introduce a variety of security problems for a
web site. The most common problem is when detailed internal error messages
such as stack traces, database dumps, and error codes are displayed to the user
(hacker).

• These messages reveal implementation details that should never be revealed.
Such details can provide hackers important clues on potential flaws in the site
and such messages are also disturbing to normal users.and such messages are also disturbing to normal users.

• Web applications frequently generate error conditions during normal operation.
Out of memory, null pointer exceptions, system call failure, database
unavailable, network timeout, and hundreds of other common conditions can
cause errors to be generated.

• These errors must be handled according to a well thought out scheme that will
provide a meaningful error message to the user, diagnostic information to the
site maintainers, and no useful information to an attacker.

• One common security problem caused by improper error handling is the fail-
open security check. All security mechanisms should deny access until
specifically granted, not grant access until denied, which is a common reason
why fail open errors occur.

• Other errors can cause the system to crash or consume significant resources,
effectively denying or reducing service to legitimate users.

• Good error handling mechanisms should be able to handle any feasible set of
inputs, while enforcing proper security. Simple error messages should be
produced and logged so that their cause, whether an error in the site or a
hacking attempt, can be reviewed.

• Error handling should not focus solely on input provided by the user, but
should also include any errors that can be generated by internal components
such as system calls, database queries, or any other internal functions.

How to Determine If You Are Vulnerable

• Simple testing can determine how your site responds to various kinds of
input errors. More thorough testing is usually required to cause internal
errors to occur and see how the site behaves.

• Another valuable approach is to have a detailed code review that searches
the code for error handling logic. Error handling should be consistent
across the entire site and each piece should be a part of a well-designed across the entire site and each piece should be a part of a well-designed
scheme.

• A code review will reveal how the system is intended to handle various
types of errors. If you find that there is no organization to the error-
handling scheme or that there appear to be several different schemes, there
is quite likely a problem.

How to Protect Yourself

• A specific policy for how to handle errors should be documented, including
the types of errors to be handled and for each, what information is going to
be reported back to the user, and what information is going to be logged.
All developers need to understand the policy and ensure that their code
follows it.

• In the implementation, ensure that the site is built to gracefully handle all • In the implementation, ensure that the site is built to gracefully handle all
possible errors. When errors occur, the site should respond with a
specifically designed result that is helpful to the user without revealing
unnecessary internal details.

• The OWASP Filters project is producing reusable components in several
languages to help prevent error codes leaking into user’s web pages by
filtering pages when they are constructed dynamically by the application.

Exception Management

Exceptions to any information security policies or procedures should be

reviewed and approved by the senior management. Exceptions should be

managed accordingly. In most cases, exceptions could be provided for the

following:

• Legacy systems

• Third party applications

• Proprietary systems

• Physical security

• Emergencies

• Legal situations

Examples of exceptions

• A specialized application may be configured to require passwords that do
not meet password policy requirements.

• A proprietary business system only allows for one administrator ID;
however, multiple individuals support this system. Administrators must
share this ID to manage the system.

• Some mobile device operating systems do not have the ability to meet the • Some mobile device operating systems do not have the ability to meet the
network device attachment requirements.

• A legacy system that does not meet the technical requirements.

• A lawsuit requires retaining information above and beyond the retention
procedure.

• An emergency situation takes place that requires a workforce member to
use the credentials of another workforce member to cover a time-critical
business operation.

How exception is handled

The exception request should include:

• Requestors name or approving manager

• Explanation of the request

• The policy or procedure the request pertains

• The reason for the request

• Mitigating controls in place to mitigate any risks to the exception

The security management should review the request and determine whether or

not to grant the exception. If an exception is made, other mitigating controls

should be implemented. These mitigating actions can be administrative,

physical, technical, or any combination of these types of controls.

Monitoring of exception

A determination should be made on how the exception should be monitored.

This monitoring should be developed based on the exception made along with

appropriate procedures for reviewing or auditing the exception.

An exception should be well documented. Documentation of an exception

should include at least the following elements:

• Individuals or systems involved or scope of the exception

• Limitation of exception

• Mitigating controls required

• Dates/times

• Reasons for exception

• Approval

