
Subject: Python Programming

Prepared by: Suresh Kumar K

Why Python?

1. Simple syntax
2. Length of code is very small
3. Complex problems can be solved in a simple manner.

Features of Python:

1. Simple to learn
2. It is a open source
3. Portability
4. High level interpreter-automatic memory management
5. Object oriented programming
6. Supports nearly 200+ standard libraries.

Applications of Python:

1. Web & Internet development
2. Desktop GUI Applications
3. Artificial Intelligence
4. Machine Learning
5. Image processing Applications
6. Games and 3D graphics
7. Network programming
8. Data base access
9. Business Applications

Python Environments:

1. Anaconda ----- www.anaconda.com
2. IDLE-priginal---- www.python.org
3. Jupyter
4. Spyder
5. Pycharm
6. eRic
7. Th
8. Atom

History of Python

1. Python is created by Dutch Guido van Rossum around 1991.
2. Python is an open-source project.
3. The mother site is www.python.org.

Subject: Python Programming

Prepared by: Suresh Kumar K

Versions of Python:

1. Python 1: the initial version.

2. Python 2: released in 2000, with many new features such as garbage
collector and support for Unicode.

3. Python 3 (Python 3000 or py3k): A major upgrade released in 2008.

Python 3 is NOT backward compatible with Python 2.

4. To know your version of python type Python --version

Python Statement:

1. Each line is treated as one statement in Python

2. No need to end a statement with semicolon

3. Multi line statements are also possible

Python Syntax:

Python syntax can be executed by writing directly in the Command Line:

print(“Hello Python”)

C:/> python hello.py

Python Comments:

 Comments can be used to explain Python code.

 Comments can be used to make the code more readable.

 Comments can be used to prevent execution when testing code.

Creating a Comment:

Comments starts with a #, and Python will ignore them:

#This is a comment
print("Hello, World!")

Subject: Python Programming

Prepared by: Suresh Kumar K

Multi Line Comments
Python does not really have a syntax for multi line comments.

To add a multiline comment you could insert a # for each line:

"""
This is a comment
written in
more than just one line
"""
print("Hello, World!")

As long as the string is not assigned to a variable, Python will read the code,
but then ignore it, and you have made a multiline comment.

Identifiers:

1. Starting letter should be an alphabet or _
2. Other than _ , no other symbols are not allowed within the identifier.
3. Identifier name should not be keyword.
4. Length of an identifier is unlimited.
5. It is case sensitive.

 Example: Name=”Suresh”

 NAME=”suresh”

 name=”suresh” these three are different variables.

Variables:

 Variable is a container for storing data. Or named memory location.

 There is no syntax for declaring variable in python.

 Assigning value to a variable is itself both declaration and initialization.

 Example: a=5

Example2:

x, y, z = "Orange", "Banana", "Cherry"
print(x)
print(y)
print(z)

Example3:

x = y = z = "Orange"
print(x)

Subject: Python Programming

Prepared by: Suresh Kumar K

print(y)
print(z)

Example4:

fruits = ["apple", "banana", "cherry"]
x, y, z = fruits
print(x)
print(y)
print(z)

Example5:

x = "Python"
y = "is"
z = "awesome"
print(x, y, z)

Example6:

x = "Python "
y = "is "
z = "awesome"
print(x + y + z)

Example7:

x = 5
y = 10
print(x + y)

Data types in Python

Every value in Python has a datatype. Since everything is an object in

Python programming, data types are actually classes and variables are

instance (object) of these classes.

There are various data types in Python. Some of the important types are

listed below.

Python Numbers

Integers, floating point numbers and complex numbers fall under Python

numbers category. They are defined as int, float and complex classes in

Python.

Subject: Python Programming

Prepared by: Suresh Kumar K

We can use the type() function to know which class a variable or a value

belongs to. Similarly, the isinstance() function is used to check if an object

belongs to a particular class.

a = 5
print(a, "is of type", type(a))

a = 2.0
print(a, "is of type", type(a))

a = 1+2j
print(a, "is complex number?", isinstance(1+2j,complex))

Output

5 is of type <class 'int'>
2.0 is of type <class 'float'>
(1+2j) is complex number? True

Integers can be of any length, it is only limited by the memory available.

A floating-point number is accurate up to 15 decimal places. Integer and

floating points are separated by decimal points. 1 is an integer, 1.0 is a

floating-point number.

Complex numbers are written in the form, x + yj, where x is the real part

and y is the imaginary part. Here are some examples.

>>> a = 1234567890123456789
>>> a
1234567890123456789
>>> b = 0.1234567890123456789
>>> b
0.12345678901234568
>>> c = 1+2j
>>> c
(1+2j)

Notice that the float variable b got truncated.

Python List

Subject: Python Programming

Prepared by: Suresh Kumar K

List is an ordered sequence of items. It is one of the most used datatype in

Python and is very flexible. All the items in a list do not need to be of the

same type.

Declaring a list is pretty straight forward. Items separated by commas are

enclosed within brackets [].

a = [1, 2.2, 'python']

We can use the slicing operator [] to extract an item or a range of items

from a list. The index starts from 0 in Python.

a = [5,10,15,20,25,30,35,40]

a[2] = 15
print("a[2] = ", a[2])

a[0:3] = [5, 10, 15]
print("a[0:3] = ", a[0:3])

a[5:] = [30, 35, 40]
print("a[5:] = ", a[5:])

Output

a[2] = 15
a[0:3] = [5, 10, 15]
a[5:] = [30, 35, 40]

Lists are mutable, meaning, the value of elements of a list can be altered.

a = [1, 2, 3]
a[2] = 4
print(a)

Output

[1, 2, 4]

Python Tuple

Subject: Python Programming

Prepared by: Suresh Kumar K

Tuple is an ordered sequence of items same as a list. The only difference

is that tuples are immutable. Tuples once created cannot be modified.

Tuples are used to write-protect data and are usually faster than lists as

they cannot change dynamically.

It is defined within parentheses () where items are separated by commas.

t = (5,'program', 1+3j)

We can use the slicing operator [] to extract items but we cannot change

its value.

t = (5,'program', 1+3j)

t[1] = 'program'
print("t[1] = ", t[1])

t[0:3] = (5, 'program', (1+3j))
print("t[0:3] = ", t[0:3])

Generates error
Tuples are immutable
t[0] = 10

Output

t[1] = program
t[0:3] = (5, 'program', (1+3j))
Traceback (most recent call last):
 File "test.py", line 11, in <module>
 t[0] = 10
TypeError: 'tuple' object does not support item assignment

Subject: Python Programming

Prepared by: Suresh Kumar K

Python Strings

String is sequence of Unicode characters. We can use single quotes or

double quotes to represent strings. Multi-line strings can be denoted using

triple quotes, ''' or """.

s = "This is a string"
print(s)
s = '''A multiline
string'''
print(s)

Output

This is a string
A multiline
string

Just like a list and tuple, the slicing operator [] can be used with strings.

Strings, however, are immutable.

s = 'Hello world!'

s[4] = 'o'
print("s[4] = ", s[4])

s[6:11] = 'world'
print("s[6:11] = ", s[6:11])

Generates error
Strings are immutable in Python
s[5] ='d'

Output

s[4] = o
s[6:11] = world
Traceback (most recent call last):
 File "<string>", line 11, in <module>
TypeError: 'str' object does not support item assignment

Python Set

Subject: Python Programming

Prepared by: Suresh Kumar K

Set is an unordered collection of unique items. Set is defined by values

separated by comma inside braces { }. Items in a set are not ordered.

a = {5,2,3,1,4}

printing set variable
print("a = ", a)

data type of variable a
print(type(a))

Output

a = {1, 2, 3, 4, 5}
<class 'set'>

We can perform set operations like union, intersection on two sets. Sets

have unique values. They eliminate duplicates.

a = {1,2,2,3,3,3}
print(a)

Output

{1, 2, 3}

Since, set are unordered collection, indexing has no meaning. Hence, the

slicing operator [] does not work.

>>> a = {1,2,3}
>>> a[1]
Traceback (most recent call last):
 File "<string>", line 301, in runcode
 File "<interactive input>", line 1, in <module>
TypeError: 'set' object does not support indexing

Subject: Python Programming

Prepared by: Suresh Kumar K

Python Dictionary

Dictionary is an unordered collection of key-value pairs.

It is generally used when we have a huge amount of data. Dictionaries are

optimized for retrieving data. We must know the key to retrieve the value.

In Python, dictionaries are defined within braces {} with each item being a

pair in the form key:value. Key and value can be of any type.

>>> d = {1:'value','key':2}
>>> type(d)
<class 'dict'>

We use key to retrieve the respective value. But not the other way around.

d = {1:'value','key':2}
print(type(d))

print("d[1] = ", d[1])

print("d['key'] = ", d['key'])

Generates error
print("d[2] = ", d[2])

Output

<class 'dict'>
d[1] = value
d['key'] = 2
Traceback (most recent call last):
 File "<string>", line 9, in <module>
KeyError: 2

Subject: Python Programming

Prepared by: Suresh Kumar K

Boolean

Boolean type provides two built-in values, True and False. These values are used to
determine the given statement true or false. It denotes by the class bool. True can be
represented by any non-zero value or 'T' whereas false can be represented by the 0
or 'F'. Consider the following example.

Python program to check the boolean type

print(type(True))

print(type(False))
print(false)

Output:

<class 'bool'>
<class 'bool'>
NameError: name 'false' is not defined

Conversion between data types

We can convert between different data types by using different type

conversion functions like int(), float(), str(), etc.

>>> float(5)
5.0

Conversion from float to int will truncate the value (make it closer to zero).

>>> int(10.6)
10
>>> int(-10.6)
-10

Conversion to and from string must contain compatible values.

>>> float('2.5')
2.5
>>> str(25)

Subject: Python Programming

Prepared by: Suresh Kumar K

'25'
>>> int('1p')
Traceback (most recent call last):
 File "<string>", line 301, in runcode
 File "<interactive input>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '1p'

We can even convert one sequence to another.

>>> set([1,2,3])
{1, 2, 3}
>>> tuple({5,6,7})
(5, 6, 7)
>>> list('hello')
['h', 'e', 'l', 'l', 'o']

To convert to dictionary, each element must be a pair:

>>> dict([[1,2],[3,4]])
{1: 2, 3: 4}
>>> dict([(3,26),(4,44)])
{3: 26, 4: 44}

What are operators in python?

Operators are special symbols in Python that carry out arithmetic or logical

computation. The value that the operator operates on is called the operand.

For example:

>>> 2+3
5

Here, + is the operator that performs addition. 2 and 3 are the operands

and 5 is the output of the operation.

Subject: Python Programming

Prepared by: Suresh Kumar K

Arithmetic operators

Arithmetic operators are used to perform mathematical operations like

addition, subtraction, multiplication, etc.

Operator Meaning Example

+ Add two operands or unary plus x + y+ 2

- Subtract right operand from the left or unary minus x - y- 2

* Multiply two operands x * y

/
Divide left operand by the right one (always results into
float)

x / y

%
Modulus - remainder of the division of left operand by
the right

x % y (remainder
of x/y)

//
Floor division - division that results into whole number
adjusted to the left in the number line

x // y

** Exponent - left operand raised to the power of right
x**y (x to the
power y)

Example 1: Arithmetic operators in Python

x = 15
y = 4

Output: x + y = 19
print('x + y =',x+y)

Output: x - y = 11
print('x - y =',x-y)

Output: x * y = 60
print('x * y =',x*y)

Subject: Python Programming

Prepared by: Suresh Kumar K

Output: x / y = 3.75
print('x / y =',x/y)

Output: x // y = 3
print('x // y =',x//y)

Output: x ** y = 50625
print('x ** y =',x**y)

Output

x + y = 19
x - y = 11
x * y = 60
x / y = 3.75
x // y = 3
x ** y = 50625

Subject: Python Programming

Prepared by: Suresh Kumar K

Comparison operators

Comparison operators are used to compare values. It returns

either True or False according to the condition.

Operator Meaning Example

> Greater than - True if left operand is greater than the right x > y

< Less than - True if left operand is less than the right x < y

== Equal to - True if both operands are equal x == y

!= Not equal to - True if operands are not equal x != y

>=
Greater than or equal to - True if left operand is greater
than or equal to the right

x >= y

<=
Less than or equal to - True if left operand is less than or
equal to the right

x <= y

Example 2: Comparison operators in Python

x = 10
y = 12

Output: x > y is False
print('x > y is',x>y)

Output: x < y is True
print('x < y is',x<y)

Output: x == y is False
print('x == y is',x==y)

Output: x != y is True
print('x != y is',x!=y)

Output: x >= y is False
print('x >= y is',x>=y)

Subject: Python Programming

Prepared by: Suresh Kumar K

Output: x <= y is True
print('x <= y is',x<=y)

Output

x > y is False
x < y is True
x == y is False
x != y is True
x >= y is False
x <= y is True

Logical operators

Logical operators are the and, or, not operators.

Operator Meaning Example

and True if both the operands are true x and y

or True if either of the operands is true x or y

not True if operand is false (complements the operand) not x

Example 3: Logical Operators in Python

x = True
y = False

print('x and y is',x and y)

print('x or y is',x or y)

print('not x is',not x)

Output

x and y is False
x or y is True
not x is False

Subject: Python Programming

Prepared by: Suresh Kumar K

Bitwise operators

Bitwise operators act on operands as if they were strings of binary digits.

They operate bit by bit, hence the name.

For example, 2 is 10 in binary and 7 is 111.

In the table below: Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in

binary)

Operator Meaning Example

& Bitwise AND x & y = 0 (0000 0000)

| Bitwise OR x | y = 14 (0000 1110)

~ Bitwise NOT ~x = -11 (1111 0101)

^ Bitwise XOR x ^ y = 14 (0000 1110)

>> Bitwise right shift x >> 2 = 2 (0000 0010)

<< Bitwise left shift x << 2 = 40 (0010 1000)

Assignment operators

Assignment operators are used in Python to assign values to variables.

a = 5 is a simple assignment operator that assigns the value 5 on the right

to the variable a on the left.

There are various compound operators in Python like a += 5 that adds to

the variable and later assigns the same. It is equivalent to a = a + 5.

Subject: Python Programming

Prepared by: Suresh Kumar K

Operator Example Equivalent to

= x = 5 x = 5

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

%= x %= 5 x = x % 5

//= x //= 5 x = x // 5

**= x **= 5 x = x ** 5

&= x &= 5 x = x & 5

|= x |= 5 x = x | 5

^= x ^= 5 x = x ^ 5

>>= x >>= 5 x = x >> 5

<<= x <<= 5 x = x << 5

Subject: Python Programming

Prepared by: Suresh Kumar K

Special operators

Python language offers some special types of operators like the identity

operator or the membership operator. They are described below with

examples.

Identity operators

is and is not are the identity operators in Python. They are used to check if

two values (or variables) are located on the same part of the memory. Two

variables that are equal does not imply that they are identical.

Operator Meaning Example

Is True if the operands are identical (refer to the same object) x is True

is not
True if the operands are not identical (do not refer to the
same object)

x is not
True

Example 4: Identity operators in Python

x1 = 5
y1 = 5
x2 = 'Hello'
y2 = 'Hello'
x3 = [1,2,3]
y3 = [1,2,3]

Output: False
print(x1 is not y1)

Output: True
print(x2 is y2)

Output: False
print(x3 is y3)

Subject: Python Programming

Prepared by: Suresh Kumar K

Output

False
True
False

Here, we see that x1 and y1 are integers of the same values, so they are

equal as well as identical. Same is the case with x2 and y2 (strings).

But x3 and y3 are lists. They are equal but not identical. It is because the

interpreter locates them separately in memory although they are equal.

Membership operators

in and not in are the membership operators in Python. They are used to

test whether a value or variable is found in a sequence

(string, list, tuple, set and dictionary).

In a dictionary we can only test for presence of key, not the value.

Operator Meaning Example

in True if value/variable is found in the sequence 5 in x

not in True if value/variable is not found in the sequence 5 not in x

Example #5: Membership operators in Python

x = 'Hello world'
y = {1:'a',2:'b'}

Output: True
print('H' in x)

Output: True
print('hello' not in x)

Output: True
print(1 in y)

Subject: Python Programming

Prepared by: Suresh Kumar K

Output: False
print('a' in y)

Output

True
True
True
False

Here, 'H' is in x but 'hello' is not present in x (remember, Python is case

sensitive). Similarly, 1 is key and 'a' is the value in dictionary y. Hence, 'a'

in y returns False.

Strings can be indexed (subscripted), with the first character having index 0. There is
no separate character type; a character is simply a string of size one:

>>>

>>> word = 'Python'
>>> word[0] # character in position 0
'P'
>>> word[5] # character in position 5
'n'

Indices may also be negative numbers, to start counting from the right:

>>>

>>> word[-1] # last character
'n'
>>> word[-2] # second-last character
'o'
>>> word[-6]
'P'

Note that since -0 is the same as 0, negative indices start from -1.

In addition to indexing, slicing is also supported. While indexing is used to obtain
individual characters, slicing allows you to obtain substring:

>>>

>>> word[0:2] # characters from position 0 (included) to 2
(excluded)
'Py'

Subject: Python Programming

Prepared by: Suresh Kumar K

>>> word[2:5] # characters from position 2 (included) to 5
(excluded)
'tho'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted
second index defaults to the size of the string being sliced.

>>>

>>> word[:2] # character from the beginning to position 2
(excluded)
'Py'
>>> word[4:] # characters from position 4 (included) to the end
'on'
>>> word[-2:] # characters from the second-last (included) to
the end
'on'

Note how the start is always included, and the end always excluded. This makes
sure that s[:i] + s[i:] is always equal to s:

>>>

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

One way to remember how slices work is to think of the indices as
pointing between characters, with the left edge of the first character numbered 0.
Then the right edge of the last character of a string of n characters has index n, for
example:

 +---+---+---+---+---+---+
 | P | y | t | h | o | n |
 +---+---+---+---+---+---+
 0 1 2 3 4 5 6
-6 -5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0…6 in the string; the
second row gives the corresponding negative indices. The slice from i to j consists of
all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both
are within bounds. For example, the length of word[1:3] is 2.

Attempting to use an index that is too large will result in an error:

>>>

Subject: Python Programming

Prepared by: Suresh Kumar K

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

However, out of range slice indexes are handled gracefully when used for slicing:

What are lambda functions in Python?

In Python, an anonymous function is a function that is defined without a

name.

While normal functions are defined using the def keyword in Python,

anonymous functions are defined using the lambda keyword.

Hence, anonymous functions are also called lambda functions.

How to use lambda Functions in Python?

A lambda function in python has the following syntax.

Syntax of Lambda Function in python

lambda arguments: expression

Lambda functions can have any number of arguments but only one

expression. The expression is evaluated and returned. Lambda functions

can be used wherever function objects are required.

Example of Lambda Function in python

Here is an example of lambda function that doubles the input value.

Program to show the use of lambda functions
double = lambda x: x * 2

print(double(5))

Output

10

Subject: Python Programming

Prepared by: Suresh Kumar K

In the above program, lambda x: x * 2 is the lambda function. Here x is the

argument and x * 2 is the expression that gets evaluated and returned.

This function has no name. It returns a function object which is assigned to

the identifier double. We can now call it as a normal function. The statement

double = lambda x: x * 2

is nearly the same as:

def double(x):

 return x * 2

Use of Lambda Function in python

We use lambda functions when we require a nameless function for a short

period of time.

In Python, we generally use it as an argument to a higher-order function (a

function that takes in other functions as arguments). Lambda functions are

used along with built-in functions like filter(), map() etc.

Example use with filter()

The filter() function in Python takes in a function and a list as arguments.

The function is called with all the items in the list and a new list is returned

which contains items for which the function evaluates to True.

Here is an example use of filter() function to filter out only even numbers

from a list.
Program to filter out only the even items from a list
my_list = [1, 5, 4, 6, 8, 11, 3, 12]

new_list = list(filter(lambda x: (x%2 == 0) , my_list))

print(new_list)
Run Code

Output

Subject: Python Programming

Prepared by: Suresh Kumar K

[4, 6, 8, 12]

Example use with map()

The map() function in Python takes in a function and a list.

The function is called with all the items in the list and a new list is returned

which contains items returned by that function for each item.

Here is an example use of map() function to double all the items in a list.
Program to double each item in a list using map()

my_list = [1, 5, 4, 6, 8, 11, 3, 12]

new_list = list(map(lambda x: x * 2 , my_list))

print(new_list)
Run Code

Output

[2, 10, 8, 12, 16, 22, 6, 24]

What is a Module?
Consider a module to be the same as a code library.

A file containing a set of functions you want to include in your application.

Create a Module
To create a module just save the code you want in a file with the file
extension .py:

Example

Save this code in a file named mymodule.py

def greeting(name):
 print("Hello, " + name)

Subject: Python Programming

Prepared by: Suresh Kumar K

def sum1(a,b):

 c=a+b

 print(“sum is”,c)

Use a Module
Now we can use the module we just created, by using the import statement:

Example

Import the module named mymodule, and call the greeting function:

import mymodule

mymodule.greeting("Suresh")

Run Example »

Note: When using a function from a module, use the
syntax: module_name.function_name.

Variables in Module
The module can contain functions, as already described, but also variables of
all types (arrays, dictionaries, objects etc):

Example

Save this code in the file mymodule.py

person1 = {
 "name": "John",
 "age": 36,
 "country": "Norway"
}

Example

Import the module named mymodule, and access the person1 dictionary:

Subject: Python Programming

Prepared by: Suresh Kumar K

import mymodule

a = mymodule.person1["age"]
print(a)

O/P: 36

Naming a Module
You can name the module file whatever you like, but it must have the file
extension .py

Re-naming a Module
You can create an alias when you import a module, by using the as keyword:

Example

Create an alias for mymodule called mx:

import mymodule as mx

a = mx.person1["age"]
print(a)

O/P: 36

Built-in Modules
There are several built-in modules in Python, which you can import whenever
you like.

Example

Import and use the platform module:

import platform

x = platform.system()
print(x)

Subject: Python Programming

Prepared by: Suresh Kumar K

Python datetime
Python has a module named datetime to work with dates and times.

Example 1: Get Current Date and Time

import datetime

datetime_object = datetime.datetime.now()

print(datetime_object)

When you run the program, the output will be something like:

2018-12-19 09:26:03.478039

Here, we have imported datetime module using import datetime statement.

One of the classes defined in the datetime module is datetime class. We then

used now() method to create a datetime object containing the current local

date and time.

Example 2: Get Current Date

from datetime import date

date_object = date.today()

print(date_object)

When you run the program, the output will be something like:

2018-12-19

In this program, we have used today() method defined in the date class to

get a date object containing the current local date.

What's inside datetime?

We can use dir() function to get a list containing all attributes of a module.

import datetime

Subject: Python Programming

Prepared by: Suresh Kumar K

print(dir(datetime))

When you run the program, the output will be:

['MAXYEAR', 'MINYEAR', '__builtins__', '__cached__', '__doc__', '__file__',

'__loader__', '__name__', '__package__', '__spec__', '_divide_and_round', 'date',

'datetime', 'datetime_CAPI', 'time', 'timedelta', 'timezone', 'tzinfo']

Commonly used classes in the datetime module are:

 date Class

 time Class

 datetime Class

 timedelta Class

datetime.date Class
You can instantiate date objects from the date class. A date object

represents a date (year, month and day).

Example 3: Date object to represent a date

import datetime

d = datetime.date(2019, 4, 13)

print(d)

When you run the program, the output will be:

2019-04-13

If you are wondering, date() in the above example is a constructor of

the date class. The constructor takes three arguments: year, month and

day.

The variable a is a date object.

We can only import date class from the datetime module. Here's how:

Subject: Python Programming

Prepared by: Suresh Kumar K

from datetime import date

a = date(2019, 4, 13)

print(a)

Example 4: Get current date

You can create a date object containing the current date by using a

classmethod named today(). Here's how:

from datetime import date

today = date.today()

print("Current date =", today)

Example 5: Get date from a timestamp

We can also create date objects from a timestamp. A Unix timestamp is the

number of seconds between a particular date and January 1, 1970 at UTC.

You can convert a timestamp to date using fromtimestamp() method.

from datetime import date

timestamp = date.fromtimestamp(1326244364)

print("Date =", timestamp)

When you run the program, the output will be:

Date = 2012-01-11

Example 6: Print today's year, month and day

We can get year, month, day, day of the week etc. from the date object

easily. Here's how:

Subject: Python Programming

Prepared by: Suresh Kumar K

from datetime import date

date object of today's date

today = date.today()

print("Current year:", today.year)

print("Current month:", today.month)

print("Current day:", today.day)

datetime.time
A time object instantiated from the time class represents the local time.

Example 7: Time object to represent time

from datetime import time

time(hour = 0, minute = 0, second = 0)

a = time()

print("a =", a)

time(hour, minute and second)

b = time(11, 34, 56)

print("b =", b)

time(hour, minute and second)

c = time(hour = 11, minute = 34, second = 56)

print("c =", c)

time(hour, minute, second, microsecond)

d = time(11, 34, 56, 234566)

print("d =", d)

When you run the program, the output will be:

a = 00:00:00

b = 11:34:56

c = 11:34:56

d = 11:34:56.234566

Subject: Python Programming

Prepared by: Suresh Kumar K

Example 8: Print hour, minute, second and microsecond

Once you create a time object, you can easily print its attributes such

as hour, minute etc.

from datetime import time

a = time(11, 34, 56)

print("hour =", a.hour)

print("minute =", a.minute)

print("second =", a.second)

print("microsecond =", a.microsecond)

When you run the example, the output will be:

hour = 11

minute = 34

second = 56

microsecond = 0

Notice that we haven't passed microsecond argument. Hence, its default

value 0 is printed.

datetime.datetime
The datetime module has a class named datetime that can contain

information from both date and time objects.

Example 9: Python datetime object

from datetime import datetime

#datetime(year, month, day)

a = datetime(2018, 11, 28)

print(a)

Subject: Python Programming

Prepared by: Suresh Kumar K

datetime(year, month, day, hour, minute, second, microsecond)

b = datetime(2017, 11, 28, 23, 55, 59, 342380)

print(b)

When you run the program, the output will be:

2018-11-28 00:00:00

2017-11-28 23:55:59.342380

The first three arguments year, month and day in the datetime() constructor are

mandatory.

Example 10: Print year, month, hour, minute and timestamp

from datetime import datetime

a = datetime(2017, 11, 28, 23, 55, 59, 342380)

print("year =", a.year)

print("month =", a.month)

print("hour =", a.hour)

print("minute =", a.minute)

print("timestamp =", a.timestamp())

When you run the program, the output will be:

year = 2017

month = 11

day = 28

hour = 23

minute = 55

timestamp = 1511913359.34238

datetime.timedelta
A timedelta object represents the difference between two dates or times.

Example 11: Difference between two dates and times

Subject: Python Programming

Prepared by: Suresh Kumar K

from datetime import datetime, date

t1 = date(year = 2018, month = 7, day = 12)

t2 = date(year = 2017, month = 12, day = 23)

t3 = t1 - t2

print("t3 =", t3)

t4 = datetime(year = 2018, month = 7, day = 12, hour = 7, minute = 9, second = 33)

t5 = datetime(year = 2019, month = 6, day = 10, hour = 5, minute = 55, second = 13)

t6 = t4 - t5

print("t6 =", t6)

print("type of t3 =", type(t3))

print("type of t6 =", type(t6))

When you run the program, the output will be:

t3 = 201 days, 0:00:00

t6 = -333 days, 1:14:20

type of t3 = <class 'datetime.timedelta'>

type of t6 = <class 'datetime.timedelta'>

Notice, both t3 and t6 are of <class 'datetime.timedelta'> type.

Example 12: Difference between two timedelta objects

from datetime import timedelta

t1 = timedelta(weeks = 2, days = 5, hours = 1, seconds = 33)

t2 = timedelta(days = 4, hours = 11, minutes = 4, seconds = 54)

t3 = t1 - t2

print("t3 =", t3)

When you run the program, the output will be:

t3 = 14 days, 13:55:39

Here, we have created two timedelta objects t1 and t2, and their difference

is printed on the screen.

Subject: Python Programming

Prepared by: Suresh Kumar K

Example 13: Printing negative timedelta object

from datetime import timedelta

t1 = timedelta(seconds = 33)

t2 = timedelta(seconds = 54)

t3 = t1 - t2

print("t3 =", t3)

print("t3 =", abs(t3))

When you run the program, the output will be:

t3 = -1 day, 23:59:39

t3 = 0:00:21

Example 14: Time duration in seconds

You can get the total number of seconds in a timedelta object

using total_seconds() method.

from datetime import timedelta

t = timedelta(days = 5, hours = 1, seconds = 33, microseconds = 233423)

print("total seconds =", t.total_seconds())

When you run the program, the output will be:

total seconds = 435633.233423

You can also find sum of two dates and times using + operator. Also, you

can multiply and divide a timedelta object by integers and floats.

Python format datetime
The way date and time is represented may be different in different places,

organizations etc. It's more common to use mm/dd/yyyy in the US,

whereas dd/mm/yyyy is more common in the UK.

Subject: Python Programming

Prepared by: Suresh Kumar K

Python has strftime() and strptime() methods to handle this.

Python strftime() - datetime object to string

The strftime() method is defined under classes date, datetime and time. The

method creates a formatted string from a given date, datetime or time object.

Example 15: Format date using strftime()

from datetime import datetime

current date and time

a = datetime.now()

t = a.strftime("%H:%M:%S")

print("time:", t)

s1 = a.strftime("%m/%d/%Y, %H:%M:%S")

mm/dd/YY H:M:S format

print("s1:", s1)

s2 = a.strftime("%d/%m/%Y, %H:%M:%S")

dd/mm/YY H:M:S format

print("s2:", s2)

When you run the program, the output will be something like:

time: 04:34:52

s1: 12/26/2018, 04:34:52

s2: 26/12/2018, 04:34:52

Here, %Y, %m, %d, %H etc. are format codes. The strftime() method takes one

or more format codes and returns a formatted string based on it.

In the above program, t, s1 and s2 are strings.

 %Y - year [0001,..., 2018, 2019,..., 9999]

 %m - month [01, 02, ..., 11, 12]

 %d - day [01, 02, ..., 30, 31]

 %H - hour [00, 01, ..., 22, 23

 %M - minute [00, 01, ..., 58, 59]

Subject: Python Programming

Prepared by: Suresh Kumar K

 %S - second [00, 01, ..., 58, 59]

Format Code List

The table below shows all the codes that you can pass to

the strftime() method.

Directive Meaning Example

%a Abbreviated weekday name. Sun, Mon, ...

%A Full weekday name.
Sunday,
Monday, ...

%w Weekday as a decimal number. 0, 1, ..., 6

%d Day of the month as a zero-padded decimal. 01, 02, ..., 31

%-d Day of the month as a decimal number. 1, 2, ..., 30

%b Abbreviated month name.
Jan, Feb, ...,
Dec

%B Full month name.
January,
February, ...

%m Month as a zero-padded decimal number. 01, 02, ..., 12

%-m Month as a decimal number. 1, 2, ..., 12

%y Year without century as a zero-padded decimal number. 00, 01, ..., 99

%-y Year without century as a decimal number. 0, 1, ..., 99

%Y Year with century as a decimal number. 2013, 2019

Subject: Python Programming

Prepared by: Suresh Kumar K

Directive Meaning Example

etc.

%H Hour (24-hour clock) as a zero-padded decimal number. 00, 01, ..., 23

%-H Hour (24-hour clock) as a decimal number. 0, 1, ..., 23

%I Hour (12-hour clock) as a zero-padded decimal number. 01, 02, ..., 12

%-I Hour (12-hour clock) as a decimal number. 1, 2, ... 12

%p Locale’s AM or PM. AM, PM

%M Minute as a zero-padded decimal number. 00, 01, ..., 59

%-M Minute as a decimal number. 0, 1, ..., 59

%S Second as a zero-padded decimal number. 00, 01, ..., 59

%-S Second as a decimal number. 0, 1, ..., 59

%f
Microsecond as a decimal number, zero-padded on the
left.

000000 -
999999

%z UTC offset in the form +HHMM or -HHMM.

%Z Time zone name.

%j Day of the year as a zero-padded decimal number.
001, 002, ...,
366

%-j Day of the year as a decimal number. 1, 2, ..., 366

Subject: Python Programming

Prepared by: Suresh Kumar K

Directive Meaning Example

%U
Week number of the year (Sunday as the first day of the
week). All days in a new year preceding the first Sunday are
considered to be in week 0.

00, 01, ..., 53

%W
Week number of the year (Monday as the first day of the
week). All days in a new year preceding the first Monday
are considered to be in week 0.

00, 01, ..., 53

%c Locale’s appropriate date and time representation.
Mon Sep 30
07:06:05 2013

%x Locale’s appropriate date representation. 09/30/13

%X Locale’s appropriate time representation. 07:06:05

%% A literal '%' character. %

Files

Files are named locations on disk to store related information. They are

used to permanently store data in a non-volatile memory (e.g. hard disk).

Since Random Access Memory (RAM) is volatile (which loses its data

when the computer is turned off), we use files for future use of the data by

permanently storing them.

When we want to read from or write to a file, we need to open it first. When

we are done, it needs to be closed so that the resources that are tied with

the file are freed.

Hence, in Python, a file operation takes place in the following order:

1. Open a file

Subject: Python Programming

Prepared by: Suresh Kumar K

2. Read or write (perform operation)

3. Close the file

Opening Files in Python

Python has a built-in open() function to open a file. This function returns a

file object, also called a handle, as it is used to read or modify the file

accordingly.

>>> f = open("test.txt") # open file in current directory

>>> f = open("C:/Python38/README.txt") # specifying full path

We can specify the mode while opening a file. In mode, we specify whether

we want to read r, write w or append a to the file. We can also specify if we

want to open the file in text mode or binary mode.

The default is reading in text mode. In this mode, we get strings when

reading from the file.

On the other hand, binary mode returns bytes and this is the mode to be

used when dealing with non-text files like images or executable files.

Mode Description

r Opens a file for reading. (default)

w Opens a file for writing. Creates a new file if it does not exist or truncates the file if it exists.

x Opens a file for exclusive creation. If the file already exists, the operation fails.

a
Opens a file for appending at the end of the file without truncating it. Creates a new file if it does
not exist.

Subject: Python Programming

Prepared by: Suresh Kumar K

t Opens in text mode. (default)

b Opens in binary mode.

+ Opens a file for updating (reading and writing)

f = open("test.txt") # equivalent to 'r' or 'rt'

f = open("test.txt",'w') # write in text mode

f = open("img.bmp",'r+b') # read and write in binary mode

Unlike other languages, the character a does not imply the number 97 until

it is encoded using ASCII (or other equivalent encodings).

Moreover, the default encoding is platform dependent. In windows, it

is cp1252 but utf-8 in Linux.

So, we must not also rely on the default encoding or else our code will

behave differently in different platforms.

Hence, when working with files in text mode, it is highly recommended to

specify the encoding type.

f = open("test.txt", mode='r', encoding='utf-8')

Closing Files in Python

When we are done with performing operations on the file, we need to

properly close the file.

Closing a file will free up the resources that were tied with the file. It is done

using the close() method available in Python.

Python has a garbage collector to clean up unreferenced objects but we

must not rely on it to close the file.

Subject: Python Programming

Prepared by: Suresh Kumar K

f = open("test.txt", encoding = 'utf-8')

perform file operations

f.close()

This method is not entirely safe. If an exception occurs when we are

performing some operation with the file, the code exits without closing the

file.

A safer way is to use a try...finally block.

try:

 f = open("test.txt", encoding = 'utf-8')

 # perform file operations

finally:

 f.close()

This way, we are guaranteeing that the file is properly closed even if an

exception is raised that causes program flow to stop.

The best way to close a file is by using the with statement. This ensures

that the file is closed when the block inside the with statement is exited.

We don't need to explicitly call the close() method. It is done internally.

with open("test.txt", encoding = 'utf-8') as f:

 # perform file operations

Writing to Files in Python

In order to write into a file in Python, we need to open it in write w,

append a or exclusive creation x mode.

We need to be careful with the w mode, as it will overwrite into the file if it

already exists. Due to this, all the previous data are erased.

Subject: Python Programming

Prepared by: Suresh Kumar K

Writing a string or sequence of bytes (for binary files) is done using

the write() method. This method returns the number of characters written to

the file.

with open("test.txt",'w',encoding = 'utf-8') as f:

 f.write("my first file\n")

 f.write("This file\n\n")

 f.write("contains three lines\n")

This program will create a new file named test.txt in the current directory if

it does not exist. If it does exist, it is overwritten.

We must include the newline characters ourselves to distinguish the

different lines.

Reading Files in Python

To read a file in Python, we must open the file in reading r mode.

There are various methods available for this purpose. We can use

the read(size) method to read in the size number of data. If

the size parameter is not specified, it reads and returns up to the end of the

file.

We can read the text.txt file we wrote in the above section in the following

way:

>>> f = open("test.txt",'r',encoding = 'utf-8')

>>> f.read(4) # read the first 4 data

'This'

>>> f.read(4) # read the next 4 data

' is '

>>> f.read() # read in the rest till end of file

'my first file\nThis file\ncontains three lines\n'

>>> f.read() # further reading returns empty sting

Subject: Python Programming

Prepared by: Suresh Kumar K

''

We can see that the read() method returns a newline as '\n'. Once the end

of the file is reached, we get an empty string on further reading.

We can change our current file cursor (position) using the seek() method.

Similarly, the tell() method returns our current position (in number of

bytes).

>>> f.tell() # get the current file position

56

>>> f.seek(0) # bring file cursor to initial position

0

>>> print(f.read()) # read the entire file

This is my first file

This file

contains three lines

We can read a file line-by-line using a for loop. This is both efficient and

fast.

>>> for line in f:

... print(line, end = '')

...

This is my first file

This file

contains three lines

In this program, the lines in the file itself include a newline character \n. So,

we use the end parameter of the print() function to avoid two newlines

when printing.

Alternatively, we can use the readline() method to read individual lines of a

file. This method reads a file till the newline, including the newline

character.

>>> f.readline()

'This is my first file\n'

>>> f.readline()

'This file\n'

Subject: Python Programming

Prepared by: Suresh Kumar K

>>> f.readline()

'contains three lines\n'

>>> f.readline()

''

Lastly, the readlines() method returns a list of remaining lines of the entire

file. All these reading methods return empty values when the end of file

(EOF) is reached.

>>> f.readlines()

['This is my first file\n', 'This file\n', 'contains three lines\n']

Python File Methods

There are various methods available with the file object. Some of them

have been used in the above examples.

Here is the complete list of methods in text mode with a brief description:

Method Description

close() Closes an opened file. It has no effect if the file is already closed.

detach() Separates the underlying binary buffer from the TextIOBase and returns it.

fileno() Returns an integer number (file descriptor) of the file.

flush() Flushes the write buffer of the file stream.

isatty() Returns True if the file stream is interactive.

Subject: Python Programming

Prepared by: Suresh Kumar K

read(n)
Reads at most n characters from the file. Reads till end of file if it is
negative or None.

readable() Returns True if the file stream can be read from.

readline(n=-1)
Reads and returns one line from the file. Reads in at most n bytes if
specified.

readlines(n=-1)
Reads and returns a list of lines from the file. Reads in at most n
bytes/characters if specified.

seek(offset,from=SEEK_SET)
Changes the file position to offset bytes, in reference to from (start,
current, end).

seekable() Returns True if the file stream supports random access.

tell() Returns an integer that represents the current position of the file's object.

truncate(size=None)
Resizes the file stream to size bytes. If size is not specified, resizes to
current location.

writable() Returns True if the file stream can be written to.

write(s) Writes the string s to the file and returns the number of characters written.

writelines(lines) Writes a list of lines to the file.

