
Object Oriented Programming UNIT-III

Suresh Kumar K, Assistant Professor, Dept. of IT

3.1 Exception Handling
 Exception is a runtime error.

 Exception is an event that interrupt the flow of program execution.

 Throwable is a base class for all the types of exceptions.

 Throwable has two derived classes Exception and Error.

 The Exception is used to handle the user program errors at run time like IOException.

 The RuntimeException is subclass for Exception and it automatically defined the exception in a program
like divide by zero.

Exception Handling:
In java, exceptions are handled by using 5 keywords

1. try
2. catch
3. throw
4. throws
5. finally

1. try: It contains program statements that you want to monitor for exceptions.
If an exception occurs within the try block, it is thrown.

2. catch: Your code can catch this exception (using catch) and handle it in some rational manner.
System-generated exceptions are automatically thrown by the Java runtime system.

3. throw: To manually throw an exception, use the keyword throw.
4. throws: Any exception that is throws out of a method must be specified as such by a throws clause.
5. finally: Any code that absolutely must be executed after a try block completes is put in a finally block.
Syntax:

try {
// block of code to monitor for errors

}
catch (ExceptionType1 exOb) {

// exception handler for ExceptionType1
}
catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2
}
// ...
finally {

// block of code to be executed after try block ends
}

Here, ExceptionType is the type of exception that has occurred.

SYLLABUS

Exception Handling
Multithreaded Programming
I/O: I/O Basics, Reading Console Input, Writing Console Output, The PrintWriter class, Reading
and Writing Files, Automatically Closing a File.

Object Oriented Programming UNIT-III

Suresh Kumar K, Assistant Professor, Dept. of IT

Example: demonstrate the try, catch, and finally blocks.
import java.util.*;
class ExceptionDemo
{
 public static void main(String ar[])
 {
 try
 {
 String lan[]={"C","C++","C#","JAVA"};
 for(int i=0;i<10;i++)
 System.out.println("Language "+(i+1)+" :"+lan[i]);
 }
 catch(Exception ie)
 {
 System.out.println(“Index was not found”);
 }
 finally
 {
 System.out.println("Final block is executed");
 }

 }
}

Example: demonstrate the multiple catch blocks.

import java.util.*;
class ExceptionDemo
{
 public static void main(String ar[])
 {
 Scanner sc=new Scanner(System.in);
 try
 {
 System.out.println("Enter a value");
 int a=sc.nextInt();
 System.out.println("Enter b value");
 int b=sc.nextInt();
 int c=a/b;
 System.out.println("Division a/b is "+c);
 }
 catch(ArithmeticException ae)
 {
 System.out.println("Do not give dividend as zero");
 }
 catch(InputMismatchException ae)
 {
 System.out.println("Please enter only integer value");
 }
 finally
 {
 System.out.println("Final block is executed");
 }

 }
}

Object Oriented Programming UNIT-III

Suresh Kumar K, Assistant Professor, Dept. of IT

throw:

 To manually throw an exception, use the keyword throw.

 Syntax:
throw ThrowableInstance ;

 Example:
throw new ArithmeticException("Exception Message") ;

 Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.

 Primitive types, such as int or char, as well as non-Throwable classes, such as String and Object,
cannot be used as exceptions.

 There are two ways you can obtain a Throwable object:
 using a parameter in a catch clause.
 creating one with the new operator.

 Execution process
 The flow of execution stops immediately after the throw statement; any subsequent statements are

not executed.
 The nearest enclosing try block is inspected to see if it has a catch statement that matches the type

of exception.
 If it does find a match, control is transferred to that statement.
 If not, then the next enclosing try statement is inspected, and so on.
 If no matching catch is found, then the default exception handler halts the program and prints the

stack trace.

Example // Demonstrate throw and rethow
class ThrowDemo
{

static void demoproc()
{

try
{

throw new NullPointerException("demo");
}
 catch(NullPointerException e)
{

System.out.println("Caught inside demoproc.");
throw new ArithmeticException("In valid operation") ; // rethrow the exception

}
}
public static void main(String args[])
{

try
{

demoproc();
}
catch(ArithmeticException ae)
{

System.out.println("Recaught: " +ae);
}

}
}

Object Oriented Programming UNIT-III

Suresh Kumar K, Assistant Professor, Dept. of IT

throws:
 Any exception that is thrown out of a method must be specified as such by a throws clause.

 If a method is capable of causing an exception that it does not handle, it must specify this behavior so
that callers of the method can guard themselves against that exception by using a throws clause in the
method’s declaration.

 A throws clause lists the types of exceptions that a method might throw.

 This is necessary for all exceptions, except those of type Error or RuntimeException, or any of their
subclasses.

 Syntax:
type method-name(parameter-list) throws exception-list
{

// body of method
}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.
Example: demonstrate the throws clause
class ThrowsDemo
{
 static void Display() throws IllegalAccessException
 {
 System.out.println("Inside Display.");
 throw new IllegalAccessException("Illegal access");
 }
 public static void main(String args[])
 {
 try {
 Display();
 }
 catch(IllegalAccessException ie)
 {
 System.out.println(ie);
 }
 }
}

Object Oriented Programming UNIT-III

Suresh Kumar K, Assistant Professor, Dept. of IT

finally:
 Any code that absolutely must be executed after a try block completes is put in a finally block.
 finally creates a block of code that will be executed after a try /catch block has completed and before

the code following the try/catch block.
 The finally block will execute whether or not an exception is thrown.
 If an exception is thrown, the finally block will execute even if no catch statement matches the exception.

// Demonstrate finally.
class FinallyDemo
{

// Throw an exception out of the method.
static void procA()
{

try
{

System.out.println("inside procA");
throw new RuntimeException("demo");

}
finally
{

System.out.println("procA's finally");
}

}
// Return from within a try block.
static void procB()
{

try
{

System.out.println("inside procB");
return;

}
finally
{

System.out.println("procB's finally");
}

}
// Execute a try block normally.
static void procC()
{

try
{

System.out.println("inside procC");
}
finally
{

System.out.println("procC's finally");
}

}
public static void main(String args[])
{

try
{

procA();
}
catch (Exception e)
{

System.out.println("Exception caught");
}
procB();
procC();

}
}

Output:
inside procA
procA's finally
Exception caught
inside procB
procB's finally
inside procC
procC's finally

Object Oriented Programming UNIT-III

Suresh Kumar K, Assistant Professor, Dept. of IT

Nested try Statements:

 A try statement can be inside the block of another try is called nested try.

 Each time a try statement is entered, the context of that exception is pushed on the stack.

 If an inner try statement does not have a catch handler for a particular exception, the stack is unwound
and the next try statement’s catch handlers are inspected for a match.

 This continues until one of the catch statements succeeds, or until all of the nested try statements are
exhausted.

 If no catch statement matches, then the Java run-time system will handle the exception.

Example: An example of nested try statements.
class NestTry
{

public static void main(String args[])
{

try
{

int a = args.length;
int b = 42 / a; // generate division by zero
System.out.println("a = " + a);
try {

if(a==1)
a = a/(a-a); // generate division by zero

if(a==2)
{

int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception

}
}
catch(ArrayIndexOutOfBoundsException e)
{

System.out.println("Array index out-of-bounds: " + e);
}

}
catch(ArithmeticException e)
{

System.out.println("Divide by 0: " + e);
}

}
}

