
Subject: Data Structures

Prepared By: Suresh Kumar K

Introduction to Data Structures

What is Data Structure?

Data structure is a way of organizing all data items that considers not only the
elements stored but also their relationship to each other.

Computer Languages

 Computer Languages

 Low level Languages Middle level Languages High level Languages

 Binary Language Assembly Language C-laguage C, C++, Java,etc…

 E.g:001 110 110 E.g: Add 2,3 e.g: 2+3

 2+3 as 10 110001 11

 Traslators:

Interpreter: Translates High level language to low level

It takes more time to execute-----disadvantage

It takes very less memory------- advantage

Compiler:

Translates High level language to low level

It takes less time to execute-----Advantage

It takes more memory------- Disadvantage

Importance of Data Structure:

Program = Data Structure+ Algorithm

Subject: Data Structures

Prepared By: Suresh Kumar K

Classification of Data Structures: (19.08.2020, 8.00 AM to 9.00AM)

Difference between Primitive and Non-primitive Data Structures?

Linear Data Structure: in this all the data items are stored in linear
order/sequential

Non-linear Data Structure: in this all the data items are stored in non-linear
order/hierarchical manner.

Stack: It is a Linear Data Structure is a LIFO / FILO data structure- last in first out
data structure

In real life: CD storage container, file storing, Idly container, etc…

In Computer Science: Function call management.

Queue: It is a Linear Data Structure, is an FIFO data structure-First in First OUT

In real life: queue system in temples, train reservations

Computer science : Customer call management and execution of program
statements.

Linked List

Subject: Data Structures

Prepared By: Suresh Kumar K

main()

{

int a,b,c;

a=10;

b=5;

c=a+b;

}

Linked List : it is a linear data structure in which the linear order is maintained
by Pointers.

3 12 4 13 6 14 8 15 9 16

Store 5 elements:

Linked list will support in these cases.

 BEC

 IT CSE Mech

 A B C

Subject: Data Structures

Prepared By: Suresh Kumar K

main()
{
 Add();
 Sub();
 Mul();
}
 Void add()
{
 Div();

}
Void div()
{
Sdfds------------after this
}
Stack:
2000
1000

Stack ADT: Stack is a linear data structure in which the insertion and deletion operations are
performed at only one end which is known as Top of the stack.

 (Or)
Stack is a collection of similar data items in which both insertion and deletion takes place at
one end. That end is called as Top of stack. Which works with basic principle named LIFO
(Last In First Out) or FILO (First In Last Out)

Representation of Stack:

Stack

Subject: Data Structures

Prepared By: Suresh Kumar K

 a[0] a[1] a[2] a[3] a[4] a[5] a[6]
15 16 17 18 19 20 21

 -1 0 1 2 3 4 5 6 (n-1)

 Top
Stack

Basic Operations Performed on Stack:

1. Push(): To insert an element on to the stack is called as Push operation.
2. Pop(): To delete an element from stack is called as POP operation.
3. Display(): To display elements in the stack.

Stack Underflow (Stack empty): When top of the stack points to -1, then stack is underflow.
Stack Overflow(Stack full): When top of the stack reaches to “size-1”(n-1), then stack is
overflow.

I want to insert 10,45,12,16,35 and 50.

 Top=-1

Insert 10 on to the stack

10

Insert 45

45
10

Subject: Data Structures

Prepared By: Suresh Kumar K

Insert 12 after inserting 16

12
45
10

 after inserting 35 after inserting 50

I want to insert 75, top=size-1, stack is overflow

First deleting element is always 50 here
After deleting 50

Second deleted element is always 35

16
12
45
10

35
16
12
45
10

50
35
16
12
45
10

35
16
12
45
10

Subject: Data Structures

Prepared By: Suresh Kumar K

Stack Applications:

There are so many applications related to computer science, some of them are

1. Function call management
2. Conversion of Infix to postfix expressions
3. Evaluation of postfix expressions
4. Pattern matching etc…

What is expression?

It is a combination of both operands and operators which gives you a specific value/result.
There are different notations to represent an expression. They are

1. Infix expression: It is an arithmetic expression in which an operator is placed in between
the operands.
e.g: a+b or 2+3

2. Prefix expression (Polish Notation): It is an arithmetic expression in which an operator is
placed before the operands.
e.g: +ab, or +23

3. Post-fix expression (Reverse Polish Notation): It is an arithmetic expression in which an
operator is placed after the operands.
e.g: ab+ or 23+

Algorithm for Infix to Postfix Conversion:

1. Scan the infix expression from left to right.

2. If the scanned character is an operand, then place it into postfix expression (output it).

3. Else,

…..3.1 If the precedence of the scanned operator is greater than the precedence of the operator

in the stack(or the stack is empty or the stack contains a ‘(‘), then push it on to the stack.

…..3.2 Else, Pop all the operators from the stack which are greater than or equal to in

precedence than that of the scanned operator. After doing that Push the scanned operator to the

stack. (If you encounter parenthesis while popping then stop there and push the scanned

operator in the stack.)

4. If the scanned character is an ‘(‘, push it to the stack.

5. If the scanned character is an ‘)’, pop all the symbols from stack and output it until a ‘(‘ is

encountered, and discard both the parenthesis.

6. Repeat steps 2-6 until infix expression is scanned.

7. if the scanned symbol is null character then Pop all the symbols from stack and placed it into

postfix expression (output it).

Subject: Data Structures

Prepared By: Suresh Kumar K

E.g: Convert the infix expression a+b*c/d-e into postfix expression using stack.

Solution:

 Step1: Scan the given infix expression from left to right. i.e.,
 Given expression: a + b * c / d - e

 Step2: Current scanned symbol is an operand i.e., a then placed it into postfix
expression

a
 Post fix expression

Top -1
Stack

Step3: Current scanned symbol is an operator i.e., + , here stack is empty then push it on to
the stack

a

 Post fix expression

+

Stack

Step4: Current scanned symbol is an operand i.e., b then placed it into post fix

a b c * d / + e -

Subject: Data Structures

Prepared By: Suresh Kumar K

Step5: current scanned symbol is an operator i.e., * here scanned symbol is greater than stack
top symbol i.e., * > + then push it on to the stack.
Step6: current scanned symbol is an operand i.e., c then placed it into postfix
Step7: Current scanned symbol is an operator i.e., / then pop * and place it into postfix and
then push / on to the stack.
Step8: Current symbol is an operand i.e., d then placed in postfix
Step9: Current scanned symbol is an operator i.e., - then pop all symbols from stack until it is
greater.
Step10: Current scanned symbol is an operand i.e., e then place it into postfix.
Step11: current scanned symbol is NULL then pop all symbols from stack then place it into
postfix.

 Therefore postfix expression is abc*d/+e-

E.g: Convert a ^ b – c / d * e + f – g / h – i to postfix expression using stack

Postfix expression is: a b ^ c d / e * - f + g h / - i -

Problem No:5 Convert the following infix expression to postfix notation using stack.

 a + (b * c - (d / e ^ f) * g) * h

solution: a b c * d e f ^ / g * - h * +

Problem No:6 Convert the following infix expression to postfix notation using stack.

((AX + (B * C Y)) / (D - E))

Problem No:7 Convert the following infix expression to postfix notation using stack.

((H * ((((A + ((B + C) * D)) * F) * G) * E)) + J)

Problem No:8 Convert the following infix expression to postfix notation using stack.

(A + B) * C + D / (E + F * G) – H

Solution: A B + C * D E F G * + / + H -

Subject: Data Structures

Prepared By: Suresh Kumar K

Evaluation of Postfix expression:

1. Read all the symbols one by one from left to right in the given Postfix Expression

2. If the reading symbol is an operand, then push it on to the Stack.

3. If the reading symbol is an operator (+ , - , * , / etc.,), then perform TWO pop

operations and store the two popped operands in two different variables (operand1

and operand2). Then perform reading symbol operation using operand2 and operand1

and push result back on to the Stack.

4. Finally! perform a pop operation and display the popped value as final result when the

reading symbol is NULL.

Example: Evaluate the following postfix expression

 5, 3 ,+ ,8 , 2 , -, *

Solution:

 Step 1: Given Postfix expression is 5 3 + 8 2 - *

 Step2: Read the expression from left to right i.e., 5, 3 ,+ ,8 , 2 , -, *

 Top=-1

Step3: Current reading symbol is an operand i.e., 5 then push it on to the stack

5

Step4: 5, 3 ,+ ,8 , 2 , -, *

Current scanned symbol is 3 i.e., an operand then push it on to the stack

Subject: Data Structures

Prepared By: Suresh Kumar K

3

5

 Stack

Step5: : 5, 3 ,+ ,8 , 2 , -, *

If current scanned symbol is an operator i.e., + then pop two operands from stack and
perform corresponding operation on those two operands.

 Operand1=3
 Operand2 = 5
 Operation= 5+3 (operand2 + operand1) =8 then push the result back in to the stack

8

 Stack
Step6: Current scanned symbol is an operand i.e., 8 then push it on to the stack

8

8

Step7: Current scanned symbol is an operand i.e., 2 then push it on to the stack

2

8

8

Subject: Data Structures

Prepared By: Suresh Kumar K

Step8: : Current scanned symbol is an operator i.e., - then pop two operands from stack and
perform corresponding operation i.e.,

 Operand1= 2
 Operand2= 8 then Operation = 8 – 2 = 6 push result back in to the stack.

6

8

 Stack
Step9: Current scanned symbol is an operator i.e., * then pop two operands from stack and
perform corresponding operation i.e.,

 Operand1= 6
 Operand2= 8 then Operation= 8 * 6= 48

48

Step10: current scanned symbol is NULL then pop the value from stack and display as
result
 Evaluation of : 5, 3 ,+ ,8 , 2 , -, * is 48.

Subject: Data Structures

Prepared By: Suresh Kumar K

Table Representation:

Given Postfix expression: 5, 3 ,+ ,8 , 2 , -, *

Current Scanned Symbol Stack Operation

5
5 Push

3
3
5

Push

+
8 Op1=3

Op2=5
5+3=8

8
8
8

push

2
2
8
8

push

-
6
8

Op1=2
Op2=8
8-2=6

*
48 Op1=6

Op2=8
8*6=48

NULL
Empty Result=48

 The final result is 48

Problem N0:2 Evaluate the expression 7+3-8/2*5^3+2
Postfix notation for given expression is 7 3 + 8 2 / 5 3 ^ * - 2 +

 Current scanned symbol Stack Action/operation

7 7 push
3 3

7
push

+ 10 Op1=3
Op2=7
7+3=10

8 8
10

push

Subject: Data Structures

Prepared By: Suresh Kumar K

2 2
8

10

Push

/ 4
10

Op1=2
Op2=8
8/2=4

5 5
4

10

push

3 3
5
4

10

push

^ 125
4

10

Op1=3
Op2=5
5^3= 125

* 500
10

Op1=125
Op2=4
4*125= 500

- -490 Op1=500
Op2=10
10-500=-490

2 2
-490

push

+ -488 Op1=2
Op2=-490
-490+2= -488

NULL empty Result= -488

 Result of the given expression is -488

Problem No: 3 Evaluate ((10 * (6 / ((9 + 3) * 11))) + 17) + 5

Problem No: 4 Evaluate 6 2 3 + - 3 8 2 / + * 2 $ 3 + using Stack.

Problem No: 5 Evaluate 7 2 3 * 5 + 8 4 2 / - * - using Stack.

Problem No: 6 Evaluate 3 6 + 1 + 2 5 * 4 + * 8 7 + * using Stack.

Subject: Data Structures

Prepared By: Suresh Kumar K

Program No:2 Write a C-program to implement Evaluation of postfix expression.

Out put:1. Enter any valid postfix notation: 23+
 The result is 5
 2. Enter any valid postfix notation: 234+*
 The result is 14

char str[10];

printf(“\n Enter any valid postfix expression”);
scanf(“%s”, str);

 23+

 str[0] str[1] str[2] str[3] str[4] str[5] str[9]

2

3 + \0 \0 \0 \0 \0 \0 \0

 0 1 2 3 4 5 6 7 8 9

Step1: read the symbols from left to right in a given expression.

Subject: Data Structures

Prepared By: Suresh Kumar K

Queue:
 Queue is a linear data structure in which the insertion and
deletion operations are performed at two different ends.

In a queue data structure, the insertion operation is performed at a
position which is known as 'rear' and the deletion operation is
performed at a position which is known as 'front'.

In queue data structure, the insertion and deletion operations are
performed based on FIFO (First In First Out) principle.

Basic representation of Queue:

Basic operations performed on Queue:

1. Enqueue(): To insert an element into queue is called as Enqueue.

2. Dequeue(): To delete an element from queue is called as Dequeue.

3.Display(): To display the elements in queue.

Insert the following elements 5,6,7,8,9,10,11 into queue

Initial position of queue:

 -1
 0 1 2 3 4 5 6

front,
rear

insert 5

5

 0 1 2 3 4 5 6
 -1

 Front rear

Subject: Data Structures

Prepared By: Suresh Kumar K

Insert 6:

5 6

 0 1 2 3 4 5 6
-1

Front rear

Insert 7:

 6 7 8 9 10 11

 0 1 2 3 4 5 6 (size-1)
-1
 Front rear

Queue is full: front=-1 and rear=size-1

Queue is empty: front=-1 and rear=-1 or front== rear

First deletion operation: first deleted element is 5

Insertion:

Rear++;
Queue[rear]=element;

Deletion:

Front++;
Queue[front]

Subject: Data Structures

Prepared By: Suresh Kumar K

Enqueue() operation:

 The following steps represent how to perform insertion in Queue:

Step 1: Check whether queue is FULL. (rear == SIZE-1 && front=-1)

Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and

terminate the function.

Step 3: If it is NOT FULL, then increment rear value by one (rear++) and set queue[rear]

= value.

Dequeue() Operation:

The following steps to delete an element from queue.

Step 1: Check whether queue is EMPTY. (front == rear || front==-1 && rear==-1)

Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and

terminate the function.

Step 3: If it is NOT EMPTY, then increment the front value by one (front ++). Then display

queue[front] as deleted element. Then check whether both front and rear are equal (front ==

rear), if it TRUE, then set both front and rear to '-1' (front = rear = -1).

Display() operation:

 The following steps to display the elements of a queue...

Step 1: Check whether queue is EMPTY. (front == rear)

Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function.

Step 3: If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front+1'.

Step 3: Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same until 'i'

value is equal to rear (i <= rear).

Subject: Data Structures

Prepared By: Suresh Kumar K

Applications of Queue (linear queue):

1. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

2. In real life scenario, Call Center phone systems uses Queues to hold people calling

them in an order, until a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in the same

order as they arrive i.e First come first served.

4. Used to implement Radix sort.

Program No:4 Write a C-program for converting Infix to postfix expression.

#include<stdio.h>
#include<conio.h>
#define size 20
int prec(char op);
void infix(char exp[20]);

char stack[size];
char post[20];
int top=-1;
int j=0,i=0,k;
int cr,st;

 exp= a+b*c/d-e

a + b * c / d - e \0

 exp[0] exp[1] exp[2] 3 4 5 6 7 8 exp[9]
exp

 void main()
{
 char exp[20];
 clrscr();
 printf("\nEnter infix expression: ");
scanf("%s",exp);
infix(exp);
 getch();
}
void infix(char exp[20])
{
 while(exp[i]!='\0')
 {
 if(exp[i]=='(')

Subject: Data Structures

Prepared By: Suresh Kumar K

 {
 top++;
 stack[top]=exp[i];
 }
 else if(exp[i]>='a'&&exp[i]<='z'||exp[i]>='A'&&exp[i]<='Z'||exp[i]>='0'&&exp[i]<='9')
 {
 post[j]=exp[i];
 j++;
 }
 else if (exp[i]=='+' || exp[i]=='-' || exp[i]=='*' || exp[i]=='/' || exp[i]=='^')
 {
 cr=prec(exp[i]);
 st=prec(stack[top]);

 if(top==-1)
 {
 top++;
 stack[top]=exp[i];
 }
 else
 {
 while(st>=cr)
 {
 post[j]=stack[top];
 j++;
 top--;
 st=prec(stack[top]);
 }
 top++;
 stack[top]=exp[i];
 }
 }
 else if(exp[i]==')')
 {
 while(stack[top]!='(')
 {
 post[j]=stack[top];
 j++;
 top--;
 }
 top--;
 }
 else
 {

Subject: Data Structures

Prepared By: Suresh Kumar K

 printf("\nInvalid expression");
 }
 i++;
 }
 for(k=top; k>=0; k--)
 {
 post[j]=stack[k];
 j++;
 } printf("\n Postfix expression is %s",post);
} int prec(char op)
{
 if(op=='+'||op=='-')
 return 1;
 else if(op=='*'||op=='/')
 return 2;
 else if(op=='^')
 return 3;
 else
 return 0;
 }
Sorting Techniques:

Sorting is a technique to rearrange the elements of a list in ascending or descending
order, which can be numerical, lexicographical, or any user-defined order.

Sorting is a process through which the data is arranged in ascending or descending order.
Sorting can be classified in two types;

Internal Sorting:- This method uses only the primary memory during sorting process. All data
items are held in main memory and no secondary memory is required this sorting process. If
all the data that is to be sorted can be accommodated at a time in memory is called internal
sorting.
There is a limitation for internal sorts; they can only process relatively small lists due to
memory constraints. There are 3 types of internal sorts.

(i) SELECTION SORT :- Ex:- Selection sort algorithm, Heap Sort algorithm
(ii) INSERTION SORT :- Ex:- Insertion sort algorithm, Shell Sort algorithm
(iii) EXCHANGE SORT :- Ex:- Bubble Sort Algorithm, Quick sort algorithm

External Sorts:- Sorting large amount of data requires external or secondary memory.
This process uses external memory such as HDD, to store the data which is not fit into the main
memory. So, primary memory holds the currently being sorted data only. All external sorts are
based on process of merging. Different parts of data are sorted separately and merged together.
Ex:- Merge Sort

Bubble Sort:
 34 12 31 25 16 10 78 42

Subject: Data Structures

Prepared By: Suresh Kumar K

No.of elements=8 i=0, j=i+1 a[i]>a[j] then swap
 Step1:
 Pass1 : 34 12 31 25 16 10 78 42
34 12 31 25 16 10 78 42

 a[0] i a[1] j 2 3 4 5 6 a[7]

 First element is compared with all other elements. i.e., 34 is compared with all other
elements. 34>12
 12 34 31 25 16 10 78 42
 12 is compared with 31, here no swapping required

 12 34 31 25 16 10 78 42

 12 is compared with 25 , here no swaps required.

 12 34 31 25 16 10 78 42

 12 is compared with 16, here no swaps required.

 12 34 31 25 16 10 78 42
 12 is compared with 10, 12>10 then swap

 10 34 31 25 16 12 78 42

 10 34 31 25 16 12 78 42
 Stop the pass:

Step2:
 Pass2: in pass2 second is compared with all other elements

 10 34 31 25 16 12 78 42

 10 31 34 25 16 12 78 42

 10 25 34 31 16 12 78 42

 10 16 34 31 25 12 78 42

 10 12 34 31 25 16 78 42

 10 12 34 31 25 16 78 42

End of pass2: 10 12 34 31 25 16 78 42

Subject: Data Structures

Prepared By: Suresh Kumar K

Inorder to sort the 8 elements, we need 8 passes.

If n elements are there, here it will take n passes in bubble sort

Output:

Enter number of elements you want 5

Enter elements: 34 21 56 32 78

Before sorting elements are 34 21 56 32 78

After sorting elements are 21 32 34 56 78

Subject: Data Structures

Prepared By: Suresh Kumar K

Insertion sort:
 32 25 12 36 10

No.of elemnts= 5

Pass1: 32 25 12 36 10
 32>25 then swap

 25 32 12 36 10
Pass2:

 Sorted Sub list unsorted list

 25 32 12 36 10

 32>12 then swap
 Sorted Sub list unsorted list

 25 12 32 36 10

 25>12 then swap
 12 25 32 36 10
Pass3:

 Sorted sub list un sorted list

 12 25 32 36 10

 32<36 then no swaps required
 12 25 32 36 10

Pass4:

 12 25 32 36 10

 36>10 then swap

 Sorted sub list

12 25 32 10 36

12 25 10 32 36

12 10 25 32 36

Subject: Data Structures

Prepared By: Suresh Kumar K

10 12 25 32 36

Sort the following elements using insertion sort.

 65 23 12 45 78 43 56 10

 I j
 0 1
7 3 2 8 6 4 9 5 2 1

Shell Sort:

Shell sort is a highly efficient sorting algorithm and is based on insertion sort algorithm. This
algorithm avoids large shifts as in case of insertion sort, if the smaller value is to the far right
and has to be moved to the far left.

Interval will be choose from given elements.

Incase if no.of elements is 5 then interval is 5/2

Incase if the no.of elements is n then interval is n/2

Subject: Data Structures

Prepared By: Suresh Kumar K

Progam No:6: Program for implementing Insertion Sort

/* C Program to sort an array in ascending order using Insertion Sort */
#include <stdio.h>
void main()
{
 int n, i, j, temp;
 int arr[20];

 printf("Enter number of elements\n");
 scanf("%d", &n);

 printf("Enter %d integers\n", n);
 for (i = 0; i < n; i++)
 {
 scanf("%d", &arr[i]);
 }
 for (i = 1 ; i < n; i++)
 {
 j = i;
 while (j > 0 && arr[j-1] > arr[j])
 {
 temp = arr[j];
 arr[j] = arr[j-1];
 arr[j-1] = temp;
 j--;
 }
 }
 printf("Sorted list in ascending order:\n");
 for (i = 0; i <= n - 1; i++)
 {
 printf("%d\n", arr[i]);
 }
}

Subject: Data Structures

Prepared By: Suresh Kumar K

Program No:7 Program for implementing Shell Sort.
#include<stdio.h>
#include<conio.h>
void main()
{
 int a[10], i, j, k,n t;
 printf("Simple Shell Sort Example - Functions and Array\n");
 printf(“\n Enter Number of elements you want”);
 scanf(“%d”, &n);
 printf("\nEnter %d Elements for Sorting\n", n);
 for (i = 0; i < n; i++)
 scanf("%d", &a[i]);

 printf("\nBefore sorting Elements are");
 for (i = 0; i < n; i++)
 {
 printf("\t%d", a[i]);
 }

 for (i = n/ 2; i > 0; i--)
{
 for (j = i; j < n; j++)
 {
 for (k = j - i; k >= 0; k = k - i)
 {
 if (a[k + i] >= a[k])
 break;
 else
 {
 t = a[k];
 a[k] = a[k + i];
 a[k + i] = t;
 }
 }
 }
 }

 printf("\n\nSorted Data :");
 for (i = 0; i < n; i++) {
 printf("\t%d", a[i]);
 }
}

Subject: Data Structures

Prepared By: Suresh Kumar K

Radix Sort Algorithm

Radix sort is one of the sorting algorithms used to sort a list of integer numbers in order. In radix sort

algorithm, a list of integer numbers will be sorted based on the digits of individual numbers. Sorting is

performed from least significant digit to the most significant digit.

Radix sort algorithm requires the number of passes which are equal to the number of digits present in the

largest number among the list of numbers. For example, if the largest number is a 3 digit number then that

list is sorted with 3 passes.

Step by Step Process

The Radix sort algorithm is performed using the following steps...

 Step 1 - Define 10 queues each representing a bucket for each digit from 0 to 9.

 Step 2 - Consider the least significant digit of each number in the list which is to be sorted.

 Step 3 - Insert each number into their respective queue based on the least significant digit.

 Step 4 - Group all the numbers from queue 0 to queue 9 in the order they have inserted into their

respective queues.

 Step 5 - Repeat from step 3 based on the next least significant digit.

 Step 6 - Repeat from step 2 until all the numbers are grouped based on the most significant digit.

Subject: Data Structures

Prepared By: Suresh Kumar K

Subject: Data Structures

Prepared By: Suresh Kumar K

Sort the following elements using Radix Sort.

45 234 761 42 100 1234 89 3 76 18 67 90

Sort the following elements using Radix Sort.

-34 45 12 -80 -123 456 67 54 3 10 -12 29

Separate the list into two parts

First part: maintain all negative numbers
Second part: positive numbers

-34 -80 -123 -12 45 12 456 67 54 3 10 29

-12 -34 -80 -123 3 10 12 29 45 54 67 456

 (12+3*4-5-(7/8^2)+3-9/4)

Subject: Data Structures

Prepared By: Suresh Kumar K

Arrays Vs. Linked Lists:

 Array Linked List

1. Insertions and deletions are difficult. Insertions and deletions can be done easily.

2.
It needs movements of elements for
insertion and deletion.

It does not need movement of nodes for insertion
and deletion.

3. Space is wasted. Space is not wasted.

4. It is a static memory allocation It is dynamic memory allocation.

5.
It requires less space as only
information is stored.

When compare to array,It requires more space as
pointers are also stored along with information.

6. Its size is fixed. Its size is not fixed.

7.
It cannot be extended or reduced
according to requirements.

It can be extended or reduced according to
requirements.

8.
Same amount of time is required to
access each element.

Different amount of time is required to access each
element.

9.
Elements are stored in consecutive
memory locations.

Elements may or may not be stored in consecutive
memory locations.

10.

If we have to go to a particular
element then we can reach there
directly.

If we have to go to a particular node then we have
to go through all those nodes that come before that
node.

Linked List:

10 11 13

 12

 50 18

 14

 17 16

45 20 19

 Memory= 34

I want to store 34 elements

Linked List : Linked list is a sequence of elements in which each element has a link which
points to its next element in the sequence.

Subject: Data Structures

Prepared By: Suresh Kumar K

 (Or)

Linked list is a linear data structure that contains sequence of elements such that each element
maintains a link (pointer) which points to its next element. Each element in a linked list is
called as “Node”.

