

	

	

Introduction to Python
Programming

SENIOR CONTRIBUTING AUTHORS
UDAYAN DAS, SAINT MARY'S COLLEGE OF CALIFORNIA
AUBREY LAWSON, WILEY
CHRIS MAYFIELD, JAMES MADISON UNIVERSITY
NARGES NOROUZI, UC BERKELEY

	

	

OpenStax
Rice University
6100 Main Street MS-375
Houston, Texas 77005

To learn more about OpenStax, visit https://openstax.org.
Individual print copies and bulk orders can be purchased through our website.

©2024 Rice University. Textbook content produced by OpenStax is licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Under this license, any user of this textbook or the textbook
contents herein must provide proper attribution as follows:

- If you redistribute this textbook in a digital format (including but not limited to PDF and HTML), then you
must retain on every page the following attribution:
“Access for free at openstax.org.”

- If you redistribute this textbook in a print format, then you must include on every physical page the
following attribution:
“Access for free at openstax.org.”

- If you redistribute part of this textbook, then you must retain in every digital format page view (including
but not limited to PDF and HTML) and on every physical printed page the following attribution:
“Access for free at openstax.org.”

- If you use this textbook as a bibliographic reference, please include
https://openstax.org/details/books/introduction-python-programming in your citation.

For questions regarding this licensing, please contact support@openstax.org. This book utilizes the OpenStax
Python Code Runner. The code runner is developed by Wiley and is All Rights Reserved.

Trademarks
The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, OpenStax CNX logo,
OpenStax Tutor name, Openstax Tutor logo, Connexions name, Connexions logo, Rice University name, and
Rice University logo are not subject to the license and may not be reproduced without the prior and express
written consent of Rice University.

DIGITAL VERSION ISBN-13 978-1-961584-45-7
ORIGINAL PUBLICATION YEAR 2024
1 2 3 4 5 6 7 8 9 10 CJP 24

mailto:support@openstax.org

	

	

OPENSTAX

OpenStax provides free, peer-reviewed, openly licensed textbooks for introductory college and Advanced
Placement® courses and low-cost, personalized courseware that helps students learn. A nonprofit ed tech
initiative based at Rice University, we’re committed to helping students access the tools they need to complete
their courses and meet their educational goals.

RICE UNIVERSITY

OpenStax is an initiative of Rice University. As a leading research university with a distinctive commitment to
undergraduate education, Rice University aspires to path-breaking research, unsurpassed teaching, and
contributions to the betterment of our world. It seeks to fulfill this mission by cultivating a diverse community
of learning and discovery that produces leaders across the spectrum of human endeavor.

PHILANTHROPIC SUPPORT

OpenStax is grateful for the generous philanthropic partners who advance our mission to improve educational

access and learning for everyone. To see the impact of our supporter community and our most updated list of

partners, please visit openstax.org/foundation.

Arnold Ventures

Chan Zuckerberg Initiative

Chegg, Inc.

Arthur and Carlyse Ciocca Charitable Foundation

Digital Promise

Ann and John Doerr

Bill & Melinda Gates Foundation

Girard Foundation

Google Inc.

The William and Flora Hewlett Foundation

The Hewlett-Packard Company

Intel Inc.

Rusty and John Jaggers

The Calvin K. Kazanjian Economics Foundation

Charles Koch Foundation

Leon Lowenstein Foundation, Inc.

The Maxfield Foundation

Burt and Deedee McMurtry

Michelson 20MM Foundation

National Science Foundation

The Open Society Foundations

Jumee Yhu and David E. Park III

Brian D. Patterson USA-International Foundation

The Bill and Stephanie Sick Fund

Steven L. Smith & Diana T. Go

Stand Together

Robin and Sandy Stuart Foundation

The Stuart Family Foundation

Tammy and Guillermo Treviño

Valhalla Charitable Foundation

White Star Education Foundation

Schmidt Futures

William Marsh Rice University

http://openstax.org/foundation

CONTENTS

Preface 1

Statements 71

Introduction 7
1.1 Background 8
1.2 Input/output 10
1.3 Variables 14
1.4 String basics 16
1.5 Number basics 20
1.6 Error messages 24
1.7 Comments 27
1.8 Why Python? 31
1.9 Chapter summary 34

Expressions 392

Introduction 39
2.1 The Python shell 40
2.2 Type conversion 42
2.3 Mixed data types 45
2.4 Floating-point errors 48
2.5 Dividing integers 51
2.6 The math module 54
2.7 Formatting code 60
2.8 Python careers 65
2.9 Chapter summary 67

Objects 713

Introduction 71
3.1 Strings revisited 71
3.2 Formatted strings 76
3.3 Variables revisited 79
3.4 List basics 83
3.5 Tuple basics 85
3.6 Chapter summary 88

Decisions 914

Introduction 91
4.1 Boolean values 91
4.2 If-else statements 96

4.3 Boolean operations 100
4.4 Operator precedence 104
4.5 Chained decisions 107
4.6 Nested decisions 113
4.7 Conditional expressions 116
4.8 Chapter summary 118

Loops 1215

Introduction 121
5.1 While loop 121
5.2 For loop 125
5.3 Nested loops 129
5.4 Break and continue 133
5.5 Loop else 137
5.6 Chapter summary 140

Functions 1456

Introduction 145
6.1 Defining functions 145
6.2 Control flow 149
6.3 Variable scope 153
6.4 Parameters 158
6.5 Return values 163
6.6 Keyword arguments 168
6.7 Chapter summary 170

Modules 1737

Introduction 173
7.1 Module basics 174
7.2 Importing names 177
7.3 Top-level code 180
7.4 The help function 184
7.5 Finding modules 189
7.6 Chapter summary 194

Strings 1978

Introduction 197
8.1 String operations 197
8.2 String slicing 200
8.3 Searching/testing strings 204
8.4 String formatting 209

Access for free at openstax.org

8.5 Splitting/joining strings 217
8.6 Chapter summary 220

Lists 2239

Introduction 223
9.1 Modifying and iterating lists 223
9.2 Sorting and reversing lists 226
9.3 Common list operations 229
9.4 Nested lists 231
9.5 List comprehensions 234
9.6 Chapter summary 238

Dictionaries 24110

Introduction 241
10.1 Dictionary basics 241
10.2 Dictionary creation 243
10.3 Dictionary operations 245
10.4 Conditionals and looping in dictionaries 250
10.5 Nested dictionaries and dictionary comprehension 256
10.6 Chapter summary 260

Classes 26511

Introduction 265
11.1 Object-oriented programming basics 265
11.2 Classes and instances 267
11.3 Instance methods 272
11.4 Overloading operators 276
11.5 Using modules with classes 281
11.6 Chapter summary 283

Recursion 28712

Introduction 287
12.1 Recursion basics 287
12.2 Simple math recursion 289
12.3 Recursion with strings and lists 292
12.4 More math recursion 294
12.5 Using recursion to solve problems 297
12.6 Chapter summary 301

Inheritance 30313

Introduction 303
13.1 Inheritance basics 303
13.2 Attribute access 306
13.3 Methods 310
13.4 Hierarchical inheritance 316
13.5 Multiple inheritance and mixin classes 320
13.6 Chapter summary 323

Files 32714

Introduction 327
14.1 Reading from files 327
14.2 Writing to files 331
14.3 Files in different locations and working with CSV files 335
14.4 Handling exceptions 339
14.5 Raising exceptions 344
14.6 Chapter summary 347

Data Science 34915

Introduction 349
15.1 Introduction to data science 349
15.2 NumPy 352
15.3 Pandas 354
15.4 Exploratory data analysis 362
15.5 Data visualization 368
15.6 Summary 375

Answer Key 379

Index 403

Access for free at openstax.org

Preface
About OpenStax
OpenStax is part of Rice University, which is a 501(c)(3) nonprofit charitable corporation. As an educational
initiative, it's our mission to improve educational access and learning for everyone. Through our partnerships
with philanthropic organizations and our alliance with other educational resource companies, we're breaking
down the most common barriers to learning. Because we believe that everyone should and can have access to
knowledge.

About OpenStax Resources
Customization
Introduction to Python Programming is licensed under a Creative Commons Attribution 4.0 International (CC
BY) license, which means that you can distribute, remix, and build upon the content, as long as you provide
attribution to OpenStax and its content contributors.

Because our books are openly licensed, you are free to use the entire book or select only the sections that are
most relevant to the needs of your course. Feel free to remix the content by assigning your students certain
chapters and sections in your syllabus, in the order that you prefer. You can even provide a direct link in your
syllabus to the sections in the web view of your book.

Instructors also have the option of creating a customized version of their OpenStax book. Visit the Instructor
Resources section of your book page on OpenStax.org for more information.

Art attribution
In Introduction to Python Programming, most photos and third-party illustrations contain attribution to their
creator, rights holder, host platform, and/or license within the caption. Because the art is openly licensed,
anyone may reuse the art as long as they provide the same attribution to its original source. To maximize
readability and content flow, some art does not include attribution in the text. This art is part of the public
domain or under a CC0 or similar license, and can be reused without attribution. For illustrations (e.g. graphs,
charts, etc.) that are not credited, use the following attribution: Copyright Rice University, OpenStax, under CC
BY 4.0 license.

Errata
All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook,
errors sometimes occur. Since our books are web-based, we can make updates periodically when deemed
pedagogically necessary. If you have a correction to suggest, submit it through the link on your book page on
OpenStax.org. Subject matter experts review all errata suggestions. OpenStax is committed to remaining
transparent about all updates, so you will also find a list of past and pending errata changes on your book
page on OpenStax.org.

Format
You can access this textbook for free in web view or PDF through OpenStax.org. The web view is the
recommended format because it is the most accessible—including being WCAG 2.1 AA compliant—and most
current.

About Introduction to Python Programming
Introduction to Python Programming provides a comprehensive foundation in programming concepts and
skills, and is aligned to the scope of most introductory courses. A wide array of scenarios, contexts, and
problems reflect programming applications in many disciplines and careers. The offering is suitable for a
diverse learner audience, including those pursuing computer science, business, science, social science,
statistics, data science, and related areas of study and employment.

Preface 1

Introduction to Python Programming is an interactive offering that teaches basic programming concepts,
problem-solving skills, and the Python language using hands-on activities. The resource includes a unique,
integrated code runner, through which students can immediately apply what they learn to check their
understanding. Embedded videos, critical thinking exercises, and explorations of external programming tools
and activities all contribute to a meaningful and supportive learning experience.

The content is organized in chapters, with each chapter containing 6-8 sections. Each section follows the
pattern:

• Learning objectives
• 1–3 subsections
• Programming practice

The learning objectives are designed to help readers identify the section's focus. Each objective completes the
sentence, "By the end of this section you should be able to". The programming practice aligns with the
learning objectives and gives readers an opportunity to apply concepts learned in the section.

Pedagogical Foundation
Concise text and video-based animations
Introduction to Python Programming is designed to foster active learning and student engagement. It focuses
on interactivity and practice through its integrated code runner, videos, and links to external environments and
activities. With that focus, the material is often more concise, with less text and more activity.

Each section's content is organized in subsections. The subsection begins with a concise introduction to the
concept, with key term definitions and brief context for its relevance and importance. The concept is then
explained in detail using video-based animations and interactive learning questions.

Animation videos use a step-by-step approach to show the execution of Python code. Explanations for each
step describe Python syntax, show how fundamental programming concepts are used, illustrate how variables
are assigned, emphasize how code executes line by line, apply problem solving to create programs, and more.

CHECKPOINT

Displaying output to the user

Access multimedia content (https://www.openstax.org/r/displaying-output)

Learning questions
After introducing a new concept and explaining the concept with a video-based animation, each subsection
includes engagement in the form of learning questions. These questions reinforce the concepts taught,
explain concepts in more depth, directly address misconceptions and errors commonly made by new
programmers, and teach related concepts.

Explanations are provided for the incorrect answers. Incorrect answers' explanations include why the answer is
incorrect and help guide the reader to the correct answer.

Incorrect answer choices typically represent a misconception or are the result of making a common mistake.
Even if the correct answer is achieved, readers are encouraged to explore the explanations to gain awareness
of these common misconceptions.

Programming practice exercises
Each section ends with 1 or 2 practice programs. This book includes an integrated programming environment,
known as the "OpenStax Python Code Runner," which allows readers to write programs directly in the browser.

2 Preface

Access for free at openstax.org

https://www.openstax.org/r/displaying-output

The code runner requires the reader to pre-enter any input before running a program.

A sample code runner

Conventions used in this book
The following typographical conventions are used throughout the book:

Bold
Indicates vocabulary words when first defined in the chapter.

Italic
Indicates emphasized text, filenames, and file extensions.

Constant width
Used for code listings and code elements within paragraphs. Code elements include variable names, Python
keywords, etc.

Constant width bold
Shows commands or keyboard input that should be typed literally by the user.

Ex:
Abbreviation for "Example:"

Preface 3

About the Authors
Senior Contributing Authors

Senior contributing authors, left to right: Udayan Das, Aubrey Lawson, Chris Mayfield, and Narges Norouzi.

Udayan Das, Saint Mary's College of California

Udayan Das, PhD, is an Associate Professor and Program Director of Computer Science at Saint Mary's College
of California. He received his PhD in Computer Science and a master's in Computer Engineering from the
Illinois Institute of Technology. His research interests include wireless networks, computer science education
and broadening participation in computing, and knowledge graph backed language models for technical
document processing. He is also strongly committed to incorporating ethics into computer science and
engineering education, and the Computer Science program that he has developed and launched at Saint
Mary's College of California centers ethics and social justice while teaching students to be high-quality
computing professionals.

Aubrey Lawson, Wiley

Aubrey Lawson is a CS Content Developer at zyBooks. She received her bachelor's and master's degrees in
Computer Science from Clemson University, and her PhD research focuses on CS education.

Chris Mayfield, James Madison University

Chris Mayfield, PhD, is a Professor of Computer Science at James Madison University. His research focuses on
CS education and professional development at the undergraduate and high school levels. He received a PhD in
Computer Science from Purdue University and bachelor’s degrees in CS and German from the University of
Utah.

Narges Norouzi, UC Berkeley

Narges Norouzi received her MS and PhD from the University of Toronto, focusing on applied deep learning.
She has since been involved in working on applied machine learning projects with a focus on biology and
education. Her CS education research focuses on using artificial intelligence in the classroom to close the
equity gap and leading student-centered programs that promote equity and access.

Contributing Authors

Contributing authors, left to right: Yamuna Rajasekhar and Reed Kanemaru.

Yamuna Rajasekhar, Wiley

4 Preface

Access for free at openstax.org

Yamuna Rajasekhar, PhD, is Director of Content, Authoring, and Research at Wiley. She works across disciplines
on research strategy, authoring pedagogy and training, and content development for Computer Science and
IT. She received her MS and PhD from University of North Carolina at Charlotte, focusing on Computer
Engineering education. Prior to joining Wiley as a content author, Yamuna was an Assistant Professor of
Computer Engineering at Miami University, where her research was focused on assistive technology with
embedded systems and Computer Engineering education.

Reed Kanemaru, Wiley

Reed Kanemaru earned a BS in Computer Science from University of California, Riverside in 2020 and an MS in
Computer Science from University of California, Riverside in 2021. Since graduating, he has worked as a
Content/Software Developer at zyBooks.

Reviewers
Mel Akhimiemona, Community College of Baltimore County

Doina Bein, Cal State Fullerton

Phillip Bradford, University of Connecticut

James Braman, Community College of Baltimore County

Robert Burrows, College of DuPage

Deena Engel, New York University

Gabriel Ferrer, Hendrix College

Nazli Hardy, Millersville University

Matthew Hertz, University at Buffalo

Rania Hodhod, Columbus State University

Akira Kawaguchi, The City College of New York

Kevin Lin, University of Washington

Matin Pirouz, Fresno State

Muhammad Rahman, Clayton State University

Jerry Reed, Valencia College

Kathleen Tamerlano, Cuyahoga Community College

Linda Tansil

Academic Integrity
Academic integrity builds trust, understanding, equity, and genuine learning. While students may encounter
significant challenges in their courses and their lives, doing their own work and maintaining a high degree of
authenticity will result in meaningful outcomes that will extend far beyond their college career. Faculty,
administrators, resource providers, and students should work together to maintain a fair and positive
experience.

We realize that students benefit when academic integrity ground rules are established early in the course. To
that end, OpenStax has created an interactive to aid with academic integrity discussions in your course.

Preface 5

attribution: Copyright Rice University, OpenStax, under CC BY 4.0 license

Visit our academic integrity slider (https://www.openstax.org/r/academic-integrity-slider). Click and drag icons
along the continuum to align these practices with your institution and course policies. You may then include
the graphic on your syllabus, present it in your first course meeting, or create a handout for students.

At OpenStax we are also developing resources supporting authentic learning experiences and assessment.
Please visit this book's page for updates. For an in-depth review of academic integrity strategies, we highly
recommend visiting the International Center of Academic Integrity (ICAI) website at
https://academicintegrity.org/ (https://academicintegrity.org/).

Community Hubs
OpenStax partners with the Institute for the Study of Knowledge Management in Education (ISKME) to offer
Community Hubs on OER Commons—a platform for instructors to share community-created resources that
support OpenStax books, free of charge. Through our Community Hubs, instructors can upload their own
materials or download resources to use in their own courses, including additional ancillaries, teaching
material, multimedia, and relevant course content. We encourage instructors to join the hubs for the subjects
most relevant to your teaching and research as an opportunity both to enrich your courses and to engage with
other faculty. To reach the Community Hubs, visit www.oercommons.org/hubs/openstax
(https://oercommons.org/groups/openstax-introduction-to-python-programming/14678/?__hub_id=27).

Technology partners
As allies in making high-quality learning materials accessible, our technology partners offer optional low-cost
tools that are integrated with OpenStax books. To access the technology options for your text, visit your book
page on OpenStax.org.

6 Preface

Access for free at openstax.org

https://www.openstax.org/r/academic-integrity-slider
https://academicintegrity.org/
https://oercommons.org/groups/openstax-introduction-to-python-programming/14678/?__hub_id=27
https://oercommons.org/groups/openstax-introduction-to-python-programming/14678/?__hub_id=27

Figure 1.1 credit: Larissa Chu, CC BY 4.0

Chapter Outline
1.1 Background
1.2 Input/output
1.3 Variables
1.4 String basics
1.5 Number basics
1.6 Error messages
1.7 Comments
1.8 Why Python?
1.9 Chapter summary

Introduction
Computers and programs are everywhere in today's world. Programs affect many aspects of daily life and
society as a whole. People depend on programs for communication, shopping, entertainment, health care, and
countless other needs. Learning how to program computers opens the door to many careers and
opportunities for building a better world.

Programs consist of statements to be run one after the other. A statement describes some action to be
carried out.

The statement print("Good morning") instructs Python to output the message "Good morning" to the
user. The statement count = 0 instructs Python to assign the integer 0 to the variable count.

This chapter introduces statements for input and output, assigning variables, and basic arithmetic. Making
mistakes is a normal part of programming, and the chapter includes advice on understanding error messages.
The chapter ends with a short history of Python and discusses why Python has become so popular today.

Statements
1

1.1 Background

Learning Objectives
By the end of this section you should be able to

• Name two examples of computer programs in everyday life.
• Explain why Python is a good programming language to learn.

Computer programs
A computer is an electronic device that stores and processes information. Examples of computers include
smartphones, tablets, laptops, desktops, and servers. Technically, a program is a sequence of instructions that
a computer can run. Programs help people accomplish everyday tasks, create new technology, and have fun.

The goal of this book is to teach introductory programming and problem solving. Writing programs is a
creative activity, inherently useful, and rewarding! No prior background in computer science is necessary to
read this book. Many different types of programs exist, as shown in the illustration below. This book will focus
on general purpose programs that typically run "behind the scenes."

CHECKPOINT

Online music streaming

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-1-background)

CONCEPTS IN PRACTICE

Computers and programs

1. How many types of programs were described in the animation?
a. 3
b. 4
c. 5

2. What type of program will this book explain how to write?
a. a tool that summarizes an individual's music preferences
b. a mobile app for managing and sharing playlists of songs
c. a website that shows the top artists for the past five years

3. Which of the following devices is an example of a computer?
a. wired headphones that plug into a smartphone
b. remote control that pauses or skips the current song
c. wi-fi speaker that streams music from Amazon

4. Reading this book requires a strong background in mathematics.
a. true
b. false

8 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-1-background
https://openstax.org/books/introduction-python-programming/pages/1-1-background

EXPLORING FURTHER

Later chapters of this book show how to write analysis programs using real data. Example libraries that
provide access to online streaming services include Spotipy (https://openstax.org/r/100spotipy), Pytube
(https://openstax.org/r/100pytube), and Pydora (https://openstax.org/r/100pydora). Python-related tools
often have the letters "py" in their name.

The Python language
This book introduces Python (https://openstax.org/r/100python), one of the top programming languages
today. Leading tech giants like Google, Apple, NASA, Instagram, Pixar, and others use Python extensively.

One reason why Python is popular is because many libraries exist for doing real work. A library is a collection
of code that can be used in other programs. Python comes with an extensive Standard Library
(https://openstax.org/r/100pythlibrary) for solving everyday computing problems like extracting data from files
and creating summary reports. In addition, the community develops many other libraries for Python. Ex:
Pandas (https://openstax.org/r/100pandas) is a widely used library for data analysis.

Another reason why Python is popular is because the syntax is concise and straightforward. The syntax of a
language defines how code must be structured. Syntax rules define the keywords, symbols, and formatting
used in programs. Compared to other programming languages, Python is more concise and straightforward.

EXAMPLE 1.1

Hello world in Python and Java

By tradition, Hello World (https://openstax.org/r/100helloworld) is the first program to write when learning
a new language. This program simply displays the message "Hello, World!" to the user. The hello world
program is only one line in Python:

print("Hello, World!")

In contrast, the hello world program is five lines in Java (a different language).

public class Hello {
public static void main(String[] args) {
System.out.println("Hello, World!");

}
}

However, conciseness is not the only consideration for which language is used. In different situations
different languages may be more appropriate. Ex: Java is often used in Android development.

CHECKPOINT

Counting lines in a file

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-1-background)

1.1 • Background 9

https://openstax.org/r/100spotipy
https://openstax.org/r/100pytube
https://openstax.org/r/100pytube
https://openstax.org/r/100pydora
https://openstax.org/r/100python
https://openstax.org/r/100pythlibrary
https://openstax.org/r/100pythlibrary
https://openstax.org/r/100pandas
https://openstax.org/r/100helloworld
https://openstax.org/books/introduction-python-programming/pages/1-1-background
https://openstax.org/books/introduction-python-programming/pages/1-1-background

CONCEPTS IN PRACTICE

Python vs Java syntax

5. In general, Python programs are _____ than Java programs.
a. faster
b. longer
c. shorter

6. In the example programs above, what syntax required by Java is not required by Python?
a. semicolons
b. parentheses
c. quote marks

TRY IT

Favorite song

The program below asks for your name and displays a friendly greeting. Run the program and see what
happens. In the error message, EOF stands for End of File.

• Many of the programs in this chapter expect input from the user. Enter your name in the Input box
below the code. Run the program again, and see what changes.

• Copy the following lines to the end of the program: print("What is your favorite song?")
song = input() print("Cool! I like", song, "too.")

• The modified program reads two lines of input: name and song. Add your favorite song to the Input
box below your name, and run the program again.

The next section of the book will explain how print() and input() work. Feel free to experiment with this
code until you are ready to move on.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-1-background)

1.2 Input/output

Learning objectives
By the end of this section you should be able to

• Display output using the print() function.
• Obtain user input using the input() function.

Basic output
The print() function displays output to the user. Output is the information or result produced by a program.
The sep and end options can be used to customize the output. Table 1.1 shows examples of sep and end.

Multiple values, separated by commas, can be printed in the same statement. By default, each value is
separated by a space character in the output. The sep option can be used to change this behavior.

By default, the print() function adds a newline character at the end of the output. A newline character tells

10 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-1-background
https://openstax.org/books/introduction-python-programming/pages/1-1-background

the display to move to the next line. The end option can be used to continue printing on the same line.

Code Output

print("Today is Monday.")
print("I like string beans.")

Today is Monday.
I like string beans.

print("Today", "is", "Monday")
print("Today", "is", "Monday", sep="...")

Today is Monday
Today...is...Monday

print("Today is Monday, ", end="")
print("I like string beans.")

Today is Monday, I like string
beans.

print("Today", "is", "Monday", sep="? ",
end="!!")
print("I like string beans.")

Today? is? Monday!!I like string
beans.

Table 1.1 Example uses of print().

CHECKPOINT

Displaying output to the user

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-2-inputoutput)

CONCEPTS IN PRACTICE

The print() function

1. Which line of code prints Hello world! as one line of output?
a. print(Hello world!)
b. print("Hello", "world", "!")
c. print("Hello world!")

2. Which lines of code prints Hello world! as one line of output?
a. print("Hello")

print(" world!")
b. print("Hello")

print(" world!", end="")
c. print("Hello", end="")

print(" world!")

3. What output is produced by the following statement?

print("555", "0123", sep="-")

1.2 • Input/output 11

https://openstax.org/books/introduction-python-programming/pages/1-2-inputoutput
https://openstax.org/books/introduction-python-programming/pages/1-2-inputoutput

a. 555 0123
b. 5550123-
c. 555-0123

DO SPACES REALLY MATTER?

Spaces and newline characters are not inherently important. However, learning to be precise is an essential
skill for programming. Noticing little details, like how words are separated and how lines end, helps new
programmers become better.

Basic input
Computer programs often receive input from the user. Input is what a user enters into a program. An input
statement, variable = input("prompt"), has three parts:

1. A variable refers to a value stored in memory. In the statement above, variable can be replaced with any
name the programmer chooses.

2. The input() function reads one line of input from the user. A function is a named, reusable block of code
that performs a task when called. The input is stored in the computer's memory and can be accessed later
using the variable.

3. A prompt is a short message that indicates the program is waiting for input. In the statement above,
"prompt" can be omitted or replaced with any message.

CHECKPOINT

Obtaining input from the user

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-2-inputoutput)

CONCEPTS IN PRACTICE

The input() function

4. Which line of code correctly obtains and stores user input?
a. input()
b. today_is = input
c. today_is = input()

5. Someone named Sophia enters their name when prompted with

print("Please enter your name: ")
name = input()

What is displayed by print("You entered:", name)?
a. You entered: name
b. You entered: Sophia

12 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-2-inputoutput
https://openstax.org/books/introduction-python-programming/pages/1-2-inputoutput

c. You entered:, Sophia

6. What is the output if the user enters "six" as the input?

print("Please enter a number: ")
number = input()
print("Value =", number)

a. Value = six
b. Value = 6
c. Value = number

TRY IT

Frost poem

Write a program that uses multiple print() statements to output the following poem by Robert Frost
(https://openstax.org/r/100robertfrost). Each print() statement should correspond to one line of output.

Tip: You don't need to write the entire program all at once. Try writing the first print() statement, and
then click the Run button. Then write the next print() statement, and click the Run button again.
Continue writing and testing the code incrementally until you finish the program.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I--
I took the one less traveled by,
And that has made all the difference.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-2-inputoutput)

TRY IT

Name and likes

Write a program that asks the following two questions (example input in bold):

Shakira
What do you like? singing

What is your name? Shakira
What do you like? singing

Output a blank line after reading the input. Then output the following message based on the input:

1.2 • Input/output 13

https://openstax.org/r/100robertfrost
https://openstax.org/r/100robertfrost
https://openstax.org/books/introduction-python-programming/pages/1-2-inputoutput
https://openstax.org/books/introduction-python-programming/pages/1-2-inputoutput

Shakira likes singing

Shakira likes singing

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-2-inputoutput)

1.3 Variables

Learning objectives
By the end of this section you should be able to

• Assign variables and print variables.
• Explain rules for naming variables.

Assignment statement
Variables allow programs to refer to values using names rather than memory locations. Ex: age refers to a
person's age, and birth refers to a person's date of birth.

A statement can set a variable to a value using the assignment operator (=). Note that this is different from
the equal sign of mathematics. Ex: age = 6 or birth = "May 15". The left side of the assignment statement
is a variable, and the right side is the value the variable is assigned.

CHECKPOINT

Assigning and using variables

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-3-variables)

CONCEPTS IN PRACTICE

Assigning and using variables

1. Which line of code correctly retrieves the value of the variable, city, after the following assignment?

city = "Chicago"

a. print("In which city do you live?")
b. city = "London"
c. print("The city where you live is", city)

2. Which program stores and retrieves a variable correctly?
a. print("Total =", total)

total = 6
b. total = 6

print("Total =", total)
c. print("Total =", total)

14 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-2-inputoutput
https://openstax.org/books/introduction-python-programming/pages/1-2-inputoutput
https://openstax.org/books/introduction-python-programming/pages/1-3-variables
https://openstax.org/books/introduction-python-programming/pages/1-3-variables

total = input()

3. Which is the assignment operator?
a. :
b. ==
c. =

4. Which is a valid assignment?
a. temperature = 98.5
b. 98.5 = temperature
c. temperature - 23.2

Variable naming rules
A variable name can consist of letters, digits, and underscores and be of any length. The name cannot start
with a digit. Ex: 101class is invalid. Also, letter case matters. Ex: Total is different from total. Python's style
guide recommends writing variable names in snake case, which is all lowercase with underscores in between
each word, such as first_name or total_price.

A name should be short and descriptive, so words are preferred over single characters in programs for
readability. Ex: A variable named count indicates the variable's purpose better than a variable named c.

Python has reserved words, known as keywords, which have special functions and cannot be used as names
for variables (or other objects).

False await else import pass

None break except in raise

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

asynch elif if or yield

Table 1.2 Keywords

CONCEPTS IN PRACTICE

Valid variable names

5. Which can be used as a variable name?
a. median
b. class

1.3 • Variables 15

c. import

6. Why is the name, 2nd_input, not a valid variable name?
a. contains an underscore
b. starts with a digit
c. is a keyword

7. Which would be a good name for a variable storing a zip code?
a. z
b. var_2
c. zip_code

8. Given the variable name, DogBreed, which improvement conforms to Python's style guide?
a. dog_breed
b. dogBreed
c. dog-breed

TRY IT

Final score

Write a Python computer program that:

• Creates a variable, team1, assigned with the value "Liverpool".
• Creates a variable, team2, assigned with the value "Chelsea".
• Creates a variable score1, assigned with the value 4.
• Creates a variable, score2, assigned with the value 3.
• Prints team1, "versus", and team2 as a single line of output.
• Prints "Final score: ", score1, "to", score2 as a single line of output.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-3-variables)

1.4 String basics

Learning objectives
By the end of this section you should be able to

• Use the built-in len() function to get a string's length.
• Concatenate string literals and variables using the + operator.

Quote marks
A string is a sequence of characters enclosed by matching single (') or double (") quotes. Ex: "Happy
birthday!" and '21' are both strings.

To include a single quote (') in a string, enclose the string with matching double quotes ("). Ex: "Won't this
work?" To include a double quote ("), enclose the string with matching single quotes ('). Ex: 'They said "Try
it!", so I did'.

16 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-3-variables
https://openstax.org/books/introduction-python-programming/pages/1-3-variables

Valid string Invalid string

"17" or '17' 17

"seventeen" or 'seventeen' seventeen

"Where?" or 'Where?' "Where?'

"I hope you aren't sad." 'I hope you aren't sad.'

'The teacher said "Correct!" ' "The teacher said "Correct!" "

Table 1.3 Rules for strings.

CONCEPTS IN PRACTICE

Valid and invalid strings

1. Which of the following is a string?
a. Hello!
b. 29
c. "7 days"

2. Which line of code assigns a string to the variable email?
a. "fred78@gmail.com"
b. "email = fred78@gmail.com"
c. email = "fred78@gmail.com"

3. Which is a valid string?
a. I know you'll answer correctly!
b. 'I know you'll answer correctly!'
c. "I know you'll answer correctly!"

4. Which is a valid string?
a. You say "Please" to be polite
b. "You say "Please" to be polite"
c. 'You say "Please" to be polite'

len() function
A common operation on a string object is to get the string length, or the number of characters in the string.
The len() function, when called on a string value, returns the string length.

CHECKPOINT

Using len() to get the length of a string

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/

1.4 • String basics 17

https://openstax.org/books/introduction-python-programming/pages/1-4-string-basics

1-4-string-basics)

CONCEPTS IN PRACTICE

Applying len() function to string values

5. What is the return value for len("Hi Ali")?
a. 2
b. 5
c. 6

6. What is the length of an empty string variable ("")?
a. undefined
b. 0
c. 2

7. What is the output of the following code?

number = "12"
number_of_digits = len(number)
print("Number", number, "has", number_of_digits, "digits.")

a. Number 12 has 12 digits.
b. Number 12 has 2 digits.
c. Number 12 has number_of_digits digits.

Concatenation
Concatenation is an operation that combines two or more strings sequentially with the concatenation operator
(+). Ex: "A" + "part" produces the string "Apart".

CHECKPOINT

Concatenating multiple strings

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-4-string-basics)

CONCEPTS IN PRACTICE

String concatenation

8. Which produces the string "10"?
a. 1 + 0
b. "1 + 0"
c. "1" + "0"

9. Which produces the string "Awake"?

18 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-4-string-basics
https://openstax.org/books/introduction-python-programming/pages/1-4-string-basics
https://openstax.org/books/introduction-python-programming/pages/1-4-string-basics

a. "wake" + "A"
b. "A + wake"
c. "A" + "wake"

10. A user enters "red" after the following line of code.

color = input("What is your favorite color?")

Which produces the output "Your favorite color is red!"?
a. print("Your favorite color is " + color + !)
b. print("Your favorite color is " + "color" + "!")
c. print("Your favorite color is " + color + "!")

11. Which of the following assigns "one-sided" to the variable holiday?
a. holiday = "one" + "sided"
b. holiday = one-sided
c. holiday = "one-" + "sided"

TRY IT

Name length

Write a program that asks the user to input their first and last name separately. Use the following prompts
(example input in bold):

What is your first name? Alan
What is your last name? Turing

The program should then output the length of each name. Based on the example input above, the output
would be:

Your first name is 4 letters long
Your last name is 6 letters long

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-4-string-basics)

TRY IT

Punctuation

Write a Python computer program that:

• Assigns the string "Freda" to a variable, name.

1.4 • String basics 19

https://openstax.org/books/introduction-python-programming/pages/1-4-string-basics
https://openstax.org/books/introduction-python-programming/pages/1-4-string-basics

• Assigns the string "happy" to a variable, feel.
• Prints the string "Hi Freda!" with a single print() function using the variable name.
• Prints the string "I'm glad you feel happy." with a single print() function using the variable

feel.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-4-string-basics)

1.5 Number basics

Learning objectives
By the end of this section you should be able to

• Use arithmetic operators to perform calculations.
• Explain the precedence of arithmetic operators.

Numeric data types
Python supports two basic number formats, integer and floating-point. An integer represents a whole number,
and a floating-point format represents a decimal number. The format a language uses to represent data is
called a data type. In addition to integer and floating-point types, programming languages typically have a
string type for representing text.

CHECKPOINT

Integer and floating-point

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-5-number-basics)

CONCEPTS IN PRACTICE

Integers, floats, and strings

Assume that x = 1, y = 2.0, and s = "32".

1. What is the output of the following code?

print(x, type(x))

a. 1 'int'.
b. 1.0 <class 'float'>.
c. 1 <class 'int'>.

2. What is the output of the following code?

print(y, type(y))

a. 2.0 <class 'int'>
b. 2.0 <class 'float'>
c. 2 <class 'int'>

20 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-4-string-basics
https://openstax.org/books/introduction-python-programming/pages/1-4-string-basics
https://openstax.org/books/introduction-python-programming/pages/1-5-number-basics
https://openstax.org/books/introduction-python-programming/pages/1-5-number-basics

3. What is the type of the following value?

"12.0"

a. string
b. int
c. float

Basic arithmetic
Arithmetic operators are used to perform mathematical operations like addition, subtraction, multiplication,
and division.

Four basic arithmetic operators exist in Python:

1. Addition (+)
2. Subtraction (-)
3. Multiplication (*)
4. Division (/)

CHECKPOINT

Examples of arithmetic operators

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-5-number-basics)

CONCEPTS IN PRACTICE

Applying arithmetic operators

Assume that x = 7, y = 20, and z = 2.

4. Given the following lines of code, what is the output of the code?

c = 0
c = x - z
c = c + 1
print(c)

a. 1
b. 5
c. 6

5. What is the value of a?

a = 3.5 - 1.5

a. 2
b. 2.0

1.5 • Number basics 21

https://openstax.org/books/introduction-python-programming/pages/1-5-number-basics
https://openstax.org/books/introduction-python-programming/pages/1-5-number-basics

c. 2.5

6. What is the output of print(x / z)?
a. 3
b. 3.0
c. 3.5

7. What is the output of print(y / z)?
a. 0
b. 10
c. 10.0

8. What is the output of print(z * 1.5)?
a. 2
b. 3
c. 3.0

Operator precedence
When a calculation has multiple operators, each operator is evaluated in order of precedence. Ex: 1 + 2 * 3
is 7 because multiplication takes precedence over addition. However, (1 + 2) * 3 is 9 because parentheses
take precedence over multiplication.

Operator Description Example Result

() Parentheses (1 + 2) * 3 9

** Exponentiation 2 ** 4 16

+, - Positive, negative -math.pi -3.14159

*, / Multiplication, division 2 * 3 6

+, - Addition, subtraction 1 + 2 3

Table 1.4 Operator precedence from highest to lowest.

CHECKPOINT

Order of operations in an arithmetic expression

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-5-number-basics)

22 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-5-number-basics
https://openstax.org/books/introduction-python-programming/pages/1-5-number-basics

CONCEPTS IN PRACTICE

Multiple arithmetic operators

9. What is the value of 4 * 3 ** 2 + 1?
a. 37
b. 40
c. 145

10. Which part of (1 + 3) ** 2 / 4 evaluates first?
a. 4 ** 2
b. 1 + 3
c. 2 / 4

11. What is the value of -4 ** 2?
a. -16
b. 16

12. How many operators are in the following statement?

result = -2 ** 3

a. 1
b. 2
c. 3

TRY IT

Values and types

Write a Python computer program that:

1. Defines an integer variable named 'int_a' and assigns 'int_a' with the value 10.
2. Defines a floating-point variable named 'float_a' and assigns 'float_a' with the value 10.0.
3. Defines a string variable named 'string_a' and assigns 'string_a' with the string value "10".
4. Prints the value of each of the three variables along with their type.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-5-number-basics)

TRY IT

Meters to feet

Write a Python computer program that:

1. Assigns the integer value 10 to a variable, meters.
2. Assigns the floating-point value 3.28 to a variable, meter2feet.
3. Calculates 10 meters in feet by multiplying meter by meter2feet. Store the result in a variable, feet.

1.5 • Number basics 23

https://openstax.org/books/introduction-python-programming/pages/1-5-number-basics
https://openstax.org/books/introduction-python-programming/pages/1-5-number-basics

4. Prints the content of variable feet in the output.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-5-number-basics)

1.6 Error messages

Learning objectives
By the end of this section you should be able to

• Identify the error type and line number in error messages.
• Correct syntax errors, name errors, and indentation errors.

How to read errors
A natural part of programming is making mistakes. Even experienced programmers make mistakes when
writing code. Errors may result when mistakes are made when writing code. The computer requires very
specific instructions telling the computer what to do. If the instructions are not clear, then the computer does
not know what to do and gives back an error.

When an error occurs, Python displays a message with the following information:

1. The line number of the error.
2. The type of error (Ex: SyntaxError).
3. Additional details about the error.

Ex: Typing print "Hello!" without parentheses is a syntax error. In Python, parentheses are required to use
print. When attempting to run print "Hello!", Python displays the following error:

Traceback (most recent call last):
File "/home/student/Desktop/example.py", line 1

print "Hello"
^

SyntaxError: Missing parentheses in call to 'print'. Did you mean print("Hello")?

The caret character (^) shows where Python found the error. Sometimes the error may be located one or two
lines before where the caret symbol is shown because Python may not have discovered the error until then.
Traceback is a Python report of the location and type of error. The word traceback suggests a programmer
trace back in the code to find the error if the error is not seen right away.

Learning to read error messages carefully is an important skill. The amount of technical jargon can be
overwhelming at first. But this information can be very helpful.

CHECKPOINT

Incorrect variable name

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-6-error-messages)

24 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-5-number-basics
https://openstax.org/books/introduction-python-programming/pages/1-5-number-basics
https://openstax.org/books/introduction-python-programming/pages/1-6-error-messages
https://openstax.org/books/introduction-python-programming/pages/1-6-error-messages

CONCEPTS IN PRACTICE

Parts of an error

Given the following error message:

Traceback (most recent call last):
File "/home/student/Desktop/example.py", line 2

print "test"
^

SyntaxError: Missing parentheses in call to 'print'. Did you mean print("test")?

1. What is the filename of the program?
a. Desktop
b. example.py
c. test

2. On which line was the error found?
a. 1
b. 2
c. 3

3. What type of error was found?
a. missing parentheses
b. SyntaxError
c. traceback

Common types of errors
Different types of errors may occur when running Python programs. When an error occurs, knowing the type
of error gives insight about how to correct the error. The following table shows examples of mistakes that
anyone could make when programming.

Mistake Error message Explanation

print("Have a nice
day!"

SyntaxError:
unexpected EOF
while parsing

The closing parenthesis is missing. Python is
surprised to reach the end of file (EOF) before this
line is complete.

word = input("Type a
word:)

SyntaxError: EOL
while scanning
string literal

The closing quote marks are missing. As a result,
the string does not terminate before the end of
line (EOL).

print("You typed:",
wird)

NameError: name
'wird' is not
defined

The spelling of word is incorrect. The
programmer accidentally typed the wrong key.

Table 1.5 Simple mistakes.

1.6 • Error messages 25

Mistake Error message Explanation

prints("You typed:",
word)

NameError: name
'prints' is not
defined

The spelling of print is incorrect. The
programmer accidentally typed an extra letter.

print("Hello")
IndentationError:
unexpected indent

The programmer accidentally typed a space at
the start of the line.

print("Goodbye")
IndentationError:
unexpected indent

The programmer accidentally pressed the Tab key
at the start of the line.

Table 1.5 Simple mistakes.

CONCEPTS IN PRACTICE

Types of errors

For each program below, what type of error will occur?

4. print("Breakfast options:")
print("A. Cereal")
print("B. Eggs")
print("C. Yogurt")

choice = input("What would you like? ")

a. IndentationError
b. NameError
c. SyntaxError

5. birth = input("Enter your birth date:)
print("Happy birthday on ", birth)

a. IndentationError
b. NameError
c. SyntaxError

6. print("Breakfast options:")
print(" A. Cereal")
print(" B. Eggs")
print(" C. Yogurt")
choice = intput("What would you like? ")

a. IndentationError

26 1 • Statements

Access for free at openstax.org

b. NameError
c. SyntaxError

TRY IT

Three errors

The following program has three errors.

• Run the program to find the first error, and correct the corresponding line of code.
• Then run the program again to find and correct the second error.
• Keep running and correcting the program until no errors are found.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-6-error-messages)

TRY IT

Wrong symbols

This code is based on an earlier example, but the code contains several mistakes.

• One line is missing required punctuation, and another line uses incorrect symbols.
• Run the program to find the first error, and correct the corresponding line of code.
• Keep running and correcting the program until no errors are found.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-6-error-messages)

1.7 Comments

Learning objectives
By the end of this section you should be able to

• Write concise, meaningful comments that explain intended functionality of the code.
• Write a docstring (more verbose comment) that describes the program functionality.

The hash character
Comments are short phrases that explain what the code is doing. Ex: Lines 1, 8, and 10 in the following
program contain comments. Each comment begins with a hash character (#). All text from the hash character
to the end of the line is ignored when running the program. In contrast, hash characters inside of strings are
treated as regular text. Ex: The string "Item #1: " does not contain a comment.

When writing comments:

• The # character should be followed by a single space. Ex: # End of menu is easier to read than #End of
menu.

• Comments should explain the purpose of the code, not just repeat the code itself. Ex: # Get the user's
preferences is more descriptive than # Input item1 and item2.

1.7 • Comments 27

https://openstax.org/books/introduction-python-programming/pages/1-6-error-messages
https://openstax.org/books/introduction-python-programming/pages/1-6-error-messages
https://openstax.org/books/introduction-python-programming/pages/1-6-error-messages
https://openstax.org/books/introduction-python-programming/pages/1-6-error-messages

EXAMPLE 1.2

Program with three comments

1 # Display the menu options
2 print("Lunch Menu")
3 print("----------")
4 print("Burrito")
5 print("Enchilada")
6 print("Taco")
7 print("Salad")
8 print() # End of menu
9

10 # Get the user's preferences
11 item1 = input("Item #1: ")
12 item2 = input("Item #2: ")

CONCEPTS IN PRACTICE

Simple comments

1. The main purpose of writing comments is to _____.
a. avoid writing syntax errors
b. explain what the code does
c. make the code run faster

2. Which symbol is used for comments in Python?
a. #
b. /*
c. //

3. Which comment is formatted correctly?
a. 0 spaces:

#Get the user input
b. 1 space:

Get the user input
c. 2 spaces:

Get the user input

Code quality
The example program above had two parts: (1) display the menu options, and (2) get the user's preferences.
Together, the blank lines and comments show the overall structure of the program.

Programmers spend more time reading code than writing code. Therefore, making code easier for others to
read and understand is important. Two ways to improve code quality include:

• Separate each part (lines that have a similar purpose) with a blank line.

28 1 • Statements

Access for free at openstax.org

• Write a comment before each part. Not every line needs a comment.

CHECKPOINT

Comments in a program

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-7-comments)

CONCEPTS IN PRACTICE

Code quality

4. Which comment is most useful for the following code?

print("You said:", adj1 + " " + noun1)

a. # Append adj1 and noun1
b. # Print out a bunch of stuff
c. # Show the resulting phrase

5. Where should a blank line be inserted?

1 name = input("Whose birthday is today? ")
2 print("Happy birthday to", name)
3 print("Everyone cheer for", name)

a. After line 1
b. After line 2
c. After line 3

6. To temporarily prevent a line from being run, one might . . .
a. introduce a syntax error in the line.
b. remove the line from the program.
c. insert a # at the beginning of the line.

Documentation
Python programs may optionally begin with a string known as a docstring. A docstring is documentation
written for others who will use the program but not necessarily read the source code. Most of the official
documentation at docs.python.org (https://openstax.org/r/100docstrings) is generated from docstrings.

Documentation can be long, so docstrings are generally written as multi-line strings ("""). Common
elements of a docstring include a one-line summary, a blank line, and a longer description.

CHECKPOINT

Vacations docstring

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-7-comments)

1.7 • Comments 29

https://openstax.org/books/introduction-python-programming/pages/1-7-comments
https://openstax.org/books/introduction-python-programming/pages/1-7-comments
https://openstax.org/r/100docstrings
https://openstax.org/books/introduction-python-programming/pages/1-7-comments
https://openstax.org/books/introduction-python-programming/pages/1-7-comments

CONCEPTS IN PRACTICE

Documentation

7. The main purpose of writing docstrings is to . . .
a. summarize the program's purpose or usage.
b. explain how each part of the code works.
c. maintain a list of ideas for new features.

8. Which of the following is NOT a docstring?
a. """Vacations Madlib."""
b. """Vacations Madlib. This program asks the user for two adjectives and two

nouns, which are then used to print a funny story about a vacation. """
c. # Vacations Madlib.

#
This program asks the user for two adjectives
and two nouns, which are then used to print
a funny story about a vacation.

9. Which docstring is most useful for this program?
a. """Vacations Madlib."""
b. """Vacations Madlib. This program asks the user for two adjectives and two

nouns, which are then used to print a funny story about a vacation. """
c. """Vacations Madlib. This program asks the user for two adjectives and two

nouns, which are then used to print a funny story about a vacation. The code
uses four variables to store the user input: two for the adjectives, and two
for the nouns. The output is displayed on seven lines, beginning with a blank
line after the input. """

TRY IT

Whose birthday

Add two comments to the following program: one for the input, and one for the output. Separate the input
and output with a blank line. Then, compare your comments with the sample solution, and ask yourself the
following questions:

• Are your comments longer or shorter? Why?
• Is the formatting of your comments correct?

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-7-comments)

TRY IT

Gravity calculation

Write a docstring for the following program. The first line of the docstring should explain, in one short

30 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-7-comments
https://openstax.org/books/introduction-python-programming/pages/1-7-comments

sentence, what the program is. The second line of the docstring should be blank. The third and subsequent
lines should include a longer explanation of what the program does. At the end of the docstring, add a line
that says "Author: " followed by your name.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-7-comments)

1.8 Why Python?

Learning objectives
By the end of this section you should be able to

• Name two historical facts about how Python was first created.
• Describe two ways Python is considered a popular language.

Historical background
Python has an interesting history. In 1982, Guido van Rossum (https://openstax.org/r/100vanRossum), the
creator of Python, started working at CWI (https://openstax.org/r/100CWI), a Dutch national research institute.
He joined a team that was designing a new programming language, named ABC, for teaching and prototyping.
ABC's simplicity was ideal for beginners, but the language lacked features required to write advanced
programs.

Several years later, van Rossum joined a different team at CWI working on an operating system. The team
needed an easier way to write programs for monitoring computers and analyzing data. Languages common in
the 1980's were (and still are) difficult to use for these kinds of programs. van Rossum envisioned a new
language that would have a simple syntax, like ABC, but also provide advanced features that professionals
would need.

At first, van Rossum started working on this new language as a hobby during his free time. He named the
language Python because he was a fan of the British comedy group Monty Python (https://openstax.org/r/
100MontyPython). Over the next year, he and his colleagues successfully used Python many times for real
work. van Rossum eventually decided to share Python with the broader programming community online. He
freely shared Python's entire source code so that anyone could write and run Python programs.

Python's first release, known as Version 0.9.0, appeared in 1991, about six years after C++ and four years
before Java. van Rossum's decisions to make the language simple yet advanced, suitable for everyday tasks,
and freely available online contributed to Python's long-term success.

CHECKPOINT

Key decisions

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/1-8-why-
python)

CONCEPTS IN PRACTICE

Python history

1. The Python programming language was named after a _____.

1.8 • Why Python? 31

https://openstax.org/books/introduction-python-programming/pages/1-7-comments
https://openstax.org/books/introduction-python-programming/pages/1-7-comments
https://openstax.org/r/100vanRossum
https://openstax.org/r/100CWI
https://openstax.org/r/100MontyPython
https://openstax.org/r/100MontyPython
https://openstax.org/books/introduction-python-programming/pages/1-8-why-python
https://openstax.org/books/introduction-python-programming/pages/1-8-why-python

a. British comedy group
b. Dutch programmer
c. non-venomous snake

2. Which programming language came first?
a. Java
b. Python

3. Which sentence best describes the beginning of Python?
a. CWI hired Guido van Rossum to design a new programming language to compete with C++.
b. Python started out as a hobby and became open source after several years of development.
c. van Rossum posted Python's source code online after working on the language for one year.

EXPLORING FURTHER

For more details about Python's history, see "A brief history of Python (https://openstax.org/r/100history)"
by Vasilisa Sheromova, and "History and Philosophy of Python (https://openstax.org/r/100sheromova)" by
Bernd Klein.

Popularity of Python
Over the years, Python has become a nonprofit organization with a thriving community. Millions of
programmers around the world use Python for all kinds of interesting projects. Hundreds of thousands of
Python libraries have been released as open source software. The Python community is very active and
supportive online, answering questions and sharing code.

One way to see Python's popularity is the TIOBE index (https://openstax.org/r/100TIOBE). TIOBE is a Dutch
company that provides products and services for measuring software code quality. Since 2001, TIOBE has
tracked the popularity of programming languages and posted the results online. Figure 1.2 shows the TIOBE
index over time for five of the most popular languages.

The TIOBE index is based on the number of search engine results for each language. The percentage refers to
how many results belong to that language. Python has been among the top 10 languages every year since
2004. In October 2021, Python became the #1 language on the TIOBE index. No other language but C and Java
had been #1 for the previous 20 years.

Another way to see Python's popularity is to analyze how frequently Python is discussed online. Stack Overflow
(https://openstax.org/r/100overflow) is a question-and-answer website for programmers. Figure 1.3 shows the
number of questions asked each month that were tagged with Python, JavaScript, and so forth. In recent
years, Python has become the most asked about language in programming forums.

32 1 • Statements

Access for free at openstax.org

https://openstax.org/r/100history
https://openstax.org/r/100sheromova
https://openstax.org/r/100TIOBE
https://openstax.org/r/100overflow
https://openstax.org/r/100overflow

Figure 1.2 TIOBE programming community index. Source: www.tiobe.com (https://www.tiobe.com/tiobe-index/)

Figure 1.3 Stack Overflow questions per month. Source: data.stackexchange.com (https://data.stackexchange.com/)

CONCEPTS IN PRACTICE

Python popularity

4. According to the TIOBE Index, which two languages were most popular from 2001 to 2021?

1.8 • Why Python? 33

https://www.tiobe.com/tiobe-index/
https://data.stackexchange.com/

a. C and C++
b. Java and C
c. Python and JavaScript

5. In what year did Python become the most asked about language on Stack Overflow?
a. 2018
b. 2019
c. 2020

6. How long has TIOBE been tracking programming language popularity?
a. since 1991
b. since 2001
c. since 2015

1.9 Chapter summary

This chapter introduced the basics of programming in Python, including:

• print() and input().
• Variables and assignment.
• Strings, integers, and floats.
• Arithmetic, concatenation.
• Common error messages.
• Comments and docstrings.

At this point, you should be able to write programs that ask for input, perform simple calculations, and output
the results. The programming practice below ties together most topics presented in the chapter.

Function Description

print(values) Outputs one or more values, each separated by a space, to the user.

input(prompt)
If present, prompt is output to the user. The function then reads a line of input from the
user.

len(string) Returns the length (the number of characters) of a string.

type(value) Returns the type (or class) of a value. Ex: type(123) is <class 'int'>.

Operator Description

=
(Assignment)

Assigns (or updates) the value of a variable. In Python, variables begin to exist when
assigned for the first time.

Table 1.6 Chapter 1 reference.

34 1 • Statements

Access for free at openstax.org

Function Description

+
(Concatenation) Appends the contents of two strings, resulting in a new string.

+
(Addition) Adds the values of two numbers.

-
(Subtraction) Subtracts the value of one number from another.

*
(Multiplication) Multiplies the values of two numbers.

/
(Division) Divides the value of one number by another.

**
(Exponentiation)

Raises a number to a power. Ex: 3**2 is three squared.

Syntax Description

#
(Comment) All text is ignored from the # symbol to the end of the line.

' or "
(String)

Strings may be written using either kind of quote. Ex: 'A' and "A" represent the same
string. By convention, this book uses double quotes (") for most strings.

"""
(Docstring)

Used for documentation, often in multi-line strings, to summarize a program's purpose
or usage.

Table 1.6 Chapter 1 reference.

TRY IT

Fun facts

Write a program that assigns a variable named number to any integer of your choice. Ex: number = 74.
Then, use this variable to calculate and output the following results:

74 squared is 5476
74 cubed is 405224
One tenth of 74 is 7.4

1.9 • Chapter summary 35

74 plus 123 is 197
74 minus 456 is -382

Run the program multiple times, using a different integer each time. Your output should be mathematically
correct for any integer that you choose.

The point of this exercise is to perform basic arithmetic within a print statement. Do not use any other
variables besides number. Your program should have only one assignment statement (at the beginning).

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-9-chapter-summary)

TRY IT

Mad lib

A mad lib is a word game in which one person asks others for words to substitute into a pre-written story.
The story is then read aloud with the goal of making people laugh.

This exercise is based the Vacations Mad Lib (https://openstax.org/r/100madlibs) available on the Printables
(https://openstax.org/r/100printable) section of MadLibs.com. Write a program that asks the user to input
two adjectives and two nouns (user input in bold):

tranquil
Adjective: scandalous
Noun: pancake
Noun: field

Adjective: tranquil
Adjective: scandalous
Noun: pancake
Noun: field

Use input() to display each prompt exactly as shown. The user's input should be on the same line as the
prompt. Each colon must be followed by exactly one space. After reading the input, the program should
output the following three lines:

tranquil place with your scandalous family.
Usually you go to some place that is near a/an pancake or up on a/an field.

A vacation is when you take a trip to some tranquil place with your scandalous
family.

Usually you go to some place that is near a/an pancake or up on a/an field.

Notice that the first line should be completely blank. Replace the bold words (from the above example) with
the actual words input by the user.

Your final program should have four input statements, three print statements, and at least two comments.

36 1 • Statements

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/1-9-chapter-summary
https://openstax.org/books/introduction-python-programming/pages/1-9-chapter-summary
https://openstax.org/r/100madlibs
https://openstax.org/r/100printable
https://openstax.org/r/100printable

For completeness, write an appropriate docstring at the top of the program.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
1-9-chapter-summary)

1.9 • Chapter summary 37

https://openstax.org/books/introduction-python-programming/pages/1-9-chapter-summary
https://openstax.org/books/introduction-python-programming/pages/1-9-chapter-summary

38 1 • Statements

Access for free at openstax.org

Figure 2.1 credit: modification of work "Grace Hopper at Univac I console", courtesy of the Computer History Museum

Chapter Outline
2.1 The Python shell
2.2 Type conversion
2.3 Mixed data types
2.4 Floating-point errors
2.5 Dividing integers
2.6 The math module
2.7 Formatting code
2.8 Python careers
2.9 Chapter summary

Introduction
A computer program is a sequence of statements that run one after the other. In Python, many statements
consist of one or more expressions. An expression represents a single value to be computed. Ex: The
expression 3*x - 5 evaluates to 7 when x is 4. Learning to recognize expressions opens the door for
programming all kinds of interesting calculations.

Expressions are often a combination of literals, variables, and operators. In the previous example, 3 and 5 are
literals, x is a variable, and * and - are operators. Expressions can be arbitrarily long, consisting of many
calculations. Expressions can also be as short as one value. Ex: In the assignment statement x = 5, the literal
5 is an expression.

The Statements chapter introduced simple expressions like 1 * 2 and "Hi " + "there". This chapter
explores other kinds of expressions for working with numbers and strings. The first section shows a great way
to experiment with expressions using a Python shell. Later sections present more details about integers and
floating-point numbers, explain how to import and use the math module, and show how to make long lines of
code easier to read.

Expressions
2

2.1 The Python shell

Learning objectives
By the end of this section you should be able to

• Use a Python shell to run statements and expressions interactively.
• Explain the function of the up and down arrow keyboard shortcuts.

The interpreter
Python is a high-level language, meaning that the source code is intended for humans to understand.
Computers, on the other hand, understand only low-level machine code made up of 1's and 0's. Programs
written in high-level languages must be translated into machine code to run. This translation process can
happen all at once, or a little at a time, depending on the language.

Python is an interpreted language: the source code is translated one line at a time while the program is
running. The Python interpreter translates source code into machine code and runs the resulting program. If
and when an error occurs, the interpreter stops translating the source code and displays an error message.

Most development environments include a Python shell for experimenting with code interactively. A shell, also
called a console or terminal, is a program that allows direct interaction with an interpreter. The interpreter
usually runs an entire program all at once. But the interpreter can run one line of code at a time within a
Python shell.

CHECKPOINT

Running a Python shell

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-1-the-
python-shell)

CONCEPTS IN PRACTICE

Using a Python shell

1. Python is a _____ language.
a. high-level
b. low-level

2. Which of the following is the most basic line of code the interpreter can run?
a. print(1 + 1)
b. 1 + 1
c. 1

3. What result does the shell display after running the line name = input()?
a. the name that was input
b. nothing (except for >>>)

The arrow keys
A Python shell is convenient for exploring and troubleshooting code. The user can try something, look at the

40 2 • Expressions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/2-1-the-python-shell
https://openstax.org/books/introduction-python-programming/pages/2-1-the-python-shell

results, and then try something else. When an error occurs, an error message is displayed, but the program
keeps running. That way, the user can edit the previous line and correct the error interactively.

The acronym REPL (pronounced "rep ul") is often used when referring to a shell. REPL stands for "read-eval-
print loop," which describes the repetitive nature of a shell:

1. Read/input some code
2. Evaluate/run the code
3. Print any results
4. Loop back to step 1

Most shells maintain a history of every line of code the user types. Pressing the up or down arrow key on the
keyboard displays the history. The up arrow displays the previous line; the down arrow displays the next line.
That way, the user can repeat a line without having to type the line again.

CHECKPOINT

Correcting a typo

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-1-the-
python-shell)

CONCEPTS IN PRACTICE

Using the arrow keys

4. Which arrow keys were needed to edit the typo?
a. only the up arrow key
b. the up and down arrows
c. the up and left arrows

5. What keys would the user press to go back two lines?
a. press the up arrow twice
b. press the down arrow twice
c. press the left arrow twice

TRY IT

Exploring the shell

Running code interactively is a great way to learn how Python works. Open a Python shell on your
computer, or use the one at python.org/shell (https://openstax.org/r/100pythonshell). Then enter any
Python code, one line at a time, to see the result. Here are a few expressions to try:

• x = 5
• 3*x - 5
• 3 * (x-5)
• x
• type(1)
• type('1')

2.1 • The Python shell 41

https://openstax.org/books/introduction-python-programming/pages/2-1-the-python-shell
https://openstax.org/books/introduction-python-programming/pages/2-1-the-python-shell
https://openstax.org/r/100pythonshell

• str(1)
• int('1')
• abs(-5)
• abs(5)
• len("Yo")
• len("HoHo")
• round(9.49)
• round(9.50)

Note: These functions (type, str, int, len, and round) will be explored in more detail later in the chapter.
You can read more about the built-in functions (https://openstax.org/r/100builtin) in the Python
documentation.

TRY IT

Correcting mistakes

Open a Python shell on your computer, or use the one at python.org/shell (https://openstax.org/r/
100pythonshell). Run the following two statements in the shell:

• x = 123
• y = 456

Making mistakes is common while typing in a shell. The following lines include typos and other errors. For
each line: (1) run the line in a shell to see the result, (2) press the up arrow to repeat the line, and (3) edit
the line to get the correct result.

• print("Easy as", X)
• print("y divided by 2 is", y / 0)
• name = intput("What is your name? ")
• print(name, "is", int(name), "letters long.")
• print("That's all folks!)

The expected output, after correcting typos, should look like:

• Easy as 123
• y divided by 2 is 228.0
• (no error/output)
• Stacie is 6 letters long.
• That's all folks!

2.2 Type conversion

Learning objectives
By the end of this section you should be able to

• Explain how the interpreter uses implicit type conversion.
• Use explicit type conversion with int(), float(), and str().

42 2 • Expressions

Access for free at openstax.org

https://openstax.org/r/100builtin
https://openstax.org/r/100pythonshell
https://openstax.org/r/100pythonshell

Implicit type conversion
Common operations update a variable such that the variable's data type needs to be changed. Ex: A GPS first
assigns distance with 250, an integer. After a wrong turn, the GPS assigns distance with 252.5, a float. The
Python interpreter uses implicit type conversion to automatically convert one data type to another. Once
distance is assigned with 252.5, the interpreter will convert distance from an integer to a float without the
programmer needing to specify the conversion.

CHECKPOINT

Example: Book ratings

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-2-type-
conversion)

CONCEPTS IN PRACTICE

Implicit type conversion in practice

Consider the example above.

1. What is book_rating's data type on line 7?
a. float
b. integer

2. What would book_rating's data type be if update = 1.0 instead of 0.5?
a. float
b. integer

3. What is the data type of x after the following code executes?

x = 42.0
x = x * 1

a. float
b. integer

Explicit type conversion
A programmer often needs to change data types to perform an operation. Ex: A program should read in two
values using input() and sum the values. Remember input() reads in values as strings. A programmer can
use explicit type conversion to convert one data type to another.

• int() converts a data type to an integer. Any fractional part is removed. Ex: int(5.9) produces 5.
• float() converts a data type to a float. Ex: float(2) produces 2.0.
• str() converts a data type to a string. Ex: str(3.14) produces "3.14".

2.2 • Type conversion 43

https://openstax.org/books/introduction-python-programming/pages/2-2-type-conversion
https://openstax.org/books/introduction-python-programming/pages/2-2-type-conversion

CHECKPOINT

Example: Ordering pizza

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-2-type-
conversion)

CONCEPTS IN PRACTICE

Example: Ordering pizza

Consider the example above.

4. Which function converts the input number of slices to a data type that can be used in the calculation?
a. float()
b. input()
c. int()

5. How could line 3 be changed to improve the program overall?
a. Use float() instead of int().
b. Add 1 to the result of int().
c. Add str() around int().

CONCEPTS IN PRACTICE

Using int(), float(), and str()

Given x = 4.5 and y = int(x), what is the value of each expression?

6. y
a. 4
b. 5

7. str(x)
a. 4.5
b. "4.5"

8. float(y)
a. 4.0
b. 4.5

TRY IT

Grade average

The following program computes the average of three predefined exam grades and prints the average
twice. Improve the program to read the three grades from input and print the average first as a float, and

44 2 • Expressions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/2-2-type-conversion
https://openstax.org/books/introduction-python-programming/pages/2-2-type-conversion

then as an integer, using explicit type conversion. Ignore any differences that occur due to rounding.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-2-type-conversion)

TRY IT

Cups of water

The following program should read in the ounces of water the user drank today and compute the number
of cups drank and the number of cups left to drink based on a daily goal. Assume a cup contains 8 ounces.
Fix the code to calculate cups_drank and cups_left and match the following:

• ounces is an integer representing the ounces the user drank.
• cups_drank is a float representing the number of cups of water drank.
• cups_left is an integer representing the number of cups of water left to drink (rounded down) out of

the daily goal of 8 cups.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-2-type-conversion)

TRY IT

Product as float

The following program reads two integers in as strings. Calculate the product of the two integers, and print
the result as a float.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-2-type-conversion)

2.3 Mixed data types

Learning objectives
By the end of this section you should be able to

• Identify the data types produced by operations with integers, floats, and strings.
• Use operators and type conversions to combine integers, floats, and strings.

Combining integers and floats
Programmers often need to combine numbers of different data types. Ex: A program computes the total for an
online shopping order:

quantity = int(input())
price = float(input())
total = quantity * price
print(total)

quantity is an integer, and price is a float. So what is the data type of total? For input 3 and 5.0, total is

2.3 • Mixed data types 45

https://openstax.org/books/introduction-python-programming/pages/2-2-type-conversion
https://openstax.org/books/introduction-python-programming/pages/2-2-type-conversion
https://openstax.org/books/introduction-python-programming/pages/2-2-type-conversion
https://openstax.org/books/introduction-python-programming/pages/2-2-type-conversion
https://openstax.org/books/introduction-python-programming/pages/2-2-type-conversion
https://openstax.org/books/introduction-python-programming/pages/2-2-type-conversion

a float, and the program prints 15.0.

Combining an integer and a float produces a float. A float is by default printed with at least one figure after the
decimal point and has as many figures as needed to represent the value. Note: Division using the / operator
always produces a float.

CHECKPOINT

Operations combining integers and floats

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-3-mixed-data-types)

CONCEPTS IN PRACTICE

Operations combining integers and floats

1. 8 * 0.25
a. 2
b. 2.0

2. 2 * 9
a. 18
b. 18.0

3. 20 / 2
a. 10
b. 10.0

4. 7 / 2
a. 3.0
b. 3.5

5. 12.0 / 4
a. 3
b. 3.0

6. 8 - 1.0
a. 7.0
b. 7

7. 5 - 0.25
a. 4.5
b. 4.75

Combining numeric types and strings
Easy type conversion in Python can lead a programmer to assume that any data type can be combined with
another. Ex: Noor's program reads in a number from input and uses the number in a calculation. This results in

46 2 • Expressions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/2-3-mixed-data-types
https://openstax.org/books/introduction-python-programming/pages/2-3-mixed-data-types

an error in the program because the input() function by default stores the number as a string. Strings and
numeric data types are incompatible for addition, subtraction, and division. One of the operands needs to be
explicitly converted depending on the goal of arithmetic or string concatenation.

The * operator also serves as the repetition operator, which accepts a string operand and an integer operand
and repeats the string. Ex: "banjo" * 3 produces "banjobanjobanjo".

CHECKPOINT

Adding a string and an integer

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-3-mixed-data-types)

CONCEPTS IN PRACTICE

Operations combining numeric types and strings

8. int('34') + 56
a. '3456'
b. 90
c. '90'

9. str(12) + ' red roses'
a. '12 red roses'
b. '12'
c. Error

10. '50' * 3
a. '150'
b. 150
c. '505050'

11. str(5.2) + 7
a. 12.2
b. '12.2'
c. Error

12. 80.0 + int('100')
a. 180
b. 180.0
c. '180'

13. str(3.14) + '159'
a. 162.14
b. '3.14159'
c. Error

14. 2.0 * 'this'

2.3 • Mixed data types 47

https://openstax.org/books/introduction-python-programming/pages/2-3-mixed-data-types
https://openstax.org/books/introduction-python-programming/pages/2-3-mixed-data-types

a. 'this'
b. 'thisthis'
c. Error

TRY IT

After the point

Write a program that reads in a string of digits that represents the digits after the decimal point of a
number, num. Concatenate the input string together with '.' and num, and print the result. Ex: If input is
345, the program will print 2.345.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-3-mixed-data-types)

TRY IT

Print n times

Write a program that reads in two strings, str1 and str2, and an integer, count. Concatenate the two
strings with a space in between and a newline ("\n") at the end. Print the resulting string count times.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-3-mixed-data-types)

2.4 Floating-point errors

Learning objectives
By the end of this section you should be able to

• Explain numerical inaccuracies related to floating-point representation.
• Use the round() function to mitigate floating-point errors in output.

Floating-point errors
Computers store information using 0's and 1's. All information must be converted to a string of 0's and 1's. Ex:
5 is converted to 101. Since only two values, 0 or 1, are allowed the format is called binary.

Floating-point values are stored as binary by Python. The conversion of a floating point number to the
underlying binary results in specific types of floating-point errors.

A round-off error occurs when floating-point values are stored erroneously as an approximation. The
difference between an approximation of a value used in computation and the correct (true) value is called a
round-off error.

Ex: Storing the float (0.1)10 results in binary values that actually produce
(0.1000000000000000055511151231257827021181583404541015625)10 when converted back, which is not

48 2 • Expressions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/2-3-mixed-data-types
https://openstax.org/books/introduction-python-programming/pages/2-3-mixed-data-types
https://openstax.org/books/introduction-python-programming/pages/2-3-mixed-data-types
https://openstax.org/books/introduction-python-programming/pages/2-3-mixed-data-types

exactly equal to (0.1)10.

Print floats with 30 decimal places
print(f'{0.1:.30f}') # prints 0.1
print(f'{0.2:.30f}') # prints 0.2
print(f'{0.4:.30f}') # prints 0.4

0.100000000000000005551115123126
0.200000000000000011102230246252
0.400000000000000022204460492503

Table 2.1 Round-off error. (The example above shows a formatted string or f-string, which are introduced in the
Objects chapter.)

An overflow error occurs when a value is too large to be stored. The maximum and minimum floating-point
values that can be represented are and , respectively. Attempting to store a floating-
point value outside the range leads to an overflow error.

Below, and can be represented, but is too large and causes an overflow error.

print('3.0 to the power of 256 =',
3.0**256)
print('3.0 to the power of 512 = ',
3.0**512)
print('3.0 to the power of 1024 = ',
3.0**1024)

3.0 to the power of 256 =
1.3900845237714473e+122
3.0 to the power of 512 =
1.9323349832288915e+244
3.0 to the power of 1024 =
Traceback (most recent call last):

File "<stdin>", line 3, in <module>
print('3.0 to the power of 1024 = ',

3.0**1024)
OverflowError: (34, 'Numerical result out
of range')

Table 2.2 Overflow error.

CONCEPTS IN PRACTICE

Floating-point errors

For each situation, which error occurs?

1. The statement result = 2.0 * (10.0 ** 500) assigns the variable result with too large of a value.
a. round-off
b. overflow

2. 0.123456789012345678901234567890 * 0.1 produces 0.012345678901234568430878013601.
a. round-off
b. overflow

2.4 • Floating-point errors 49

Floating point round() function
Python's round() function is used to round a floating-point number to a given number of decimal places. The
function requires two arguments. The first argument is the number to be rounded. The second argument
decides the number of decimal places to which the number is rounded. If the second argument is not
provided, the number will be rounded to the closest integer. The round() function can be used to mitigate
floating-point errors.

Ex:

• round(2.451, 2) = 2.45
• round(2.451) = 2

CHECKPOINT

Examples of round() function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-4-floating-point-errors)

CONCEPTS IN PRACTICE

Examples of round() function

3. What is the output of round(6.6)?
a. 6
b. 6.6
c. 7

4. What is the output of round(3.5, 2)?
a. 3
b. 3.5
c. 3.50

5. What is the output of round(12)?
a. 12.0
b. 12
c. 12.00

6. What is the output of round(0.1, 1)?
a. 0.1
b. 0.10
c. 0.1000000000000000055511151231257827021181583404541015625

TRY IT

Inaccurate tips

The following code calculates the tip amount, given a bill amount and the tip ratio. Experiment with the

50 2 • Expressions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/2-4-floating-point-errors
https://openstax.org/books/introduction-python-programming/pages/2-4-floating-point-errors

following bill amounts and tip ratios and see if any inaccuracies may result in calculating the tip amount.

• bill amount: 22.70 and 33.33
• tip ratio: 0.15, 0.18, and 0.20

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-4-floating-point-errors)

TRY IT

Area of a triangle

Complete the following steps to calculate a triangle's area, and print the result of each step. The area of a
triangle is , where b is the base and h is the height.

1. Calculate the area of a triangle with base = 7 and height = 3.5.
2. Round the triangle's area to one decimal place.
3. Round the triangle's area to the nearest integer value.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-4-floating-point-errors)

2.5 Dividing integers

Learning objectives
By the end of this section you should be able to

• Evaluate expressions that involve floor division and modulo.
• Use the modulo operator to convert between units of measure.

Division and modulo
Python provides two ways to divide numbers:

• True division (/) converts numbers to floats before dividing. Ex: 7 / 4 becomes 7.0 / 4.0, resulting in
1.75.

• Floor division (//) computes the quotient, or the number of times divided. Ex: 7 // 4 is 1 because 4 goes
into 7 one time, remainder 3. The modulo operator (%) computes the remainder. Ex: 7 % 4 is 3.

Note: The % operator is traditionally pronounced "mod" (short for "modulo"). Ex: When reading 7 % 4 out loud,
a programmer would say "seven mod four."

CHECKPOINT

Quotient and remainder

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-5-dividing-integers)

2.5 • Dividing integers 51

https://openstax.org/books/introduction-python-programming/pages/2-4-floating-point-errors
https://openstax.org/books/introduction-python-programming/pages/2-4-floating-point-errors
https://openstax.org/books/introduction-python-programming/pages/2-4-floating-point-errors
https://openstax.org/books/introduction-python-programming/pages/2-4-floating-point-errors
https://openstax.org/books/introduction-python-programming/pages/2-5-dividing-integers
https://openstax.org/books/introduction-python-programming/pages/2-5-dividing-integers

CONCEPTS IN PRACTICE

Division and modulo

What is the value of each expression?

1. 13 / 5
a. 2
b. 2.6
c. 3

2. 13 % 5
a. 2
b. 2.6
c. 3

3. 1 // 4
a. 0
b. 0.25
c. 1

4. 2 % 0
a. 0
b. 2
c. Error

Unit conversions
Division is useful for converting one unit of measure to another. To convert centimeters to meters, a variable is
divided by 100. Ex: 300 centimeters divided by 100 is 3 meters.

Amounts often do not divide evenly as integers. 193 centimeters is 1.93 meters, or 1 meter and 93
centimeters. A program can use floor division and modulo to separate the units:

• The quotient, 1 meter, is 193 // 100.
• The remainder, 93 centimeters, is 193 % 100.

Programs often use floor division and modulo together. If one line of code floor divides by m, the next line will
likely modulo by m. The unit m by which an amount is divided is called the modulus. Ex: When converting
centimeters to meters, the modulus is 100.

CHECKPOINT

Money and time

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-5-dividing-integers)

52 2 • Expressions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/2-5-dividing-integers
https://openstax.org/books/introduction-python-programming/pages/2-5-dividing-integers

CONCEPTS IN PRACTICE

Unit conversions

5. What is the modulus for converting minutes to hours?
a. 40
b. 60
c. 280

6. A program has the line pounds = ounces // 16. What is likely the next line of code?
a. ounces = ounces % 16
b. pounds = ounces % 16
c. ounces = ounces - pounds * 16

TRY IT

Arrival time

Having a mobile device can be a lifesaver on long road trips. Programs like Google Maps find the shortest
route and estimate the time of arrival. The time of arrival is based on the current time plus how long the
trip will take.

Write a program that (1) inputs the current time and estimated length of a trip, (2) calculates the time of
arrival, and (3) outputs the results in hours and minutes. Your program should use the following prompts
(user input in bold):

13
Current minute (0-59)? 25
Trip time (in minutes)? 340

Current hour (0-23)? 13
Current minute (0-59)? 25
Trip time (in minutes)? 340

In this example, the current time is 13:25 (1:25pm). The trip time is 340 minutes (5 hours and 40 minutes).
340 minutes after 13:25 is 19:05 (7:05pm). Your program should output the result in this format:

Arrival hour is 19
Arrival minute is 5

The arrival hour must be between 0 and 23. Ex: Adding 120 minutes to 23:00 should be 1:00, not 25:00. The
arrival minute must be between 0 and 59. Ex: Adding 20 minutes to 8:55 should be 9:15, not 8:75.

Hint: Multiply the current hour by 60 to convert hours to minutes. Then, calculate the arrival time, in total
minutes, as an integer.

Your code must not use Python keywords from later chapters, such as if or while. The solution requires

2.5 • Dividing integers 53

only addition, multiplication, division, and modulo.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-5-dividing-integers)

TRY IT

Change machine

Self-checkout aisles are becoming increasingly popular at grocery stores. Customers scan their own items,
and a computer determines the total purchase amount. Customers who pay in cash insert dollar bills, and a
machine automatically dispenses change in coins.

That's where this program comes into the story. Your task is to calculate how many of each coin to
dispense. Your program should use the following prompts (user input in bold):

18.76
Cash payment? 20

Total amount? 18.76
Cash payment? 20

You may assume that the cash paid will always be a whole number (representing dollar bills) that is greater
than or equal to the total amount. The program should calculate and output the amount of change due
and how many dollars, quarters, dimes, nickels, and pennies should be dispensed:

Change Due $1.24

Dollars: 1
Quarters: 0

Dimes: 2
Nickels: 0
Pennies: 4

Hint: Calculate the total change, in cents, as an integer. Use the round() function to avoid floating-point
errors.

Your code must not use Python keywords from later chapters, such as if or while. The solution requires
only subtraction, multiplication, division, and modulo.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-5-dividing-integers)

2.6 The math module

Learning objectives
By the end of this section you should be able to

54 2 • Expressions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/2-5-dividing-integers
https://openstax.org/books/introduction-python-programming/pages/2-5-dividing-integers
https://openstax.org/books/introduction-python-programming/pages/2-5-dividing-integers
https://openstax.org/books/introduction-python-programming/pages/2-5-dividing-integers

• Distinguish between built-in functions and math functions.
• Use functions and constants defined in the math module.

Importing modules
Python comes with an extensive standard library (https://openstax.org/r/100pythlibrary) of modules. A
module is previously written code that can be imported in a program. The import statement defines a
variable for accessing code in a module. Import statements often appear at the beginning of a program.

The standard library also defines built-in functions such as print(), input(), and float(). A built-in
function is always available and does not need to be imported. The complete list of built-in functions
(https://openstax.org/r/100builtin) is available in Python's official documentation.

A commonly used module in the standard library is the math module (https://openstax.org/r/
100mathmodule). This module defines functions such as sqrt() (square root). To call sqrt(), a program
must import math and use the resulting math variable followed by a dot. Ex: math.sqrt(25) evaluates to
5.0.

The following program imports and uses the math module, and uses built-in functions for input and output.

EXAMPLE 2.1

Calculating the distance between two points

import math

x1 = float(input("Enter x1: "))
y1 = float(input("Enter y1: "))
x2 = float(input("Enter x2: "))
y2 = float(input("Enter y2: "))

distance = math.sqrt((x2-x1)**2 + (y2-y1)**2)
print("The distance is", distance)

CHECKPOINT

Importing math in a Python shell

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-6-the-
math-module)

CONCEPTS IN PRACTICE

Built-in functions and math module

1. In the above example, when evaluating math, why did the interpreter raise a NameError?
a. The math module was not available.

2.6 • The math module 55

https://openstax.org/r/100pythlibrary
https://openstax.org/r/100builtin
https://openstax.org/r/100builtin
https://openstax.org/r/100mathmodule
https://openstax.org/r/100mathmodule
https://openstax.org/books/introduction-python-programming/pages/2-6-the-math-module
https://openstax.org/books/introduction-python-programming/pages/2-6-the-math-module

b. The variable pie was spelled incorrectly.
c. The math module was not imported.

2. Which of these functions is builtin and does not need to be imported?
a. log()
b. round()
c. sqrt()

3. Which expression results in an error?
a. math.abs(1)
b. math.log(1)
c. math.sqrt(1)

Mathematical functions
Commonly used math functions and constants are shown below. The complete math module listing
(https://openstax.org/r/100mathmodule) is available in Python's official documentation.

Constant Value Description

math.e Euler's number: the base of the natural logarithm.

math.pi The ratio of the circumference to the diameter of a circle.

math.tau The ratio of the circumference to the radius of a circle. Tau is equal to 2π.

Table 2.3 Example constants in the math module.

Function Description Examples

Number-theoretic

math.ceil(x)
The ceiling of x: the smallest integer greater than or
equal to x.

math.ceil(7.4) 8
math.ceil(-7.4) -7

math.floor(x)
The floor of x: the largest integer less than or equal
to x.

math.floor(7.4) 7
math.floor(-7.4) -8

Power and logarithmic

math.log(x) The natural logarithm of x (to base e).
math.log(math.e) 1.0
math.log(0) ValueError:
math domain error

Table 2.4 Example functions in the math module.

56 2 • Expressions

Access for free at openstax.org

https://openstax.org/r/100mathmodule
https://openstax.org/r/100mathmodule

Function Description Examples

math.log(x,
base)

The logarithm of x to the given base.
math.log(8, 2) 3.0
math.log(10000, 10) 4.0

math.pow(x,
y)

x raised to the power y. Unlike the ** operator,
math.pow() converts x and y to type float.

math.pow(3, 0) 1.0
math.pow(3, 3) 27.0

math.sqrt(x) The square root of x.

math.sqrt(9) 3.0
math.sqrt(-9)
ValueError: math domain
error

Trigonometric

math.cos(x) The cosine of x radians.
math.cos(0) 1.0
math.cos(math.pi) -1.0

math.sin(x) The sine of x radians.
math.sin(0) 0.0
math.sin(math.pi/2) 1.0

math.tan(x) The tangent of x radians.

math.tan(0) 0.0
math.tan(math.pi/4)
0.999
(Round-off error; the result
should be 1.0.)

Table 2.4 Example functions in the math module.

CONCEPTS IN PRACTICE

Using math functions and constants

4. What is the value of math.tau/2?
a. approximately 2.718
b. approximately 3.142
c. approximately 6.283

5. What is the value of math.sqrt(100)?
a. the float 10.0
b. the integer 10
c. ValueError: math domain error

6. What is πr2 in Python syntax?
a. pi * r**2

2.6 • The math module 57

b. math.pi * r**2
c. math.pi * r*2

7. Which expression returns the integer 27?
a. 3 ** 3
b. 3.0 ** 3
c. math.pow(3, 3)

TRY IT

Quadratic formula

In algebra, a quadratic equation is written as . The coefficients a, b, and c are known
values. The variable x represents an unknown value. Ex: has the coefficients , ,
and . The quadratic formula provides a quick and easy way to solve a quadratic equation for x:

The plus-minus symbol indicates the equation has two solutions. However, Python does not have a plus-
minus operator. To use this formula in Python, the formula must be separated:

Write the code for the quadratic formula in the program below. Test your program using the following
values for a, b, and c:

Provided input Expected output

a b c x1 x2

1 0 -4 2.0 -2.0

1 2 -3 1.0 -3.0

2 1 -1 0.5 -1.0

Table 2.5

58 2 • Expressions

Access for free at openstax.org

Provided input Expected output

0 1 1 division by zero

1 0 1 math domain error

Table 2.5

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-6-the-
math-module)

TRY IT

Cylinder formulas

In geometry, the surface area and volume of a right circular cylinder can be computed as follows:

Write the code for these two formulas in the program below. Hint: Your solution should use both math.pi
and math.tau. Test your program using the following values for r and h:

Provided input Expected output

r h area volume

0 0 0.0 0.0

1 1 12.57 3.14

1 2 18.85 6.28

2.5 4.8 114.67 94.25

3.1 7.0 196.73 211.33

Table 2.6

If you get an error, try to look up what that error means.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/2-6-the-
math-module)

2.6 • The math module 59

https://openstax.org/books/introduction-python-programming/pages/2-6-the-math-module
https://openstax.org/books/introduction-python-programming/pages/2-6-the-math-module
https://openstax.org/books/introduction-python-programming/pages/2-6-the-math-module
https://openstax.org/books/introduction-python-programming/pages/2-6-the-math-module

2.7 Formatting code

Learning objectives
By the end of this section you should be able to

• Identify good spacing for expressions and statements.
• Write multi-line statements using implicit line joining.

Recommended spacing
Most spaces in Python code are ignored when running programs; however, spaces at the start of a line are very
important. The following two programs are equivalent:

• Good spacing:

name = input("Enter someone's name: ")
place = input("Enter a famous place: ")
print(name, "should visit", place + "!")

• Poor spacing:

name=input ("Enter someone's name: ")
place =input("Enter a famous place: ")
print(name,"should visit" , place+ "!")

One might argue that missing or extra spaces do not matter. After all, the two programs above run exactly the
same way. However, the "poor spacing" version is more difficult to read. Code like name=input and place+
might lead to confusion.

Good programmers write code that is as easy to read as possible. That way, other programmers are more
likely to understand the code. To encourage consistency, the Python community has a set of guidelines about
where to put spaces and blank lines, what to name variables, how to break up long lines, and other important
topics.

PYTHON STYLE GUIDE

PEP 8 (https://openstax.org/r/100PEP8) is the official style guide for Python. PEP stands for Python
Enhancement Proposal. Members of the Python community write PEPs to document best practices and
propose new features. The table below is based on guidelines from PEP 8 under the heading Whitespace in
Expressions and Statements (https://openstax.org/r/100whitespace).

60 2 • Expressions

Access for free at openstax.org

https://openstax.org/r/100PEP8
https://openstax.org/r/100whitespace
https://openstax.org/r/100whitespace

Guideline Example Common Mistakes

Parentheses: no space before or after. print("Go team!")
print ("Go team!")
print("Go team!")

Commas: no space before, one space
after.

print("Hello", name)
print("Hello" , name)
print("Hello",name)

Assignment: one space before and after
the =.

name = input("Your
name? ")

name=input("Your name?
")
name= input("Your
name? ")
name =input("Your
name? ")

Concatenation: one space before and
after the +.

print("Hi", name + "!")
print("Hi", name+"!")
print("Hi", name+ "!")
print("Hi", name +"!")

Arithmetic: use space to show lower
precedence.

x**2 + 5*x - 8
x ** 2 + 5 * x - 8
x ** 2+5 * x-8
x**2+5*x-8

Table 2.7 Guidelines for spaces.

CONCEPTS IN PRACTICE

Recommended spacing

1. Which statement is formatted properly?
a. name = input("What is your name? ")
b. name = input ("What is your name? ")
c. name = input("What is your name? ")

2. Which statement is formatted properly?
a. name=name+"!"
b. name = name+"!"
c. name = name + "!"

3. Which statement is formatted properly?
a. print("Hello",name)
b. print("Hello", name)
c. print("Hello " , name)

4. Which expression is formatted properly?

2.7 • Formatting code 61

a. b**2 - 4*a*c
b. b ** 2 - 4 * a * c
c. b**2 - 4*a * c

Automatic concatenation
Long strings make Python programs difficult to read. Ex: This program prints the first sentence of the US
Declaration of Independence (https://openstax.org/r/100declaration):

print("The unanimous Declaration of the thirteen united States of America, When in the Course of human
events, it becomes necessary for one people to dissolve the political bands which have connected them with
another, and to assume among the powers of the earth, the separate and equal station to which the Laws of
Nature and of Nature's God entitle them, a decent respect to the opinions of mankind requires that they
should declare the causes which impel them to the separation.")

PEP 8 recommends that each line of code be less than 80 characters long. That way, programmers won't need
to scroll horizontally to read the code. The above program can be rewritten by breaking up the original string:

print("The unanimous Declaration of the thirteen united States of "
"America, When in the Course of human events, it becomes "
"necessary for one people to dissolve the political bands "
"which have connected them with another, and to assume among "
"the powers of the earth, the separate and equal station to "
"which the Laws of Nature and of Nature's God entitle them, a "
"decent respect to the opinions of mankind requires that they "
"should declare the causes which impel them to the separation.")

For convenience, Python automatically concatenates multiple strings. The + operator is not required in this
situation.

CHECKPOINT

String concatenation

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-7-formatting-code)

CONCEPTS IN PRACTICE

String literal concatenation

5. Which line prints the word "grandmother"?
a. print(grandmother)
b. print("grand" "mother")
c. print("grand", "mother")

6. What string is equivalent to "Today is" "a holiday"?

62 2 • Expressions

Access for free at openstax.org

https://openstax.org/r/100declaration
https://openstax.org/r/100declaration
https://openstax.org/books/introduction-python-programming/pages/2-7-formatting-code
https://openstax.org/books/introduction-python-programming/pages/2-7-formatting-code

a. 'Today isa holiday'
b. 'Today is a holiday'
c. 'Today is" "a holiday'

7. If name is "Ada", what does print("Hello," name) output?
a. Hello,Ada
b. Hello, Ada
c. SyntaxError

Multi-line statements
Most statements in a Python program need only one line of code. But occasionally longer statements need to
span multiple lines. Python provides two ways to write multi-line statements:

• Explicit line joining, using \ characters:

decl = "The unanimous Declaration of the thirteen united States of " \
"America, When in the Course of human events, it becomes " \
"necessary for one people to dissolve the political bands..."

• Implicit line joining, using parentheses:

decl = ("The unanimous Declaration of the thirteen united States of "
"America, When in the Course of human events, it becomes "
"necessary for one people to dissolve the political bands...")

Implicit line joining is more common, since many statements and expressions use parentheses anyway. PEP 8
recommends avoiding the use of explicit line joining whenever possible.

CONCEPTS IN PRACTICE

Multi-line statements

8. Which character is used for explicit line joining?
a. /
b. \
c. |

9. What is the best way to print a very long string?
a. Break up the string into multiple smaller strings.

print("..." # first part of string
"..." # next part of string
"...")

b. Print the string using multiple print statements.
print("...") # first part of string
print("...") # next part of string
print("...")

2.7 • Formatting code 63

c. Assign the string to a variable and print the variable.
text = "..." # the entire string
print(text)

10. Which example consists of two statements?
a. print("Happy "

"New Year")
b. saying = ("Happy "

"New Year")
c. saying= "Happy "

"New Year"

TRY IT

Spaced out

The following code works correctly but is formatted poorly. In particular, the code does not include spaces
recommended by PEP 8. Furthermore, two of the lines are about 90 characters long. Reformat the code to
follow the guidelines in this section. Be careful not to change the behavior of the code itself.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-7-formatting-code)

TRY IT

Five quotes

Write a program that prints the following five quotes (source: BrainyQuote (https://openstax.org/r/
100brainyquote)) from Guido van Rossum, the creator of Python. Your program should have exactly five
print statements, one for each quote:

1. "If you're talking about Java in particular, Python is about the best fit
you can get amongst all the other languages. Yet the funny thing is, from a
language point of view, JavaScript has a lot in common with Python, but it is sort
of a restricted subset."

2. "The second stream of material that is going to come out of this project is
a programming environment and a set of programming tools where we really want to
focus again on the needs of the newbie. This environment is going to have to be
extremely user-friendly."

3. "I have this hope that there is a better way. Higher-level tools that
actually let you see the structure of the software more clearly will be of
tremendous value."

4. "Now, it's my belief that Python is a lot easier than to teach to students
programming and teach them C or C++ or Java at the same time because all the
details of the languages are so much harder. Other scripting languages really don't
work very well there either."

64 2 • Expressions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/2-7-formatting-code
https://openstax.org/books/introduction-python-programming/pages/2-7-formatting-code
https://openstax.org/r/100brainyquote
https://openstax.org/r/100brainyquote

5. "I would guess that the decision to create a small special purpose language
or use an existing general purpose language is one of the toughest decisions that
anyone facing the need for a new language must make."

Notice that all of these lines are longer than 80 characters, and some contain single quote marks. Format
the code using multi-line statements and escape sequences as necessary.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-7-formatting-code)

2.8 Python careers

Learning objectives
By the end of this section you should be able to

• Summarize how Python is used in fields other than CS and IT.
• Describe two different kinds of applications made with Python.

Fields and applications
Learning Python opens the door to many programming-related careers. Example job titles include software
engineer, data scientist, web developer, and systems analyst. These jobs often require a degree in computer
science (CS), information technology (IT), or a related field. However, programming is not limited to these fields
and careers.

Many professionals use Python to support the work they do. Python programs can automate tasks and solve
problems quickly. Table 2.8 shows a few examples of Python outside of computing fields. Knowing how to
program is a useful skill that can enhance any career.

Python is a versatile language that supports many kinds of applications. Table 2.9 shows a few examples of
programs that can be written in Python. Given Python's usefulness and popularity, Python is a great language
to learn. A supportive community of professionals and enthusiasts is ready to help.

Field Example use of Python

Business An accountant writes a Python program to generate custom sales reports.

Education A teacher writes a Python program to organize homework submissions.

Fine arts An artist writes a Python program to operate an interactive art display.

Humanities A linguist writes a Python program to analyze changes in slang word usage.

Science A biologist writes a Python program to analyze DNA sequences for cancer.

Table 2.8 Python outside of CS and IT.

2.8 • Python careers 65

https://openstax.org/books/introduction-python-programming/pages/2-7-formatting-code
https://openstax.org/books/introduction-python-programming/pages/2-7-formatting-code

Application Example use of Python

Artificial
intelligence

An engineer develops models to support image and voice recognition. Ex: TensorFlow
library (https://openstax.org/r/100tensorflow).

Data
visualization

A statistician creates charts to make sense of large amounts of data. Ex: Matplotlib library
(https://openstax.org/r/100matplotlib).

General
purpose

Most programs in this book are general. Ex: Read inputs, perform calculations, print
results.

Scientific
computing

Python is very useful for conducting experiments and analyzing data. Ex: The SciPy project
(https://openstax.org/r/100scipyproject).

Web
development

Python can run interactive websites. Ex: Instagram is built with Django
(https://openstax.org/r/100django), a Python framework.

Table 2.9 Applications built with Python.

CONCEPTS IN PRACTICE

Fields and applications

1. Which of the following fields use Python to support their work?
a. geography
b. health care
c. political science
d. all of the above

2. Which of the following Python libraries creates charts and plots?
a. Matplotlib
b. SciPy
c. TensorFlow

3. Which of the following applications were built with Python?
a. Facebook
b. Instagram
c. WhatsApp

EXPLORING FURTHER

For more examples of applications that can be built with Python, see "Top 12 Fascinating Python
Applications in Real-World" (https://openstax.org/r/100top12apps) by Rohit Sharma. For more information
about Python related careers, see "What Does a Python Developer Do?" (https://openstax.org/r/100careers)
in BrainStation's career guide.

66 2 • Expressions

Access for free at openstax.org

https://openstax.org/r/100tensorflow
https://openstax.org/r/100tensorflow
https://openstax.org/r/100matplotlib
https://openstax.org/r/100matplotlib
https://openstax.org/r/100scipyproject
https://openstax.org/r/100scipyproject
https://openstax.org/r/100django
https://openstax.org/r/100django
https://openstax.org/r/100top12apps
https://openstax.org/r/100top12apps
https://openstax.org/r/100careers

2.9 Chapter summary

Highlights from this chapter include:

• Expressions and statements can be run interactively using a shell.
• Input strings can be converted to other types. Ex: int(input()).
• Strings can be concatenated with other types. Ex: "$" + str(cost).
• Floats are subject to round-off and overflow errors.
• Integers can be divided exactly using // and %.
• Modules like math provide many useful functions.
• Formatting long lines helps improve readability.

At this point, you should be able to write programs that ask for input of mixed types, perform mathematical
calculations, and output results with better formatting. The programming practice below ties together most
topics presented in the chapter.

Function Description

abs(x) Returns the absolute value of x.

int(x) Converts x (a string or float) to an integer.

float(x) Converts x (a string or integer) to a float.

str(x) Converts x (a float or integer) to a string.

round(x,
ndigits)

Rounds x to ndigits places after the decimal point. If ndigits is omitted, returns the
nearest integer to x.

Operator Description

s * n
(Repetition)

Creates a string with n copies of s. Ex: "Ha" * 3 is "HaHaHa".

x / y
(Real division)

Divides x by y and returns the entire result as a float. Ex: 7 / 4 is 1.75.

x // y
(Floor division)

Divides x by y and returns the quotient as an integer. Ex: 7 // 4 is 1.

x % y
(Modulo)

Divides x by y and returns the remainder as an integer. Ex: 7 % 4 is 3.

Table 2.10 Chapter 2 reference.

2.9 • Chapter summary 67

TRY IT

Baking bread

The holidays are approaching, and you need to buy ingredients for baking many loaves of bread. According
to a recipe by King Arthur Flour (https://openstax.org/r/100kingarthurflr), you will need the following
ingredients for each loaf:

• 1 1/2 teaspoons instant yeast
• 1 1/2 teaspoons salt
• 1 1/2 teaspoons sugar
• 2 1/2 cups all-purpose flour
• 2 cups sourdough starter
• 1/2 cup lukewarm water

Write a program that inputs the following variables: bread_weight (float), serving_size (float), and
num_guests (int). The output will look like the following:

Note: The measures the program comes up with are exact, but to bake, the baker would have to use some
approximation. Ex: 9.765625 cups all-purpose flour really means 9 and 3/4 cups.

For 25 people, you will need 3.90625 loaves of bread:

5.859375 teaspoons instant yeast
5.859375 teaspoons salt
5.859375 teaspoons sugar
9.765625 cups all-purpose flour
7.8125 cups sourdough starter
1.953125 cups lukewarm water

In the above output, bread_weight is 16.0 ounces, serving_size is 2.5 ounces, and num_guests is 25
people. Use these three variables to calculate the number of loaves needed.

Make sure your output matches the above example exactly. Notice that each line of the ingredients begins
with two spaces.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-9-chapter-summary)

TRY IT

Tip calculator

Google has a variety of search tricks (https://openstax.org/r/100googletricks) that present users with
instant results. If you search on Google for tip calculator (https://openstax.org/r/100tipcalculatr), an
interactive tool is included at the top of the results. The goal of this exercise is to implement a similar tip
calculator.

Begin by prompting the user to input the following values (user input in bold):

68 2 • Expressions

Access for free at openstax.org

https://openstax.org/r/100kingarthurflr
https://openstax.org/books/introduction-python-programming/pages/2-9-chapter-summary
https://openstax.org/books/introduction-python-programming/pages/2-9-chapter-summary
https://openstax.org/r/100googletricks
https://openstax.org/r/100tipcalculatr

43.21
Percentage to tip: 18
Number of people: 2

Enter bill amount: 43.21
Percentage to tip: 18
Number of people: 2

Then calculate the tip amount and total amount for the bill, based on the user input. Output the results
using this format:

Tip amount: $7.78
Total amount: $50.99

Tip per person: $3.89
Total per person: $25.49

Your program should output all dollar amounts rounded to two decimal places. The output should be
exactly six lines, as shown above. Notice the blank line before each section of the output. Notice also the
space before but not after the dollar sign.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
2-9-chapter-summary)

2.9 • Chapter summary 69

https://openstax.org/books/introduction-python-programming/pages/2-9-chapter-summary
https://openstax.org/books/introduction-python-programming/pages/2-9-chapter-summary

70 2 • Expressions

Access for free at openstax.org

Figure 3.1 credit: modification of work "Port of Melbourne", by Chris Phutully/Flickr, CC BY 2.0

Chapter Outline
3.1 Strings revisited
3.2 Formatted strings
3.3 Variables revisited
3.4 List basics
3.5 Tuple basics
3.6 Chapter summary

Introduction
An object is a single unit of data in a Python program. So far, this book has introduced three types of objects:
strings, integers, and floats. This chapter takes a closer look at how strings are represented and how integers
and floats can be formatted. To better understand what an object actually is, the relationship between
variables and objects is emphasized. The chapter also introduces two types of containers: lists and tuples. A
container is an object that can hold an arbitrary number of other objects. At the end of this chapter, you will
be able to solve more complex problems using fewer variables.

3.1 Strings revisited

Learning objectives
By the end of this section you should be able to

• Extract a specific character from a string using an index.
• Use escape sequences to represent special characters.

Indexes
A string is a sequence of zero or more characters. Each character has an index that refers to the character's
position. Indexes are numbered from left to right, starting at 0. Indexes are also numbered from right to left,

Objects
3

starting at -1.

CHECKPOINT

String indexes

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-1-strings-revisited)

CONCEPTS IN PRACTICE

String indexes

1. What is the index of the second character in a string?
a. 1
b. 2
c. -2

2. If s = "Python!", what is the value of s[1] + s[-1]?
a. "P!"
b. "y!"
c. "yn"

3. If s = "Python!", what type of object is s[0]?
a. character
b. integer
c. string

Unicode
Python uses Unicode, the international standard for representing text on computers. Unicode defines a
unique number, called a code point, for each possible character. Ex: "P" has the code point 80, and "!" has
the code point 33.

The built-in ord() function converts a character to a code point. Ex: ord("P") returns the integer 80.
Similarly, the built-in chr() function converts a code point to a character. Ex: chr(33) returns the string "!".

Unicode is an extension of ASCII, the American Standard Code for Information Interchange. Originally, ASCII
defined only 128 code points, enough to support the English language. Unicode defines over one million code

72 3 • Objects

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/3-1-strings-revisited
https://openstax.org/books/introduction-python-programming/pages/3-1-strings-revisited

points and supports most of the world's written languages.

32 (space)
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?

64 @
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _

96 `
97 a
98 b
99 c

100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 (delete)

Table 3.1 Character values. This table shows code points 32 to 127 as defined by ASCII and Unicode. Code
points 0 to 31 are non-printable characters that were used for telecommunications.

CONCEPTS IN PRACTICE

ord() and chr()

4. What is the code point for the letter A?
a. 1
b. 65

3.1 • Strings revisited 73

c. 97

5. What value does ord("0") return?
a. 0
b. 48
c. Error

6. What does chr(126) return?
a. ~
b. "~"
c. Error

Special characters
An escape sequence uses a backslash (\) to represent a special character within a string.

Escape
sequence

Meaning Example Screen output

\n
A newline character that indicates the end
of a line of text.

print("Escape\
nsequence!")

Escape
sequence!

\t
A tab character; useful for indenting
paragraphs or aligning text on multiple
lines.

print("Escape\
tsequence!")

Escape sequence!

\'
A single quote; an alternative to enclosing
the string in double quotes.

print('I\'ll try
my best!')

I'll try my best

\"
A double quote; an alternative to
enclosing the string in single quotes.

print("I heard
you said
\"Yes\"")

I heard you said
"Yes"

\\ A backslash character.
print("This
prints a \\")

This prints a \

Table 3.2 Common escape sequences.

74 3 • Objects

Access for free at openstax.org

CONCEPTS IN PRACTICE

Tabs and newlines

7. Which of the following is an escape sequence?
a. t
b. /t
c. \t

8. Which statement prints a backslash (\) to the screen?
a. print(\\)
b. print(\"\")
c. print("\\")

9. Which statement prints Enter and here on separate lines?
a. print("Enter here")
b. print("Enter" + \n + "here")
c. print("Enter" + "\n" + "here")

TRY IT

Hopper quote

Grace Hopper (https://openstax.org/r/100gracehopper) (1906–1992) was a famous computer scientist (and
rear admiral in the US Navy!) who came up with the idea of machine-independent programming languages.
She envisioned a programming language based on English and made many contributions that paved the
way for modern programming languages, including Python.

Write a program that prints the following text, including the quotation marks. Your program may not use
single quotes (') anywhere in the code. The last line must be indented with a tab character.

"To me programming is more than an important practical art.
It is also a gigantic undertaking in the foundations of knowledge."

-- Grace Hopper

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-1-strings-revisited)

TRY IT

Shift cipher

During the Roman Empire, Julius Caesar (100–44 BCE) used a simple technique to encrypt private
messages. Each letter of the message was replaced with the third next letter of the alphabet. Ex: If the
message was CAT, the C became F, the A became D, and the T became W, resulting in the message FDW.
This technique is known as a shift cipher because each letter is shifted by some amount. In Caesar's case,

3.1 • Strings revisited 75

https://openstax.org/r/100gracehopper
https://openstax.org/books/introduction-python-programming/pages/3-1-strings-revisited
https://openstax.org/books/introduction-python-programming/pages/3-1-strings-revisited

the amount was three, but other amounts (besides 0) would work too.

Write a program that prompts the user to input the following two values (example input in bold):

Enter a 3-letter word: CAT
Shift by how many letters? 3

The program should then shift each letter of the word by the desired amount. Based on the example above,
the output would be:

The secret message is: FDW

Hint: Use the ord() function to convert each letter to an integer, add the shift amount to each integer, use
the chr() function to convert each integer to a character, and concatenate the resulting characters.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-1-strings-revisited)

3.2 Formatted strings

Learning objectives
By the end of this section you should be able to

• Use f-strings to simplify output with multiple values.
• Format numbers with leading zeros and fixed precision.

F-strings
A formatted string literal (or f-string) is a string literal that is prefixed with "f" or "F". A replacement field
is an expression in curly braces ({}) inside an f-string. Ex: The string f"Good morning, {first} {last}!"
has two replacement fields: one for a first name, and one for a last name. F-strings provide a convenient way
to combine multiple values into one string.

CHECKPOINT

Printing an f-string

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-2-formatted-strings)

CONCEPTS IN PRACTICE

Basic f-strings

1. What is the output of the following code?

animal = "dog"

76 3 • Objects

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/3-1-strings-revisited
https://openstax.org/books/introduction-python-programming/pages/3-1-strings-revisited
https://openstax.org/books/introduction-python-programming/pages/3-2-formatted-strings
https://openstax.org/books/introduction-python-programming/pages/3-2-formatted-strings

says = "bark"
print(f"My {animal} says {says} {says} {says}")

a. My dog bark bark bark bark
b. My dog says bark bark bark
c. Error

2. What is the output of the following code?

temp = "hot"
food = "potato"
print("{temp} {food}")

a. {temp} {food}
b. hot potato
c. Error

3. How can the following code be rewritten using an f-string?

print(x, "+", y, "=", x + y)

a. print(f"x + y = {x+y}")
b. print(f"{x + y} = {x + y}")
c. print(f"{x} + {y} = {x+y}")

Formatting numbers
Programs often need to display numbers in a specific format. Ex: When displaying the time, minutes are
formatted as two-digit integers. If the hour is 9 and the minute is 5, then the time is "9:05" (not "9:5").

In an f-string, a replacement field may include a format specifier introduced by a colon. A format specifier
defines how a value should be formatted for display. Ex: In the string f"{hour}:{minute:02d}", the format
specifier for minute is 02d.

Format Description Example Result

d Decimal integer (default integer format). f"{12345678:d}" '12345678'

,d Decimal integer, with comma separators. f"{12345678:,d}" '12,345,678'

10d Decimal integer, at least 10 characters wide. f"{12345678:10d}" ' 12345678'

010d Decimal integer, at least 10 characters wide, with
leading zeros.

f"{12345678:010d}" '0012345678'

Table 3.3 Example format specifiers. The table shows common ways that numbers can be formatted. Many more formatting
options are available and described in Python's Format Specification Mini-Language (https://docs.python.org/3/library/
string.html#formatspec).

3.2 • Formatted strings 77

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec

Format Description Example Result

f Fixed-point (default is 6 decimal places). f"{math.pi:f}" '3.141593'

.4f Fixed-point, rounded to 4 decimal places. f"{math.pi:.4f}" '3.1416'

8.4f Fixed-point, rounded to 4 decimal places, at least 8
characters wide.

f"{math.pi:8.4f}" ' 3.1416'

08.4f Fixed-point, rounded to 4 decimal places, at least 8
characters wide, with leading zeros.

f"{math.pi:08.4f}" '003.1416'

Table 3.3 Example format specifiers. The table shows common ways that numbers can be formatted. Many more formatting
options are available and described in Python's Format Specification Mini-Language (https://docs.python.org/3/library/
string.html#formatspec).

CONCEPTS IN PRACTICE

Formatting numbers

4. What f-string formats a date as MM/DD/YYYY?
a. f"{month:02d}/{day:02d}/{year}"
b. f"{month:2d}/{day:2d}/{year}"
c. f"{month}/{day}/{year}"

5. What statement displays the variable money rounded to two decimal places?
a. print(f"{money:2d}")
b. print(f"{money:2f}")
c. print(f"{money:.2f}")

6. What format specifier displays a floating-point number with comma separators and rounded to two
decimal places?
a. .2,f
b. ,.2f
c. ,d.2f

TRY IT

Mad lib (f-string)

A mad lib (https://openstax.org/r/100fstring) is a funny story that uses words provided by a user. The
following mad lib is based on four words (user input in bold):

Enter a name: Buster
Enter a noun: dog

78 3 • Objects

Access for free at openstax.org

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://openstax.org/r/100fstring

Enter an adjective: super
Verb ending in -ing: swimming

Buster, the super dog, likes to go swimming.

Most of the code for this mad lib is already written. Complete the code below by writing the f-string.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-2-formatted-strings)

TRY IT

Wage calculator

You just landed a part-time job and would like to calculate how much money you will earn. Write a program
that inputs the time you start working, the time you stop working, and your hourly pay rate (example input
in bold):

Starting hour: 9
Starting minute: 30
Stopping hour: 11
Stopping minute: 0
Hourly rate: 15

Based on the user input, your program should calculate and display the following results:

Worked 9:30 to 11:00
Total hours: 1.5
Payment: $22.50

For this exercise, you need to write code that (1) calculates the total payment and (2) formats the three
output lines. Use f-strings and format specifiers to display two-digit minutes, one decimal place for hours,
and two decimal places for payment. The input code has been provided as a starting point.

Assume the use of a 24-hour clock. Ex: 16:15 is used instead of 4:15pm.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-2-formatted-strings)

3.3 Variables revisited

Learning objectives
By the end of this section you should be able to

• Distinguish between variables, objects, and references.
• Draw memory diagrams with integers, floats, and strings.

3.3 • Variables revisited 79

https://openstax.org/books/introduction-python-programming/pages/3-2-formatted-strings
https://openstax.org/books/introduction-python-programming/pages/3-2-formatted-strings
https://openstax.org/books/introduction-python-programming/pages/3-2-formatted-strings
https://openstax.org/books/introduction-python-programming/pages/3-2-formatted-strings

References to objects
In Python, every variable refers to an object. The assignment statement message = "Hello" makes the
variable message refer to the object "Hello". Multiple variables may refer to the same object. Ex: greeting
= message makes greeting refer to the same object as message. A memory diagram shows the
relationship between variables and objects.

CHECKPOINT

Example memory diagram

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-3-variables-revisited)

CONCEPTS IN PRACTICE

Variables and objects

1. How many assignment statements are in the above animation?
a. 2
b. 3
c. 4

2. Which of the following best describes the objects assigned?
a. two float objects
b. two int objects, one float object
c. one int object, one float object

3. What symbol is used to show a variable's current value?
a. an arrow
b. a small black box
c. a rounded box

EXPLORING FURTHER

Python Tutor (https://openstax.org/r/100pythontutor) is a free online tool for visualizing code execution. A
user can enter any Python code, click Visualize Execution, and then click the Next button to run the code
one line at a time. Here is the rating and score example (https://openstax.org/r/100ratingscore) from the
animation above.

Python Tutor is also useful for drawing memory diagrams similar to the ones in this book. Before clicking
Visualize Execution, change the middle option from "inline primitives, don't nest objects [default]" to
"render all objects on the heap (Python/Java)" as shown in the following screenshot:

80 3 • Objects

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/3-3-variables-revisited
https://openstax.org/books/introduction-python-programming/pages/3-3-variables-revisited
https://openstax.org/r/100pythontutor
https://openstax.org/r/100ratingscore

Figure 3.2

Properties of objects
Every object has an identity, a type, and a value:

• An object's identity is a unique integer associated with the object. Generally, this integer refers to the
memory location where the object is stored. Once created, an object's identity never changes. The built-in
id() function returns the object's identity.

• An object's type determines the possible values and operations of an object. Ex: Integers and floats can be
"divided" using the / operator, but strings cannot. The built-in type() function returns the object's type.

• An object's value represents the current state of the object. Many objects, such as numbers and strings,
cannot be modified once created. Some objects, such as lists (introduced later), are designed to be
modified.

CHECKPOINT

Identity, type, and value

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-3-variables-revisited)

CONCEPTS IN PRACTICE

id() and type()

4. Which value might be returned by id(rating)?
a. 9793344
b. <class 'float'>
c. 10.0

5. Which value might be returned by type(rating)?
a. 10.0
b. "float"
c. <class 'float'>

6. What expression returns the value of an object?
a. value(rating)
b. rating
c. "rating"

3.3 • Variables revisited 81

https://openstax.org/books/introduction-python-programming/pages/3-3-variables-revisited
https://openstax.org/books/introduction-python-programming/pages/3-3-variables-revisited

EXPLORING FURTHER

As shown in a memory diagram, variables and objects are two separate ideas. Calling a function like id()
or type() returns information about an object, not a variable. In fact, a variable doesn't have an identity or
a type, as shown in this example:

>>> rating = 10 # Integer object somewhere in memory.
>>> type(rating)
<class 'int'>
>>> id(rating)
9793344
>>> rating = "ten" # String object somewhere else in memory.
>>> type(rating)
<class 'str'>
>>> id(rating)
140690967388272

One might incorrectly think that the rating variable's type or identity changes. However, the only thing that
changes is which object the rating variable refers to.

TRY IT

Three variables

1. Draw a memory diagram for the following code:

a = 1
b = 2
c = b
b = a
a = c

2. Run the code on Python Tutor (https://openstax.org/r/100pythruncode) to check your answer.
3. Based on your diagram, answer these questions:

◦ What is the final value of a, b, and c?
◦ How many integer objects are created?

TRY IT

Different types

1. Draw a memory diagram for the following code:

name = "Chocolate"
length = len(name)

82 3 • Objects

Access for free at openstax.org

https://openstax.org/r/100pythruncode

price = 1.99
lower = min(length, price)
product = name
name = name * 2

2. Run the code on Python Tutor (https://openstax.org/r/100pythruncode) to check your answer.
3. Based on your diagram, answer these questions:

◦ What is the type and value of each object?
◦ Which object does each variable reference?

3.4 List basics

Learning objectives
By the end of this section you should be able to

• Use indexes to access individual elements in a list.
• Use indexes to modify individual elements in a list.
• Use len() function to find the length of a list.
• Demonstrate that lists can be changed after creation.

Lists
A list object can be used to bundle elements together in Python. A list is defined by using square brackets []
with comma separated values within the square brackets. Ex: list_1 = [1, 2, 4].

Empty lists can be defined in two ways:

• list_1 = []
• list_1 = list()

Lists can be made of elements of any type. Lists can contain integers, strings, floats, or any other type. Lists
can also contain a combination of types. Ex: [2, "Hello", 2.5] is a valid list.

Python lists allow programmers to change the contents of the list in various ways.

CHECKPOINT

Lists

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/3-4-list-
basics)

CONCEPTS IN PRACTICE

Lists

1. Which is the correct way to make a list of the numbers 3, 4, and 5?
a. new_list == [3, 4, 5]
b. new_list = [3, 4, 5]
c. new_list = (3, 4, 5)

3.4 • List basics 83

https://openstax.org/r/100pythruncode
https://openstax.org/books/introduction-python-programming/pages/3-4-list-basics
https://openstax.org/books/introduction-python-programming/pages/3-4-list-basics

2. Which of the following is not a valid way to specify a list in Python?
a. my_list = [2, 2 3, 23]
b. my_list = ["Jimmy", 2, "times"]
c. my_list = ["C", "C++", "Python", "Java", "Rust", "Scala"]

Using indexes
Individual list elements can be accessed directly using an index. Indexes begin at 0 and end at one less than
the length of the sequence. Ex: For a sequence of 50 elements, the first position is 0, and the last position is 49.

The index number is put in square brackets [] and attached to the end of the name of the list to access the
required element. Ex: new_list[3] accesses the 4th element in new_list. An expression that evaluates to an
integer number can also be used as an index. Similar to strings, negative indexing can also be used to address
individual elements. Ex: Index -1 refers to the last element and -2 the second-to-last element.

The len() function, when called on a list, returns the length of the list.

EXAMPLE 3.1

List indexes and len() function

The following code demonstrates the use of list indexes and the len() function. Line 6 shows the use of the
len() function to get the length of the list. Line 10 shows how to access an element using an index. Line 14
shows how to modify a list element using an index.

1 # Setup a list of numbers
2 num_list = [2, 3, 5, 9, 11]
3 print(num_list)
4
5 # Print the length of the list
6 print("Length: ", len(num_list))
7
8 # Print the 4th element in the list
9 # The number 3 is used to refer to the 4th element

10 print("4th element:", num_list[3])
11
12 # The desired value of the 4th element is actually 7
13 # Update the value of the 4th element to 7
14 num_list[3] = 7
15
16 # The list of the first 5 prime numbers
17 print(num_list)

The above code's output is:

[2, 3, 5, 9, 11]
Length: 5
4th element: 9

84 3 • Objects

Access for free at openstax.org

[2, 3, 5, 7, 11]

CONCEPTS IN PRACTICE

List indexes and the len() function

3. Which is the correct way to access the 17th element in a list called cardList?
a. card_list[17]
b. 16)card_list(16)
c. card_list[16]

4. What is the correct way to modify the element "Tom" to "Tim" in the following list?

name_list = ["Carla", "Monique", "Westin", "Tom"]

a. name_list[-1] = "Tim"
b. name_list[4] = "Tim"
c. name_list[end] = "Tim"

TRY IT

List basics

Write a program to complete the following:

1. Create a list with the following elements: 2, 23, 39, 6, -5.
2. Change the third element of the list (index 2) to 35.
3. Print the resulting list and the list's length.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/3-4-list-
basics)

3.5 Tuple basics

Learning objectives
By the end of this section you should be able to

• Describe the features and benefits of a tuple.
• Develop a program that creates and uses a tuple successfully.
• Identify and discuss the mutability of a tuple.

Creating tuples and accessing elements
A tuple is a sequence of comma separated values that can contain elements of different types. A tuple must
be created with commas between values, and conventionally the sequence is surrounded by parentheses.

3.5 • Tuple basics 85

https://openstax.org/books/introduction-python-programming/pages/3-4-list-basics
https://openstax.org/books/introduction-python-programming/pages/3-4-list-basics

Each element is accessed by index, starting with the first element at index 0.

tuple_1 = (2, 3, 4)
print(f'tuple_1: {tuple_1}')
print(tuple_1[1])
print()
data_13 = ('Aimee Perry', 96, [94, 100,
97, 93])
print(f'data_13: {data_13}')
print(data_13[2])

tuple_1: (2, 3, 4)
3

data_13: ('Aimee Perry', 96, [94, 100,
97, 93])
[94, 100, 97, 93]

Table 3.4 Example tuples.

CONCEPTS IN PRACTICE

Creating tuples and accessing elements

1. Consider the example above. Which accesses tuple_1's first element?
a. tuple_1[0]
b. tuple_1[1]
c. tuple_1[2]

2. Which creates a valid tuple?
a. tuple_2 = (42, 26, 13)
b. tuple_3 = (42, 26, 13.5)
c. both

3. Which creates a tuple with three elements?
a. my_tuple = 'a', 'b', 'c'
b. my_tuple = ['a', 'b', 'c']
c. my_tuple = ('a', 'b', 'c')

Tuple properties
How do tuples compare to lists? Tuples are ordered and allow duplicates, like lists, but have different
mutability. An immutable object cannot be modified after creation. A mutable object can be modified after
creation. Tuples are immutable, whereas lists are mutable.

CHECKPOINT

Mutability of a tuple vs. a list

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-5-tuple-basics)

86 3 • Objects

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/3-5-tuple-basics
https://openstax.org/books/introduction-python-programming/pages/3-5-tuple-basics

CONCEPTS IN PRACTICE

Using tuples

4. Consider the final program in the example above. What is the value of my_tuple?
a. (0.693, 0.414, 3.142)
b. (0.693, 1.414, 3.142)
c. Error

5. Why does the following code produce an error?

tuple_1 = ('alpha', 'bravo', 'charlie')
tuple_1.append('charlie')

a. Append isn't allowed.
b. Duplicates aren't allowed.
c. Strings aren't allowed

6. A programmer wants to create a sequence of constants for easy reference that can't be changed
anywhere in the program. Which sequence would be the most appropriate?
a. list
b. tuple

MUTABILITY AND PERFORMANCE

Tuples are immutable and have a fixed size, so tuples use less memory. Overall, tuples are faster to create
and access, resulting in better performance that can be noticeable with large amounts of data.

TRY IT

Creating a tuple from a list

Suppose a programmer wants to create a tuple from a list to prevent future changes. The tuple()
function creates a tuple from an object like a list. Ex: my_tuple = tuple(my_list) creates a tuple from
the list my_list. Update the program below to create a tuple final_grades from the list grades.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-5-tuple-basics)

TRY IT

Creating a tuple with user input

Write a program that reads in two strings and two integers from input and creates a tuple, my_data, with
the four values.

Given input:

3.5 • Tuple basics 87

https://openstax.org/books/introduction-python-programming/pages/3-5-tuple-basics
https://openstax.org/books/introduction-python-programming/pages/3-5-tuple-basics

x
y
15
20

The output is:

my_data: ('x', 'y', 15, 20)

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
3-5-tuple-basics)

3.6 Chapter summary

Highlights from this chapter include:

• A string is a sequence of values that represents Unicode code points.
• An index refers to the position of a value in a sequence (string, list, tuple).
• Positive indexes range from 0 to length–1. Negative indexes range from –1 to –length.
• F-strings are a convenient way to print multiple outputs and format integers and floats.
• Variables refer to objects. Memory diagrams are useful for drawing variables and objects.
• A list object can be used to refer to multiple objects, by index, using the same variable.
• A tuple is similar to a list, but uses parentheses and cannot be changed once created.

Code Description

ord(c) Gets an integer representing the Unicode code point of a character.

chr(i) Converts a Unicode code point (integer) into a One-character string.

'\n' Escape sequence for the newline character.

'\t' Escape sequence for the tab character.

f"{number:.02d}" Creates a string by formatting an integer to be at least two digits.

Table 3.5 Chapter 3 reference.

88 3 • Objects

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/3-5-tuple-basics
https://openstax.org/books/introduction-python-programming/pages/3-5-tuple-basics

Code Description

f"{number:.2f}" Creates a string by formatting a float to have two decimal places.

id(object) Gets the identity (memory location) of an object.

type(object) Gets the type (class name) of an object.

my_list = ["a", "b", "c"] Creates a list of three strings.

my_tuple = ("a", "b", "c") Creates a tuple of three strings.

my_list[0] Gets the first element ("a") of my_tuple.

my_tuple[-1] Gets the last element ("c") of my_tuple.

Table 3.5 Chapter 3 reference.

3.6 • Chapter summary 89

90 3 • Objects

Access for free at openstax.org

Figure 4.1 credit: modification of work "Fork In The Road", by Ian Sane/Flickr, CC BY 2.0

Chapter Outline
4.1 Boolean values
4.2 If-else statements
4.3 Boolean operations
4.4 Operator precedence
4.5 Chained decisions
4.6 Nested decisions
4.7 Conditional expressions
4.8 Chapter summary

Introduction
The Python interpreter follows a single path of execution when executing a program. What if a programmer
wants to define multiple possible paths? Ex: Instead of always taking the left path, a program uses the path
width to decide which path to take. If the left path is wider, take the right path. Else, take the left path.

A branch is a group of statements that execute based on a condition. The Expressions chapter introduced
expressions. This chapter explores how expressions can be used as conditions to make decisions in programs.

4.1 Boolean values

Learning objectives
By the end of this section you should be able to

• Explain a Boolean value.
• Use bool variables to store Boolean values.
• Demonstrate converting integers, floats, and strings to Booleans.
• Demonstrate converting Booleans to integers, floats, and strings.
• Use comparison operators to compare integers, floats, and strings.

Decisions
4

bool data type
People often ask binary questions such as yes/no or true/false questions. Ex: Do you like pineapple on pizza?
Ex: True or false: I like pineapple on pizza. The response is a Boolean value, meaning the value is either true or
false. The bool data type, standing for Boolean, represents a binary value of either true or false. true and
false are keywords, and capitalization is required.

CHECKPOINT

Example: Crosswalk sign

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-1-boolean-values)

CONCEPTS IN PRACTICE

Using Boolean variables

Consider the following code:

is_fruit = "True"
is_vegetable = 0
is_dessert = False

1. What is the data type of is_fruit?
a. Boolean
b. integer
c. string

2. What is the data type of is_vegetable?
a. Boolean
b. integer
c. string

3. What is the data type of is_dessert?
a. Boolean
b. integer
c. string

4. How many values can a Boolean variable represent?
a. 2
b. 4
c. 8

5. Which is a valid value for a Boolean variable?
a. true
b. True
c. 1

92 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-1-boolean-values
https://openstax.org/books/introduction-python-programming/pages/4-1-boolean-values

6. Suppose the following is added to the code above:

is_dessert = 0
print(type(is_dessert))

What is the output?
a. <class 'bool'>
b. <class 'int'>
c. Error

Type conversion with bool()
Deciding whether a value is true or false is helpful when writing programs/statements based on decisions.
Converting data types to Booleans can seem unintuitive at first. Ex: Is "ice cream" True? But the
conversion is actually simple.

bool() converts a value to a Boolean value, True or False.

• True: any non-zero number, any non-empty string
• False: 0, empty string

CHECKPOINT

Converting integers, floats, and strings using bool()

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-1-boolean-values)

CONCEPTS IN PRACTICE

Converting numeric types and strings to Booleans

7. bool(0.000)
a. True
b. False

8. bool(-1)
a. True
b. False

9. bool("")
a. True
b. False

10. bool("0")
a. True
b. False

11. Given input False, what is bool(input())?

4.1 • Boolean values 93

https://openstax.org/books/introduction-python-programming/pages/4-1-boolean-values
https://openstax.org/books/introduction-python-programming/pages/4-1-boolean-values

a. True
b. False

CONCEPTS IN PRACTICE

Converting Booleans to numeric types and strings

Given is_on = True, what is the value of each expression?

12. float(is_on)
a. 0.0
b. 1.0

13. str(is_on)
a. "is_on"
b. "True"

14. int(is_on)
a. 0
b. 1

Comparison operators
Programmers often have to answer questions like "Is the current user the admin?" A programmer may want to
compare a string variable, user, to the string, "admin". Comparison operators are used to compare values,
and the result is either true or false. Ex: is_admin = (user == "admin"). user is compared with "admin"
using the == operator, which tests for equality. The Boolean variable, is_admin, is assigned with the Boolean
result.

The 6 comparison operators:

• equal to: ==
• not equal to: !=
• greater than: >
• less than: <
• greater than or equal to: >=
• less than or equal to: <=

CHECKPOINT

Example: Rolling a d20 in a tabletop game

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-1-boolean-values)

94 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-1-boolean-values
https://openstax.org/books/introduction-python-programming/pages/4-1-boolean-values

CONCEPTS IN PRACTICE

Comparing values

For each new variable, what is the value of compare_result?

15. x = 14
compare_result = (x <= 13)

a. True
b. False

16. w = 0
compare_result = (w != 0.4)

a. True
b. False

17. v = 4
compare_result = (v < 4.0)

a. True
b. False

18. y = 2
compare_result = (y > "ab")

a. True
b. False
c. Error

19. z = "cilantro"
compare_result = (z == "coriander")

a. True
b. False

20. a = "dog"
compare_result = (a < "cat")

a. True
b. False

4.1 • Boolean values 95

= VS ==

A common mistake is using = for comparison instead of ==. Ex: is_zero = num=0 will always assign
is_zero and num with 0, regardless of num's original value. The = operator performs assignment and will
modify the variable. The == operator performs comparison, does not modify the variable, and produces
True or False.

EXPLORING FURTHER

• Unicode Basic Latin Chart (https://openstax.org/r/100unicodelatin)

TRY IT

Friday Boolean

"It's Friday, I'm in love" —from "Friday I'm in Love," a song released by the Cure in 1992.

Write a program that reads in the day of the week. Assign the Boolean variable, in_love, with the result of
whether the day is Friday or not.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-1-boolean-values)

TRY IT

Even numbers

Write a program that reads in an integer and prints whether the integer is even or not. Remember, a
number is even if the number is divisible by 2. To test this use number % 2 == 0. Ex: If the input is 6, the
output is "6 is even: True".

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-1-boolean-values)

4.2 If-else statements

Learning objectives
By the end of this section you should be able to

• Identify which operations are performed when a program with if and if-else statements is run.
• Identify the components of an if and if-else statement and the necessary formatting.
• Create an if-else statement to perform an operation when a condition is true and another operation

otherwise.

if statement
If the weather is rainy, grab an umbrella! People make decisions based on conditions like if the weather is
rainy, and programs perform operations based on conditions like a variable's value. Ex: A program adds two

96 4 • Decisions

Access for free at openstax.org

https://openstax.org/r/100unicodelatin
https://openstax.org/books/introduction-python-programming/pages/4-1-boolean-values
https://openstax.org/books/introduction-python-programming/pages/4-1-boolean-values
https://openstax.org/books/introduction-python-programming/pages/4-1-boolean-values
https://openstax.org/books/introduction-python-programming/pages/4-1-boolean-values

numbers. If the result is negative, the program prints an error.

A condition is an expression that evaluates to true or false. An if statement is a decision-making structure
that contains a condition and a body of statements. If the condition is true, the body is executed. If the
condition is false, the body is not executed.

The if statement's body must be grouped together and have one level of indentation. The PEP 8 style guide
recommends four spaces per indentation level. The Python interpreter will produce an error if the body is
empty.

CHECKPOINT

Example: Quantity check

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/4-2-if-
else-statements)

USING BOOLEAN VARIABLES

A Boolean variable already has a value of True or False and can be used directly in a condition rather than
using the equality operator. Ex: if is_raining == True: can be simplified to if is_raining:.

CONCEPTS IN PRACTICE

Using if statements

1. Given the following, which part is the condition?

if age < 12:
print("Discount for children available")

a. age
b. age < 12
c. print("Discount for children available")

2. Given the following, which lines execute if the condition is true?

1 print("Have a great day.")
2 if is_raining:
3 print("Don't forget an umbrella!")
4 print("See you soon.")

a. 1, 2, 3
b. 1, 2, 4
c. 1, 2, 3, 4

3. Given the following (same as above), which lines execute if the condition is False?

1 print("Have a great day.")

4.2 • If-else statements 97

https://openstax.org/books/introduction-python-programming/pages/4-2-if-else-statements
https://openstax.org/books/introduction-python-programming/pages/4-2-if-else-statements

2 if is_raining:
3 print("Don't forget an umbrella!")
4 print("See you soon.")

a. 1, 2, 3
b. 1, 2, 4
c. 1, 2, 3, 4

4. Given num = -10, what is the final value of num?

if num < 0:
num = 25

if num < 100:
num = num + 50

a. -10
b. 40
c. 75

5. Given input 10, what is the final value of positive_num?

positive_num = int(input("Enter a positive number:"))
if positive_num < 0:

print("Negative input set to 0")
positive_num = 0

a. 10
b. 0
c. Error

if-else statement
An if statement defines actions to be performed when a condition is true. What if an action needs to be
performed only when the condition is false? Ex: If the restaurant is less than a mile away, we'll walk. Else, we'll
drive.

An else statement is used with an if statement and contains a body of statements that is executed when the
if statement's condition is false. When an if-else statement is executed, one and only one of the branches
is taken. That is, the body of the if or the body of the else is executed. Note: The else statement is at the
same level of indentation as the if statement, and the body is indented.

if-else statement template:

1 # Statements before
2
3 if condition:
4 # Body
5 else:
6 # Body
7

98 4 • Decisions

Access for free at openstax.org

8 # Statements after

CHECKPOINT

Example: Trivia question

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/4-2-if-
else-statements)

CONCEPTS IN PRACTICE

Exploring if-else statements

6. Given the following code, the else branch is taken for which range of x?

if x >= 15:
Do something

else:
Do something else

a. x >= 15
b. x <= 15
c. x < 15

7. Given x = 40, what is the final value of y?

if x > 30:
y = x - 10

else:
y = x + 10

a. 30
b. 40
c. 50

8. Given y = 50, which is not a possible final value of y?

if x < 50:
y = y / 2

else:
y = y * 2

y = y + 5

a. 30
b. 55
c. 105

4.2 • If-else statements 99

https://openstax.org/books/introduction-python-programming/pages/4-2-if-else-statements
https://openstax.org/books/introduction-python-programming/pages/4-2-if-else-statements

TRY IT

Improved division

The following program divides two integers. Division by 0 produces an error. Modify the program to read in
a new denominator (with no prompt) if the denominator is 0.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/4-2-if-
else-statements)

TRY IT

Converting temperature units

The following program reads in a temperature as a float and the unit as a string: "f" for Fahrenheit or "c"
for Celsius.

Calculate new_temp, the result of converting temp from Fahrenheit to Celsius or Celsius to Fahrenheit
based on unit. Calculate new_unit: "c" if unit is "f" and "f" if unit is "c".

Conversion formulas:

• Degrees Celsius = (degrees Fahrenheit - 32) * 5/9
• Degrees Fahrenheit = (degrees Celsius * 5/9) + 32

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/4-2-if-
else-statements)

4.3 Boolean operations

Learning objectives
By the end of this section you should be able to

• Explain the purpose of logical operators.
• Describe the truth tables for and, or, and not.
• Create expressions with logical operators.
• Interpret if-else statements with conditions using logical operators.

Logical operator: and
Decisions are often based on multiple conditions. Ex: A program printing if a business is open may check that
hour >= 9 and hour < 17. A logical operator takes condition operand(s) and produces True or False.

Python has three logical operators: and, or, and not. The and operator takes two condition operands and
returns True if both conditions are true.

100 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-2-if-else-statements
https://openstax.org/books/introduction-python-programming/pages/4-2-if-else-statements
https://openstax.org/books/introduction-python-programming/pages/4-2-if-else-statements
https://openstax.org/books/introduction-python-programming/pages/4-2-if-else-statements

p q p and q

True True True

True False False

False True False

False False False

Table 4.1 Truth table: p and q.

CHECKPOINT

Example: Museum entry

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-3-boolean-operations)

CONCEPTS IN PRACTICE

Using the and operator

1. Consider the example above. Jaden tries to enter when the capacity is 2500 and there are 2 hours
before close. Can Jaden enter?
a. yes
b. no

2. Consider the example above. Darcy tries to enter when the capacity is 3000. For what values of
hrs_to_close will Darcy to be able to enter?
a. hrs_to close > 1.0
b. no such value

3. Given is_admin = False and is_online = True, what is the value of is_admin and is_online?
a. True
b. False

4. Given x = 8 and y = 21, what is the final value of z?

if (x < 10) and (y > 20):
z = 5

else:
z = 0

a. 0
b. 5

4.3 • Boolean operations 101

https://openstax.org/books/introduction-python-programming/pages/4-3-boolean-operations
https://openstax.org/books/introduction-python-programming/pages/4-3-boolean-operations

Logical operator: or
Sometimes a decision only requires one condition to be true. Ex: If a student is in the band or choir, they will
perform in the spring concert. The or operator takes two condition operands and returns True if either
condition is true.

p q p or q

True True True

True False True

False True True

False False False

Table 4.2 Truth table: p or q.

CHECKPOINT

Example: Streaming prompt

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-3-boolean-operations)

CONCEPTS IN PRACTICE

Using the or operator

5. Given days = 21 and is_damaged is False, is the refund processed?

if (days < 30) or is_damaged:
Process refund

a. yes
b. no

6. For what values of age is there no discount?

if (age < 12) or (age > 65):
Apply student/senior discount

a. age >= 12
b. age <= 65
c. (age >= 12) and (age <= 65)

7. Given a = 9 and b = 10, does the test pass?

if (a%2 == 0 and b%2 == 1) or (a%2 == 1 and b%2 == 0):

102 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-3-boolean-operations
https://openstax.org/books/introduction-python-programming/pages/4-3-boolean-operations

Test passed
else:

Test failed

a. yes
b. no

Logical operator: not
If the computer is not on, press the power button. The not operator takes one condition operand and returns
True when the operand is false and returns False when the operand is true.

not is a useful operator that can make a condition more readable and can be used to toggle a Boolean's value.
Ex: is_on = not is_on.

p not p

True False

False True

Table 4.3 Truth table:
not p.

CHECKPOINT

Example: Diving warning

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-3-boolean-operations)

CONCEPTS IN PRACTICE

Using the not operator

8. Given x = 13, what is the value of not(x < 10)?
a. True
b. False

9. Given x = 18, is x in the correct range?

if not(x > 15 and x < 20):
x in correct range

a. yes
b. no

10. Given is_turn = False and timer = 65, what is the final value of is_turn?

4.3 • Boolean operations 103

https://openstax.org/books/introduction-python-programming/pages/4-3-boolean-operations
https://openstax.org/books/introduction-python-programming/pages/4-3-boolean-operations

if timer > 60:
is_turn = not is_turn

a. True
b. False

TRY IT

Speed limits

Write a program that reads in a car's speed as an integer and checks if the car's speed is within the freeway
limits. A car's speed must be at least 45 mph but no greater than 70 mph on the freeway.

If the speed is within the limits, print "Good driving". Else, print "Follow the speed limits".

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-3-boolean-operations)

4.4 Operator precedence

Learning objectives
By the end of this section you should be able to

• Describe how precedence impacts order of operations.
• Describe how associativity impacts order of operations.
• Explain the purpose of using parentheses in expressions with multiple operators.

Precedence
When an expression has multiple operators, which operator is evaluated first? Precedence rules provide the
priority level of operators. Operators with the highest precedence execute first. Ex: 1 + 2 * 3 is 7 because
multiplication takes precedence over addition. However, (1 + 2) * 3 is 9 because parentheses take
precedence over multiplication.

Operator Meaning

() Parentheses

** Exponentiation (right associative)

*, /, //, % Multiplication, division, floor division, modulo

+, - Addition, subtraction

<, <=, >, >=, ==, != Comparison operators

Table 4.4 Operator precedence from highest to lowest.

104 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-3-boolean-operations
https://openstax.org/books/introduction-python-programming/pages/4-3-boolean-operations

Operator Meaning

not Logical not operator

and Logical and operator

or Logical or operator

Table 4.4 Operator precedence from highest to lowest.

CHECKPOINT

Operator precedence

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-4-operator-precedence)

CONCEPTS IN PRACTICE

Precedence rules

Which part of each expression is evaluated first?

1. x ** 2 + 6 / 3
a. 6 / 3
b. x ** 2
c. 2 + 6

2. not 3 * 5 > 10
a. 3 * 5
b. not 3
c. 5 > 10

3. z == 5 and x / 8 < 100
a. 5 and x
b. x / 8
c. 8 < 100

Associativity
What if operators beside each other have the same level of precedence? Associativity determines the order of
operations when precedence is the same. Ex: 8 / 4 * 3 is evaluated as (8/4) * 3 rather than 8 / (4*3)
because multiplication and division are left associative. Most operators are left associative and are evaluated
from left to right. Exponentiation is the main exception (noted above) and is right associative: that is, evaluated
from right to left. Ex: 2 ** 3 ** 4 is evaluated as 2 ** (3**4).

When comparison operators are chained, the expression is converted into the equivalent combination of

4.4 • Operator precedence 105

https://openstax.org/books/introduction-python-programming/pages/4-4-operator-precedence
https://openstax.org/books/introduction-python-programming/pages/4-4-operator-precedence

comparisons and evaluated from left to right. Ex. 10 < x <= 20 is evaluated as 10 < x and x <= 20.

CHECKPOINT

Operation precedence

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-4-operator-precedence)

CONCEPTS IN PRACTICE

Associativity

How is each expression evaluated?

4. 10 + 3 * 2 / 4
a. 10 + (3 * (2 / 4))
b. 10 + ((3 * 2) / 4)
c. (10 + 3) * (2 / 4)

5. 2 * 2 ** 2 ** 3
a. 2 * ((2 ** 2) ** 3)
b. 2 * (2 ** (2 ** 3))
c. ((2*2) ** 2) ** 3

6. 100 < x > 150
a. 100 < x and x < 150
b. 100 < x or x > 150
c. 100 < x and x > 150

Enforcing order and clarity with parentheses
Operator precedence rules can be hard to remember. Parentheses not only assert a different order of
operations but also reduce confusion.

CHECKPOINT

Using parentheses

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-4-operator-precedence)

CONCEPTS IN PRACTICE

Using parentheses

7. Consider the example above. Why was the evaluation order different from what the programmer
wanted?
a. Equality has precedence over and.

106 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-4-operator-precedence
https://openstax.org/books/introduction-python-programming/pages/4-4-operator-precedence
https://openstax.org/books/introduction-python-programming/pages/4-4-operator-precedence
https://openstax.org/books/introduction-python-programming/pages/4-4-operator-precedence

b. All operators are evaluated right to left.
c. Order is random when parentheses aren't used.

8. Given x = 8 and y = 9, what is the result of the following?
x + 3 * y - 5
a. 30
b. 44
c. 94

9. Given x = 8 and y = 9, what is the result of the following?
(x+3) * (y-5)
a. 30
b. 44
c. 94

PEP 8 RECOMMENDATIONS: SPACING AROUND OPERATORS

The PEP 8 style guide recommends consistent spacing around operators to avoid extraneous and confusing
whitespace.

• Avoid multiple spaces and an unequal amount of whitespace around operators with two operands.
Avoid: x= y * 44
Better: x = y * 44

• Avoid spaces immediately inside parentheses.
Avoid: x = (4 * y)
Better: x = (4 * y)

• Surround the following operators with one space: assignment, augment assignment, comparison,
Boolean.
Avoid: x= y<44
Better: x = y < 44

• Consider adding whitespace around operators with lower priority.
Avoid: x = 5 * z+20
Better: x = 5*z + 20

4.5 Chained decisions

Learning objectives
By the end of this section you should be able to

• Identify the branches taken in an if-elif and if-elif-else statement.
• Create a chained decision statement to evaluate multiple conditions.

elif
Sometimes, a complicated decision is based on more than a single condition. Ex: A travel planning site reviews
the layovers on an itinerary. If a layover is greater than 24 hours, the site should suggest accommodations.
Else if the layover is less than one hour, the site should alert for a possible missed connection.

4.5 • Chained decisions 107

Two separate if statements do not guarantee that only one branch is taken and might result in both branches
being taken. Ex: The program below attempts to add a curve based on the input test score. If the input is 60,
both if statements are incorrectly executed, and the resulting score is 75.

score = int(input())
if score < 70:

score += 10
Wrong:
if 70 <= score < 85:

score += 5

Chaining decision statements with elif allows the programmer to check for multiple conditions. An elif (short
for else if) statement checks a condition when the prior decision statement's condition is false. An elif
statement is part of a chain and must follow an if (or elif) statement.

if-elif statement template:

Statements before

if condition:
Body

elif condition:
Body

Statements after

CHECKPOINT

Example: Livestream features

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-5-chained-decisions)

CONCEPTS IN PRACTICE

Using elif

1. Fill in the blank to execute Body 2 when condition_1 is false and condition_2 is true.

if condition_1:
Body 1

__ condition_2:
Body 2

a. if
b. elif

108 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-5-chained-decisions
https://openstax.org/books/introduction-python-programming/pages/4-5-chained-decisions

c. else

2. Given x = 42 and y = 0, what is the final value of y?

if x > 44:
y += 2

elif x < 50:
y += 5

a. 2
b. 5
c. 7

3. Which conditions complete the code such that if x is less than 0, Body 1 executes, else if x equals 0,
Body 2 executes.

if _________:
Body 1

elif _________:
Body 2

a. x < 0
x == 0

b. x == 0
x < 0

c. x <= 0
[no condition]

4. Which of the following is a valid chained decision statement?
a. if condition_1:

Body 1
elif condition_2:

Body 2
b. if condition_1:

Body 1
elif condition_2:

Body 2
c. elif condition_1:

Body 1
if condition_2:

Body 2

5. Given attendees = 350, what is the final value of rooms?

rooms = 1
if attendees >= 100:

rooms += 3
if attendees <= 200:

rooms += 7

4.5 • Chained decisions 109

elif attendees <= 400:
rooms += 14

a. 4
b. 15
c. 18

if-elif-else statements
Elifs can be chained with an if-else statement to create a more complex decision statement. Ex: A program
shows possible chess moves depending on the piece type. If the piece is a pawn, show moving forward one (or
two) places. Else if the piece is a bishop, show diagonal moves. Else if . . . (finish for the rest of the pieces).

CHECKPOINT

Example: Possible chess moves

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-5-chained-decisions)

CONCEPTS IN PRACTICE

Using elif within if-elif-else statements

6. Given hour = 12, what is printed?

if hour < 8:
print("Too early")

elif hour < 12:
print("Good morning")

elif hour < 13:
print("Lunchtime")

elif hour < 17:
print("Good afternoon")

else:
print("Too late")

a. Good morning
b. Lunchtime
c. Good afternoon
d. Too late

7. Where can an elif statement be added?

1
if condition:

Body

110 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-5-chained-decisions
https://openstax.org/books/introduction-python-programming/pages/4-5-chained-decisions

2
elif condition:

Body
3
else:

Body
4

a. 1
b. 2
c. 3
d. 4

8. Given x = -1 and y = -2, what is the final value of y?

if x < 0 and y < 0:
y = 10

elif x < 0 and y > 0:
y = 20

else:
y = 30

a. 10
b. 20
c. 30

9. How could the following statements be rewritten as a chained statement?

if price < 9.99:
order = 50

if 9.99 <= price < 19.99:
order = 30

if price >= 19.99:
order = 10

a. if price < 9.99:
order = 50

else:
order = 30

order = 10
b. if price < 9.99:

order = 50
elif price < 19.99:

order = 30
elif price == 19.99:

order = 10
c. if price < 9.99:

order = 50

4.5 • Chained decisions 111

elif price < 19.99:
order = 30

else:
order = 10

TRY IT

Crochet hook size conversion

Write a program that reads in a crochet hook's US size and computes the metric diameter in millimeters. (A
subset of sizes is used.) If the input does not match B-G, the diameter should be assigned with -1.0. Ex: If
the input is D, the output is "3.25 mm".

Size conversions for US size: mm

• B : 2.25
• C : 2.75
• D : 3.25
• E : 3.5
• F : 3.75
• G : 4.0

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-5-chained-decisions)

TRY IT

Color wavelengths

Write a program that reads in an integer representing a visible light wavelength in nanometers. Print the
corresponding color using the following inclusive ranges:

• Violet: 380–449
• Blue: 450–484
• Cyan: 485–499
• Green: 500–564
• Yellow: 565–589
• Orange: 590–624
• Red: 625–750

Assume the input is within the visible light spectrum, 380-750 inclusive.

Given input:

550

The output is:

112 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-5-chained-decisions
https://openstax.org/books/introduction-python-programming/pages/4-5-chained-decisions

Green

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-5-chained-decisions)

4.6 Nested decisions

Learning objectives
By the end of this section you should be able to

• Describe the execution paths of programs with nested if-else statements.
• Implement a program with nested if-else statements.

Nested decision statements
Suppose a programmer is writing a program that reads in a game ID and player count and prints whether the
user has the right number of players for the game.

The programmer may start with:

if game == 1 and players < 2:
print("Not enough players")

if game == 1 and players > 4:
print("Too many players")

if game == 1 and (2 <= players <= 4):
print("Ready to start")

if game == 2 and players < 3:
print("Not enough players")

if game == 2 and players > 6:
print("Too many players")

if game == 2 and (3 <= players <= 6):
print("Ready to start")

The programmer realizes the code is redundant. What if the programmer could decide the game ID first and
then make a decision about players? Nesting allows a decision statement to be inside another decision
statement, and is indicated by an indentation level.

An improved program:

if game == 1:
if players < 2:

print("Not enough players")
elif players > 4:

print("Too many players")
else:

print("Ready to start")
if game == 2:

4.6 • Nested decisions 113

https://openstax.org/books/introduction-python-programming/pages/4-5-chained-decisions
https://openstax.org/books/introduction-python-programming/pages/4-5-chained-decisions

if players < 3:
print("Not enough players")

elif players > 6:
print("Too many players")

else:
print("Ready to start")

Test game IDs 3-end

CHECKPOINT

Example: Poisonous plant identification

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-6-nested-decisions)

CONCEPTS IN PRACTICE

Using nested if-else statements

1. Consider the example above. Given leaf_count = 9 and leaf_shape = "teardrop", what is the
output?
a. Might be poison ivy
b. Might be poison oak
c. Might be poison sumac

2. Given num_dancers = 49, what is printed?

if num_dancers < 0:
print("Error: num_dancers is negative")

else:
if num_dancers % 2 == 1:

print("Error: num_dancers is odd")
print(num_dancers, "dancers")

a. Error: num_dancers is odd
b. 49 dancers
c. Error: num_dancers is odd

49 dancers

3. Given x = 256, y = 513, and max = 512, which of the following will execute?

if x == y:
Body 1

elif x < y:
Body 2
if y >= max:

Body 3
else:

114 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-6-nested-decisions
https://openstax.org/books/introduction-python-programming/pages/4-6-nested-decisions

Body 4
else:

Body 5

a. Body 2
b. Body 2, Body 3
c. Body 2, Body 5

4. Given x =118, y = 300, and max = 512, which of the following will execute?

if x == y:
Body 1

elif x < y:
Body 2
if y >= max:

Body 3
else:

Body 4
else:

Body 5

a. Body 2
b. Body 3
c. Error

TRY IT

Meal orders

Write a program that reads in a string, "lunch" or "dinner", representing the menu choice, and an
integer, 1, 2, or 3, representing the user's meal choice. The program then prints the user's meal choice.

Lunch Meal Options

• 1: Caesar salad
• 2: Spicy chicken wrap
• 3: Butternut squash soup

Dinner Meal Options

• 1: Baked salmon
• 2: Turkey burger
• 3: Mushroom risotto

Ex: If the input is:
lunch
3

The output is:
Your order: Butternut squash soup

4.6 • Nested decisions 115

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-6-nested-decisions)

4.7 Conditional expressions

Learning objectives
By the end of this section you should be able to

• Identify the components of a conditional expression.
• Create a conditional expression.

Conditional expressions
A conditional expression (also known as a "ternary operator") is a simplified, single-line version of an
if-else statement.

Conditional expression template:

expression_if_true if condition else expression_if_false

A conditional expression is evaluated by first checking the condition. If condition is true,
expression_if_true is evaluated, and the result is the resulting value of the conditional expression. Else,
expression_if_false is evaluated, and the result is the resulting value of the conditional expression.

A variable can be assigned with a conditional expression. Ex: Finding the max of two numbers can be
calculated with max_num = y if x < y else x

Note: Conditional expressions have the lowest precedence of all Python operations.

CHECKPOINT

Example: Version check

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-7-conditional-expressions)

CONCEPTS IN PRACTICE

Using conditional expressions

1. What is the conditional expression version of the following if-else statement?

if x%2 == 0:
response = 'even'

else:
response = 'odd'

a. response = if x%2 == 0 "even" else "odd"
b. response = "odd" if x%2 == 0 else "even"

116 4 • Decisions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/4-6-nested-decisions
https://openstax.org/books/introduction-python-programming/pages/4-6-nested-decisions
https://openstax.org/books/introduction-python-programming/pages/4-7-conditional-expressions
https://openstax.org/books/introduction-python-programming/pages/4-7-conditional-expressions

c. response = "even" if x%2 == 0 else "odd"

2. Given x = 100 and offset = 10, what is the value of result?

result = x + offset if x < 100 else x - offset

a. 90
b. 100
c. 110

3. Which part of the conditional expression is incorrect?

min_num = x if x < y else min_num = y

a. min_num = x
b. x < y
c. min_num = y

4. Which of the following is an improved version of the following if-else statement?

if x < 50:
result = True

else:
result = False

a. result = True if x < 50 else False
b. result = x < 50

5. What are the possible values of total?

total = fee + 10 if hours > 12 else 2

a. 10, 2
b. fee + 10, 2
c. fee + 10, fee + 2

TRY IT

Ping values

Write a program that reads in an integer, ping, and prints ping_report, a string indicating whether the
ping is low to average or too high. ping values under 150 have a ping_report of "low to average".
ping values of 150 and higher have a ping_report of "too high". Use a conditional expression to assign
ping_report.

Ex: If the input is 30, the output is "Ping is low to average".

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
4-7-conditional-expressions)

4.7 • Conditional expressions 117

https://openstax.org/books/introduction-python-programming/pages/4-7-conditional-expressions
https://openstax.org/books/introduction-python-programming/pages/4-7-conditional-expressions

4.8 Chapter summary

Highlights from this chapter include:

• Booleans represent a value of True or False.
• Comparison operators compare values and produce True or False.
• Logical operators take condition operand(s) and produce True or False.
• Operators are evaluated in order according to precedence and associativity.
• Conditions are expressions that evaluate to True or False.
• Decision statements allow different paths of execution (branches) through code based on conditions.
• Decision statements can be nested inside other decision statements.
• Conditional expressions are single-line versions of if-else statements.

At this point, you should be able to write programs that evaluate conditions and execute code statements
accordingly with the correct order of operations. The programming practice below ties together most topics
presented in the chapter.

Function Description

bool(x) Converts x to a Boolean value, either True or False.

Operator Description

x == y
(Equality)

Compares the values of x and y and returns True if the values are equal and False
otherwise. Ex: 10 == 10 is True.

x != y
(Inequality)

Compares the values of x and y and returns True if the values are inequal and False
otherwise. Ex: 7 != 4 is True.

x > y
(Greater than)

Compares the values of x and y and returns True if the x is greater than y and False
otherwise. Ex: 9 > 3 is True.

x < y
(Less than)

Compares the values of x and y and returns True if the x is less than y and False
otherwise. Ex: 9 < 8 is False.

x >= y
(Greater than
or equal)

Compares the values of x and y and returns True if the x is greater than or equal to y
and False otherwise. Ex: 2 >= 2 is True.

x <= y
(Less than or
equal)

Compares the values of x and y and returns True if the x is less than or equal to y and
False otherwise. Ex: 8 <= 7 is False.

Table 4.5 Chapter 4 reference.

118 4 • Decisions

Access for free at openstax.org

Function Description

x and y
(Logical)

Evaluates the Boolean values of x and y and returns True if both are true. Ex: True and
False is False.

x or y
(Logical)

Evaluates the Boolean values of x and y and returns True if either is true. Ex: True or
False is True.

not x
(Logical)

Evaluates the Boolean value of x and returns True if the value is false and False if the
value is true. Ex: not True is False.

Decision
statement

Description

if statement

Statements before

if condition:
Body

Statements after

else statement

Statements before

if condition:
Body

else:
Body

Statements after

Table 4.5 Chapter 4 reference.

4.8 • Chapter summary 119

Function Description

elif statement

Statements before

if condition:
Body

elif condition:
Body

else:
Body

Statements after

Nested if
statement

Statements before

if condition:
if condition:

Body
else:

Body
else:

if condition:
Body

else:
Body

Statements after

Conditional
expression

expression_if_true if condition else expression_if_false

Table 4.5 Chapter 4 reference.

120 4 • Decisions

Access for free at openstax.org

Figure 5.1 credit: modification of work "Quantum Computing", by Kevin Dooley/Flickr, CC BY 2.0

Chapter Outline
5.1 While loop
5.2 For loop
5.3 Nested loops
5.4 Break and continue
5.5 Loop else
5.6 Chapter summary

Introduction
A loop is a code block that runs a set of statements while a given condition is true. A loop is often used for
performing a repeating task. Ex: The software on a phone repeatedly checks to see if the phone is idle. Once
the time set by a user is reached, the phone is locked. Loops can also be used for iterating over lists like
student names in a roster, and printing the names one at a time.

In this chapter, two types of loops, for loop and while loop, are introduced. This chapter also introduces
break and continue statements for controlling a loop's execution.

5.1 While loop

Learning objectives
By the end of this section you should be able to

• Explain the loop construct in Python.
• Use a while loop to implement repeating tasks.

While loop
A while loop is a code construct that runs a set of statements, known as the loop body, while a given
condition, known as the loop expression, is true. At each iteration, once the loop statement is executed, the

Loops
5

loop expression is evaluated again.

• If true, the loop body will execute at least one more time (also called looping or iterating one more time).
• If false, the loop's execution will terminate and the next statement after the loop body will execute.

CHECKPOINT

While loop

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-1-while-loop)

CONCEPTS IN PRACTICE

While loop example

Fibonacci is a series of numbers in which each number is the sum of the two preceding numbers. The
Fibonacci sequence starts with two ones: 1, 1, 2, 3, Consider the following code that prints all Fibonacci
numbers less than 20, and answer the following questions.

Initializing the first two Fibonacci numbers
f = 1
g = 1
print (f, end = ' ')

Running the loop while the last Fibonacci number is less than 20
while g < 20:

print(g, end = ' ')
Calculating the next Fibonacci number and updating the last two sequence

numbers
temp = f
f = g
g = temp + g

1. How many times does the loop execute?
a. 5
b. 6
c. 7

2. What is the variable g's value when the while loop condition evaluates to False?
a. 13
b. 20
c. 21

3. What are the printed values in the output?
a. 1 1 2 3 5 8 13
b. 1 2 3 5 8 13
c. 1 1 2 3 5 8 13 21

122 5 • Loops

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/5-1-while-loop
https://openstax.org/books/introduction-python-programming/pages/5-1-while-loop

Counting with a while loop
A while loop can be used to count up or down. A counter variable can be used in the loop expression to
determine the number of iterations executed. Ex: A programmer may want to print all even numbers between
1 and 20. The task can be done by using a counter initialized with 1. In each iteration, the counter's value is
increased by one, and a condition can check whether the counter's value is an even number or not. The
change in the counter's value in each iteration is called the step size. The step size can be any positive or
negative value. If the step size is a positive number, the counter counts in ascending order, and if the step size
is a negative number, the counter counts in descending order.

EXAMPLE 5.1

A program printing all odd numbers between 1 and 10

Initialization
counter = 1

While loop condition
while counter <= 10:

if counter % 2 == 1:
print(counter)

Counting up and increasing counter's value by 1 in each iteration
counter += 1

CHECKPOINT

Counting with while loop

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-1-while-loop)

CONCEPTS IN PRACTICE

while loop counting examples

Given the code, answer the following questions.

n = 4
while n > 0:

print(n)
n = n - 1

print("value of n after the loop is", n)

5.1 • While loop 123

https://openstax.org/books/introduction-python-programming/pages/5-1-while-loop
https://openstax.org/books/introduction-python-programming/pages/5-1-while-loop

4. How many times does the loop execute?
a. 3
b. 4
c. 5

5. Which line is printed as the last line of output?
a. value of n after the loop is -1.
b. value of n after the loop is 0.
c. value of n after the loop is 1.

6. What happens if the code is changed as follows?

n = 4
while n > 0:

print(n)
Modified line
n = n + 1

print("value of n after the loop is", n)

a. The code will not run.
b. The code will run for one additional iteration.
c. The code will never terminate.

TRY IT

Reading inputs in a while loop

Write a program that takes user inputs in a while loop until the user enters "begin". Test the code with
the given input values to check that the loop does not terminate until the input is "begin". Once the input
"begin" is received, print "The while loop condition has been met.".

Enter different input words to see when the while loop condition is met.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-1-while-loop)

TRY IT

Sum of odd numbers

Write a program that reads two integer values, n1 and n2. Use a while loop to calculate the sum of odd
numbers between n1 and n2 (inclusive of n1 and n2). Remember, a number is odd if number % 2 != 0.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-1-while-loop)

124 5 • Loops

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/5-1-while-loop
https://openstax.org/books/introduction-python-programming/pages/5-1-while-loop
https://openstax.org/books/introduction-python-programming/pages/5-1-while-loop
https://openstax.org/books/introduction-python-programming/pages/5-1-while-loop

5.2 For loop

Learning objectives
By the end of this section you should be able to

• Explain the for loop construct.
• Use a for loop to implement repeating tasks.

For loop
In Python, a container can be a range of numbers, a string of characters, or a list of values. To access objects
within a container, an iterative loop can be designed to retrieve objects one at a time. A for loop iterates over
all elements in a container. Ex: Iterating over a class roster and printing students' names.

CHECKPOINT

For loop example for iterating over a container object

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/5-2-for-
loop)

CONCEPTS IN PRACTICE

For loop over a string container

A string variable can be considered a container of multiple characters, and hence can be iterated on. Given
the following code, answer the questions.

str_var = "A string"

count = 0
for c in str_var:

count += 1

print(count)

1. What is the program's output?
a. 7
b. 8
c. 9

2. What's the code's output if the line count += 1 is replaced with count *= 2?
a. 0
b. 16
c. 28

3. What is printed if the code is changed as follows?

5.2 • For loop 125

https://openstax.org/books/introduction-python-programming/pages/5-2-for-loop
https://openstax.org/books/introduction-python-programming/pages/5-2-for-loop

str_var = "A string"

count = 0
for c in str_var:

count += 1
New line
print(c, end = '*')

print(count)

a. A string*
b. A*s*t*r*i*n*g*
c. A* *s*t*r*i*n*g*

Range() function in for loop
A for loop can be used for iteration and counting. The range() function is a common approach for
implementing counting in a for loop. A range() function generates a sequence of integers between the two
numbers given a step size. This integer sequence is inclusive of the start and exclusive of the end of the
sequence. The range() function can take up to three input values. Examples are provided in the table below.

Range function Description Example Output

range(end)
• Generates a sequence beginning at 0

until end.
• Step size: 1

range(4) 0, 1, 2, 3

range(start, end)
• Generates a sequence beginning at

start until end.
• Step size: 1

range(0, 3) 0, 1, 2

range(2, 6) 2, 3, 4, 5

range(-13,
-9)

-13, -12,
-11, -10

range(start, end,
step)

• Generates a sequence beginning at
start until end.

• Step size: step

range(0, 4,
1)

0, 1, 2, 3

range(1, 7,
2)

1, 3, 5

Table 5.1 Using the range() function.

126 5 • Loops

Access for free at openstax.org

Range function Description Example Output

range(3,
-2, -1)

3, 2, 1, 0,
-1

range(10,
0, -4)

10, 6, 2

Table 5.1 Using the range() function.

EXAMPLE 5.2

Two programs printing all integer multiples of 5 less than 50 (Notice the compactness of the for
construction compared to the while)

For loop condition using
range() function to print
all multiples of 5 less than 50
for i in range(0, 50, 5):

print(i)

While loop implementation of printing
multiples of 5 less than 50

Initialization
i = 0
Limiting the range to be less than 50
while i < 50:

print(i)
i+=5

Table 5.2

CONCEPTS IN PRACTICE

For loop using a range() function

4. What are the arguments to the range() function for the increasing sequence of every 3rd integer from
10 to 22 (inclusive of both ends)?
a. range(10, 23, 3)
b. range(10, 22, 3)
c. range(22, 10, -3)

5. What are the arguments to the range() function for the decreasing sequence of every integer from 5
to 1 (inclusive of both ends)?
a. range(5, 1, 1)
b. range(5, 1, -1)
c. range(5, 0, -1)

5.2 • For loop 127

6. What is the sequence generated from range(-1, -2, -1)?
a. 1
b. -1, -2
c. -2

7. What is the output of the range(1, 2, -1)?
a. 1
b. 1, 2
c. empty sequence

8. What is the output of range(5, 2)?
a. 0, 2, 4
b. 2, 3, 4
c. empty sequence

TRY IT

Counting spaces

Write a program using a for loop that takes in a string as input and counts the number of spaces in the
provided string. The program must print the number of spaces counted. Ex: If the input is "Hi everyone",
the program outputs 1.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/5-2-for-
loop)

TRY IT

Sequences

Write a program that reads two integer values, n1 and n2, with n1 < n2, and performs the following tasks:

1. Prints all even numbers between the two provided numbers (inclusive of both), in ascending order.
2. Prints all odd numbers between the two provided numbers (exclusive of both), in descending order.

Input: 2 8

prints
2 4 6 8
7 5 3

Note: the program should return an error message if the second number is smaller than the first.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/5-2-for-
loop)

128 5 • Loops

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/5-2-for-loop
https://openstax.org/books/introduction-python-programming/pages/5-2-for-loop
https://openstax.org/books/introduction-python-programming/pages/5-2-for-loop
https://openstax.org/books/introduction-python-programming/pages/5-2-for-loop

5.3 Nested loops

Learning objectives
By the end of this section you should be able to

• Implement nested while loops.
• Implement nested for loops.

Nested loops
A nested loop has one or more loops within the body of another loop. The two loops are referred to as outer
loop and inner loop. The outer loop controls the number of the inner loop's full execution. More than one
inner loop can exist in a nested loop.

CHECKPOINT

Nested while loops

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-3-nested-loops)

EXAMPLE 5.3

Available appointments

Consider a doctor's office schedule. Each appointment is 30 minutes long. A program to print available
appointments can use a nested for loop where the outer loop iterates over the hours, and the inner loop
iterates over the minutes. This example prints time in hours and minutes in the range between 8:00am and
10:00am. In this example, the outer loop iterates over the time's hour portion between 8 and 9, and the
inner loop iterates over the time's minute portion between 0 and 59.

hour = 8
minute = 0
while hour <= 9:

while minute <= 59:
print(hour, ":", minute)
minute += 30

hour += 1
minute = 0

The above code's output is:

8 : 0
8 : 30
9 : 0
9 : 30

5.3 • Nested loops 129

https://openstax.org/books/introduction-python-programming/pages/5-3-nested-loops
https://openstax.org/books/introduction-python-programming/pages/5-3-nested-loops

CONCEPTS IN PRACTICE

Nested while loop question set

1. Given the following code, how many times does the print statement execute?

i = 1
while i <= 5:

j = 1
while i + j <= 5:

print(i, j)
j += 1

i += 1

a. 5
b. 10
c. 25

2. What is the output of the following code?

i = 1

while i <= 2:
j = 1
while j <= 3:

print('*', end = '')
j += 1

print()
i += 1

a. ******
b. ***

c. **

**
**

3. Which program prints the following output?

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

a. i = 1
while i <= 4:

while j <= 4:
print(i * j, end = ' ')
j += 1

print()

130 5 • Loops

Access for free at openstax.org

i += 1
b. i = 1

while i <= 4:
j = 1
while j <= 4:

print(i * j, end = ' ')
j += 1

print()
i += 1

c. i = 1
while i <= 4:

j = 1
while j <= 4:

print(i * j, end = ' ')
j += 1

i += 1

Nested for loops
A nested for loop can be implemented and used in the same way as a nested while loop. A for loop is a
preferable option in cases where a loop is used for counting purposes using a range() function, or when
iterating over a container object, including nested situations. Ex: Iterating over multiple course rosters. The
outer loop iterates over different courses, and the inner loop iterates over the names in each course roster.

CHECKPOINT

Nested for loops

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-3-nested-loops)

CONCEPTS IN PRACTICE

Nested loop practices

4. Given the following code, how many times does the outer loop execute?

for i in range(3):
for j in range(4):

print(i, ' ', j)

a. 3
b. 4
c. 12

5. Given the following code, how many times does the inner loop execute?

for i in range(3):

5.3 • Nested loops 131

https://openstax.org/books/introduction-python-programming/pages/5-3-nested-loops
https://openstax.org/books/introduction-python-programming/pages/5-3-nested-loops

for j in range(4):
print(i, ' ', j)

a. 4
b. 12
c. 20

6. Which program prints the following output?

0 1 2 3
0 2 4 6
0 3 6 9

a. for i in range(4):
for j in range(4):

print(i * j, end = ' ')
print()

b. for i in range(1, 4):
for j in range(4):

print(i * j)
c. for i in range(1, 4):

for j in range(4):
print(i * j, end = ' ')

print()

MIXED LOOPS

The two for and while loop constructs can also be mixed in a nested loop construct. Ex: Printing even
numbers less than a given number in a list. The outer loop can be implemented using a for loop iterating
over the provided list, and the inner loop iterates over all even numbers less than a given number from the
list using a while loop.

numbers = [12, 5, 3]

i = 0
for n in numbers:

while i < n:
print (i, end = " ")
i += 2

i = 0
print()

132 5 • Loops

Access for free at openstax.org

TRY IT

Printing a triangle of numbers

Write a program that prints the following output:

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7
1 2 3 4 5 6
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

Finish!

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-3-nested-loops)

TRY IT

Printing two triangles

Write a program that prints the following output using nested while and for loops:

**
*
++++
+++
++
+

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-3-nested-loops)

5.4 Break and continue

Learning objectives
By the end of this section you should be able to

• Analyze a loop's execution with break and continue statements.
• Use break and continue control statements in while and for loops.

5.4 • Break and continue 133

https://openstax.org/books/introduction-python-programming/pages/5-3-nested-loops
https://openstax.org/books/introduction-python-programming/pages/5-3-nested-loops
https://openstax.org/books/introduction-python-programming/pages/5-3-nested-loops
https://openstax.org/books/introduction-python-programming/pages/5-3-nested-loops

Break
A break statement is used within a for or a while loop to allow the program execution to exit the loop once a
given condition is triggered. A break statement can be used to improve runtime efficiency when further loop
execution is not required.

Ex: A loop that looks for the character "a" in a given string called user_string. The loop below is a regular
for loop for going through all the characters of user_string. If the character is found, the break statement
takes execution out of the for loop. Since the task has been accomplished, the rest of the for loop execution
is bypassed.

user_string = "This is a string."
for i in range(len(user_string)):

if user_string[i] == 'a':
print("Found at index:", i)
break

CHECKPOINT

Break statement in a while loop

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-4-break-and-continue)

INFINITE LOOP

A break statement is an essential part of a loop that does not have a termination condition. A loop without
a termination condition is known as an infinite loop. Ex: An infinite loop that counts up starting from 1 and
prints the counter's value while the counter's value is less than 10. A break condition is triggered when the
counter's value is equal to 10, and hence the program execution exits.

counter = 1
while True:

if counter >= 10:
break

print(counter)
counter += 1

CONCEPTS IN PRACTICE

Using a break statement

1. What is the following code's output?

134 5 • Loops

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/5-4-break-and-continue
https://openstax.org/books/introduction-python-programming/pages/5-4-break-and-continue

string_val = "Hello World"
for c in string_val:

if c == " ":
break

print(c)

a. Hello
b. Hello World
c. H

e
l
l
o

2. Given the following code, how many times does the print statement get executed?

i = 1
while True:

if i%3 == 0 and i%5 == 0:
print(i)
break

i += 1

a. 0
b. 1
c. 15

3. What is the final value of i?

i = 1
count = 0
while True:

if i%2 == 0 or i%3 == 0:
count += 1

if count >= 5:
print(i)
break

i += 1

a. 5
b. 8
c. 30

Continue
A continue statement allows for skipping the execution of the remainder of the loop without exiting the loop
entirely. A continue statement can be used in a for or a while loop. After the continue statement's
execution, the loop expression will be evaluated again and the loop will continue from the loop's expression. A
continue statement facilitates the loop's control and readability.

5.4 • Break and continue 135

CHECKPOINT

Continue statement in a while loop

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-4-break-and-continue)

CONCEPTS IN PRACTICE

Using a continue statement

4. Given the following code, how many times does the print statement get executed?

i = 10
while i >= 0:

i -= 1
if i%3 != 0:

continue
print(i)

a. 3
b. 4
c. 11

5. What is the following code's output?

for c in "hi Ali":
if c == " ":

continue
print(c)

a. h
i

A
l
i

b. h
i
A
l
i

c. hi
Ali

136 5 • Loops

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/5-4-break-and-continue
https://openstax.org/books/introduction-python-programming/pages/5-4-break-and-continue

TRY IT

Using break control statement in a loop

Write a program that reads a string value and prints "Found" if the string contains a space character. Else,
prints "Not found".

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-4-break-and-continue)

TRY IT

Using a continue statement in a loop

Complete the following code so that the program calculates the sum of all the numbers in list my_list that
are greater than or equal to 5.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-4-break-and-continue)

5.5 Loop else

Learning objectives
By the end of this section you should be able to

• Use loop else statement to identify when the loop execution is interrupted using a break statement.
• Implement a loop else statement with a for or a while loop.

Loop else
A loop else statement runs after the loop's execution is completed without being interrupted by a break
statement. A loop else is used to identify if the loop is terminated normally or the execution is interrupted by
a break statement.

Ex: A for loop that iterates over a list of numbers to find if the value 10 is in the list. In each iteration, if 10 is
observed, the statement "Found 10!" is printed and the execution can terminate using a break statement. If
10 is not in the list, the loop terminates when all integers in the list are evaluated, and hence the else
statement will run and print "10 is not in the list." Alternatively, a Boolean variable can be used to
track whether number 10 is found after loop's execution terminates.

EXAMPLE 5.4

Finding the number 10 in a list

In the code examples below, the code on the left prints "Found 10!" if the variable i's value is 10. If the
value 10 is not in the list, the code prints "10 is not in the list.". The code on the right uses the
seen Boolean variable to track if the value 10 is in the list. After loop's execution, if seen's value is still false,

5.5 • Loop else 137

https://openstax.org/books/introduction-python-programming/pages/5-4-break-and-continue
https://openstax.org/books/introduction-python-programming/pages/5-4-break-and-continue
https://openstax.org/books/introduction-python-programming/pages/5-4-break-and-continue
https://openstax.org/books/introduction-python-programming/pages/5-4-break-and-continue

the code prints "10 is not in the list.".

numbers = [2, 5, 7, 11, 12]
for i in numbers:

if i == 10:
print("Found 10!")
break

else:
print("10 is not in the list.")

numbers = [2, 5, 7, 11, 12]
seen = False
for i in numbers:

if i == 10:
print("Found 10!")
seen = True

if seen == False:
print("10 is not in the list.")

Table 5.3

CHECKPOINT

Loop else template

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/5-5-loop-
else)

CONCEPTS IN PRACTICE

Loop else practices

1. What is the output?

n = 16
exp = 0
i = n
while i > 1:

if n%2 == 0:
i = i/2
exp += 1

else:
break

else:
print(n,"is 2 to the", exp)

a. 16 is 2 to the 3
b. 16 is 2 to the 4
c. no output

2. What is the output?

138 5 • Loops

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/5-5-loop-else
https://openstax.org/books/introduction-python-programming/pages/5-5-loop-else

n = 7
exp = 0
i = n
while i > 1:

if n%2 == 0:
i = i//2
exp += 1

else:
break

else:
print(n,"is 2 to the", exp)

a. no output
b. 7 is 2 to the 3
c. 7 is 2 to the 2

3. What is the output?

numbers = [1, 2, 2, 6]
for i in numbers:

if i >= 5:
print("Not all numbers are less than 5.")
break

else:
print(i)
continue

else:
print("all numbers are less than 5.")

a. 1
2
2
6
Not all numbers are less than 5.

b. 1
2
2
Not all numbers are less than 5.

c. 1
2
2
6
all numbers are less than 5.

5.5 • Loop else 139

TRY IT

Sum of values less than 10

Write a program that, given a list, calculates the sum of all integer values less than 10. If a value greater
than or equal to 10 is in the list, no output should be printed. Test the code for different values in the list.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-5-loop-else)

5.6 Chapter summary

Highlights from this chapter include:

• A while loop runs a set of statements, known as the loop body, while a given condition, known as the
loop expression, is true.

• A for loop can be used to iterate over elements of a container object.
• A range() function generates a sequence of integers between the two numbers given a step size.
• A nested loop has one or more loops within the body of another loop.
• A break statement is used within a for or a while loop to allow the program execution to exit the loop

once a given condition is triggered.
• A continue statement allows for skipping the execution of the remainder of the loop without exiting the

loop entirely.
• A loop else statement runs after the loop's execution is completed without being interrupted by a break

statement.

At this point, you should be able to write programs with loop constructs. The programming practice below ties
together most topics presented in the chapter.

Function Description

range(end) Generates a sequence beginning at 0 until end with step size of 1.

range(start, end) Generates a sequence beginning at start until end with step size of 1.

range(start, end, s) Generates a sequence beginning at start until end with the step size of s.

Loop constructs Description

Table 5.4 Chapter 5 reference.

140 5 • Loops

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/5-5-loop-else
https://openstax.org/books/introduction-python-programming/pages/5-5-loop-else

Function Description

while loop

initialization
while expression:

loop body

statements after the loop

for loop

initialization
for loop_variable in container:

loop body

statements after the loop

Nested while loop

while outer_loop_expression:
outer loop body (1)
while inner_loop_expression:

inner loop body
outer loop body (2)

statements after the loop

break statement

initialization
while loop_expression:

loop body
if break_condition:

break
remaining body of loop

statements after the loop

Table 5.4 Chapter 5 reference.

5.6 • Chapter summary 141

Function Description

continue statement

initialization
while loop_expression:

loop body
if continue_condition:

continue
remaining body of loop

statements after the loop

Loop else statement

initialization
for loop_expression:

loop body
if break_condition:

break
remaining body of loop

else:
loop else statement

statements after the loop

Table 5.4 Chapter 5 reference.

TRY IT

Prime numbers

Write a program that takes in a positive integer number (N) and prints out the first N prime numbers on
separate lines.

Note: A prime number is a number that is not divisible by any positive number larger than 1. To check
whether a number is prime, the condition of number % i != 0 can be checked for i greater than 1 and
less than number.

Ex: if N = 6, the output is:

2
3
5
7

142 5 • Loops

Access for free at openstax.org

11
13

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
5-6-chapter-summary)

5.6 • Chapter summary 143

https://openstax.org/books/introduction-python-programming/pages/5-6-chapter-summary
https://openstax.org/books/introduction-python-programming/pages/5-6-chapter-summary

144 5 • Loops

Access for free at openstax.org

Figure 6.1 credit: modification of work "IMG_3037", by Jay Roc/Flickr, Public Domain

Chapter Outline
6.1 Defining functions
6.2 Control flow
6.3 Variable scope
6.4 Parameters
6.5 Return values
6.6 Keyword arguments
6.7 Chapter summary

Introduction
Functions are the next step toward creating optimized code as a software developer. If the same block of code
is reused repeatedly, a function allows the programmer to write the block of code once, name the block, and
use the code as many times as needed by calling the block by name. Functions can read in values and return
values to perform tasks, including complex calculations.

Like branching statements discussed in the Decisions chapter, functions allow different paths of execution
through a program, and this chapter discusses control flow and the scope of variables in more detail.

6.1 Defining functions

Learning objectives
By the end of this section you should be able to

• Identify function calls in a program.
• Define a parameterless function that outputs strings.
• Describe benefits of using functions.

Functions
6

Calling a function
Throughout the book, functions have been called to perform tasks. Ex: print() prints values, and sqrt()
calculates the square root. A function is a named, reusable block of code that performs a task when called.

CHECKPOINT

Example: Simple math program

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-1-defining-functions)

CONCEPTS IN PRACTICE

Identifying function calls

1. Which line has a function call?

1 input_num = 14
2 offset_num = input_num - 10
3 print(offset_num)

a. line 1
b. line 2
c. line 3

2. How many times is print() called?

print("Please log in")
username = input("Username:")
password = input("Password:")
print("Login successful")
print("Welcome,", username)

a. 1
b. 3
c. 5

3. How many function calls are there?

Use float() to convert input for area calculation
width = float(input("Enter width:"))
height = float(input("Enter height:"))
print("Area is", width*height)

a. 3
b. 5
c. 6

146 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-1-defining-functions
https://openstax.org/books/introduction-python-programming/pages/6-1-defining-functions

Defining a function
A function is defined using the def keyword. The first line contains def followed by the function name (in
snake case), parentheses (with any parameters—discussed later), and a colon. The indented body begins with
a documentation string describing the function's task and contains the function statements. A function must
be defined before the function is called.

CHECKPOINT

Example: Welcome message function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-1-defining-functions)

CONCEPTS IN PRACTICE

Defining functions

4. What's wrong with the first line of the function definition?

def water_plant:

a. A docstring should go after the colon.
b. Parentheses should go after water_plant.
c. def should be define before water_plant.

5. What is the output?

def print_phone_num():
print("Phone: (", 864, ")", 555, "-", 0199)

print("User info:")
print_phone_num()

a. Phone: (864) 555 - 1000
User info:
Phone: (864) 555 - 1000

b. User info:
c. User info:

Phone: (864) 555 - 1000

6. Which statement calls a function named print_pc_specs()?
a. print_pc_specs
b. print_pc_specs()
c. print_pc_specs():

7. Which is an appropriate name for a function that calculates a user's taxes?
a. calc_tax
b. calculate user tax
c. c_t

6.1 • Defining functions 147

https://openstax.org/books/introduction-python-programming/pages/6-1-defining-functions
https://openstax.org/books/introduction-python-programming/pages/6-1-defining-functions

Benefits of functions
A function promotes modularity by putting code statements related to a single task in a separate group. The
body of a function can be executed repeatedly with multiple function calls, so a function promotes reusability.
Modular, reusable code is easier to modify and is shareable among programmers to avoid reinventing the
wheel.

CHECKPOINT

Improving a program with a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-1-defining-functions)

CONCEPTS IN PRACTICE

Improving programs with functions

Consider the code above.

8. If the points were changed from floats to integers, how many statements would need to be changed in
the original and revised programs respectively?
a. 3, 1
b. 4, 4
c. 12, 4

9. How many times can calc_distance() be called?
a. 1
b. 3
c. many

TRY IT

Cinema concession stand

Write a function, concessions(), that prints the food and drink options at a cinema.

Given:

concessions()

The output is:

Food/Drink Options:
Popcorn: $8-10
Candy: $3-5
Soft drink: $5-7

148 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-1-defining-functions
https://openstax.org/books/introduction-python-programming/pages/6-1-defining-functions

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-1-defining-functions)

TRY IT

Terms and conditions prompt

Write a function, terms(), that asks the user to accept the terms and conditions, reads in Y/N, and outputs
a response. In the main program, read in the number of users and call terms() for each user.

Given inputs 1 and "Y", the output is:

Do you accept the terms and conditions?
Y
Thank you for accepting.

Given inputs 2, "N", and "Y", the output is:

Do you accept the terms and conditions?
N
Have a good day.
Do you accept the terms and conditions?
Y
Thank you for accepting.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-1-defining-functions)

6.2 Control flow

Learning objectives
By the end of this section you should be able to

• Identify the control flow of a program.
• Describe how control flow moves between statements and function calls.

Control flow and functions
Control flow is the sequence of program execution. A program's control flow begins at the main program but
rarely follows a strict sequence. Ex: Control flow skips over lines when a conditional statement isn't executed.

When execution reaches a function call, control flow moves to where the function is defined and executes the
function statements. Then, control flow moves back to where the function was called and continues the
sequence.

6.2 • Control flow 149

https://openstax.org/books/introduction-python-programming/pages/6-1-defining-functions
https://openstax.org/books/introduction-python-programming/pages/6-1-defining-functions
https://openstax.org/books/introduction-python-programming/pages/6-1-defining-functions
https://openstax.org/books/introduction-python-programming/pages/6-1-defining-functions

CHECKPOINT

Calling a brunch menu function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-2-control-flow)

CONCEPTS IN PRACTICE

Following the control flow

1. Which line is executed first?

1 def park_greet():
2 """Output greeting."""
3 print("Welcome. Open sunrise to sunset.")
4
5 car_count = 1
6 park_greet()
7 if car_count > 50:
8 # Direct to extra parking lot

a. 1
b. 3
c. 5

2. Control flow moves to line 9, and park_greet() is called. Which line does control flow move to next?

1 def extra_lot():
2 # Function definition
3
4 def park_greet():
5 """Output greeting."""
6 print("Welcome. Open sunrise to sunset.")
7
8 car_count = 1
9 park_greet()

10 if car_count > 50:
11 extra_lot()

a. 1
b. 4
c. 10

3. Control flow moves to line 12, and extra_lot() is called. Which line does control flow move to after
line 3 is executed?

1 def extra_lot():
2 """Output extra parking lot info."""

150 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-2-control-flow
https://openstax.org/books/introduction-python-programming/pages/6-2-control-flow

3 print("Take the second right to park.")
4
5 def park_greet():
6 """Output greeting."""
7 print("Welcome. Open sunrise to sunset.")
8
9 car_count = 1

10 park_greet()
11 if car_count > 50:
12 extra_lot()

a. 5
b. 8
c. 12

4. What is the output?

def park_greet():
"""Output greeting."""
print("Welcome to the park")

print("Open sunrise to sunset")

park_greet()

a. Welcome to the park
b. Welcome to the park

Open sunrise to sunset
c. Open sunrise to sunset

Welcome to the park

Functions calling functions
Functions frequently call other functions to keep the modularity of each function performing one task. Ex: A
function that calculates an order total may call a function that calculates sales tax. When a function called from
another function finishes execution, control flow returns to the calling function.

CHECKPOINT

Example: Book club email messages

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-2-control-flow)

CONCEPTS IN PRACTICE

Functions calling functions

Consider the book club example above.

6.2 • Control flow 151

https://openstax.org/books/introduction-python-programming/pages/6-2-control-flow
https://openstax.org/books/introduction-python-programming/pages/6-2-control-flow

5. How many function calls occur during the execution of the program?
a. 2
b. 3
c. 6

6. When line 3 is reached and executed, which line does control flow return to?
a. 1
b. 11
c. 16

TRY IT

Updated terms and conditions prompt

Write an updated function, terms(), that asks the user to accept the terms and conditions, reads in Y/N,
and outputs a response by calling accepted() or rejected(). accepted() prints "Thank you for
accepting the terms." and rejected() prints "You have rejected the terms. Thank you.".

Given inputs 2, "Y" and "N", the output is:

Do you accept the terms and conditions?
Y
Thank you for accepting the terms.

Given a function call to terms() and input "N", the output is:

Do you accept the terms and conditions?
N
You have rejected the terms. Thank you.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-2-control-flow)

TRY IT

Laundromat information

Write a program that uses three functions to print information about a laundromat, Liam's Laundry:

• laundromat_info(): Prints the name, Liam's Laundry, and hours of operation, 7a - 11p, and calls
washers_open() and dryers_open()

• washers_open(): Reads an integer, assigns washer_count with the value, and prints washer_count
• dryers_open(): Reads an integer, assigns dryer_count with the value, and prints dryer_count

The main program should just call laundromat_info().

152 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-2-control-flow
https://openstax.org/books/introduction-python-programming/pages/6-2-control-flow

Given inputs 50 and 40, the output is:

Liam's Laundry
7a - 11p
Open washers: 50
Open dryers: 40

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-2-control-flow)

6.3 Variable scope

Learning objectives
By the end of this section you should be able to

• Identify the scope of a program's variables.
• Discuss the impact of a variable's scope.

Global scope
A variable's scope is the part of a program where the variable can be accessed. A variable created outside of a
function has global scope and can be accessed anywhere in the program. A Python program begins in global
scope, and the global scope lasts for the entire program execution.

CHECKPOINT

Global variables in a program with a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-3-variable-scope)

CONCEPTS IN PRACTICE

Global variables

1. Which variables are global?

num = float(input())
num_sq = num * num
print(num, "squared is", num_sq)

a. num only
b. num_sq only
c. num and num_sq

2. Which variables have global scope?

def print_square():

6.3 • Variable scope 153

https://openstax.org/books/introduction-python-programming/pages/6-2-control-flow
https://openstax.org/books/introduction-python-programming/pages/6-2-control-flow
https://openstax.org/books/introduction-python-programming/pages/6-3-variable-scope
https://openstax.org/books/introduction-python-programming/pages/6-3-variable-scope

num_sq = num * num
print(num, "squared is", num_sq)

num = float(input())
print_square()

a. num only
b. num_sq only
c. num and num_sq

3. Which functions can access num?

def print_double():
num_d = num * 2
print(num, "doubled is", num_d)

def print_square():
num_sq = num * num
print(num, "squared is", num_sq)

num = float(input())
print_double()
print_square()

a. print_double()
b. print_square()
c. print_double() and print_square()

Local scope
A variable created within a function has local scope and only exists within the function. A local variable cannot
be accessed outside of the function in which the variable was created. After a function finishes executing, the
function's local variables no longer exist.

CHECKPOINT

Global and local variables in a program with a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-3-variable-scope)

CONCEPTS IN PRACTICE

Local variables

4. Which variables are local?

154 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-3-variable-scope
https://openstax.org/books/introduction-python-programming/pages/6-3-variable-scope

def print_time():
out_str = "Time is " + str(hour) + ":" + str(min)
print(out_str)

hour = int(input())
min = int(input())
print_time()

a. hour and min
b. out_str
c. hour, min, and out_str

5. Which variables are local?

def print_greeting():
print(out_str)

hour = int(input())
min = int(input())
if hour < 12:

out_str = "Good morning"
else:

out_str = "Good day"
print_greeting()

a. hour and min
b. out_str
c. none

6. Which functions directly access out_str?

def print_greeting():
print("Good day,")
print_time()

def print_time():
out_str = "Time is " + str(hour) + ":" + str(min)
print(out_str)

hour = int(input())
min = int(input())
print_greeting()

a. print_greeting()
b. print_time()
c. print_greeting() and print_time()

6.3 • Variable scope 155

Using local and global variables together
Python allows global and local variables to have the same name, which can lead to unexpected program
behavior. A function treats a variable edited within the function as a local variable unless told otherwise. To edit
a global variable inside a function, the variable must be declared with the global keyword.

CHECKPOINT

Editing global variables in a program with a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-3-variable-scope)

CONCEPTS IN PRACTICE

Using both local and global variables

Consider the following variations on the example program with the input 9.

7. What is the output?

def update_hour():
tmp = hour
if is_dst:

tmp += 1
else:

tmp -= 1

is_dst = True
hour = int(input("Enter hour: "))
update_hour()
print("New hour:", hour)

a. New hour: 9
b. New hour: 10
c. Error

8. What is the output?

def update_hour():
new_hour = hour
if is_dst:

new_hour += 1
else:

new_hour -= 1

is_dst = True
hour = int(input("Enter hour: "))
update_hour()
print("New hour:", new_hour)

156 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-3-variable-scope
https://openstax.org/books/introduction-python-programming/pages/6-3-variable-scope

a. New hour: 9
b. New hour: 10
c. Error

9. What is the output?

Enter hour: "))
update_hour()
print("New hour:", new_hour)
def update_hour():

global new_hour
new_hour = hour
if is_dst:

new_hour += 1
else:

new_hour -= 1

is_dst = True
hour = int(input("Enter hour: "))
update_hour()
print("New hour:", new_hour)

a. New hour: 9
b. New hour: 10
c. Error

BENEFITS OF LIMITING SCOPE

A programmer might ask, "Why not just make all variables global variables to avoid access errors?" Making
every variable global can make a program messy. Ex: A programmer debugging a large program discovers
a variable has the wrong value. If the whole program can modify the variable, then the bug could be
anywhere in the large program. Limiting a variable's scope to only what's necessary and restricting global
variable use make a program easier to debug, maintain, and update.

TRY IT

Battle royale game launch

Write a program that reads in a selected game mode and calls one of two functions to launch the game. If
the input is "br", call battle_royale(). Otherwise, call practice().

battle_royale():

• Reads in the number of players.
• Computes the number of teammates still needed. A full team is 3 players.
• Calls the function find_teammates() with the calculated number.
• Prints "Match starting . . .".

6.3 • Variable scope 157

practice():

• Reads in a string representing the desired map.
• Prints "Launching practice on [desired map]".

Note: find_teammates() is provided and does not need to be edited.

Given input:

br
1

The output is:

Finding 2 players...
Match starting...

Given input:

p
Queen's Canyon

The output is:

Launching practice on Queen's Canyon

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-3-variable-scope)

6.4 Parameters

Learning objectives
By the end of this section you should be able to

• Identify a function's arguments and parameters.
• Describe how mutability affects how a function can modify arguments.

Arguments and parameters
What if a programmer wants to write a function that prints the contents of a list? Good practice is to pass
values directly to a function rather than relying on global variables. A function argument is a value passed as
input during a function call. A function parameter is a variable representing the input in the function
definition. Note: The terms "argument" and "parameter" are sometimes used interchangeably in conversation
and documentation.

158 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-3-variable-scope
https://openstax.org/books/introduction-python-programming/pages/6-3-variable-scope

CHECKPOINT

Global and local variables in a program with a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-4-parameters)

CONCEPTS IN PRACTICE

Arguments and parameters

Consider the following:

1 def print_welcome(name):
2 print(f"Welcome {name}!")
3
4 username = int(input("Enter new username: "))
5 print_welcome(username)

1. Which is an argument?
a. name
b. username
c. name and username

2. Which is a parameter?
a. name
b. username
c. name and username

3. What is the scope of name?
a. print_welcome() only
b. whole program

4. What would happen if username was changed to name on lines 4 and 5?
a. same output
b. error/wrong output

Multiple arguments and parameters
Functions can have multiple parameters. Ex: A function uses two parameters, length and width, to compute
the square footage of a room. Function calls must use the correct order and number of arguments to avoid
undesired behavior and errors (unless using optional or keyword arguments as discussed later).

EXAMPLE 6.1

Using multiple arguments in a function call

6.4 • Parameters 159

https://openstax.org/books/introduction-python-programming/pages/6-4-parameters
https://openstax.org/books/introduction-python-programming/pages/6-4-parameters

def print_div(op_1, op_2):
""" Prints division operation """
print(f"{op_1}/{op_2} = {op_1/op_2}")

num_1 = 6
num_2 = 3
print_div(num_1, num_2) # Prints "6/3 = 2.0"
print_div(num_2, num_1) # Prints "3/6 = 0.5"
print_div(num_1) # Error: Missing argument: op_2

CONCEPTS IN PRACTICE

Multiple arguments and parameters

Consider the following:

def calc_distance(x1, y1, x2, y2):
dist = math.sqrt((x2-x1)**2 + (y2-y1)**2)
print(dist)

p1_x =int(input("Enter point 1's x: "))
p1_y =int(input("Enter point 1's y: "))
p2_x =int(input("Enter point 2's x: "))
p2_y =int(input("Enter point 2's y: "))
calc_distance(p1_x, p1_y, p2_x, p2_y)

5. Which is an argument?
a. p1_x
b. x1

6. Which is a parameter?
a. p1_y
b. y1

7. What would be the value of x2 for the function call, calc_distance(2, 4, 3, 6)?
a. 2
b. 4
c. 3
d. 6
e. Error

Modifying arguments and mutability
In Python, a variable is a name that refers to an object stored in memory, aka an object reference, so Python

160 6 • Functions

Access for free at openstax.org

uses a pass-by-object-reference system. If an argument is changed in a function, the changes are kept or lost
depending on the object's mutability. A mutable object can be modified after creation. A function's changes to
the object then appear outside the function. An immutable object cannot be modified after creation. So a
function must make a local copy to modify, and the local copy's changes don't appear outside the function.

Programmers should be cautious of modifying function arguments as these side effects can make programs
difficult to debug and maintain.

EXAMPLE 6.2

Converting temperatures

What are the values of weekend_temps and type after convert_temps() finishes?

def convert_temps(temps, unit):
if unit == "F":

for i in range(len(temps)):
temps[i] = (temps[i]-32) * 5/9

unit = "C"
else:

for i in range(len(temps)):
temps[i] = (temps[i]*9/5) + 32

unit = "F"

Weekend temperatures in Fahrenheit.
wknd_temps = [49.0, 51.0, 44.0]
deg_sign = u"\N{DEGREE SIGN}" # Unicode
metric = "F"

Convert from Fahrenheit to Celsius.
convert_temps(wknd_temps, metric)
for temp in wknd_temps:

print(f"{temp:.2f}{deg_sign}{metric}", end=" ")

The output is 9.44°F 10.56°F 6.67°F. type was changed to "C" in the function but didn't keep the
change outside of the function. Why is the list argument change kept and not the string argument change?
(Hint: A list is mutable. A string is immutable.)

CHECKPOINT

Exploring a faulty function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-4-parameters)

6.4 • Parameters 161

https://openstax.org/books/introduction-python-programming/pages/6-4-parameters
https://openstax.org/books/introduction-python-programming/pages/6-4-parameters

CONCEPTS IN PRACTICE

Mutability and function arguments

8. In convert_temps(), wknd_temps and temps refer to ________ in memory.
a. the same object
b. different objects

9. After unit is assigned with "C", metric and unit refer to ________ in memory.
a. the same object
b. different objects

10. deg_sign is a string whose value cannot change once created. deg_sign is ________.
a. immutable
b. mutable

11. On line 16, unit ________.
a. refers to an object with the value "C"
b. does not exist

TRY IT

Printing right triangle area

Write a function, print_area(), that takes in the base and height of a right triangle and prints the
triangle's area. The area of a right triangle is , where b is the base and h is the height.

Given input:

3
4

The output is:

Triangle area: 6.0

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-4-parameters)

TRY IT

Curving scores

Write a function, print_scores(), that takes in a list of test scores and a number representing how many

162 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-4-parameters
https://openstax.org/books/introduction-python-programming/pages/6-4-parameters

points to add. For each score, print the original score and the sum of the score and bonus. Make sure not to
change the list.

Given function call:

print_scores([67, 68, 72, 71, 69], 10)

The output is:

67 would be updated to 77
68 would be updated to 78
72 would be updated to 82
71 would be updated to 81
69 would be updated to 79

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-4-parameters)

6.5 Return values

Learning objectives
By the end of this section you should be able to

• Identify a function's return value.
• Employ return statements in functions to return values.

Returning from a function
When a function finishes, the function returns and provides a result to the calling code. A return statement
finishes the function execution and can specify a value to return to the function's caller. Functions introduced
so far have not had a return statement, which is the same as returning None, representing no value.

CHECKPOINT

Returning a value from a function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-5-return-values)

CONCEPTS IN PRACTICE

Using return statements

1. What is returned by calc_mpg(miles, gallons)?

def calc_mpg(miles, gallons):

6.5 • Return values 163

https://openstax.org/books/introduction-python-programming/pages/6-4-parameters
https://openstax.org/books/introduction-python-programming/pages/6-4-parameters
https://openstax.org/books/introduction-python-programming/pages/6-5-return-values
https://openstax.org/books/introduction-python-programming/pages/6-5-return-values

mpg = miles/gallons
return mpg

a. mpg
b. None
c. Error

2. What is returned by calc_sqft()?

def calc_sqft(length, width):
sqft = length * width
return

a. sqft
b. None
c. Error

3. What is the difference between hw_1() and hw_2()?

def hw_1():
print("Hello world!")
return

def hw_2():
print("Hello world!")

a. hw_1() returns a string, hw_2() does not
b. hw_1() returns None, hw_2() does not
c. no difference

Using multiple return statements
Functions that have multiple execution paths may use multiple return statements. Ex: A function with an
if-else statement may have two return statements for each branch. Return statements always end the
function and return control flow to the calling code.

In the table below, calc_mpg() takes in miles driven and gallons of gas used and calculates a car's miles per
gallon. calc_mpg() checks if gallons is 0 (to avoid division by 0), and if so, returns -1, a value often used to

164 6 • Functions

Access for free at openstax.org

indicate a problem.

def calc_mpg(miles, gallons):
if gallons > 0:

mpg = miles/gallons
return mpg

else:
print("Gallons can't be 0")
return -1

car_1_mpg = calc_mpg(448, 16)
print("Car 1's mpg is", car_1_mpg)
car_2_mpg = calc_mpg(300, 0)
print("Car 2's mpg is", car_2_mpg)

Car 1's mpg is 28.0
Gallons can't be 0
Car 2's mpg is -1

Table 6.1 Calculating miles-per-gallon and checking for division by zero.

CONCEPTS IN PRACTICE

Multiple return statements

4. What does yarn_weight(3) return?

def yarn_weight(num):
if num == 0:

return "lace"
elif num == 1:

return "sock"
elif num == 2:

return "sport"
elif num == 3:

return "dk"
elif num == 4:

return "worsted"
elif num == 5:

return "bulky"
else:

return "super bulky"

a. "lace"
b. "dk"
c. "super bulky"

5. What is the output?

def inc_volume(level, max):

6.5 • Return values 165

if level < max:
return level
level += 1

else:
return level

vol1 = inc_volume(9, 10)
print(vol1)
vol2 = inc_volume(10, 10)
print(vol2)

a. 9
10

b. 10
10

c. 10
11

Using functions as values
Functions are objects that evaluate to values, so function calls can be used in expressions. A function call can
be combined with other function calls, variables, and literals as long as the return value is compatible with the
operation.

CHECKPOINT

Using function calls in expressions

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-5-return-values)

CONCEPTS IN PRACTICE

Using function values

6. What is the updated value of bill?

def tax(total):
return .06 * total

def auto_tip(total):
return .2 * total

bill = 100.0
bill += tax(bill) + auto_tip(bill)

a. 26.0

166 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-5-return-values
https://openstax.org/books/introduction-python-programming/pages/6-5-return-values

b. 126.0

7. What is the value of val2?

def sq(num):
return num * num

def offset(num):
return num - 2

val = 5
val2 = sq(offset(val))

a. 9
b. 23

TRY IT

Estimated days alive

Write a function, days_alive(), that takes in an age in years and outputs the estimated days the user has
been alive as an integer. Assume each year has 365.24 days. Use round(), which takes a number and
returns the nearest whole number.

Then write a main program that reads in a user's age and outputs the result of days_alive().

Given input:

21

The output is:

You have been alive about 7670 days.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-5-return-values)

TRY IT

Averaging lists

Write a function, avg_list(), that takes in a list and returns the average of the list values.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-5-return-values)

6.5 • Return values 167

https://openstax.org/books/introduction-python-programming/pages/6-5-return-values
https://openstax.org/books/introduction-python-programming/pages/6-5-return-values
https://openstax.org/books/introduction-python-programming/pages/6-5-return-values
https://openstax.org/books/introduction-python-programming/pages/6-5-return-values

6.6 Keyword arguments

Learning objectives
By the end of this section you should be able to

• Describe the difference between positional and keyword arguments.
• Create functions that use positional and keyword arguments and default parameter values.

Keyword arguments
So far, functions have been called using positional arguments, which are arguments that are assigned to
parameters in order. Python also allows keyword arguments, which are arguments that use parameter names
to assign values rather than order. When mixing positional and keyword arguments, positional arguments
must come first in the correct order, before any keyword arguments.

CHECKPOINT

Using keyword arguments

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-6-keyword-arguments)

CONCEPTS IN PRACTICE

Using keyword and positional arguments

Consider the following function:

def greeting(msg, name, count):
i = 0
for i in range(0, count):

print(msg, name)

1. Which is the positional argument in greeting(count=1, name="Ash", msg="Hiya")?
a. count=1
b. name="Ash"
c. msg="Hiya"
d. None

2. What is the output of greeting(count=2, name="Ash", msg="Hiya")?
a. Ash Hiya

Ash Hiya
b. Hiya Ash

Hiya Ash

3. Which is the positional argument in greeting("Welcome", count=1, name="Anita")?
a. "Welcome"
b. count=1

168 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-6-keyword-arguments
https://openstax.org/books/introduction-python-programming/pages/6-6-keyword-arguments

c. name="Anita"

4. Which function call would produce an error?
a. greeting("Morning", "Morgan", count=3)
b. greeting(count=1,"Hi", "Bea")
c. greeting("Cheers", "Colleagues", 10)

Default parameter values
Functions can define default parameter values to use if a positional or keyword argument is not provided for
the parameter. Ex: def season(m, d, hemi="N"): defines a default value of "N" for the hemi parameter.
Note: Default parameter values are only defined once to be used by the function, so mutable objects (such as
lists) should not be used as default values.

The physics example below calculates weight as a force in newtons given mass in kilograms and acceleration
in . Gravity on Earth is 9.8 , and gravity on Mars is 3.7 .

CHECKPOINT

Using default parameter values

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-6-keyword-arguments)

CONCEPTS IN PRACTICE

Using default parameter values

Consider the following updated version of greeting():

def greeting(msg, name="Friend", count=1):
i = 0
for i in range(0, count):

print(msg, name)

5. Which parameters have default values?
a. msg
b. name and count
c. all

6. Which function call is correct?
a. greeting()
b. greeting(name="Gina")
c. greeting("Greetings")

7. What is the output of greeting(count=0, msg="Hello")?

6.6 • Keyword arguments 169

https://openstax.org/books/introduction-python-programming/pages/6-6-keyword-arguments
https://openstax.org/books/introduction-python-programming/pages/6-6-keyword-arguments

a. Hello Friend
b. nothing
c. Error

PEP 8 RECOMMENDATIONS: SPACING

The PEP 8 style guide recommends no spaces around = when indicating keyword arguments and default
parameter values.

TRY IT

Stream donations

Write a function, donate(), that lets an online viewer send a donation to a streamer. donate() has three
parameters:

• amount: amount to donate, default value: 5
• name: donor's name, default value: "Anonymous"
• msg: donor's message, default value: ""

Given:

donate(10, "gg")

The output is:

Anonymous donated 10 credits: gg

Write function calls that use the default values along with positional and keyword arguments.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
6-6-keyword-arguments)

6.7 Chapter summary

Highlights from this chapter include:

• Functions are named blocks of code that perform tasks when called and make programs more organized
and optimized.

• Control flow is the sequence of program execution. Control flow moves between calling code and function
code when a function is called.

• Variable scope refers to where a variable can be accessed. Global variables can be accessed anywhere in a
program. Local variables are limited in scope, such as to a function.

• Parameters are function inputs defined with the function. Arguments are values passed to the function as

170 6 • Functions

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/6-6-keyword-arguments
https://openstax.org/books/introduction-python-programming/pages/6-6-keyword-arguments

input by the calling code. Parameters are assigned with the arguments' values.
• Function calls can use positional arguments to map values to parameters in order.
• Function calls can use keyword arguments to map values using parameter names in any order.
• Functions can define default parameter values to allow for optional arguments in function calls.
• Python uses a pass-by-object-reference system to assign parameters with the object values referenced by

the arguments.
• Functions can use return statements to return values back to the calling code.

At this point, you should be able to write functions that have any number of parameters and return a value,
and programs that call functions using keyword arguments and optional arguments.

Construct Description

Function definition
def function_name():

"""Docstring"""
Function body

Parameter def function_name(parameter_1):
Function body

Argument
def function_name(parameter_1):

Function body

function_name(argument_1)

Return statement
def function_name():

Function body
return result # Returns the value of result to the caller

Variables (scope)

def function_name(parameter_1):
Function body
local_var = parameter_1 * 5
return local_var

global_var = function_name(arg_1)

Table 6.2 Chapter 6 reference.

6.7 • Chapter summary 171

Construct Description

Keyword arguments
def function_name(parameter_1, parameter_2):

Function body

function_name(parameter_2 = 5, parameter_1 = 2)

Default parameter value def function_name(parameter_1 = 100):
Function body

Table 6.2 Chapter 6 reference.

172 6 • Functions

Access for free at openstax.org

Figure 7.1 credit: modification of work "Lone Pine Sunset", by Romain Guy/Flickr, Public Domain

Chapter Outline
7.1 Module basics
7.2 Importing names
7.3 Top-level code
7.4 The help function
7.5 Finding modules
7.6 Chapter summary

Introduction
As programs get longer and more complex, organizing the code into modules is helpful. This chapter shows
how to define, import, and find new modules. Python's standard library (https://openstax.org/r/100pythlibrary)
provides over 200 built-in modules (https://openstax.org/r/100200modules). Hundreds of thousands of other
modules (https://openstax.org/r/100pypi) are available online.

A module is a .py file containing function definitions and other statements. The module's name is the file's
name without the .py extension at the end. Ex: The following code, written in a file named greetings.py,
defines a module named greetings.

"""Functions that print standard greetings."""

def hello():
print("Hello!")

def bye():
print("Goodbye!")

Modules
7

https://openstax.org/r/100pythlibrary
https://openstax.org/r/100200modules
https://openstax.org/r/100pypi
https://openstax.org/r/100pypi

Technically, every program in this book is a module. But not every module is designed to run like a program.
Running greetings.py as a program would accomplish very little. Two functions would be defined, but the
functions would never be called. These functions are intended to be called in other modules.

7.1 Module basics

Learning objectives
By the end of this section you should be able to

• Write a module that consists only of function definitions.
• Import the module and use the functions in a program.

Defining a module
Modules are defined by putting code in a .py file. The area module below is in a file named area.py. This
module provides functions for calculating area.

EXAMPLE 7.1

The area module

"""Functions to calculate the area of geometric shapes."""

import math

2D shapes

def square(side):
"""Gets the area of a square."""
return side**2

def rectangle(length, width):
"""Gets the area of a rectangle."""
return length * width

def triangle(base, height):
"""Gets the area of a triangle."""
return 0.5 * base * height

def trapezoid(base1, base2, height):
"""Gets the area of a trapezoid."""
return 0.5 * (base1 + base2) * height

def circle(radius):
"""Gets the area of a circle."""
return math.pi * radius**2

def ellipse(major, minor):

174 7 • Modules

Access for free at openstax.org

"""Gets the area of an ellipse."""
return math.pi * major * minor

3D shapes

def cube(side):
"""Gets the surface area of a cube."""
return 6 * side**2

def cylinder(radius, height):
"""Gets the surface area of a cylinder."""
return 2 * math.pi * radius * (radius + height)

def cone(radius, height):
"""Gets the surface area of a cone."""
return math.pi * radius * (radius + math.hypot(height, radius))

def sphere(radius):
"""Gets the surface area of a sphere."""
return 4 * math.pi * radius**2

CONCEPTS IN PRACTICE

Defining a module

1. How many functions are defined in the area module?
a. 6
b. 10
c. 49

2. What would be the result of running area.py as a program?
a. Functions would be defined and ready to be called.
b. Nothing; the module has no statements to be run.
c. SyntaxError

3. What is the return value of cube(5)?
a. 60
b. 125
c. 150

Importing a module
The module defined in area.py can be used in other programs. When importing the area module, the suffix
.py is removed:

7.1 • Module basics 175

import area

print("Area of a basketball court:", area.rectangle(94, 50))
print("Area of a circus ring:", area.circle(21))

The output is:

Area of a basketball court: 4700
Area of a circus ring: 1385.4423602330987

CHECKPOINT

Importing area in a Python shell

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-1-module-basics)

CONCEPTS IN PRACTICE

Importing a module

4. What statement would import a module from a file named secret.py?
a. import secret
b. import secret.py
c. import "secret.py"

5. What code would return the area of a circle with a radius of 3 meters?
a. circle(3)
b. area.circle(3)
c. circle.area(3)

6. A programmer would like to write a function that calculates the area of a hexagon. Where should the
function be written?
a. the main program
b. the area module
c. the secret module

TRY IT

Conversion module

Write a module that defines the following functions:

1. cel2fah(c) –
Converts a temperature in Celsius to Fahrenheit.

176 7 • Modules

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/7-1-module-basics
https://openstax.org/books/introduction-python-programming/pages/7-1-module-basics

The formula is 9/5 * c + 32.
2. fah2cel(f) –

Converts a temperature in Fahrenheit to Celsius.
The formula is 5/9 * (f - 32).

3. km2mi(km) –
Converts a distance in kilometers to miles.
The formula is km / 1.60934.

4. mi2km(mi) –
Converts a distance in miles to kilometers.
The formula is mi * 1.60934.

Each function should include a docstring as the first line. A docstring for the module has been provided for
you.

The module should not do anything except define functions. When you click the "Run" button, the module
should run without error. No output should be displayed.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-1-module-basics)

TRY IT

European vacation

Write a program that uses the conversion module from the previous exercise to complete a short story.
The program's output should match the following example (input in bold):

How fast were you driving? 180
Woah, that's like 112 mph!
What was the temperature? 35
That's 95 degrees Fahrenheit!

Notice this exercise requires two files:

1. european.py, the main program. Input and output statements are provided as a starting point. Edit the
lines with TODO comments to use the conversion module.

2. conversion.py, the other module. Copy and paste your code from the previous exercise. Import this
module in european.py after the docstring.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-1-module-basics)

7.2 Importing names

Learning objectives
By the end of this section you should be able to

• Import functions from a module using the from keyword.
• Explain how to avoid a name collision when importing a module.

7.2 • Importing names 177

https://openstax.org/books/introduction-python-programming/pages/7-1-module-basics
https://openstax.org/books/introduction-python-programming/pages/7-1-module-basics
https://openstax.org/books/introduction-python-programming/pages/7-1-module-basics
https://openstax.org/books/introduction-python-programming/pages/7-1-module-basics

The from keyword
Specific functions in a module can be imported using the from keyword:

from area import triangle, cylinder

These functions can be called directly, without referring to the module:

print(triangle(1, 2))
print(cylinder(3, 4))

EXPLORING FURTHER

As shown below, the from keyword can lead to confusing names.

CHECKPOINT

Importing functions

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-2-importing-names)

CONCEPTS IN PRACTICE

The from keyword

1. Which import statement would be needed before running print(sqrt(25))?
a. from math import sqrt
b. import sqrt from math
c. import math

2. How many variables are defined by the statement from math import sin, cos, tan?
a. 0
b. 3
c. 4

3. What error would occur if attempting to call a function that was not imported?
a. ImportError
b. NameError
c. SyntaxError

Name collisions
Modules written by different programmers might use the same name for a function. A name collision occurs
when a function is defined multiple times. If a function is defined more than once, the most recent definition is

178 7 • Modules

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/7-2-importing-names
https://openstax.org/books/introduction-python-programming/pages/7-2-importing-names

used:

from area import cube

def cube(x): # Name collision (replaces the imported function)
return x ** 3

print(cube(2)) # Calls the local cube() function, not area.cube()

A programmer might not realize the cube function is defined twice because no error occurs when running the
program. Name collisions are not considered errors and often lead to unexpected behavior.

Care should be taken to avoid name collisions. Selecting specific functions from a module to import reduces
the memory footprint; however, importing a complete module can help to avoid collisions because a
module.name format would be used. This is a tradeoff the programmer must consider.

CHECKPOINT

Module and function names

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-2-importing-names)

CONCEPTS IN PRACTICE

Name collisions

4. A program begins with from area import square, circle. What code causes a name collision?
a. def area(phone):

"""Gets the area code of a phone number."""
b. def circle(x, y, size):

"""Draws a circle centered at (x, y)."""
c. def is_square(length, width):

"""Returns True if length and width are equal."""

5. A program begins with import area. What code causes a name collision?
a. area = 51
b. import cylinder from volume
c. def cube(size):

"""Generates a "size X size" rubik's cube."""

6. Which line will cause an error?

1 def hello():
2 print("Hello!")
3
4 def hello(name):
5 print("Hello,", name)

7.2 • Importing names 179

https://openstax.org/books/introduction-python-programming/pages/7-2-importing-names
https://openstax.org/books/introduction-python-programming/pages/7-2-importing-names

6
7 hello()
8 hello("Chris")

a. line 4
b. line 7
c. line 8

EXPLORING FURTHER

If a name is defined, imported, or assigned multiple times, Python uses the most recent definition. Other
languages allow multiple functions to have the same name if the parameters are different. This feature,
known as function overloading, is not part of the Python language.

TRY IT

Missing imports

Add the missing import statements to the top of the file. Do not make any changes to the rest of the code.
In the end, the program should run without errors.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-2-importing-names)

TRY IT

Party favors

The following program does not run correctly because of name collisions. Fix the program by modifying
import statements, function calls, and variable assignments. The output should be:

Bouncy ball area: 13
Bouncy ball volume: 4
Cone hat area: 227
Cone hat volume: 209

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-2-importing-names)

7.3 Top-level code

Learning objectives
By the end of this section you should be able to

180 7 • Modules

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/7-2-importing-names
https://openstax.org/books/introduction-python-programming/pages/7-2-importing-names
https://openstax.org/books/introduction-python-programming/pages/7-2-importing-names
https://openstax.org/books/introduction-python-programming/pages/7-2-importing-names

• Identify code that will run as a side effect of importing.
• Explain the purpose of if __name__ == "__main__".

Side effects
Modules define functions and constants to be used in other programs. When importing a module, all code in
the module is run from top to bottom. If a module is not designed carefully, unintended code might run as a
side effect. The unintended code is generally at the top level, outside of function definitions.

CHECKPOINT

Sphere test code

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/7-3-top-
level-code)

CONCEPTS IN PRACTICE

Side effects

1. Which line would cause a side effect when imported?

1 import math
2
3 print("Defining sphere function")
4
5 def sphere(radius):
6 """Gets the volume of a sphere."""
7 return 4/3 * math.pi * radius**3

a. line 1
b. line 3
c. line 5

2. The following volume.py module causes a side effect.

import math

def sphere(radius):
"""Gets the volume of a sphere."""
return 4/3 * math.pi * radius**3

for r in range(10000000):
volume = sphere(r)

a. true
b. false

3. The following greeting.py module causes a side effect.

name = input("What is your name? ")

7.3 • Top-level code 181

https://openstax.org/books/introduction-python-programming/pages/7-3-top-level-code
https://openstax.org/books/introduction-python-programming/pages/7-3-top-level-code

print(f"Nice to meet you, {name}!")
live = input("Where do you live? ")
print(f"{live} is a great place.")

a. true
b. false

Using __name__
Python modules often include the statement if __name__ == "__main__" to prevent side effects. This
statement is true when the module is run as a program and false when the module is imported.

CHECKPOINT

The main module

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/7-3-top-
level-code)

CONCEPTS IN PRACTICE

Using __name__

4. What is the output when running the following test.py module?

import math

print(math.__name__)
print(__name__)

a. >math
test

b. __main__
test

c. math
__main__

5. What is the output when importing the following test.py module?

import math

print(math.__name__)
print(__name__)

a. math
test

b. __main__
test

182 7 • Modules

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/7-3-top-level-code
https://openstax.org/books/introduction-python-programming/pages/7-3-top-level-code

c. math
__main__

6. What line is useful for preventing side effects when importing?
a. if __name__ == "main":
b. if __name__ == __main__:
c. if __name__ == "__main__":

EXPLORING FURTHER

Variables that begin and end with double underscores have special meaning in Python. Double underscores
are informally called "dunder" or "magic" variables. Other examples include __doc__ (the module's
docstring) and __file__ (the module's filename).

TRY IT

Side effects

This exercise is a continuation of the "Missing imports" exercise. Previously, you added missing import
statements to the top of the program. Now, modify the program to prevent side effects when importing the
program as a module:

1. Add if __name__ == "__main__" at the end.
2. Move all test code under that if statement.

The program should run without errors and produce the same output as before.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/7-3-top-
level-code)

TRY IT

Conversion test

This exercise is a continuation of the "Conversion module" exercise. Previously, you wrote the functions
cel2fah, fah2cel, km2mi, and mi2km. Write test code at the end of conversion.py (the original file) for
each of these functions. The test code must not run as a side effect when conversion is imported by other
programs. When running conversion.py as the main program, the test output should be:

0 C is 32 F
5 C is 41 F
10 C is 50 F
15 C is 59 F
20 C is 68 F

7.3 • Top-level code 183

https://openstax.org/books/introduction-python-programming/pages/7-3-top-level-code
https://openstax.org/books/introduction-python-programming/pages/7-3-top-level-code

20 F is -7 C
25 F is -4 C
30 F is -1 C
35 F is 2 C
40 F is 4 C

1 km is 0.6 mi
2 km is 1.2 mi
3 km is 1.9 mi
4 km is 2.5 mi
5 km is 3.1 mi

5 mi is 8.0 km
6 mi is 9.7 km
7 mi is 11.3 km
8 mi is 12.9 km
9 mi is 14.5 km

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/7-3-top-
level-code)

7.4 The help function

Learning objectives
By the end of this section you should be able to

• Use the help() function to explore a module's contents.
• Identify portions of code included in the documentation.

Colors on websites
This section introduces an example module for working with HTML colors (https://openstax.org/r/
100htmlcolors). HyperText Markup Language (HTML) is used to design websites and graphical applications.
Web browsers like Chrome and Safari read HTML and display the corresponding contents. Ex: The HTML code
<p style="color: Red">Look out!</p> represents a paragraph with red text.

HTML defines 140 standard color names (https://openstax.org/r/100colornames). Additional colors can be
specified using a hexadecimal format: #RRGGBB. The digits RR, GG, and BB represent the red, green, and blue
components of the color. Ex: #DC143C is 220 red + 20 green + 60 blue, which is the color Crimson.

Red, green, and blue values range from 0 to 255 (or 00 to FF in hexadecimal). Lower values specify darker
colors, and higher values specify lighter colors. Ex: #008000 is the color Green, and #00FF00 is the color Lime.

CHECKPOINT

HTML color codes

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/7-4-the-
help-function)

184 7 • Modules

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/7-3-top-level-code
https://openstax.org/books/introduction-python-programming/pages/7-3-top-level-code
https://openstax.org/r/100htmlcolors
https://openstax.org/r/100htmlcolors
https://openstax.org/r/100colornames
https://openstax.org/books/introduction-python-programming/pages/7-4-the-help-function
https://openstax.org/books/introduction-python-programming/pages/7-4-the-help-function

CONCEPTS IN PRACTICE

HTML color codes

1. What color is #000080?
a. maroon red
b. navy blue
c. olive green

2. What is 255 in hexadecimal?
a. 00
b. 80
c. FF

3. Which color is lighter?
a. #FFA500 (orange)
b. #008000 (green)

Example colors module
A module for working with HTML color codes would be helpful to graphic designers and web developers. The
following Python code is in a file named colors.py.

• Line 1 is the docstring for the module.
• Lines 3–16 assign variables for frequently used colors.
• Lines 18–24 define a function to be used within the module.
• Lines 26–45 define functions to be used in other modules.

Note: The tohex() and torgb() functions use Python features (string formatting and slicing) described later
in the book. For now, the documentation and comments are more important than the implementation details.

"""Functions for working with color names and hex/rgb values."""

Primary colors
RED = "#FF0000"
YELLOW = "#FFFF00"
BLUE = "#0000FF"

Secondary colors
ORANGE = "#FFA500"
GREEN = "#008000"
VIOLET = "#EE82EE"

Neutral colors
BLACK = "#000000"
GRAY = "#808080"
WHITE = "#FFFFFF"

def _tohex(value):

7.4 • The help function 185

"""Converts an integer to an 8-bit (2-digit) hexadecimal string."""
if value <= 0:

return "00"
if value >= 255:

return "FF"
return format(value, "02X")

def tohex(r, g, b):
"""Formats red, green, and blue integers as a color in hexadecimal."""
return "#" + _tohex(r) + _tohex(g) + _tohex(b)

def torgb(color):
"""Converts a color in hexadecimal to red, green, and blue integers."""
r = int(color[1:3], 16) # First 2 digits
g = int(color[3:5], 16) # Middle 2 digits
b = int(color[5:7], 16) # Last 2 digits
return r, g, b

def lighten(color):
"""Increases the red, green, and blue values of a color by 32 each."""
r, g, b = torgb(color)
return tohex(r+32, g+32, b+32)

def darken(color):
"""Decreases the red, green, and blue values of a color by 32 each."""
r, g, b = torgb(color)
return tohex(r-32, g-32, b-32)

CONCEPTS IN PRACTICE

The colors module

4. What are the components of the color YELLOW?
a. red=0, green=255, blue=255
b. red=255, green=255, blue=0
c. red=255, green=0, blue=255

5. What code would return a darker shade of blue?
a. darken(BLUE)
b. colors.darken(BLUE)
c. colors.darken(colors.BLUE)

6. What symbol indicates that a function is not intended to be called by other modules?
a. underscore (_)
b. number sign (#)
c. colon (:)

186 7 • Modules

Access for free at openstax.org

Module documentation
The built-in help() function provides a summary of a module's functions and data. Calling
help(module_name) in a shell is a convenient way to learn about a module.

EXAMPLE 7.2

Output of help(colors) in a shell

The documentation below is automatically generated from the docstrings in colors.py.

help(colors)

Help on module colors:

NAME
colors - Functions for working with color names and hex/rgb values.

FUNCTIONS
darken(color)

Decreases the red, green, and blue values of a color by 32 each.

lighten(color)
Increases the red, green, and blue values of a color by 32 each.

tohex(r, g, b)
Formats red, green, and blue integers as a color in hexadecimal.

torgb(color)
Converts a color in hexadecimal to red, green, and blue integers.

DATA
BLACK = '#000000'
BLUE = '#0000FF'
GRAY = '#808080'
GREEN = '#008000'
ORANGE = '#FFA500'
RED = '#FF0000'
VIOLET = '#EE82EE'
WHITE = '#FFFFFF'
YELLOW = '#FFFF00'

FILE
/home/student/Desktop/colors.py

>>> help(colors)

Help on module colors:

NAME

7.4 • The help function 187

colors - Functions for working with color names and hex/rgb values.

FUNCTIONS
darken(color)

Decreases the red, green, and blue values of a color by 32 each.

lighten(color)
Increases the red, green, and blue values of a color by 32 each.

tohex(r, g, b)
Formats red, green, and blue integers as a color in hexadecimal.

torgb(color)
Converts a color in hexadecimal to red, green, and blue integers.

DATA
BLACK = '#000000'
BLUE = '#0000FF'
GRAY = '#808080'
GREEN = '#008000'
ORANGE = '#FFA500'
RED = '#FF0000'
VIOLET = '#EE82EE'
WHITE = '#FFFFFF'
YELLOW = '#FFFF00'

FILE
/home/student/Desktop/colors.py

CONCEPTS IN PRACTICE

The help() function

7. The documentation includes comments from the source code.
a. true
b. false

8. In what order are the functions listed in the documentation?
a. alphabetical order
b. definition order
c. random order

9. Which function defined in colors.py is not included in the documentation?
a. _tohex
b. tohex

188 7 • Modules

Access for free at openstax.org

c. torgb

TRY IT

Help on modules

The random and statistics modules are useful for running scientific experiments. You can become
familiar with these two modules by skimming their documentation.

Open a Python shell on your computer, or use the one at python.org/shell (https://openstax.org/r/
100pythonshell). Type the following lines, one at a time, into the shell.

• import random
• help(random)
• import statistics
• help(statistics)

Many shell environments, including the one on python.org, display the output of help() one page at a
time. Use the navigation keys on the keyboard (up/down arrows, page up/down, home/end) to read the
documentation. When you are finished reading, press the Q key ("quit") to return to the Python shell.

TRY IT

Help on functions

The help() function can be called on specific functions in a module. Open a Python shell on your
computer, or use the one at python.org/shell (https://openstax.org/r/100pythonshell). Type the following
lines, one at a time, into the shell.

• import random
• help(random.randint)
• help(random.choice)
• import statistics
• help(statistics.median)
• help(statistics.mode)

Remember to use the navigation keys on the keyboard, and press the Q key ("quit") to return to the Python
shell.

7.5 Finding modules

Learning objectives
By the end of this section you should be able to

• Explain differences between the standard library and PyPI.
• Search python.org and pypi.org for modules of interest.

7.5 • Finding modules 189

https://openstax.org/r/100pythonshell
https://openstax.org/r/100pythonshell
https://openstax.org/r/100pythonshell

Built-in modules
The Python Standard Library is a collection of built-in functions and modules that support common
programming tasks. Ex: The math module provides functions like sqrt() and constants like pi. Python's
official documentation includes a library reference (https://openstax.org/r/100pythlibrary) and a module index
(https://openstax.org/r/100200modules) for becoming familiar with the standard library.

For decades, Python has maintained a "batteries included (https://openstax.org/r/100batteries)" philosophy.
This philosophy means that the standard library should come with everything most programmers need. In
fact, the standard library includes over 200 built-in modules!

Module Description

calendar General calendar-related functions.

datetime Basic date and time types and functions.

email Generate and process email messages.

math Mathematical functions and constants.

os Interact with the operating system.

random Generate pseudo-random numbers.

statistics Mathematical statistics functions.

sys System-specific parameters and functions.

turtle Educational framework for simple graphics.

zipfile Read and write ZIP-format archive files.

Table 7.1 Example built-in modules in the standard library.

CONCEPTS IN PRACTICE

Built-in modules

Use the library reference, module index, and documentation links above to answer the questions.

1. Which page provides a list of built-in modules sorted by category?
a. library reference
b. module index
c. PEP 2

190 7 • Modules

Access for free at openstax.org

https://openstax.org/r/100pythlibrary
https://openstax.org/r/100200modules
https://openstax.org/r/100200modules
https://openstax.org/r/100batteries

2. What is the value of calendar.SUNDAY?
a. 1
b. 6
c. 7

3. Which built-in module enables the development of graphical user interfaces?
a. tkinter
b. turtle
c. webbrowser

Third-party modules
The Python Package Index (PyPI), available at pypi.org (https://openstax.org/r/100pypi), is the official third-
party software library for Python. The abbreviation "PyPI" is pronounced like pie pea eye (in contrast to PyPy
(https://openstax.org/r/100pypy), a different project).

PyPI allows anyone to develop and share modules with the Python community. Module authors include
individuals, large companies, and non-profit organizations. PyPI helps programmers install modules and
receive updates.

Most software available on PyPI is free and open source. PyPI is supported by the Python Software Foundation
(https://openstax.org/r/100foundation) and is maintained by an independent group of developers.

Module Description

arrow Convert and format dates, times, and timestamps.

BeautifulSoup Extract data from HTML and XML documents.

bokeh Interactive plots and applications in the browser.

matplotlib Static, animated, and interactive visualizations.

moviepy Video editing, compositing, and processing.

nltk Natural language toolkit for human languages.

numpy Fundamental package for numerical computing.

pandas Data analysis, time series, and statistics library.

pillow Image processing for jpg, png, and other formats.

Table 7.2 Example third-party modules available from PyPI.

7.5 • Finding modules 191

https://openstax.org/r/100pypi
https://openstax.org/r/100pypy
https://openstax.org/r/100pypy
https://openstax.org/r/100foundation
https://openstax.org/r/100foundation

Module Description

pytest Full-featured testing tool and unit test framework.

requests Elegant HTTP library for connecting to web servers.

scikit-learn Simple, efficient tools for predictive data analysis.

scipy Fundamental algorithms for scientific computing.

scrapy Crawl websites and scrape data from web pages.

tensorflow End-to-end machine learning platform for everyone.

Table 7.2 Example third-party modules available from PyPI.

CONCEPTS IN PRACTICE

Third-party modules

Use pypi.org and the links in the table above to answer the questions.

4. Which modules can be used to edit pictures and videos?
a. BeautifulSoup and Scrapy
b. Bokeh and Matplotlib
c. MoviePy and Pillow

5. Which third-party module is a replacement for the built-in datetime module?
a. arrow
b. calendar
c. time

6. Search for the webcolors module on PyPI. What function provided by webcolors looks up the color
name for a hex code?
a. hex_to_name
b. name_to_hex
c. normalize_hex

EXPLORING FURTHER

Programming blogs often highlight PyPI modules to demonstrate the usefulness of Python. The following
examples provide more background information about the modules listed above.

• Top 20 Python Libraries for Data Science for 2023 (https://openstax.org/r/100simplelearn)
• 24 Best Python Libraries You Should Check in 2022 (https://openstax.org/r/100library2022)

192 7 • Modules

Access for free at openstax.org

https://openstax.org/r/100simplelearn
https://openstax.org/r/100library2022

• Most Popular Python Packages in 2021 (https://openstax.org/r/100packages2021)

TRY IT

Happy birthday

Module documentation pages often include examples to help programmers become familiar with the
module. For this exercise, refer to the following examples from the datetime module documentation:

• Examples of Usage: date (https://openstax.org/r/100dateexamples)
• Examples of Usage: timedelta (https://openstax.org/r/100timedeltaex)

Write a program that creates a date object representing your birthday. Then get a date object
representing today's date (the date the program is run). Calculate the difference between the two dates,
and output the results in the following format:

Your birth date: 2005-03-14
Today's date is: 2023-06-01

You were born 6653 days ago
(that is 574819200 seconds)

You are about 18 years old

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
7-5-finding-modules)

TRY IT

More exact age

The datetime module does not provide a built-in way to display a person's exact age. Ex: The following
program calculates an exact age (in years and days) using floor division and modulo. The output is: You
are 15 years and 4 days old.

from datetime import date

birth = date(2005, 3, 14)
today = date(2020, 3, 14) # 15 years later
delta = today - birth

years = delta.days // 365
days = delta.days % 365
print("You are", years, "years and", days, "days old")

7.5 • Finding modules 193

https://openstax.org/r/100packages2021
https://openstax.org/r/100dateexamples
https://openstax.org/r/100timedeltaex
https://openstax.org/books/introduction-python-programming/pages/7-5-finding-modules
https://openstax.org/books/introduction-python-programming/pages/7-5-finding-modules

Notice how leap years are included in the calculation. February 29th occurs four times between birth and
today. Therefore, the user is not only 15 years old, but 15 years and 4 days old.

Many commonly used modules from PyPI, including arrow, are installed in the Python shell at python.org/
shell (https://openstax.org/r/100pythonshell). Open the Python shell and type the following lines:

import arrow
birth = arrow.get(2005, 3, 14)
birth.humanize()

Refer to the humanize() (https://openstax.org/r/100humanize) examples from the arrow module
documentation. In the Python shell, figure out how to display the number of years and days since birth
using one line of code. Then display the number of years, months, and days since birth. Finally, use the
print() function to output the results in this format: You are 18 years 4 months and 7 days old.

As time permits, experiment with other functions provided by the arrow module.

7.6 Chapter summary

Highlights from this chapter include:

• Programs can be organized into multiple .py files (modules). The import keyword allows a program to use
functions defined in another .py file.

• The from keyword can be used to import specific functions from a module. However, programs should
avoid importing (or defining) multiple functions with the same name.

• Modules often include the line if __name__ == "__main__" to prevent code from running as a side
effect when the module is imported by other programs.

• When working in a shell, the help() function can be used to look up the documentation for a module.
The documentation is generated from the docstrings.

• Python comes with over 200 built-in modules and hundreds of thousands of third-party modules.
Programmers can search for modules on docs.python.org (https://openstax.org/r/100docstrings) and
pypi.org (https://openstax.org/r/100pypi).

Statement Description

import module Imports a module for use in another program.

from module import
function Imports a specific function from a module.

if __name__ ==
"__main__":

A line of code found at the end of many modules. This statement indicates what
code to run if the module is executed as a program (in other words, what code
not to run if this module is imported by another program).

Table 7.3 Chapter 7 reference.

194 7 • Modules

Access for free at openstax.org

https://openstax.org/r/100pythonshell
https://openstax.org/r/100pythonshell
https://openstax.org/r/100humanize
https://openstax.org/r/100docstrings
https://openstax.org/r/100pypi

Statement Description

help(module_name)

Shows the documentation for the given module. The documentation includes
the module's docstring, followed by a list of functions defined in the module,
followed by a list of global variables assigned in the module, followed by the
module's file name.

help(function_name) Shows the docstring for the given function.

date(2023, 2, 14)
Creates a date object representing February 14, 2023.
Requires: from datetime import date.

Table 7.3 Chapter 7 reference.

7.6 • Chapter summary 195

196 7 • Modules

Access for free at openstax.org

Figure 8.1 credit: modification of work "Project 366 #65: 050316 A Night On The Tiles", by Pete/Flickr, CC BY 2.0

Chapter Outline
8.1 String operations
8.2 String slicing
8.3 Searching/testing strings
8.4 String formatting
8.5 Splitting/joining strings
8.6 Chapter summary

Introduction
A string is a sequence of characters. Python provides useful methods for processing string values. In this
chapter, string methods will be demonstrated including comparing string values, string slicing, searching,
testing, formatting, and modifying.

8.1 String operations

Learning objectives
By the end of this section you should be able to

• Compare strings using logical and membership operators.
• Use lower() and upper() string methods to convert string values to lowercase and uppercase

characters.

String comparison
String values can be compared using logical operators (<, <=, >, >=, ==, !=) and membership operators (in and
not in). When comparing two string values, the matching characters in two string values are compared
sequentially until a decision is reached. For comparing two characters, ASCII values are used to apply logical
operators.

Strings
8

Operator Description Example Output Explanation

> or >=

Checks whether the
first string value is
greater than (or greater
than or equal to) the
second string value.

"c" >
"d"

False

When comparing "c" operand to "d"
operand, the ASCII value for "c" is smaller
than the ASCII value for "d". Therefore, "c"
< "d". The expression "c" > "d"
evaluates to False.

< or <=

Checks whether the
first string value is less
than (or less than or
equal to) the second
string value.

"ab" <
"ac"

True

When comparing "ab" operand to "ac"
operand, the first characters are the same,
but the second character of "ab" is less
than the second character in "ac" and as
such "ab" < "ac".

== Checks whether two
string values are equal.

"aa" ==
"aa"

True
Since all characters in the first operand and
the second operand are the same, the two
string values are equal.

!=
Checks whether two
string values are not
equal.

"a" !=
"b"

True

The two operands contain different string
values ("a" vs. "b"), and the result of
checking whether the two are not the same
evaluates to True.

in

Checks whether the
second operand
contains the first
operand.

"a" in
"bc"

False
Since string "bc" does not contain string
"a", the output of "a" in "bc" evaluates
to False.

not in

Checks whether the
second operand does
not contain the first
operand.

"a" not
in "bc"

True
Since string "bc" does not contain string
"a", the output of "a" not in "bc"
evaluates to True.

Table 8.1 Comparing string values.

CONCEPTS IN PRACTICE

Using logical and membership operators to compare string values

1. What is the output of ("aaa" < "aab")?
a. True
b. False

2. What is the output of ("aa" < "a")?
a. True
b. False

198 8 • Strings

Access for free at openstax.org

3. What is the output of ("aples" in "apples")?
a. undefined
b. True
c. False

lower() and upper()
Python has many useful methods for modifying strings, two of which are lower() and upper() methods. The
lower() method returns the converted alphabetical characters to lowercase, and the upper() method returns
the converted alphabetical characters to uppercase. Both the lower() and upper() methods do not modify
the string.

EXAMPLE 8.1

Converting characters in a string

In the example below, the lower() and upper() string methods are called on the string variable x to
convert all characters to lowercase and uppercase, respectively.

x = "Apples"

The lower() method converts a string to all lowercase characters
print(x.lower())

The upper() method converts a string to all uppercase characters
print(x.upper())

The above code's output is:

apples
APPLES

CONCEPTS IN PRACTICE

Using lower() and upper()

4. What is the output of "aBbA".lower()?
a. abba
b. ABBA
c. abbA

5. What is the output of "aBbA".upper()?
a. abba

8.1 • String operations 199

b. ABBA
c. ABbA
d. aBBA

6. What is the output of ("a".upper() == "A")?
a. True
b. False

TRY IT

Number of characters in the string

A string variable, s_input, is defined. Use lower() and upper() to convert the string to lowercase and
uppercase, and print the results in the output. Also, print the number of characters in the string, including
space characters.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-1-string-operations)

TRY IT

What is my character?

Given the string, s_input, which is a one-character string object, if the character is between "a" and "t"
or "A" and "T", print True. Otherwise, print False.
Hint: You can convert s_input to lowercase and check if s_input is between "a" and "t".

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-1-string-operations)

8.2 String slicing

Learning objectives
By the end of this section you should be able to

• Use string indexing to access characters in the string.
• Use string slicing to get a substring from a string.
• Identify immutability characteristics of strings.

String indexing
A string is a type of sequence. A string is made up of a sequence of characters indexed from left to right,
starting at 0. For a string variable s, the left-most character is indexed 0 and the right-most character is
indexed len(s) - 1. Ex: The length of the string "Cloud" is 5, so the last index is 4.

Negative indexing can also be used to refer to characters from right to left starting at -1. For a string variable
s, the left-most character is indexed -len(s) and the right-most character is indexed -1. Ex: The length of the
string "flower" is 6, so the index of the first character with negative indexing is -6.

200 8 • Strings

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/8-1-string-operations
https://openstax.org/books/introduction-python-programming/pages/8-1-string-operations
https://openstax.org/books/introduction-python-programming/pages/8-1-string-operations
https://openstax.org/books/introduction-python-programming/pages/8-1-string-operations

CHECKPOINT

String indexing

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-2-string-slicing)

CONCEPTS IN PRACTICE

Accessing characters in a string using indexing

1. Which character is at index 1 in the string "hello"?
a. "h"
b. "e"
c. "o"

2. What is the character at index -2 in the string "Blue"?
a. "e"
b. "u"
c. "l"

3. What is the output of the following code?

word = "chance"
print(word[-1] == word[5])

a. True
b. False

String slicing
String slicing is used when a programmer must get access to a sequence of characters. Here, a string slicing
operator can be used. When [a:b] is used with the name of a string variable, a sequence of characters
starting from index a (inclusive) up to index b (exclusive) is returned. Both a and b are optional. If a or b are not
provided, the default values are 0 and len(string), respectively.

EXAMPLE 8.2

Getting the minutes

Consider a time value is given as "hh:mm" with "hh" representing the hour and "mm" representing the
minutes. To retrieve only the string's minutes portion, the following code can be used:

time_string = "13:46"
minutes = time_string[3:5]
print(minutes)

8.2 • String slicing 201

https://openstax.org/books/introduction-python-programming/pages/8-2-string-slicing
https://openstax.org/books/introduction-python-programming/pages/8-2-string-slicing

The above code's output is:

46

EXAMPLE 8.3

Getting the hour

Consider a time value is given as "hh:mm" with "hh" representing the hour and "mm" representing the
minutes. To retrieve only the string's hour portion, the following code can be used:

time_string = "14:50"
hour = time_string[:2]
print(hour)

The above code's output is:

14

CONCEPTS IN PRACTICE

Getting a substring using string slicing

4. What is the output of the following code?

a_string = "Hello world"
print(a_string[2:4])

a. "el"
b. "ll"
c. "llo"

5. What is the output of the following code?

location = "classroom"
print(location[-3:-1])

a. "ro"
b. "oo"
c. "oom"

6. What is the output of the following code?

202 8 • Strings

Access for free at openstax.org

greeting = "hi Leila"
name = greeting[3:]

a. " Leila"
b. "Leila"
c. "ila"

String immutability
String objects are immutable meaning that string objects cannot be modified or changed once created. Once
a string object is created, the string's contents cannot be altered by directly modifying individual characters or
elements within the string. Instead, to make changes to a string, a new string object with the desired changes
is created, leaving the original string unchanged.

CHECKPOINT

Strings are immutable

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-2-string-slicing)

CONCEPTS IN PRACTICE

Modifying string content

7. What is the correct way of replacing the first character in a string to character "*" in a new string?
a. x = "string"

x[0] = "*"
b. x = "string"

x = "*" + x[1:]
c. x = "string"

x = "*" + x

8. What type of error will result from the following code?

string_variable = "example"
string_variable[-1] = ""

a. TypeError
b. IndexError
c. NameError

9. What is the output of the following code?

str = "morning"
str = str[1]
print(str)

8.2 • String slicing 203

https://openstax.org/books/introduction-python-programming/pages/8-2-string-slicing
https://openstax.org/books/introduction-python-programming/pages/8-2-string-slicing

a. TypeError
b. m
c. o

TRY IT

Changing the greeting message

Given the string "Hello my fellow classmates" containing a greeting message, print the first word by
getting the beginning of the string up to (and including) the 5th character. Change the first word in the
string to "Hi" instead of "hello" and print the greeting message again.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-2-string-slicing)

TRY IT

Editing the string at specified locations

Given a string variable, string_variable, and a list of indexes, remove characters at the specified indexes
and print the resulting string.

Input:
string_variable = "great"
indices = [0, 1]

prints eat

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-2-string-slicing)

8.3 Searching/testing strings

Learning objectives
By the end of this section you should be able to

• Use the in operator to identify whether a given string contains a substring.
• Call the count() method to count the number of substrings in a given string.
• Search a string to find a substring using the find() method.
• Use the index() method to find the index of the first occurrence of a substring in a given string.
• Write a for loop on strings using in operator.

204 8 • Strings

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/8-2-string-slicing
https://openstax.org/books/introduction-python-programming/pages/8-2-string-slicing
https://openstax.org/books/introduction-python-programming/pages/8-2-string-slicing
https://openstax.org/books/introduction-python-programming/pages/8-2-string-slicing

in operator
The in Boolean operator can be used to check if a string contains another string. in returns True if the first
string exists in the second string, False otherwise.

CHECKPOINT

What is in the phrase?

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-3-searchingtesting-strings)

CONCEPTS IN PRACTICE

Using in operator to find substrings

1. What is the output of ("a" in "an umbrella")?
a. 2
b. False
c. True
d. 1

2. What is the output of ("ab" in "arbitrary")?
a. True
b. False

3. What is the output of ("" in "string")?
a. True
b. False

For loop using in operator
The in operator can be used to iterate over characters in a string using a for loop. In each for loop iteration,
one character is read and will be the loop variable for that iteration.

CHECKPOINT

for loop using in operator

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-3-searchingtesting-strings)

CONCEPTS IN PRACTICE

Using in operator within for loop

4. What is the output of the following code?

8.3 • Searching/testing strings 205

https://openstax.org/books/introduction-python-programming/pages/8-3-searchingtesting-strings
https://openstax.org/books/introduction-python-programming/pages/8-3-searchingtesting-strings
https://openstax.org/books/introduction-python-programming/pages/8-3-searchingtesting-strings
https://openstax.org/books/introduction-python-programming/pages/8-3-searchingtesting-strings

for c in "string":
print(c, end = "")

a. string
b. s

t
r
i
n
g

c. s t r i n g

5. What is the output of the following code?

count = 0
for c in "abca":

if c == "a":
count += 1

print(count)

a. 0
b. 1
c. 2

6. What is the output of the following code?

word = "cab"
for i in word:

if i == "a":
print("A", end = "")

if i == "b":
print("B", end = "")

if i == "c":
print("C", end = "")

a. cab
b. abc
c. CAB
d. ABC

count()
The count() method counts the number of occurrences of a substring in a given string. If the given substring
does not exist in the given string, the value 0 is returned.

206 8 • Strings

Access for free at openstax.org

CHECKPOINT

Counting the number of occurrences of a substring

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-3-searchingtesting-strings)

CONCEPTS IN PRACTICE

Using count() to count the number of substrings

7. What is the output of (aaa".count("a"))?
a. True
b. 1
c. 3

8. What is the output of ("weather".count("b"))?
a. 0
b. -1
c. False

9. What is the output of ("aaa".count("aa"))?
a. 1
b. 2
c. 3

find()
The find() method returns the index of the first occurrence of a substring in a given string. If the substring
does not exist in the given string, the value of -1 is returned.

CHECKPOINT

Finding the first index of a substring

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-3-searchingtesting-strings)

CONCEPTS IN PRACTICE

Using find() to locate a substring

10. What is the output of "banana".find("a")?
a. 1
b. 3
c. 5

11. What is the output of "banana".find("c")?

8.3 • Searching/testing strings 207

https://openstax.org/books/introduction-python-programming/pages/8-3-searchingtesting-strings
https://openstax.org/books/introduction-python-programming/pages/8-3-searchingtesting-strings
https://openstax.org/books/introduction-python-programming/pages/8-3-searchingtesting-strings
https://openstax.org/books/introduction-python-programming/pages/8-3-searchingtesting-strings

a. 0
b. -1
c. ValueError

12. What is the output of "b".find("banana")?
a. -1
b. 0
c. ValueError

index()
The index() method performs similarly to the find() method in which the method returns the index of the
first occurrence of a substring in a given string. The index() method assumes that the substring exists in the
given string; otherwise, throws a ValueError.

EXAMPLE 8.4

Getting the time's minute portion

Consider a time value is given as part of a string using the format of "hh:mm" with "hh" representing the
hour and "mm" representing the minutes. To retrieve only the string's minute portion, the following code
can be used:

time_string = "The time is 12:50"
index = time_string.index(":")
print(time_string[index+1:index+3])

The above code's output is:

50

CONCEPTS IN PRACTICE

Using index() to locate a substring

13. What is the output of "school".index("o")?
a. 3
b. 4
c. -3

14. What is the output of "school".index("ooo")?
a. 3
b. 4

208 8 • Strings

Access for free at openstax.org

c. ValueError

15. What is the output of the following code?

sentence = "This is a sentence"
index = sentence.index(" ")
print(sentence[:index])

a. "This"
b. "This "
c. "sentence"

TRY IT

Finding all spaces

Write a program that, given a string, counts the number of space characters in the string. Also, print the
given string with all spaces removed.

Input: "This is great"

prints:
2
Thisisgreat

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-3-searchingtesting-strings)

8.4 String formatting

Learning objectives
By the end of this section you should be able to

• Format a string template using input arguments.
• Use format() to generate numerical formats based on a given template.

String format specification
Python provides string substitutions syntax for formatting strings with input arguments. Formatting string
includes specifying string pattern rules and modifying the string according to the formatting specification.
Examples of formatting strings include using patterns for building different string values and specifying
modification rules for the string's length and alignment.

String formatting with replacement fields
Replacement fields are used to define a pattern for creating multiple string values that comply with a given

8.4 • String formatting 209

https://openstax.org/books/introduction-python-programming/pages/8-3-searchingtesting-strings
https://openstax.org/books/introduction-python-programming/pages/8-3-searchingtesting-strings

format. The example below shows two string values that use the same template for making requests to
different individuals for taking different courses.

EXAMPLE 8.5

String values from the same template

Dear John, I'd like to take a programming course with Prof. Potter.

Dear Kishwar, I'd like to take a math course with Prof. Robinson.

In the example above, replacement fields are 1) the name of the individual the request is being made to, 2)
title of the course, and 3) the name of the instructor. To create a template, replacement fields can be added
with {} to show a placeholder for user input. The format() method is used to pass inputs for replacement
fields in a string template.

EXAMPLE 8.6

String template formatting for course enrollment requests

A string template with replacement fields is defined below to create string values with different input
arguments. The format() method is used to pass inputs to the template in the same order.

s = "Dear {}, I'd like to take a {} course with Prof. {}."

print(s)
print(s.format("John", "programming", "Potter"))
print(s.format("Kishwar", "math", "Robinson"))

The above code's output is:

Dear {}, I'd like to take a {} course with Prof. {}.
Dear John, I'd like to take a programming course with Prof. Potter.
Dear Kishwar, I'd like to take a math course with Prof. Robinson.

CONCEPTS IN PRACTICE

String template and formatting

1. What is the output of print("Hello {}!".format("Ana"))?
a. Ana

210 8 • Strings

Access for free at openstax.org

b. Hello Ana
c. Hello Ana!

2. What is the output of print("{}:{}".format("One", "1"))?
a. One1
b. One:1
c. 1:One

3. What is the output of print("{}".format("one", "two", "three"))?
a. one
b. two
c. onetwothree

Named replacement fields
Replacement fields can be tagged with a label, called named replacement fields, for ease of access and code
readability. The example below illustrates how named replacement fields can be used in string templates.

EXAMPLE 8.7

Season weather template using named replacement fields

A named replacement argument is a convenient way of assigning name tags to replacement fields and
passing values associated with replacement fields using corresponding names (instead of passing values in
order).

s = "Weather in {season} is {temperature}."

print(s)
print(s.format(season = "summer", temperature = "hot"))
print(s.format(season = "winter", temperature = "cold"))

The above code's output is:

Weather in {season} is {temperature}.
Weather in summer is hot.
Weather in winter is cold.

MULTIPLE USE OF A NAMED ARGUMENT

Since named replacement fields are referred to using a name key, a named replacement field can appear
and be used more than once in the template. Also, positional ordering is not necessary when named
replacement fields are used.

8.4 • String formatting 211

s = "Weather in {season} is {temperature}; very very {temperature}."

print(s)
print(s.format(season = "summer", temperature = "hot"))
print(s.format(temperature = "cold", season = "winter"))

The above code's output is:

Weather in {season} is {temperature}; very very {temperature}.
Weather in summer is hot; very very hot.
Weather in winter is cold; very very cold.

CONCEPTS IN PRACTICE

Named replacement field examples

4. What is the output of print("Hey {name}!".format(name = "Bengio"))?
a. Hey name!
b. Hey Bengio
c. Hey Bengio!

5. What is the output of print("Hey {name}!".format("Bengio"))?
a. Hey name!
b. KeyError
c. Hey Bengio!

6. What is the output of the following code?

greeting = "Hi"
name = "Jess"
print("{greeting} {name}".format(greeting = greeting, name = name))

a. greeting name
b. Hi Jess
c. Jess Hi

Numbered replacement fields
Python's string format() method can use positional ordering to match the numbered arguments. The
replacement fields that use the positional ordering of arguments are called numbered replacement fields.
The indexing of the arguments starts from 0. Ex: print("{1}{0}".format("Home", "Welcome")) outputs
the string value "Welcome Home" as the first argument. "Home" is at index 0, and the second argument,
"Welcome", is at index 1. Replacing these arguments in the order of "{1}{0}" creates the string "Welcome

212 8 • Strings

Access for free at openstax.org

Home".

Numbered replacement fields can use argument's values for multiple replacement fields by using the same
argument index. The example below illustrates how an argument is used for more than one numbered
replacement field.

EXAMPLE 8.8

Numbered replacement field to build a phrase

Numbered replacement fields are used in this example to build phrases like "very very cold" or "very
hot".

template1 = "{0} {0} {1}"
template2 = "{0} {1}"

print(template1.format("very", "cold"))
print(template2.format("very", "hot"))

The above code's output is:

very very cold
very hot

String length and alignment formatting
Formatting the string length may be needed for standardizing the output style when multiple string values of
the same context are being created and printed. The example below shows a use case of string formatting in
printing a table with minimum-length columns and specific alignment.

EXAMPLE 8.9

A formatted table of a class roster

A formatted table of a class roster

Student Name Major Grade
--
Manoj Sara Computer Science A-
Gabriel Wang Electrical Engineering A
Alex Narayanan Social Sciences A+

In the example above, the table is formatted into three columns. The first column takes up 15 characters and is
left-aligned. The second column uses 25 characters and is center-aligned, and the last column uses two
characters and is right aligned. Alignment and length format specifications controls are used to create the

8.4 • String formatting 213

formatted table.

The field width in string format specification is used to specify the minimum length of the given string. If the
string is shorter than the given minimum length, the string will be padded by space characters. A field width
is included in the format specification field using an integer after a colon. Ex: {name:15} specifies that the
minimum length of the string values that are passed to the name field is 15.

Since the field width can be used to specify the minimum length of a string, the string can be padded with
space characters from right, left, or both to be left-aligned, right-aligned, and centered, respectively. The
string alignment type is specified using <, >, or ^characters after the colon when field length is specified. Ex:
{name:^20} specifies a named replacement field with the minimum length of 20 characters that is center-
aligned.

Alignment
Type

Symbol Example Output

Left-
aligned

<

template = "{hex:<7}{name:<10}"
print(template.format(hex = "#FF0000",
name = "Red")) print(template.format(hex
= "#00FF00", name = "green"))

#FF0000Red
#00FF00green

Right-
aligned

>

template = "{hex:>7}{name:>10}"
print(template.format(hex = "#FF0000",
name = "Red")) print(template.format(hex
= "#00FF00", name = "green"))

#FF0000 Red
#00FF00 green

Centered ^

template = "{hex:^7}{name:^10}"
print(template.format(hex = "#FF0000",
name = "Red")) print(template.format(hex
= "#00FF00", name = "green"))

#FF0000 Red
#00FF00 green

Table 8.2 String alignment formatting.

CONCEPTS IN PRACTICE

Specifying field width and alignment

7. What is the output of the following code?

template = "{name:12}"
formatted_name = template.format(name = "Alice")
print(len(formatted_name))

a. 5
b. 12
c. "Alice"

8. What is the output of the following code?

214 8 • Strings

Access for free at openstax.org

template = "{greeting:>6}"
formatted_greeting = template.format(greeting = "Hello")
print(formatted_greeting[0])

a. H
b. " Hello"
c. Space character

9. What is the output of the following code?

template = "{:5}"
print(template.format("123456789"))

a. 56789
b. 123456
c. 123456789

Formatting numbers
The format() method can be used to format numerical values. Numerical values can be padded to have a
given minimum length, precision, and sign character. The syntax for modifying numeric values follows the
{[index]:[width][.precision][type]} structure. In the given syntax,

• The index field refers to the index of the argument.
• The width field refers to the minimum length of the string.
• The precision field refers to the floating-point precision of the given number.
• The type field shows the type of the input that is passed to the format() method. Floating-point and

decimal inputs are identified by "f" and "d", respectively. String values are also identified by "s".

The table below summarizes formatting options for modifying numeric values.

Example Output Explanation

print("{:.7f}".format(0.9795)) 0.9795000

The format specification .7 shows the output
must have seven decimal places. The f
specification is an identifier of floating-point
formatting.

print("{:.3f}".format(12)) 12.000

The format specification .3 shows the output
must have three decimal places. The f
specification is an identifier of floating-point
formatting.

Table 8.3 Numerical formatting options.

8.4 • String formatting 215

Example Output Explanation

print("{:+.2f}".format(4)) +4.00

The format specification .2 shows the output
must have two decimal places. The f specification
is an identifier of floating-point formatting. The +
sign before the precision specification adds a sign
character to the output.

print("{:0>5d}".format(5)) 00005

The format specification 0>5 defines the width
field as 5, and thus the output must have a
minimum length of 5. And, if the number has
fewer than five digits, the number must be
padded with 0's from the left side. The d
specification is an identifier of a decimal number
formatting.

print("{:.3s}".format("12.50")) 12.
The format specification .3 shows the output will
have three characters. The s specification is an
identifier of string formatting.

Table 8.3 Numerical formatting options.

CONCEPTS IN PRACTICE

Numeric value formatting examples

10. What is the output of print('{0:.3f}'.format(3.141592))?
a. 3.141592
b. 3.1
c. 3.142

11. What is the output of print('{:1>3d}'.format(3))?
a. 113
b. 311
c. 3.000

12. What is the output of print('{:+d}'.format(123))?
a. 123
b. +123
c. :+123

216 8 • Strings

Access for free at openstax.org

TRY IT

Formatting a list of numbers

Given a list of numbers (floating-point or integer), print numbers with two decimal place precision and at
least six characters.

Input: [12.5, 2]

Prints: 012.50

002:00

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-4-string-formatting)

8.5 Splitting/joining strings

Learning objectives
By the end of this section you should be able to

• Use the split() method to split a string into substrings.
• Combine objects in a list into a string using join() method.

split()
A string in Python can be broken into substrings given a delimiter. A delimiter is also referred to as a
separator. The split() method, when applied to a string, splits the string into substrings by using the given
argument as a delimiter. Ex: "1-2".split('-') returns a list of substrings ["1", "2"]. When no arguments
are given to the split() method, blank space characters are used as delimiters. Ex: "1\t2\n3 4".split()
returns ["1", "2", "3", "4"].

CHECKPOINT

split() for breaking down the string into tokens

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-5-splittingjoining-strings)

CONCEPTS IN PRACTICE

Examples of string delimiters and split() method

1. What is the output of print("1*2*3*".split('*'))?
a. ["1", "*", "2", "*", "3", "*"]

8.5 • Splitting/joining strings 217

https://openstax.org/books/introduction-python-programming/pages/8-4-string-formatting
https://openstax.org/books/introduction-python-programming/pages/8-4-string-formatting
https://openstax.org/books/introduction-python-programming/pages/8-5-splittingjoining-strings
https://openstax.org/books/introduction-python-programming/pages/8-5-splittingjoining-strings

b. ["1", "2', "3"]
c. [1, 2, 3]

2. What is the output of print("a year includes 12 months".split())?
a. ["a year includes 12 months"]
b. ["a", "year", "includes", 12, "months"]
c. ["a", "year", "includes", "12", "months"]

3. What is the output of the following code?

s = """This is a test"""

out = s.split()
print(out)

a. Error
b. ['This', 'is', 'a', 'test']
c. >['This', 'is a', 'test']

join()
The join() method is the inverse of the split() method: a list of string values are concatenated together to
form one output string. When joining string elements in the list, the delimiter is added in-between elements.
Ex: ','.join(["this", "is", "great"]) returns "this,is,great".

CHECKPOINT

join() for combining tokens into one string

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-5-splittingjoining-strings)

CONCEPTS IN PRACTICE

Applying join() method on list of string values

4. What is the output of the following code?

elements = ['A', 'beautiful', 'day', 'for', 'learning']

print(",".join(elements))

a. 'A beautiful day for learning'
b. ['A, beautiful, day, for, learning']
c. 'A,beautiful,day,for,learning'

5. What is the length of the string "sss".join(["1","2"])?
a. 2

218 8 • Strings

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/8-5-splittingjoining-strings
https://openstax.org/books/introduction-python-programming/pages/8-5-splittingjoining-strings

b. 5
c. 8

6. What is the value stored in the variable out?

s = ["1", "2"]
out = "".join(s)

a. 12
b. "12"
c. "1 2"

TRY IT

Unique and comma-separated words

Write a program that accepts a comma-separated sequence of words as input, and prints words in separate
lines. Ex: Given the string "happy,smiling,face", the output would be:

happy
smiling
face

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
8-5-splittingjoining-strings)

TRY IT

Lunch order

Use the join() method to repeat back a user's order at a restaurant, separated by commas. The user will
input each food item on a separate line. When finished ordering, the user will enter a blank line. The output
depends on how many items the user orders:

• If the user inputs nothing, the program outputs:
You ordered nothing.

• If the user inputs one item (Ex: eggs), the program outputs:
You ordered eggs.

• If the user inputs two items (Ex: eggs, ham), the program outputs:
You ordered eggs and ham.

• If the user inputs three or more items (Ex: eggs, ham, toast), the program outputs:
You ordered eggs, ham, and toast.

In the general case with three or more items, each item should be separated by a comma and a space. The
word "and" should be added before the last item.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/

8.5 • Splitting/joining strings 219

https://openstax.org/books/introduction-python-programming/pages/8-5-splittingjoining-strings
https://openstax.org/books/introduction-python-programming/pages/8-5-splittingjoining-strings
https://openstax.org/books/introduction-python-programming/pages/8-5-splittingjoining-strings

8-5-splittingjoining-strings)

8.6 Chapter summary

Highlights from this chapter include:

• A string is a sequence of characters.
• Logical operators can be used to compare two string values. String comparison is done by comparing

corresponding ASCII values of characters in the order of appearance in the string.
• String indexing is used to access a character or a sequence of characters in the string.
• String objects are immutable.
• String splicing.

At this point, you should be able to write programs dealing with string values.

Method Description

len() Returns the string length.

upper() Returns uppercase characters.

lower() Returns lowercase characters.

count() Returns the number of a given substring in a string.

find() Returns the index of the first occurrence of a given substring in a string. If the substring
does not exist in the string, -1 is returned.

index()
Returns the index of the first occurrence of a given substring in a string. If the substring
does not exist in the string, a ValueError is returned.

format() Used to create strings with specified patterns using arguments.

join() Takes a list of string values and combines string values into one string by placing a given
separator between values.

split() Separates a string into tokens based on a given separator string. If no separator string is
provided, blank space characters are used as separators.

Operator Description

Table 8.4 Chapter 8 reference.

220 8 • Strings

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/8-5-splittingjoining-strings

Method Description

in Checks if a substring exists in a string.

in operator in
a for loop

for character in string:
loop body

Table 8.4 Chapter 8 reference.

8.6 • Chapter summary 221

222 8 • Strings

Access for free at openstax.org

Figure 9.1 credit: modification of work "Budget and Bills" by Alabama Extension/Flickr, Public Domain

Chapter Outline
9.1 Modifying and iterating lists
9.2 Sorting and reversing lists
9.3 Common list operations
9.4 Nested lists
9.5 List comprehensions
9.6 Chapter summary

Introduction
Programmers often work on collections of data. Lists are a useful way of collecting data elements. Python lists
are extremely flexible, and, unlike strings, a list's contents can be changed.

The Objects chapter introduced lists. This chapter explores operations that can be performed on lists.

9.1 Modifying and iterating lists

Learning objectives
By the end of this section you should be able to

• Modify a list using append(), remove(), and pop() list operations.
• Search a list using a for loop.

Using list operations to modify a list
An append() operation is used to add an element to the end of a list. In programming, append means add to
the end. A remove() operation removes the specified element from a list. A pop() operation removes the last
item of a list.

Lists
9

EXAMPLE 9.1

Simple operations to modify a list

The code below demonstrates simple operations for modifying a list.

Line 8 shows the append() operation, line 12 shows the remove() operation, and line 17 shows the pop()
operation. Since the pop() operation removes the last element, no parameter is needed.

1 """Operations for adding and removing elements from a list."""
2
3 # Create a list of students working on a project
4 student_list = ["Jamie", "Vicky", "DeShawn", "Tae"]
5 print(student_list)
6
7 # Another student joins the project. The student must be added

to the list.
8 student_list.append("Ming")
9 print(student_list)

10
11 # "Jamie" withdraws from the project. Jamie must be removed

from the list.
12 student_list.remove("Jamie")
13 print(student_list)
14
15 # Suppose "Ming" had to be removed from the list.
16 # A pop() operation can be used since Ming is last in the

list.
17 student_list.pop()
18 print(student_list)

The above code's output is:

['Jamie', 'Vicky', 'DeShawn', 'Tae']
['Jamie', 'Vicky', 'DeShawn', 'Tae', 'Ming']
['Vicky', 'DeShawn', 'Tae', 'Ming']
['Vicky', 'DeShawn', 'Tae']

CONCEPTS IN PRACTICE

Modifying lists

1. Which operation can be used to add an element to the end of a list?
a. add()
b. append()
c. pop()

224 9 • Lists

Access for free at openstax.org

2. What is the correct syntax to remove the element 23 from a list called number_list?
a. remove()
b. number_list.remove()
c. number_list.remove(23)

3. Which operation can be used to remove an element from the end of a list?
a. only pop()
b. only remove()
c. either pop() or remove()

Iterating lists
An iterative for loop can be used to iterate through a list. Alternatively, lists can be iterated using list indexes
with a counting for loop. The animation below shows both ways of iterating a list.

CHECKPOINT

Using len() to get the length of a list

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-1-modifying-and-iterating-lists)

CONCEPTS IN PRACTICE

Iterating lists

For the following questions, consider the list:

my_list = [2, 3, 5, 7, 9]

4. How many times will the following for loop execute?
for element in my_list:
a. 5
b. 4

5. What is the final value of i for the following counting for loop?
for i in range(0, len(my_list)):
a. 9
b. 4
c. 5

6. What is the output of the code below?

for i in range(0, len(my_list), 2):
print(my_list[i], end=' ')

a. 2 5 9
b. 2 3 5 7 9

9.1 • Modifying and iterating lists 225

https://openstax.org/books/introduction-python-programming/pages/9-1-modifying-and-iterating-lists
https://openstax.org/books/introduction-python-programming/pages/9-1-modifying-and-iterating-lists

c. 2
5
9

TRY IT

Sports list

Create a list of sports played on a college campus. The sports to be included are baseball, football, tennis,
and table tennis.

Next, add volleyball to the list.

Next, remove "football" from the list and add "soccer" to the list.

Show the list contents after each modification.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-1-modifying-and-iterating-lists)

TRY IT

Simple Searching

Write a program that prints "found!" if "soccer" is found in the given list.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-1-modifying-and-iterating-lists)

9.2 Sorting and reversing lists

Learning objectives
By the end of this section you should be able to

• Understand the concept of sorting.
• Use built-in sort() and reverse() methods.

Sorting
Ordering elements in a sequence is often useful. Sorting is the task of arranging elements in a sequence in
ascending or descending order.

Sorting can work on numerical or non-numerical data. When ordering text, dictionary order is used. Ex: "bat"
comes before "cat" because "b" comes before "c".

CHECKPOINT

Sorting

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/

226 9 • Lists

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/9-1-modifying-and-iterating-lists
https://openstax.org/books/introduction-python-programming/pages/9-1-modifying-and-iterating-lists
https://openstax.org/books/introduction-python-programming/pages/9-1-modifying-and-iterating-lists
https://openstax.org/books/introduction-python-programming/pages/9-1-modifying-and-iterating-lists
https://openstax.org/books/introduction-python-programming/pages/9-2-sorting-and-reversing-lists

9-2-sorting-and-reversing-lists)

CONCEPTS IN PRACTICE

Sorting

1. What would be the last element of the following list if it is sorted in descending order?
[12, 3, 19, 25, 16, -3, 5]
a. 25
b. -3
c. 5

2. Arrange the following list in ascending order.
["cat", "bat", "dog", "coyote", "wolf"]
a. ["bat", "cat", "coyote", "dog", "wolf"]
b. ["wolf", "coyote", "dog", "cat", "bat"]

3. How are the words "flask" and "flash" related in Python?
a. "flask" < "flash"
b. "flask" == "flash"
c. "flask" > "flash"

Using sort() and reverse()
Python provides methods for arranging elements in a list.

• The sort() method arranges the elements of a list in ascending order. For strings, ASCII values are used
and uppercase characters come before lowercase characters, leading to unexpected results. Ex: "A" is
ordered before "a" in ascending order but so is "G"; thus, "Gail" comes before "apple".

• The reverse() method reverses the elements in a list.

EXAMPLE 9.2

Sorting and reversing lists

Setup a list of numbers
num_list = [38, 92, 23, 16]
print(num_list)

Sort the list
num_list.sort()
print(num_list)

Setup a list of words
dance_list = ["Stepping", "Ballet", "Salsa", "Kathak", "Hopak", "Flamenco",

"Dabke"]

9.2 • Sorting and reversing lists 227

https://openstax.org/books/introduction-python-programming/pages/9-2-sorting-and-reversing-lists

Reverse the list
dance_list.reverse()
print(dance_list)

Sort the list
dance_list.sort()
print(dance_list)

The above code's output is:

[38, 92, 23, 16]
[16, 23, 38, 92]
["Dabke", "Flamenco", "Hopak", "Kathak", "Salsa", "Ballet", "Stepping"]
["Ballet", "Dabke", "Flamenco", "Hopak", "Kathak", "Salsa", "Stepping"]

CONCEPTS IN PRACTICE

sort() and reverse() methods

Use the following list for the questions below.

board_games = ["go", "chess", "scrabble", "checkers"]

4. What is the correct way to sort the list board_games in ascending order?
a. sort(board_games)
b. board_games.sort()
c. board_games.sort('ascending')

5. What is the correct way to reverse the list board_games?
a. board_games.reverse()
b. reverse(board_games)

6. What would be the last element of board_games after the reverse() method has been applied?
a. 'go'
b. 'checkers'
c. 'scrabble'

TRY IT

Sorting and reversing

Complete the program below to arrange and print the numbers in ascending and descending order.

228 9 • Lists

Access for free at openstax.org

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-2-sorting-and-reversing-lists)

9.3 Common list operations

Learning objectives
By the end of this section you should be able to

• Use built-in functions max(), min(), and sum().
• Demonstrate how to copy a list.

Using built-in operations
The max() function called on a list returns the largest element in the list. The min() function called on a list
returns the smallest element in the list. The max() and min() functions work for lists as long as elements
within the list are comparable.

The sum() function called on a list of numbers returns the sum of all elements in the list.

EXAMPLE 9.3

Common list operations

"""Common list operations."""

Set up a list of number
snum_list = [28, 92, 17, 3, -5, 999, 1]

Set up a list of words
city_list = ["New York", "Missoula", "Chicago", "Bozeman",
"Birmingham", "Austin", "Sacramento"]

Usage of the max() funtion
print(max(num_list))

max() function works for strings as well
print(max(city_list))

Usage of the min() funtion which also works for strings
print(min(num_list))

print(min(city_list))

sum() only works for a list of numbers
print(sum(num_list))

The above code's output is:

9.3 • Common list operations 229

https://openstax.org/books/introduction-python-programming/pages/9-2-sorting-and-reversing-lists
https://openstax.org/books/introduction-python-programming/pages/9-2-sorting-and-reversing-lists

999
Sacramento
-5
Austin
1135

CONCEPTS IN PRACTICE

List operations

1. What is the correct way to get the minimum of a list named nums_list?
a. min(nums_list)
b. nums_list.min()
c. minimum(nums_list)

2. What is the minimum of the following list?
["Lollapalooza", "Coachella", "Newport Jazz festival", "Hardly Strictly
Bluegrass", "Austin City Limits"]
a. Coachella
b. Austin City Limits
c. The minimum doesn't exist.

3. What value does the function call return?
sum([1.2, 2.1, 3.2, 5.9])
a. sum() only works for integers.
b. 11
c. 12.4

Copying a list
The copy() method is used to create a copy of a list.

CHECKPOINT

Copying a list

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-3-common-list-operations)

CONCEPTS IN PRACTICE

Copying a list

4. What is the output of the following code?

230 9 • Lists

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/9-3-common-list-operations
https://openstax.org/books/introduction-python-programming/pages/9-3-common-list-operations

my_list = [1, 2, 3]
list2 = my_list
list2[0] = 13
print(sum(my_list))

a. 6
b. 13
c. 18

5. What is the output of the following code?

my_list = [1, 2, 3]
list2 = my_list.copy()
list2[0] = 13
print(max(my_list))

a. 3
b. 13
c. 18

6. What is the output of the following code?

my_list = ["Cat", "Dog", "Hamster"]
list2 = my_list
list2[2] = "Pigeon"
print(sum(my_list))

a. CatDogPigeon
b. Error

TRY IT

Copy

Make a copy of word_list called wisdom. Sort the list called wisdom. Create a sentence using the words in
each list and print those sentences (no need to add periods at the end of the sentences).

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-3-common-list-operations)

9.4 Nested lists

Learning objectives
By the end of this section you should be able to

• Demonstrate the use of a list-of-lists to structure data.
• Demonstrate individual element addressing using multi-dimensional indexing.
• Use nested loops to iterate a list-of-lists.

9.4 • Nested lists 231

https://openstax.org/books/introduction-python-programming/pages/9-3-common-list-operations
https://openstax.org/books/introduction-python-programming/pages/9-3-common-list-operations

List-of-lists
Lists can be made of any type of element. A list element can also be a list. Ex: [2, [3, 5], 17] is a valid list
with the list [3, 5] being the element at index 1.

When a list is an element inside a larger list, it is called a nested list. Nested lists are useful for expressing
multidimensional data. When each of the elements of a larger list is a smaller list, the larger list is called a list-
of-lists.

Ex: A table can be stored as a two-dimensional list-of-lists, where each row of data is a list in the list-of-lists.

CHECKPOINT

List-of-lists

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-4-nested-lists)

CONCEPTS IN PRACTICE

Lists

For each of the questions below, consider the following matrix:

1. What would be the correct way to represent matA in Python?
a. [[7, 4, 5], [3, 9, 6], [1, 2, 8]]
b. [7, 4, 5

3, 9, 6
1, 2, 8]

c. [[7, 3, 1], [4, 9, 2], [1, 2, 8]

2. What would be the correct index for the number 6 in the above list?
a. [5]
b. [2][1]
c. [1][2]

3. What would be the result of the following code:

print(matA[0])

a. Error
b. 7
c. [7, 4, 5]

Using nested loops to iterate nested lists
A nested loop structure can be used to iterate a list-of-lists. For a two-dimensional list-of-lists, an outer for
loop can be used for rows, and an inner for loop can be used for columns.

232 9 • Lists

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/9-4-nested-lists
https://openstax.org/books/introduction-python-programming/pages/9-4-nested-lists

EXAMPLE 9.4

Iterating a list-of-lists

The code below demonstrates how to iterate a list-of-lists.

The outer loop on line 9 goes element by element for the larger list. Each element in the larger list is a list.
The inner loop on line 10 iterates through each element in each nested list.

1 """Iterating a list-of-lists."""
2
3 # Create a list of numbers
4 list1 = [[1, 2, 3],
5 [1, 4, 9],
6 [1, 8, 27]]
7
8 # Iterating the list-of-lists
9 for row in list1:

10 for num in row:
11 print(num, end=" ")
12 print()

The above code's output is:

1 2 3
1 4 9
1 8 27

CONCEPTS IN PRACTICE

Iterating a list-of-lists

For each question below, consider the following list:

my_list = [[7, 4, 5, 12],
[24, 3, 9, 16],
[12, 8, 91, -5]]

4. Which code prints each number in my_list starting from 7, then 4, and so on ending with -5?
a. for row in my_list:

for elem in row:
print(elem)

b. for elem in my_list:
print(elem)

5. The range() function can also be used to iterate a list-of-lists. Which code prints each number in
my_list starting from 7, then 4, and so on, ending with -5, using counting for loops?

9.4 • Nested lists 233

a. for column_index in range(0, len(my_list[0])):
for row_index in range (0, len(my_list)):

print(my_list[row_index][column_index])
b. for row_index in range(0, len(my_list)):

for column_index in range (0, len(my_list)):
print(my_list[row_index][column_index])

print()
c. for row_index in range(0, len(my_list)):

for column_index in range (0, len(my_list[0])):
print(my_list[row_index][column_index])

TRY IT

Matrix multiplication

Write a program that calculates the matrix multiplication product of the matrices matW and matZ below
and prints the result. The expected result is shown.

In the result matrix, each element is calculated according to the position of the element. The result at
position [i][j] is calculated using row i from the first matrix, W, and column j from the second matrix, Z.

Ex:

result[1][2] = (row 1 in W) times (column 2 in Z)

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
9-4-nested-lists)

9.5 List comprehensions

Learning objectives
By the end of this section you should be able to

• Identify the different components of a list comprehension statement.
• Implement filtering using list comprehension.

234 9 • Lists

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/9-4-nested-lists
https://openstax.org/books/introduction-python-programming/pages/9-4-nested-lists

List comprehensions
A list comprehension is a Python statement to compactly create a new list using a pattern.

The general form of a list comprehension statement is shown below.

list_name = [expression for loop_variable in iterable]

list_name refers to the name of a new list, which can be anything, and the for is the for loop keyword. An
expression defines what will become part of the new list. loop_variable is an iterator, and iterable is an
object that can be iterated, such as a list or string.

EXAMPLE 9.5

Creating a new list with a list comprehension

A list comprehension shown below in the second code has the same effect as the regular for loop shown in
the first code. The resultant list is [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] in both cases.

Creating a list of squares using a for loop.

Create an empty List.
squares_list = []

Add items to a list, as squares of numbers starting at 0 and ending at 9.
for i in range(10):

squares_list.append(i*i)

Creating a list of squares using the list comprehension.

square_list = [i*i for i in range(10)]

The expression i*i is applied for each value of the loop_variable i.

EXAMPLE 9.6

A Dr. Seuss poem

A list comprehension can be used to create a list based on another list. In line 6, the for loop is written on
the list poem_lines.

1 # Create a list of words
2 words_list = ["one", "two", "red", "blue"]
3
4 # Use a list comprehension to create a new list called

poem_lines
5 # Inserting the word "fish" attached to each word in words_list
6 poem_lines = [w + " fish" for w in words_list]

9.5 • List comprehensions 235

7 for line in poem_lines:
8 print(line)

The above code's output is:

one fish
two fish
red fish
blue fish

CONCEPTS IN PRACTICE

List comprehensions

1. The component of a list comprehension defining an element of the new list is the _____.
a. expression
b. loop_variable
c. container

2. What would be the contents of b_list after executing the code below?

a_list = [1, 2, 3, 4, 5]
b_list = [i+2 for i in a_list]

a. [1, 2, 3, 4, 5]
b. [0, 1, 2, 3, 4]
c. [3, 4, 5, 6, 7]

3. What does new_list contain after executing the statement below?

new_list = [i//3 for i in range(1, 15, 3)]

a. [0.3333333333333333, 1.3333333333333333, 2.3333333333333335,
3.3333333333333335, 4.333333333333333]

b. [0, 1, 2, 3, 4]
c. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

Filtering using list comprehensions
List comprehensions can be used to filter items from a given list. A condition is added to the list
comprehension.

list_name = [expression for loop_variable in container if condition]

In a filter list comprehension, an element is added into list_name only if the condition is met.

236 9 • Lists

Access for free at openstax.org

CHECKPOINT

Filtering a list

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/9-5-list-
comprehensions)

CONCEPTS IN PRACTICE

Filtering using list comprehensions

For each code using list comprehension, select the correct resultant list in new_list.

4. my_list = [21, -1, 50, -9, 300, -50, 2]

new_list = [m for m in my_list if m < 0]

a. [21, 50, 300, 2]
b. [21, -1, 50, -9, 300, -50, 2]
c. [-1, -9, -50]

5. my_string = "This is a home."

new_list = [i for i in my_string if i in 'aeiou']

a. [i, i, a, o, e]
b. ['i', 'i'', 'a', 'o', 'e']
c. Error

6. new_list = [r for r in range (0, 21, 2) if r%2 != 0]

a. []
b. [21]
c. [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

TRY IT

Selecting five-letter words

Write a program that creates a list of only five-letter words from the given list and prints the new list.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/9-5-list-
comprehensions)

9.5 • List comprehensions 237

https://openstax.org/books/introduction-python-programming/pages/9-5-list-comprehensions
https://openstax.org/books/introduction-python-programming/pages/9-5-list-comprehensions
https://openstax.org/books/introduction-python-programming/pages/9-5-list-comprehensions
https://openstax.org/books/introduction-python-programming/pages/9-5-list-comprehensions

TRY IT

Books starting with "A"

Write a program that selects words that begin with an "A" in the given list. Make sure the new list is then
sorted in dictionary order. Finally, print the new sorted list.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/9-5-list-
comprehensions)

9.6 Chapter summary

Highlights from this chapter include:

• Lists are mutable and can be easily modified by using append(), remove(), and pop() operations.
• Lists are iterable and can be iterated using an iterator or element indexes.
• The sort() operation arranges the elements of a list in ascending order if all elements of the list are of

the same type.
• The reverse() operation reverses a list.
• The copy() method is used to create a copy of a list.
• Lists have built-in functions for finding the maximum, minimum, and summation of a list for lists with only

numeric values.
• Lists can be nested to represent multidimensional data.
• A list comprehension is a compact way of creating a new list, which can be used to filter items from an

existing list.

At this point, you should be able to write programs using lists.

Function Description

append(element) Adds the specified element to the end of a list.

remove(element) Removes the specified element from the list if the element exists.

pop() Removes the last element of a list.

max(list) Returns the maximum element of the list specified.

min(list) Returns the maximum element of the list specified.

sum(list) Returns the summation of a list composed of numbers.

sort() Sorts a list on which the method is called in ascending order.

Table 9.1 Chapter 9 reference.

238 9 • Lists

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/9-5-list-comprehensions
https://openstax.org/books/introduction-python-programming/pages/9-5-list-comprehensions

Function Description

reverse() Reverses the order of elements in a list.

copy() Makes a complete copy of a list.

Table 9.1 Chapter 9 reference.

9.6 • Chapter summary 239

240 9 • Lists

Access for free at openstax.org

Figure 10.1 credit: modification of work "Dictionary", by Caleb Roenigk/Flickr, CC BY 2.0

Chapter Outline
10.1 Dictionary basics
10.2 Dictionary creation
10.3 Dictionary operations
10.4 Conditionals and looping in dictionaries
10.5 Nested dictionaries and dictionary comprehension
10.6 Chapter summary

Introduction
A Python dictionary is a data type for storing the data in a key-value pair format. In this chapter, the dictionary
data type is introduced. This chapter also introduces ways to use dictionaries, including looping over dictionary
items and performing conditional statements on a dictionary.

10.1 Dictionary basics

Learning objectives
By the end of this section you should be able to

• Describe the structure of a dictionary object.
• Use type() to identify the type of a dictionary object.
• Explain why a dictionary object does not have duplicate key values.

Dictionaries
A dictionary in Python is a container object including key-value pairs. An example of a key-value item is a
word in an English dictionary with its corresponding definition.

Dictionaries
10

CHECKPOINT

Dictionaries

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-1-dictionary-basics)

CONCEPTS IN PRACTICE

Dictionary basics

Given the dictionary object days = {"Sunday": 1, "Monday": 2, "Tuesday": 3}, answer the
following questions.

1. What are the keys in the days dictionary object?
a. "Sunday", "Monday", "Tuesday"
b. 1, 2, 3
c. 0, 1, 2

2. What are the values in the days dictionary object?
a. 0, 1, 2
b. 1, 2, 3
c. "Sunday", "Monday", "Tuesday"

3. What is the value associated with key "Sunday"?
a. "Sunday"
b. 1
c. 0

Dictionary type and properties
The dict type implements a dictionary in Python. Since a dictionary object is used to look up values using keys,
a dictionary object cannot hold duplicate key values.

CHECKPOINT

Dictionary properties

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-1-dictionary-basics)

CONCEPTS IN PRACTICE

Dictionary type and properties

Given the dictionary object encoding = {"a": 97, "b": 98, "A": 65, "B": 66}, answer the
following questions.

4. What does type(encoding) return?

242 10 • Dictionaries

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/10-1-dictionary-basics
https://openstax.org/books/introduction-python-programming/pages/10-1-dictionary-basics
https://openstax.org/books/introduction-python-programming/pages/10-1-dictionary-basics
https://openstax.org/books/introduction-python-programming/pages/10-1-dictionary-basics

a. dictionary
b. dict
c. str

5. The encoding dictionary contains duplicate keys since it has both "a" and "A" as keys.
a. true
b. false

6. A dictionary can have duplicate values.
a. true
b. false

TRY IT

Investigate variable types

Given the variables in the code below, examine the variables' types.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-1-dictionary-basics)

10.2 Dictionary creation

Learning objectives
By the end of this section you should be able to

• Create a dictionary object with given key/value pairs.

Dictionary creation
Two methods exist for creating an empty dictionary:

• Using curly braces {}. Ex: dict_1 = {}.
• Using the dict() function. Ex: dict_2 = dict().

A dictionary object can also be created with initial key-value pairs enclosed in curly braces. Ex: my_dict =
{"pizza": 2, "pasta": 3, "drink": 4} creates a dictionary object my_dict. A key and associated value
are separated by a colon, and key-value pairs are separated by commas.

CHECKPOINT

Creating a dictionary object

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-2-dictionary-creation)

10.2 • Dictionary creation 243

https://openstax.org/books/introduction-python-programming/pages/10-1-dictionary-basics
https://openstax.org/books/introduction-python-programming/pages/10-1-dictionary-basics
https://openstax.org/books/introduction-python-programming/pages/10-2-dictionary-creation
https://openstax.org/books/introduction-python-programming/pages/10-2-dictionary-creation

CONCEPTS IN PRACTICE

Creating dictionary exercises

1. What is the correct syntax to create an empty dictionary in Python?
a. my_dict = ()
b. my_dict = {}
c. my_dict = []

2. What is the correct syntax to create a dictionary with one item "one": 1?
a. my_dict = ("one": 1)
b. my_dict = ("one", 1)
c. my_dict = {"one": 1}

3. How many items does the my_dict object contain?

my_dict = {"a": 1, "b": 2}
a. 1
b. 2
c. 4

dict() for dictionary creation
A dictionary object can be created with initial key-value pairs using the dict() function.

• Creating a dictionary from a list of tuples.

my_list = [("apple", 2), ("banana", 3), ("orange", 4)]
my_dict = dict(my_list)

• Creating a dictionary using keyword arguments.

my_dict = dict(apple=2, banana=3, orange=4)

• Creating a dictionary from another dictionary.

old_dict = {"apple": 2, "banana": 3, "orange": 4}
new_dict = dict(old_dict)

CHECKPOINT

dict() for dictionary initialization

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-2-dictionary-creation)

244 10 • Dictionaries

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/10-2-dictionary-creation
https://openstax.org/books/introduction-python-programming/pages/10-2-dictionary-creation

CONCEPTS IN PRACTICE

dict() function for dictionary creation

4. What is the correct syntax to create a dictionary with initial values in Python?
a. my_dict = [key1:value1, key2:value2]
b. my_dict = dict(key1=value1, key2=value2)
c. my_dict = {key1=value1, key2=value2}

5. What is the output of the following code?

my_dict = dict({"a": 1})
print(my_dict)

a. {"a": 1}
b. <class, 'dict'>
c. "a"

1

6. Which option creates a dictionary with two key-value pairs, "a": "A" and "b": "B"?
a. dict(a: A, b: B)
b. dict([("a", "A"), ("b", "B")])
c. dict({"a" = "A", "b" = "B"})

TRY IT

Personal information dictionary

Create a dictionary, my_info, with three key-value pairs. The keys should be "first name", "last
name", and "age" with the values being corresponding information about yourself. Then, print my_info.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-2-dictionary-creation)

10.3 Dictionary operations

Learning objectives
By the end of this section you should be able to

• Recognize that a dictionary object is mutable.
• Evaluate dictionary items, keys, and values.
• Demonstrate the ability to access, evaluate, and modify dictionary items.
• Modify a dictionary by adding items.
• Modify a dictionary by removing items.

Accessing dictionary items
In Python, values associated with keys in a dictionary can be accessed using the keys as indexes. Here are two
ways to access dictionary items in Python:

10.3 • Dictionary operations 245

https://openstax.org/books/introduction-python-programming/pages/10-2-dictionary-creation
https://openstax.org/books/introduction-python-programming/pages/10-2-dictionary-creation

• Square bracket notation: Square brackets [] with the key inside access the value associated with that key.
If the key is not found, an exception will be thrown.

• get() method: The get() method is called with the key as an argument to access the value associated
with that key. If the key is not found, the method returns None by default, or a default value specified as
the second argument.

Ex: In the code below, a dictionary object my_dict is initialized with items {"apple": 2, "banana": 3,
"orange": 4}. The square bracket notation and get() method are used to access values associated with the
keys "banana" and "apple", respectively. When accessing the dictionary to obtain the key "pineapple", -1
is returned since the key does not exist in the dictionary.

my_dict = {"apple": 2, "banana": 3, "orange": 4}
print(my_dict["banana"]) # Prints: 3
print(my_dict.get("apple")) # Prints: 2
print(my_dict.get("pineapple", -1)) # Prints: -1

CHECKPOINT

Accessing dictionary items

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-3-dictionary-operations)

CONCEPTS IN PRACTICE

Dictionary items

Given the dictionary members = {"Jaya": "Student", "John": "TA", "Ksenia": "Staff"},
answer the following questions.

1. What is the output of members["Jaya"]?
a. 0
b. None
c. "Student"

2. What is the output of members.get("jaya")?
a. 0
b. None
c. "Student"

3. What is the output of members.get("jaya", "does not exist")?
a. "Student"
b. "does not exist"
c. None

Obtaining dictionary keys and values
Dictionary keys, values, and both keys and values can be obtained using keys(), values(), and items()

246 10 • Dictionaries

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/10-3-dictionary-operations
https://openstax.org/books/introduction-python-programming/pages/10-3-dictionary-operations

function calls, respectively. The return type of keys(), values(), and items() are dict_keys,
dict_values, and dict_items, which can be converted to a list object using the list constructor list().

EXAMPLE 10.1

String template formatting for course enrollment requests

A dictionary object with items {"a": 97, "b": 98, "c": 99} is created. Functions keys(), values(),
and items() are called to obtain keys, values, and items in the dictionary, respectively. list() is also used
to convert the output to a list object.

dictionary_object = {"a": 97, "b": 98, "c": 99}

print(dictionary_object.keys())
print(list(dictionary_object.keys()))
print(dictionary_object.values())
print(dictionary_object.items())

The above code's output is:

dict_keys(["a", "b", "c"])
["a", "b", "c"]
dict_values([97, 98, 99])
dict_items([("a", 97), ("b", 98), ("c", 99)])

CONCEPTS IN PRACTICE

Dictionary keys and values

Given the dictionary numbers = {"one": 1, "two": 2, "three": 3}, answer the following questions.

4. What is the output type of numbers.keys()?
a. dict_keys
b. dict_values
c. list

5. What is the output of print(numbers.values())?
a. [1, 2, 3]
b. dict_keys([1, 2, 3])
c. dict_values([1, 2, 3])

6. What is the output of print(list(numbers.keys()))?
a. ["three", "two", "one"]
b. ["one", "two", "three"]
c. dict_keys(["one", "two", "three"])

10.3 • Dictionary operations 247

Dictionary mutability
In Python, a dictionary is a mutable data type, which means that a dictionary's content can be modified after
creation. Dictionary items can be added, updated, or deleted from a dictionary after a dictionary object is
created.

To add an item to a dictionary, either the square bracket notation or update() function can be used.

• Square bracket notation: When using square brackets to create a new key object and assign a value to the
key, the new key-value pair will be added to the dictionary.

my_dict = {"apple": 2, "banana": 3, "orange": 4}
my_dict["pineapple"] = 1
print(my_dict) # Prints: {"apple": 2, "banana": 3, "orange": 4, "pineapple": 1}

• update() method: the update() method can be called with additional key-value pairs to update the
dictionary content.

my_dict = {"apple": 2, "banana": 3, "orange": 4}
my_dict.update({"pineapple": 1, "cherry": 0})
print(my_dict) # Prints: {"apple": 2, "banana": 3, "orange": 4, "pineapple": 1,

"cherry": 0}

To modify a dictionary item, the two approaches above can be used on an existing dictionary key along with
the updated value. Ex:

• Square bracket notation:

my_dict = {"apple": 2, "banana": 3, "orange": 4}
my_dict["apple"] = 1
print(my_dict) # Prints: {"apple": 1, "banana": 3, "orange": 4}

• update() method:

my_dict = {"apple": 2, "banana": 3, "orange": 4}
my_dict.update({"apple": 1})
print(my_dict) # Prints: {"apple": 1, "banana": 3, "orange": 4}

Items can be deleted from a dictionary using the del keyword or the pop() method.

• del keyword:

my_dict = {"apple": 2, "banana": 3, "orange": 4}
del my_dict["orange"]
print(my_dict) # Prints: {"apple": 2, "banana": 3}

• pop() method:

my_dict = {"apple": 2, "banana": 3, "orange": 4}
deleted_value = my_dict.pop("banana")
print(deleted_value) # Prints: 3

248 10 • Dictionaries

Access for free at openstax.org

print(my_dict) # Output: {"apple": 2, "orange": 4}}

CHECKPOINT

Modifying dictionary items

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-3-dictionary-operations)

CONCEPTS IN PRACTICE

Modifying a dictionary

Given the dictionary food = {"Coconut soup": "$15", "Butter Chicken": "$18", "Kabob":
"$20"}, answer the following questions.

7. Which option modifies the value for the key "Coconut soup" to "$11" while keeping other items the
same?
a. food = {""Coconut soup": "$15""}
b. food["Coconut soup"] = 11
c. food["Coconut soup"] = "$11"

8. Which option removes the item "Butter Chicken": "$18" from the food dictionary?
a. food.remove("Butter Chicken")
b. del food["Butter Chicken"]
c. del food.del("Butter Chicken")

9. What is the content of the food dictionary after calling food.update({"Kabob": "$22", "Sushi":
"$16"})?
a. {"Coconut soup": "$15", "Butter Chicken": "$18", "Kabob": "$22", "Sushi":

"$16"}
b. {"Coconut soup": "$15", "Butter Chicken": "$18", "Kabob": "$20", "Sushi":

"$16"}
c. { "Sushi": "$16", "Coconut soup": "$15", "Butter Chicken": "$18", "Kabob":

"$20"}

TRY IT

Create a dictionary of cars step-by-step

Follow the steps below to create a dictionary of cars and modify it step-by-step.

1. Create an empty dictionary.
2. Add a key-value pair of "Mustang": 10.
3. Add another key-value pair of "Volt": 3.
4. Print the dictionary.
5. Modify the value associated with key "Mustang" to be equal to 2.

10.3 • Dictionary operations 249

https://openstax.org/books/introduction-python-programming/pages/10-3-dictionary-operations
https://openstax.org/books/introduction-python-programming/pages/10-3-dictionary-operations

6. Delete key "Volt" and the associated value.
7. Print the dictionary content.

Prints {"Mustang": 2}

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-3-dictionary-operations)

TRY IT

The number of unique characters

Given a string value, calculate and print the number of unique characters using a dictionary.

Input:
string_value = "This is a string"

Prints 10

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-3-dictionary-operations)

10.4 Conditionals and looping in dictionaries

Learning objectives
By the end of this section you should be able to

• Write a conditional statement to check for a key/value.
• Write a for loop to iterate over elements of a dictionary.

Conditionals for dictionary
Conditional statements can be used with dictionaries to check if certain keys, values, or dictionary items exist
in the dictionary or if a value satisfies a particular condition.

250 10 • Dictionaries

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/10-3-dictionary-operations
https://openstax.org/books/introduction-python-programming/pages/10-3-dictionary-operations
https://openstax.org/books/introduction-python-programming/pages/10-3-dictionary-operations
https://openstax.org/books/introduction-python-programming/pages/10-3-dictionary-operations

EXAMPLE 10.2

Templates and examples of a conditional statement on a dictionary

dict.items()

(key, value) in dictionary.items()

movies = {"The godfather": 1974, "Interstellar": 2014}

print(("Interstellar", 2014) in movies.items())

True

Table 10.1

Conditionals on values or keys

dictionary[key] operand test_value

movies = {"The godfather": 1974, "Interstellar": 2014}

print(movies["The godfather"] < 2000)

True

Table 10.2

10.4 • Conditionals and looping in dictionaries 251

dict.keys()

key in dictionary.keys()

movies = {"The godfather": 1974, "Interstellar": 2014}

print("Interstellar" in movies.keys())

True

Table 10.3

dict.values()

value in dictionary.values()

movies = {"The godfather": 1974, "Interstellar": 2014}

print(2014 in movies.values())

True

Table 10.4

CONCEPTS IN PRACTICE

Conditionals on dictionaries

Given the dictionary fruit_count = {"apple": 2, "orange": 5, "pomegranate": 1}, answer the
following questions.

1. What is the output of "apple" in fruit_count.keys()?
a. True
b. False

2. What is the output of ("orange", 5) in fruit_count.items()?
a. SyntaxError
b. True
c. False

252 10 • Dictionaries

Access for free at openstax.org

3. Which conditional statement checks if the value associated with the key "pomegranate" is greater
than 0?
a. fruit_count("pomegranate") > 0
b. fruit_count["pomegranate"] > 0
c. fruit_count.get("pomegranate" > 0)

Looping on a dictionary
Looping over a Python dictionary is a way to iterate through key-value pairs in the dictionary. Looping in a
dictionary can be done by iterating over keys or items. When looping using keys, keys are obtained using the
keys() function and are passed to the loop variable one at a time. When looping over items using the
items() function, both the key and value for each item are passed to the loop variable.

A FOR LOOP OVER A DICTIONARY RETRIEVES EACH KEY IN THE DICTIONARY

for key in dictionary: # Loop expression
Statements to execute in the loop

Statements to execute after the loop

EXAMPLE 10.3

Iterating over a dictionary

dict.items()

zip_codes = {"Berkeley": 94709, "Santa Cruz": 95064, "Mountain View": 94030}

for key, value in zip_codes.items():
print(key, value)

Berkeley 94709
Santa Cruz 95064
Mountain View 94030

Table 10.5

10.4 • Conditionals and looping in dictionaries 253

dict.keys()

zip_codes = {"Berkeley": 94709, "Santa Cruz": 95064, "Mountain View": 94030}

for key in zip_codes.keys():
print(key)

Berkeley
Santa Cruz
Mountain View

Table 10.6

dict.values()

zip_codes = {"Berkeley": 94709, "Santa Cruz": 95064, "Mountain View": 94030}

for value in zip_codes.values():
print(value)

94709
95064
94030

Table 10.7

CONCEPTS IN PRACTICE

Loops on dictionaries

4. Which method is used to loop over the values in a Python dictionary?
a. keys()
b. values()
c. items()

5. What is the output of the following code?

254 10 • Dictionaries

Access for free at openstax.org

fruit_count = {"apple": 2, "orange": 5, "banana": 1}
for key in fruit_count.keys():

print(key, end = " ")

a. apple orange banana
b. 2 5 1
c. ("apple", 2) ("orange", 5) ("banana", 1)

6. What is the output of the following code?

fruit_count = {"apple": 2, "orange": 5, "banana": 1}
for value in fruit_count.values():

print(value * 2, end = " ")

a. apple orange banana
b. 2 5 1
c. 4 10 2

TRY IT

Character count in a string

Given a string value, calculate and print the number of occurrences of all characters using a dictionary.

Input:
string_value = "This is a string"

Prints {"T": 1, "h": 1, "i": 3, "s": 3, " ": 3, "a": 1, "t": 1, "r": 1, "n": 1,
"g": 1}

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-4-conditionals-and-looping-in-dictionaries)

TRY IT

Calculate the total number of fruits

Given a fruit_count dictionary that contains information about fruits and the count of each fruit,
calculate the total number of fruits across all fruit types.

Input:
fruit_count = {"banana": 2, "orange": 5, "peach": 5}

10.4 • Conditionals and looping in dictionaries 255

https://openstax.org/books/introduction-python-programming/pages/10-4-conditionals-and-looping-in-dictionaries
https://openstax.org/books/introduction-python-programming/pages/10-4-conditionals-and-looping-in-dictionaries

Prints 12

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-4-conditionals-and-looping-in-dictionaries)

10.5 Nested dictionaries and dictionary comprehension

Learning objectives
By the end of this section you should be able to

• Explain the structure of nested dictionaries.
• Use dictionary comprehension to create a dictionary object.

Nested dictionaries
As described before, Python dictionaries are a type of data structure that allows for storing data in key-value
pairs. Nested dictionaries are dictionaries that are stored as values within another dictionary. Ex: An
organizational chart with keys being different departments and values being dictionaries of employees in a
given department. For storing employee information in a department, a dictionary can be used with keys
being employee IDs and values being employee names. The tables below outline the structure of such nested
dictionaries and how nested values can be accessed.

256 10 • Dictionaries

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/10-4-conditionals-and-looping-in-dictionaries
https://openstax.org/books/introduction-python-programming/pages/10-4-conditionals-and-looping-in-dictionaries

EXAMPLE 10.4

Defining nested dictionaries and accessing elements

Defining nested dictionaries

company_org_chart = {
"Marketing": {

"ID234": "Jane Smith"
},
"Sales": {

"ID123": "Bob Johnson",
"ID122": "David Lee"

},
"Engineering": {

"ID303": "Radhika Potlapally",
"ID321": "Maryam Samimi"

}
}

Table 10.8

Accessing nested dictionary items

print(company_org_chart["Sales"]["ID122"])
print(company_org_chart["Engineering"]["ID321"])

David Lee
Maryam Samimi

Table 10.9

CONCEPTS IN PRACTICE

Nested dictionary structure

1. What is a nested dictionary in Python?
a. A dictionary that contains only integers as keys and values.
b. A dictionary that contains another dictionary as a value.
c. A dictionary that contains only strings as keys and values.

10.5 • Nested dictionaries and dictionary comprehension 257

d. A dictionary that contains only lists as keys and values.

2. How can a value be accessed in a nested dictionary in Python?
a. by using the key of the outer dictionary
b. by using the key of the inner dictionary
c. By using both the keys of the outer and inner dictionaries

3. What is the syntax for creating a nested dictionary in Python?
a. {key: value}
b. {key1: {key2: value}}
c. {key: {value: key2}}

Dictionary comprehension
Dictionary comprehension is a concise and efficient way to create a dictionary in Python. With dictionary
comprehension, elements of an iterable object are transformed into key-value pairs. The syntax of dictionary
comprehension is similar to list comprehension, but instead of using square brackets, curly braces are used to
define a dictionary.

Here is a general syntax for dictionary comprehension:

SYNTAX FOR DICTIONARY COMPREHENSION

{key_expression: value_expression for element in iterable}

CHECKPOINT

Squares of numbers

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-5-nested-dictionaries-and-dictionary-comprehension)

CONCEPTS IN PRACTICE

Dictionary comprehension

4. What is the output of the following code?

numbers = [1, 2, 3, 4, 5]
my_dict = {x: x**2 for x in numbers if x % 2 == 0}
print(my_dict)

a. {1: 1, 3: 9, 5: 25}
b. {2: 4, 4: 16}

258 10 • Dictionaries

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/10-5-nested-dictionaries-and-dictionary-comprehension
https://openstax.org/books/introduction-python-programming/pages/10-5-nested-dictionaries-and-dictionary-comprehension

c. {1: 2, 2: 4, 3: 6, 4: 8, 5: 10}

5. What is the output of the following dictionary comprehension?

names = ["Alice ", "Bob ", "Charlie "]
name_lengths = {name: len(name) for name in names}
print(name_lengths)

a. { "Alice ": 5, "Bob ": 3, "Charlie ": 7}
b. {5: "Alice ", 3: "Bob ", 7: "Charlie "}
c. { "A ": 5, "B ": 3, "C ": 7}

6. What is the output of the following dictionary comprehension?

my_dict = {i: i**2 for i in range(4)}
print(my_dict)

a. {0: 0, 1: 1, 2: 4, 3: 9}
b. {0: 0, 1: 1, 2: 4}
c. {1: 1, 2: 4, 3: 9}

TRY IT

Product prices

Suppose you have a dictionary of product prices, where the keys are product names and the values are
their respective prices in dollars. Write a Python program that uses dictionary comprehension to create a
new dictionary that has the same keys as the original dictionary, but the values are the prices in euros.
Assume that the exchange rate is 1 dollar = 0.85 euros.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-5-nested-dictionaries-and-dictionary-comprehension)

TRY IT

Restructuring the company data

Suppose you have a dictionary that contains information about employees at a company. Each employee is
identified by an ID number, and their information includes their name, department, and salary. You want to
create a nested dictionary that groups employees by department so that you can easily see the names and
salaries of all employees in each department. Write a Python program that when given a dictionary,
employees, outputs a nested dictionary, dept_employees, which groups employees by department.

Input:
employees = {

1001: {"name": "Alice", "department": "Engineering", "salary": 75000},
1002: {"name": "Bob", "department": "Sales", "salary": 50000},

10.5 • Nested dictionaries and dictionary comprehension 259

https://openstax.org/books/introduction-python-programming/pages/10-5-nested-dictionaries-and-dictionary-comprehension
https://openstax.org/books/introduction-python-programming/pages/10-5-nested-dictionaries-and-dictionary-comprehension

1003: {"name": "Charlie", "department": "Engineering", "salary": 80000},
1004: {"name": "Dave", "department": "Marketing", "salary": 60000},
1005: {"name": "Eve", "department": "Sales", "salary": 55000}

}

Resulting dictionary:

{
"Engineering": {1001: {"name": "Alice", "salary": 75000}, 1003: {"name":
"Charlie", "salary": 80000}},
"Sales": {1002: {"name": "Bob", "salary": 50000}, 1005: {"name": "Eve",
"salary": 55000}},
"Marketing": {1004: {"name": "Dave", "salary": 60000}}
}

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-5-nested-dictionaries-and-dictionary-comprehension)

10.6 Chapter summary

Highlights from this chapter include:

• A dictionary in Python is a container object including key-value pairs.
• The dict type implements a dictionary in Python.
• A dictionary cannot have duplicate keys.
• A dictionary is a mutable object but keys in the dictionary must be immutable objects.
• A dictionary can be created using curly braces or the dict() method.
• Values in the dictionary can be obtained through square bracket notation or the get() method.
• Dictionary items, keys, and values can be obtained using items(), keys(), and values() methods,

respectively.
• Existing items can be modified or new items can be added to a dictionary using square brackets notation

or the update() method.
• Items can be removed from a dictionary using the del keyword or the pop() method.
• Conditional statements can be used with a dictionary to check if the dictionary contains specific keys,

values, or key-value pairs.
• Looping on a dictionary can be done by iterating over keys, values, or items.
• Nested dictionaries are dictionaries that are stored as values within another dictionary.
• With dictionary comprehension, elements of an iterable object are transformed into key-value pairs.

At this point, you should be able to use dictionaries in your programs. The programming practice below ties
together most topics presented in the chapter.

260 10 • Dictionaries

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/10-5-nested-dictionaries-and-dictionary-comprehension
https://openstax.org/books/introduction-python-programming/pages/10-5-nested-dictionaries-and-dictionary-comprehension

Concept Description

Dictionary creation using curly braces
my_dict = {key1:value1, key2:value2}

Dictionary creation using the dict() method

Using a list
my_list = [(key1, value1), (key2, value2)]
my_dict = dict(my_list)

Using keyword arguments
my_dict = dict(key1=value1, key2=value2)

From another dictionary
old_dict = {key1: value1, key2: value2}
new_dict = dict(old_dict)

Accessing dictionary items

my_dict = {key1: value1, key2: value2}

Accessing item using square bracket
notation
my_dict[key1]

Accessing item through get() method
my_dict.get(key1)

Accessing all dictionary items
my_dict.items()

Accessing all dictionary keys
my_dict.keys()

Accessing all dictionary values
my_dict.values()

Table 10.10 Chapter 10 reference.

10.6 • Chapter summary 261

Concept Description

Adding a new key-value pair or updating an
existing key-value pair

my_dict = {key1: value1, key2: value2}

Updating an item using square bracket
notation
my_dict[key1] = new_value
Adding a new key-value pair using square
bracket notation
my_dict[key3] = value3

Updating an item using update() method
my_dict.update({key1: new_value})
Adding a new key-value pair using
update() method
my_dict.update({key3: value3})

Deleting a key-value pair from a dictionary

my_dict = {key1: value1, key2: value2}

Using del keyword
del my_dict[key1]

Using pop() method
deleted_value = my_dict.pop(key1)

Iterating over a dictionary
for key in dictionary: # Loop expression

Statements to execute in the loop

#Statements to execute after the loop

Table 10.10 Chapter 10 reference.

262 10 • Dictionaries

Access for free at openstax.org

Concept Description

Nested dictionaries
{
key_1:{key11:value11, key12:value12},
key_2:{key21:value21, key22:value22}
}

Dictionary comprehension {key_expression: value_expression for
element in iterable}

Table 10.10 Chapter 10 reference.

TRY IT

Even and odd values

Given a list, create a dictionary with two keys, "even" and "odd". The values associated with each key must
be the list of corresponding even and odd values in the given list.

Input:
input_list = [3, 5, 6, 1]

Prints {"even": [6], "odd":[3, 5, 1]}

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
10-6-chapter-summary)

10.6 • Chapter summary 263

https://openstax.org/books/introduction-python-programming/pages/10-6-chapter-summary
https://openstax.org/books/introduction-python-programming/pages/10-6-chapter-summary

264 10 • Dictionaries

Access for free at openstax.org

Figure 11.1 credit: modification of work "Fresh, bright apples newly picked", by Colorado State University Extension/Flickr, Public
Domain

Chapter Outline
11.1 Object-oriented programming basics
11.2 Classes and instances
11.3 Instance methods
11.4 Overloading operators
11.5 Using modules with classes
11.6 Chapter summary

Introduction
A programmer can model real-world entities as objects for better program design and organization. A class
defines a type of object with attributes and methods. Many instances of a class type can be created to
represent multiple objects in a program.

Classes promote reusability. Classes add benefits like data abstraction and encapsulation, which organize code
for better usability and extensibility.

11.1 Object-oriented programming basics

Learning objectives
By the end of this section you should be able to

• Describe the paradigm of object-oriented programming (OOP).
• Describe the concepts of encapsulation and abstraction as they relate to OOP, and identify the value of

each concept.

Grouping into objects
Object-oriented programming (OOP) is a style of programming that groups related fields, or data members,

Classes
11

and procedures into objects. Real-world entities are modeled as individual objects that interact with each
other. Ex: A social media account can follow other accounts, and accounts can send messages to each other. An
account can be modeled as an object in a program.

CHECKPOINT

Using objects to model social media

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-1-object-oriented-programming-basics)

CONCEPTS IN PRACTICE

OOP

1. Consider the example above. Which is a field in Ellis's 12/18/23 post?
a. Ellis's followers list
b. Ellis's username

2. What does an object typically model in object-oriented programming?
a. program code
b. real-world entity

Encapsulation
Encapsulation is a key concept in OOP that involves wrapping data and procedures that operate on that data
into a single unit. Access to the unit's data is restricted to prevent other units from directly modifying the data.
Ex: A ticket website manages all transactions for a concert, keeping track of tickets sold and tickets still
available to avoid accidental overbooking.

CHECKPOINT

Encapsulating concert ticket information

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-1-object-oriented-programming-basics)

CONCEPTS IN PRACTICE

Encapsulation

3. Consider the example above. Suppose the venue has to be changed due to inclement weather. How
should a programmer change the website object to allow changes to the Venue field?
a. Add a procedure to change the field.
b. Allow users direct access to the field.
c. No valid way to allow changes to the field.

4. Which is a benefit of encapsulation when developing complex programs?

266 11 • Classes

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/11-1-object-oriented-programming-basics
https://openstax.org/books/introduction-python-programming/pages/11-1-object-oriented-programming-basics
https://openstax.org/books/introduction-python-programming/pages/11-1-object-oriented-programming-basics
https://openstax.org/books/introduction-python-programming/pages/11-1-object-oriented-programming-basics

a. All objects can easily access and modify each other's data.
b. Each object's data is restricted for intentional access.

Abstraction
Abstraction is a key concept in OOP in which a unit's inner workings are hidden from users and other units
that don't need to know the inner workings. Ex: A driver doesn't usually need to know their car engine's exact,
numerical temperature. So the car has a gauge to display whether the engine temperature is within an
appropriate range.

CHECKPOINT

Abstracting data in a countdown calculator

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-1-object-oriented-programming-basics)

CONCEPTS IN PRACTICE

Abstraction

5. Consider the car example in the paragraph above. Suppose the designer decided to remove the engine
temperature indicator. Would this be a good use of abstraction?
a. yes
b. no

6. Which is a benefit of abstraction?
a. improved view of information
b. high visibility of information

11.2 Classes and instances

Learning objectives
By the end of this section you should be able to

• Create a class with instance attributes, class attributes, and the __init__() method.
• Use a class definition to create class instances to represent objects.

Classes and instances
In the previous section, a real-world entity, like a person's social media profile, was modeled as a single object.
How could a programmer develop a software system that manages millions of profiles? A blueprint that
defines the fields and procedures of a profile would be crucial.

In a Python program, a class defines a type of object with attributes (fields) and methods (procedures). A class
is a blueprint for creating objects. Individual objects created of the class type are called instances.

11.2 • Classes and instances 267

https://openstax.org/books/introduction-python-programming/pages/11-1-object-oriented-programming-basics
https://openstax.org/books/introduction-python-programming/pages/11-1-object-oriented-programming-basics

CHECKPOINT

Representing a coffee order with a class

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-2-classes-and-instances)

CONCEPTS IN PRACTICE

Classes and instances

Consider the example below:

class Cat:
def __init__(self):

self.name = 'Kitty'
self.breed = 'domestic short hair'
self.age = 1

def print_info(self):
print(self.name, 'is a ', self.age, 'yr old', self.breed)

pet_1 = Cat()
pet_2 = Cat()

1. What is the name of the class?
a. Cat
b. class Cat
c. self

2. Which of the following is an instance of the Cat class?
a. __init__
b. name
c. pet_1

3. Which of the following is an attribute?
a. breed
b. pet_2
c. print_info

4. Suppose the programmer wanted to change the class to represent a pet cat. Which is the appropriate
name that follows PEP 8 recommendations?
a. petcat
b. pet_cat
c. PetCat

268 11 • Classes

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/11-2-classes-and-instances
https://openstax.org/books/introduction-python-programming/pages/11-2-classes-and-instances

Creating instances with __init__()
___init___() is a special method that is called every time a new instance of a class is created. self refers to
the instance of a class and is used in class methods to access the specific instance that called the method.
__init__() uses self to define and initialize the instance's attributes.

CHECKPOINT

Creating multiple coffee orders and changing attributes

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-2-classes-and-instances)

CONCEPTS IN PRACTICE

instances and __init__()

Consider the example below:

1 class Rectangle:
2 def __init__(self):
3 self.length = 1
4 self.width = 1
5 def area(self):
6 return self.length * self.width
7
8 room_1 = Rectangle()
9 room_1.length = 10

10 room_1.width = 15
11 print("Room 1's area:", room_1.area())
12 room_3 = Rectangle()
13 room_3.length = 12
14 room_3.width = 14
15 print("Room 3's area:", room_3.area())

5. How many times is __init__() called?
a. 1
b. 2
c. 3

6. When line 11 executes, execution flow moves to line 5. What does self represent on line 5?
a. the area of room_1
b. the instance room_1
c. the Rectangle class

7. Which line initializes the instance attribute length?
a. 3
b. 6
c. 9

11.2 • Classes and instances 269

https://openstax.org/books/introduction-python-programming/pages/11-2-classes-and-instances
https://openstax.org/books/introduction-python-programming/pages/11-2-classes-and-instances

8. Suppose line 2 is changed to def __init__():. What would room_1's attributes be initialized to?
a. length = 0, width = 0
b. length = 1, width = 1
c. Error

Instance attributes vs. class attributes
The attributes shown so far have been instance attributes. An instance attribute is a variable that is unique to
each instance of a class and is accessed using the format instance_name.attribute_name. Another type of
attribute, a class attribute, belongs to the class and is shared by all class instances. Class attributes are
accessed using the format class_name.attribute_name.

CHECKPOINT

Using class attributes for shared coffee order information

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-2-classes-and-instances)

CONCEPTS IN PRACTICE

Instances and class attributes

Consider the example above.

9. Which is an instance attribute?
a. loc
b. order_id
c. order_3

10. Suppose the line order_1.cup_size = 8 is added before order_3.print_order(). What is the
new output?
a. Cafe Coffee Order 3 : 8 oz
b. Cafe Coffee Order 3 : 16 oz
c. Error

11. Suppose the line CoffeeOrder.loc = 'Caffeine Cafe' is added before
order_3.print_order(). What is the new output?
a. Caffeine Cafe Order 3 : 16 oz
b. Cafe Coffee Order 3 : 16 oz
c. Error

12. Suppose the line self.cls_id = 5 is added to the end of __init__()'s definition. What is the new
output?
a. Cafe Coffee Order 5 : 16 oz
b. Cafe Coffee Order 3 : 16 oz
c. Error

270 11 • Classes

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/11-2-classes-and-instances
https://openstax.org/books/introduction-python-programming/pages/11-2-classes-and-instances

TRY IT

Creating a class for an airline's flight tickets

Write a class, FlightTicket, as described below. Default values follow the attributes. Then create a flight
ticket and assign each instance attribute with values read from input.

Instance attributes:

• flight_num: 1
• airport: JFK
• gate: T1-1
• time: 8:00
• seat: 1A
• passenger: unknown

Class attributes:

• airline: Oceanic Airlines
• airline_code: OA

Method:

• __init__(): initializes the instance attributes
• print_info(): prints ticket information (provided in template)

Given input:

2121
KEF
D22B
11:45
12B
Jules Laurent

The output is:

Passenger Jules Laurent departs on flight # 2121 at 11:45 from KEF D22B in seat
12B

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-2-classes-and-instances)

TRY IT

Creating a class for fantasy books

Write a class, Book, as described below. Then create two instances and assign each instance attribute with
values read from input.

11.2 • Classes and instances 271

https://openstax.org/books/introduction-python-programming/pages/11-2-classes-and-instances
https://openstax.org/books/introduction-python-programming/pages/11-2-classes-and-instances

Instance attributes:

• title: ''
• author: ''
• year: 0
• pages: 0

Class attribute:

• imprint: Fantasy Tomes

Method:

• __init__(): initializes the instance attributes
• print_info(): prints book information (provided in template)

Given input:

Lord of the Bracelets
Blake R. R. Brown
1999
423
A Match of Thrones
Terry R. R. Thomas
2020
761

The output is:

Lord of the Bracelets by Blake R. R. Brown published by Fantasy Tomes
in 1999 with 423 pages
A Match of Thrones by Terry R. R. Thomas published by Fantasy Tomes
in 2020 with 761 pages

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-2-classes-and-instances)

11.3 Instance methods

Learning objectives
By the end of this section you should be able to

• Create and implement __init__() with multiple parameters including default parameter values.
• Describe what information an instance method has access to and can modify.

More about __init__()
In Python, __init__() is the special method that creates instances. __init__() must have the calling
instance, self, as the first parameter and can have any number of other parameters with or without default
parameter values.

272 11 • Classes

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/11-2-classes-and-instances
https://openstax.org/books/introduction-python-programming/pages/11-2-classes-and-instances

CHECKPOINT

Creating patient vital signs instances

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-3-instance-methods)

CONCEPTS IN PRACTICE

Defining and using __init__() with parameters

Consider the example above.

1. Suppose the programmer wanted to make blood pressure a required parameter in __init__(). Which
is the correct __init__() method header?
a. def __init__(p_id, bp, self, tmp=-1.0, hr=-1, rr=-1):
b. def __init__(self, p_id, bp, tmp=-1.0, hr=-1, rr=-1):
c. def __init__(self, p_id, bp=[-1,-1], tmp=-1.0, hr=-1, rr=-1):

2. Which is a correct call to __init__() to create an instance with p_id=5241?
a. patient_10 = Vitals(self, 5241)
b. patient_10 = Vitals(5241)
c. both

3. Suppose another __init__() definition is added after the first with the header as follows:

def __init__(self, p_id, bp, tmp, hr, rr)

What is the impact on the program?
a. no change.
b. Second __init__() definition produces an error.
c. First two __init__() calls produce an error.

Instance methods
An instance method is used to access and modify instance attributes as well as class attributes. All methods
shown so far, and most methods defined in a class definition, are instance methods.

EXAMPLE 11.1

Instance methods are often used to get and set instance information

class ProductionCar:
def __init__(self, make, model, year, max_mph = 0.0):

self.make = make
self.model = model
self.year = year

11.3 • Instance methods 273

https://openstax.org/books/introduction-python-programming/pages/11-3-instance-methods
https://openstax.org/books/introduction-python-programming/pages/11-3-instance-methods

self.max_mph = max_mph

def max_kmh(self):
return self.max_mph * 1.609344

def update_max(self, speed):
self.max_mph = speed

car_1 = ProductionCar('McLaren', 'Speedtail', 2020) # car_1.max_mph is 0.0
car_1.update_max(250.0) # car_1.max_mph is 250.0
print(car_1.make, car_1.model, 'reaches', car_1.max_mph, 'mph (',

car_1.max_kmh(), 'km/h)') # Prints McLaren Speedtail reaches 250.0 mph (402.336
km/h)

CONCEPTS IN PRACTICE

CoffeeOrder instance methods

Consider the example below:

class CoffeeOrder:
loc = 'Cafe Coffee'
cls_id = 1

def __init__(self, size=16, milk=False, sugar=False):
self.order_id = CoffeeOrder.cls_id
self.cup_size = size
self.with_milk = milk
self.with_sugar = sugar
CoffeeOrder.cls_id += 1

def change(self, milk, sugar):
self.with_milk = milk
self.with_sugar = sugar

def print_order(self):
print(CoffeeOrder.loc,'Order', self.order_id, ':', self.cup_size, 'oz')
if self.with_milk:

print('\twith milk')
if self.with_sugar:

print('\twith sugar')

order_1 = CoffeeOrder(8)
order_2 = CoffeeOrder(8, True, False)

274 11 • Classes

Access for free at openstax.org

order_1.change(False, True)

4. What does order_1 represent at the end of the program?
a. 8 oz coffee
b. 8 oz coffee with milk
c. 8 oz coffee with sugar

5. Why is change() an instance method?
a. can change attributes
b. has multiple parameters
c. can change an instance

6. Can print_order() be unindented?
a. yes
b. no

TRY IT

Creating a class for vending machines

Write a class, VendingMachine, as described below. Default values follow the attributes. Ex: count's
default value is 0. Create a vending machine using a value read from input and call instance methods.

Instance attributes:

• count: 0
• max: 0

Methods:

• __init__(num): initializes count and max with num parameter
• refill(): assigns count with max's value and prints "Refilled"
• sell(order): assigns count with the value of count minus order and prints "Sold: [order]"
• print_stock(): prints "Current stock: [count]"

Given input:

100
25

The output is:

Current stock: 100
Sold: 25
Current stock: 75

11.3 • Instance methods 275

Refilled
Current stock: 100

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-3-instance-methods)

11.4 Overloading operators

Learning objectives
By the end of this section you should be able to

• Identify magic methods and describe their purpose.
• Develop overloaded arithmetic and comparison operators for user-defined classes.

Magic methods and customizing
Magic methods are special methods that perform actions for users, typically out of view of users. Magic
methods are also called dunder methods, since the methods must start and end with double underscores (__).
Ex: __init__() is a magic method used alongside __new__() to create a new instance and initialize
attributes with a simple line like eng = Engineer(). A programmer can explicitly define a magic method in a
user-defined class to customize the method's behavior.

CHECKPOINT

Customizing __str__() in a user-defined class, Engineer

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-4-overloading-operators)

CONCEPTS IN PRACTICE

Magic methods

1. Which of the following is a magic method?
a. add()
b. _add_()
c. __add__()

2. Why are magic methods special?
a. can't be called by the user
b. perform internal actions
c. have fixed definitions

3. Consider the example above, and identify the magic method(s) in the updated program.
a. __init__()
b. __str__()
c. __init__(), __str__()

276 11 • Classes

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/11-3-instance-methods
https://openstax.org/books/introduction-python-programming/pages/11-3-instance-methods
https://openstax.org/books/introduction-python-programming/pages/11-4-overloading-operators
https://openstax.org/books/introduction-python-programming/pages/11-4-overloading-operators

Overloading arithmetic operators
Operator overloading refers to customizing the function of a built-in operator. Arithmetic operators are
commonly overloaded to allow for easy changes to instances of user-defined classes.

CHECKPOINT

Overloading __add__() for a user-defined class, Account

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-4-overloading-operators)

Arithmetic operator (Operation) Magic method

+ (Addition) __add__(self, other)

- (Subtraction) __sub__(self, other)

* (Multiplication) __mul__(self, other)

/ (Division) __truediv__(self, other)

% (Modulo) __mod__(self, other)

** (Power) __pow__(self, other)

Table 11.1 Arithmetic operators and magic methods.

CONCEPTS IN PRACTICE

Arithmetic operator overloading

4. A programmer explicitly defining the modulo operator for their user-defined class is ___________ the
operator.
a. overloading
b. rewriting
c. implementing

5. Given the code below, which argument maps to the parameter other in the call to
Account.__add__()?

acct_a = Account("Ashe", 6492)
acct_b = Account("Bevins", 5210)

acct_ab = acct_a + acct_b

a. acct_a
b. acct_b
c. acct_ab

11.4 • Overloading operators 277

https://openstax.org/books/introduction-python-programming/pages/11-4-overloading-operators
https://openstax.org/books/introduction-python-programming/pages/11-4-overloading-operators

6. Which __sub__() definition overloads the - operator for the code below to work?

class Pair:
def __init__(self, x=0, y=0):

self.x = x
self.y = y

Define __sub__()

p1 = Pair(10, 2)
p2 = Pair(8, 4)
p3 = p1 - p2
print(p3.x, p3.y)

a. def __sub__(self):
return Pair(self.x - other.x, self.y - other.y)

b. def __sub__(self, other):
return self.x - other.x, self.y - other.y

c. def __sub__(self, other):
return Pair(self.x - other.x, self.y - other.y)

Overloading comparison operators
Comparison operators can also be overloaded like arithmetic operators.

Comparison operator (Operation) Magic method

< (Less than) __lt__(self, other)

> (Greater than) __gt__(self, other)

<= (Less than or equal to) __le__(self, other)

>= (Greater than or equal to) __ge__(self, other)

== (Equal) __eq__(self, other)

!= (Not equal) __ne__(self, other)

Table 11.2 Comparison operators and magic methods.

278 11 • Classes

Access for free at openstax.org

EXAMPLE 11.2

Overloading comparison operators for the Account class

Code Output

class Account:
def __init__(self, name="", amount=0):

self.name = name
self.amount = amount

def __str__(self):
return f"{self.name}: ${self.amount}"

def __lt__(self, other):
return self.amount < other.amount

def __gt__(self, other):
return self.amount > other.amount

def __eq__(self, other):
return self.amount == other.amount

acct_a = Account("Ashe", 6492)
acct_b = Account("Bevins", 5210)

print(acct_a < acct_b)
print(acct_a > acct_b)
acct_a.amount = 5210
print(acct_a == acct_b)

False
True
True

Table 11.3

CONCEPTS IN PRACTICE

Comparison operator overloading

Consider the example above.

7. How many operators are overloaded?
a. 3
b. 4
c. 5

8. Which code appropriately overloads the <= operator?

11.4 • Overloading operators 279

a. def __le__(other):
return self.amount <= other.amount

b. def __le__(self, other):
return self.amount <= other.amount

c. def __le__(self, other):
return other.amount <= self.amount

9. Which type of value does __gt__() return?
a. account instance
b. Boolean
c. integer

TRY IT

Combining exercise logs

The ExerciseLog class has two instance attributes: e_type, the type of exercise, and duration, the time
spent exercising.

Overload the + operator to combine two ExerciseLogs such that:

• If the exercise types are different, combine them with " and " in between. Else, use the same type
and don't duplicate.

• Add durations together.

Given input:

walk
5
run
30

The output is:

walk and run: 35 minutes

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-4-overloading-operators)

TRY IT

Expanding the Account class

Using isinstance() allows the programmer to define different behaviors depending on an object's type.
The first parameter is the object, and the second parameter is the type or class. Ex: isinstance(my_var,

280 11 • Classes

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/11-4-overloading-operators
https://openstax.org/books/introduction-python-programming/pages/11-4-overloading-operators

int) returns True if my_var is an integer.

Expand the existing Account example so that the addition operator can also be used to add an integer
value to an Account's amount attribute.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-4-overloading-operators)

11.5 Using modules with classes

Learning objectives
By the end of this section you should be able to

• Construct an import statement that selectively imports classes.
• Create an alias to import a module.

Importing classes from modules
Import statements, as discussed in the Modules chapter, allow code from other files, including classes, to be
imported into a program. Accessing an imported class depends on whether the whole module is imported or
only selected parts.

Multiple classes can be grouped in a module. For good organization, classes should be grouped in a module
only if the grouping enables module reuse, as a key benefit of modules is reusability.

CHECKPOINT

Importing classes from files

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-5-using-modules-with-classes)

CONCEPTS IN PRACTICE

Importing classes

1. Consider the example above. How many classes are imported in the second main.py?
a. 1
b. 2
c. 3

2. Which line imports only the Level class from character?
a. import Level from character
b. from character import Level
c. import Level

3. How many classes can be in a module?
a. none
b. only 1
c. any number

11.5 • Using modules with classes 281

https://openstax.org/books/introduction-python-programming/pages/11-4-overloading-operators
https://openstax.org/books/introduction-python-programming/pages/11-4-overloading-operators
https://openstax.org/books/introduction-python-programming/pages/11-5-using-modules-with-classes
https://openstax.org/books/introduction-python-programming/pages/11-5-using-modules-with-classes

Using aliases
Aliasing allows the programmer to use an alternative name for imported items. Ex: import triangle as
tri allows the program to refer to the triangle module as tri. Aliasing is useful to avoid name collisions but
should be used carefully to avoid confusion.

EXAMPLE 11.3

Using aliasing to import character

character.py

class Level:
def __init__(self, level=1):

self.level = level
...

def level_up(self):
...

class XP:
def __init__(self, XP=0):

self.XP = XP
...

def add_xp(self, num):
...

main.py

import character as c

bard_level = c.Level(1)
bard_XP = c.XP(0)
bard_XP.add_xp(300)
bard_level.level_up()
...

CONCEPTS IN PRACTICE

Using an alias

Consider the example above. Suppose a program imports the character module using import character
as game_char.

4. How would the program create a Level instance?
a. rogue_level = character.Level()
b. rogue_level = game_char.Level()

282 11 • Classes

Access for free at openstax.org

c. rogue_level = character.game_char.Level()

5. Which code creates a name collision?
a. character = 'Ranger'
b. Game_char = 'Ranger'
c. game_char = 'Ranger'

TRY IT

Missing import statement

Add the missing import statement to the top of the file. Do not make any changes to the rest of the code.
In the end, the program should run without errors.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-5-using-modules-with-classes)

TRY IT

Missing class import statement

Add the missing class import statement to the top of the file. Import only a class, not a full module. Do not
make any changes to the rest of the code. In the end, the program should run without errors.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
11-5-using-modules-with-classes)

11.6 Chapter summary

Highlights from this chapter include:

• Object-oriented programming involves grouping related fields and procedures into objects using data
abstraction and encapsulation.

• Classes define a type of object with attributes and methods.
• Instances of a class type represent objects and are created using __init__().
• Attributes may belong to the instance (unique for each instance) or the class (shared by all instances).
• Instance methods have the first parameter self to access the specific instance.
• Python uses magic methods to perform "under-the-hood" actions for users. Magic methods always start

and end with double underscores.
• Python allows overloading of existing operators for user-defined classes.
• Classes can be imported from modules by name or can be renamed using aliases.

At this point, you should be able to write classes that have instance attributes, class attributes, and methods,
and import classes from modules. You should also be able to overload operators when defining a class.

11.6 • Chapter summary 283

https://openstax.org/books/introduction-python-programming/pages/11-5-using-modules-with-classes
https://openstax.org/books/introduction-python-programming/pages/11-5-using-modules-with-classes
https://openstax.org/books/introduction-python-programming/pages/11-5-using-modules-with-classes
https://openstax.org/books/introduction-python-programming/pages/11-5-using-modules-with-classes

Construct Description

Class definition class ClassName:
"""Docstring"""

__init__()
class ClassName:

def __init__(self):
Initialize attributes

Attributes

class ClassName:
class_attr_1 = [value]
class_attr_2 = [value]

def __init__(self):
instance_attr_1 = [value]
instance_attr_2 = [value]
instance_attr_3 = [value]

Methods (instance)

class ClassName:

def __init__(self):
instance_attr_1 = [value]
instance_attr_2 = [value]
instance_attr_3 = [value]

def method_1(self, val1, val2):
Access/change attributes

def method_2(self):
Access/change attributes

Instances
instance_1 = ClassName()
instance_1.instance_attr_1 = [new value]
instance_2 = ClassName()
instance_2.method_2()

Table 11.4 Chapter 11 reference.

284 11 • Classes

Access for free at openstax.org

Construct Description

Overloaded multiplication
operator

class ClassName:
Other methods

def __mul__(self, other):
return ClassName(self.instance_attr_3 *

other.instance_attr_3)

Import class from module with
alias from class_module import ClassName as ClassAlias

Table 11.4 Chapter 11 reference.

11.6 • Chapter summary 285

286 11 • Classes

Access for free at openstax.org

Figure 12.1 credit: modification of work "Rings from the Ocean", by Sue Corbisez/Flickr, CC BY 2.0

Chapter Outline
12.1 Recursion basics
12.2 Simple math recursion
12.3 Recursion with strings and lists
12.4 More math recursion
12.5 Using recursion to solve problems
12.6 Chapter summary

Introduction
Recursion is a powerful programming technique to write solutions compactly. Recursion simplifies programs
by calling smaller versions of a given problem that are used to generate the solution to the overall problem.

In advanced programming, some programs are difficult to write without the use of recursion. So recursion is
also a style of programming that enables us to simplify programs.

Recursion enables a piece of code, a function, to call the same piece of code, the same function, with different
parameters.

12.1 Recursion basics

Learning objectives
By the end of this section you should be able to

• Describe the concept of recursion.
• Demonstrate how recursion uses simple solutions to build a better solution.

Recursion
Recursion is a problem solving technique that uses the solution to a simpler version of the problem to solve
the bigger problem. In turn, the same technique can be applied to the simpler version.

Recursion
12

CHECKPOINT

Three Towers

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-1-recursion-basics)

CONCEPTS IN PRACTICE

Three Towers and recursion

1. How is the problem of moving two rings solved using recursion?
a. Move the small ring to the middle tower, move the bigger ring to the target tower, and move the

small ring to the target tower.
b. Move two rings from the source tower to the target tower.
c. Cannot be solved with recursion.

2. How is the problem of moving three rings solved using recursion?
a. Move three rings from the source tower to the target tower.
b. Move two rings to the middle tower, then move the biggest ring to the target tower, and finally,

move two rings to the target tower.
c. Cannot be solved with recursion.

3. How many times is the two-ring solution used with three rings?
a. 1
b. 2
c. 0

Recursion to find a complete solution
The recursion process continues until the problem is small enough, at which point the solution is known or can
easily be found. The larger solution can then be built systematically by successively building ever larger
solutions until the complete problem is solved.

CHECKPOINT

Solving Three Towers

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-1-recursion-basics)

CONCEPTS IN PRACTICE

Solving Three Towers

4. How many total steps does it take to solve two rings?
a. 1
b. 2

288 12 • Recursion

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/12-1-recursion-basics
https://openstax.org/books/introduction-python-programming/pages/12-1-recursion-basics
https://openstax.org/books/introduction-python-programming/pages/12-1-recursion-basics
https://openstax.org/books/introduction-python-programming/pages/12-1-recursion-basics

c. 3

5. How many total steps does it take to solve three rings?
a. 3
b. 4
c. 7

6. How many total steps does it take to solve four rings?
a. 15
b. 7
c. 3

12.2 Simple math recursion

Learning objectives
By the end of this section you should be able to

• Identify a recursive case and a base case in a recursive algorithm.
• Demonstrate how to compute a recursive solution for the factorial function.

Calculating a factorial
The factorial of a positive integer is defined as the product of the integer and the positive integers less than
the integer.

Ex: 5! = 5 * 4 * 3 * 2 * 1

Written as a general equation for a positive integer n: n! = n * (n - 1) * (n - 2) * . . . * 1

The above formula for the factorial of n results in a recursive formula: n! = n * (n - 1)!

Thus, the factorial of n depends upon the value of the factorial at n - 1. The factorial of n can be found by
repeating the factorial of n - 1 until (n - 1)! = 1! (we know that 1! = 1). This result can be used to build
the overall solution as seen in the animation below.

CHECKPOINT

Finding the factorial of 5

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-2-simple-math-recursion)

CONCEPTS IN PRACTICE

Recognizing recursion

Can the following algorithms be written recursively?

1. The summation of 1 + 2 + 3 + . . . + (n - 1) + n where n is a positive integer.

2. Listing the odd numbers greater than 0 and less than a given number n.

12.2 • Simple math recursion 289

https://openstax.org/books/introduction-python-programming/pages/12-2-simple-math-recursion
https://openstax.org/books/introduction-python-programming/pages/12-2-simple-math-recursion

3. Listing the primary numbers (prime numbers) greater than 3.

4. Listing the Fibonacci sequence of numbers.

Defining a recursive function
Recursive algorithms are written in Python as functions. In a recursive function different actions are performed
according to the input parameter value. A critical part of a recursive function is that the function must call
itself.

A value for which the recursion applies is called the recursive case. In the recursive case, the function calls
itself with a smaller portion of the input parameter. Ex: In the recursive function factorial(), the initial
parameter is an integer n. In the function's recursive case, the argument passed to factorial() is n - 1,
which is smaller than n.

A value of n for which the solution is known is called the base case. The base case stops the recursion. A
recursive algorithm must include a base case; otherwise, the algorithm may result in an infinite computation.

To calculate a factorial, a recursive function, factorial() is defined with an integer input parameter, n. When
n > 1, the recursive case applies. The factorial() calls itself with a smaller argument, n - 1. When n ==
1, the solution is known because 1! is 1; therefore, n == 1 is a base case.

Note: 0! is defined to be 1; therefore, n == 0 is a second base case for factorial(). When n < 1, an error
is returned.

CHECKPOINT

Factorial using recursion

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-2-simple-math-recursion)

CONCEPTS IN PRACTICE

Programming recursion

For the questions below, the function rec_fact() is another recursive function that calculates a factorial.
What is the result of each definition of rec_fact() if n = 17 is the initial input parameter?

5. def rec_fact(n):
return n * rec_fact(n - 1)

a. 355687428096000
b. 0
c. no result / infinite computation

6. def rec_fact(n):
if n < 0:

print("error")

290 12 • Recursion

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/12-2-simple-math-recursion
https://openstax.org/books/introduction-python-programming/pages/12-2-simple-math-recursion

elif n == 0:
return n

else:
return n * rec_fact(n - 1)

a. 355687428096000
b. 0
c. no result / infinite computation

7. def rec_fact(n):
if n < 0:

print("error")
elif n == 0:

return 1
else:

return n * rec_fact(n - 1)

a. 355687428096000
b. 0
c. no result / infinite computation

8. def rec_fact(n):
if n < 0:

return -1
else:

return n * rec_fact(n - 1)

a. 355687428096000
b. 0
c. no result / infinite computation

TRY IT

Recursive summation

Write a program that uses a recursive function to calculate the summation of numbers from 0 to a user
specified positive integer n.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-2-simple-math-recursion)

12.2 • Simple math recursion 291

https://openstax.org/books/introduction-python-programming/pages/12-2-simple-math-recursion
https://openstax.org/books/introduction-python-programming/pages/12-2-simple-math-recursion

TRY IT

Digits

Write a program that computes the sum of the digits of a positive integer using recursion.

Ex: The sum of the digits of 6721 is 16.

Hint: There are 10 base cases, which can be checked easily with the right condition.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-2-simple-math-recursion)

12.3 Recursion with strings and lists

Learning objectives
By the end of this section you should be able to

• Demonstrate the use of recursion to solve a string problem.
• Demonstrate the use of recursion to solve a list problem.
• Use the built-in count() list function.

Recursion with strings
A word that is spelled the same forward and backward is called a palindrome. Ex: racecar.

Recursion can be used to identify whether a given word is a palindrome.

CHECKPOINT

Identifying a palindrome

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-3-recursion-with-strings-and-lists)

CONCEPTS IN PRACTICE

Recursion with strings

Refer to the animation above.

1. Which of the following does palindrome() recognize as a palindrome?
a. madamm
b. madaM
c. madame

2. What would happen if the condition on line 4 of palindrome() is changed to if len(word) == 1:
a. Only palindromes with an odd number of letters would be recognized correctly.
b. Nothing. The function would work the same.
c. The function would not recognize any palindromes.

3. What would happen if the condition in line 8 palindrome() is changed to if

292 12 • Recursion

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/12-2-simple-math-recursion
https://openstax.org/books/introduction-python-programming/pages/12-2-simple-math-recursion
https://openstax.org/books/introduction-python-programming/pages/12-3-recursion-with-strings-and-lists
https://openstax.org/books/introduction-python-programming/pages/12-3-recursion-with-strings-and-lists

palindrome(word.strip(word[0])).
a. Nothing. The function would work the same: the first and last letter would be removed.
b. Some words, such as "madamm", would be incorrectly recognized as a palindrome.

Recursion with lists
The animation below shows a recursive way to check whether two lists contain the same items but in different
order.

The count() function returns a count of the number of items in a list that match the given item, and returns 0
otherwise. Ex: For list_num = [1, 3, 3, 4], list_num.count(3) returns 2.

CHECKPOINT

Checking list permutations

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-3-recursion-with-strings-and-lists)

CONCEPTS IN PRACTICE

List permutations

Refer to the above animation. What would permu_check() return for each pair of lists below?

4. list_num = [1, 7, 99, 2]
other_list = [99, 7, 1, 2]

a. True
b. False

5. list_num = [22, 9, 15, 17, 15]
other_list = [17, 9, 22, 22, 15]

a. True
b. False

6. honors_list = ["Bo", "Joe", "Sandy"]
first_names_of_team_1 = ["Sandy", "Bo", "Joe"]

a. True
b. False

7. this_list = [1, 2, [3], [4], 5]
that_list = [[3], 1, 5, [4], 2]

12.3 • Recursion with strings and lists 293

https://openstax.org/books/introduction-python-programming/pages/12-3-recursion-with-strings-and-lists
https://openstax.org/books/introduction-python-programming/pages/12-3-recursion-with-strings-and-lists

a. True
b. False

8. list_1 = [1, 2, 3]
list_2 = [1, 2, 3]

a. True
b. False

TRY IT

Remove duplicates

Write a recursive rem_dup() function that removes duplicates from a list.

Ex: List [5, 5, 2, 1, 3, 1, 6] should result in an output list [5, 2, 1, 3, 6].

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-3-recursion-with-strings-and-lists)

12.4 More math recursion

Learning objectives
By the end of this section you should be able to

• Define a recursive function to generate Fibonacci numbers.

Fibonacci sequence using recursion
The Fibonacci sequence is a sequence in which each number in the sequence is the sum of the previous two
numbers in the sequence. The first two numbers are 0 and 1. Thus, starting from 0 and 1, the third number is
0 + 1 = 1, and the next number is 1 + 1 = 2. The sequence of numbers is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

Recursion can be used to calculate the nth Fibonacci number. The base cases are 0 and 1. Thereafter, the nth
number is given by adding the (n - 1)th and (n - 2)th number. Thus, fib(n) = fib(n - 1) + fib(n - 2),
which is a recursive definition ending with base cases f(0) = 0, and f(1) = 1.

For a recursion that calls multiple functions in the recursive case, tracing how the recursion proceeds is useful.
A structure used to trace the calls made by a recursive function is called a recursion tree. The animation below
traces the recursion tree for a call to a recursive function to calculate the Fibonacci number for n = 5.

EXAMPLE 12.1

Finding the nth Fibonacci number

The Fibonacci function recursion is more complex with the value at n depending on two function calls with
smaller values.

294 12 • Recursion

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/12-3-recursion-with-strings-and-lists
https://openstax.org/books/introduction-python-programming/pages/12-3-recursion-with-strings-and-lists

""" Recursive Fibonacci function """

def fib(n):
Base case
if n == 0 or n == 1:

return n
Recursive case
elif n > 1:

return fib(n - 1) + fib(n - 2)
Error case
else:

print("Fibonacci numbers begin at 0.")
return

Test code
print(fib(7))

The above code's output is:

13

CHECKPOINT

Recursive Fibonacci function

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-4-more-math-recursion)

CONCEPTS IN PRACTICE

Fibonacci numbers

1. fib(9) results in _____.
a. 13
b. 21
c. 34

2. How many calls to the base cases are made as a result of calling fib(5)?
a. 2
b. 5
c. 8

3. A structure tracing the function calls made as a result of a complex recursive function call is called a
_____.

12.4 • More math recursion 295

https://openstax.org/books/introduction-python-programming/pages/12-4-more-math-recursion
https://openstax.org/books/introduction-python-programming/pages/12-4-more-math-recursion

a. tree
b. recursion tree
c. iteration tree

Greatest common divisor (GCD)
The greatest common divisor (GCD) of two positive integers is an integer that is a divisor for both integers. Ex:
The GCD of 6 and 9 is 3 because 3 x 2 = 6, and 3 x 3 = 9.

The GCD is found easily using Euclid's method. Euclid's method recursively subtracts the smaller integer from
the larger integer until a base case with equal integers is reached. The greatest common divisor is the integer
value when the base case is reached.

EXAMPLE 12.2

Finding the GCD

""" Find GCD using recursive implementation of Euclid's method """

def gcd(a, b):
if a == b: # Base case

return a
elif a < b: # Recursive case

return gcd(a, b - a)
else:

return gcd(a - b, a)

Test code
print(gcd(24, 30))

The above code's output is:

6

CONCEPTS IN PRACTICE

GCD

4. What is the GCD of 15 and 35?
a. 15
b. 20
c. 5

296 12 • Recursion

Access for free at openstax.org

5. How many recursive calls are made with gcd(24, 30)?
a. 4
b. 1
c. 24

6. What is the GCD of 13 and 23?
a. 13
b. 1
c. 23

7. How many recursive calls are made with gcd(13, 23)?
a. 1
b. 8
c. 13

TRY IT

Recursive power

Write a recursive power() function, such that given an integer x and a positive integer y, power(x, y)
returns x raised to y.

Ex: power(3, 4) returns 81.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-4-more-math-recursion)

TRY IT

Recursive power (with any integer power)

Write a recursive rec_pow() function such that given two integers, x and y, it returns x raised to y.

(Note: this is an extension of the above problem but now works for any integer value of y, positive or
negative. How should the recursive function change to deal with a negative value of y?)

Ex: rec_pow(2, -4) returns 0.0625.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-4-more-math-recursion)

12.5 Using recursion to solve problems

Learning objectives
By the end of this section you should be able to

• Use recursion to efficiently search a list.
• Demonstrate a solution to the Three Towers problem.

12.5 • Using recursion to solve problems 297

https://openstax.org/books/introduction-python-programming/pages/12-4-more-math-recursion
https://openstax.org/books/introduction-python-programming/pages/12-4-more-math-recursion
https://openstax.org/books/introduction-python-programming/pages/12-4-more-math-recursion
https://openstax.org/books/introduction-python-programming/pages/12-4-more-math-recursion

Binary search
Searching a sorted list usually involves looking at each item. If the item being searched is not found, then the
search can take a long time.

A binary search is a recursive algorithm used to efficiently search sorted lists. In each recursive step, about half
the items are discarded as not being potential matches, so the search proceeds much faster.

A binary search begins by checking the middle element of the list. If the search key is found, the algorithm
returns the matching location (base case). Otherwise, the search is repeated on approximately half the list. If
the key is greater than the middle element, then the key must be on the right half, and vice versa. The process
continues by checking the middle element of the remaining half of the list.

EXAMPLE 12.3

Binary search

""" Binary Search """

def binary_search(search_list, low, high, key):

Check base case
if high > low:

mid = (high + low) // 2

If element is present at the middle itself (base case)
if search_list[mid] == key:

return mid

Recursive case: check which subarray must be checked
Right subarray
elif key > search_list[mid]:

return binary_search(search_list, mid + 1, high, key)

Left subarray
else:

return binary_search(search_list, low, mid - 1, key)

else:
Key not found (other base case)
return "Not found"

Test list
in_list = [1, 3, 13, 16, 19, 22, 27, 32, 48, 66, 78, 99, 111, 122]

Call binary search function
print(binary_search(in_list, 0, len(in_list)-1, 48)) # Key exists at index 8

print(binary_search(in_list, 0, len(in_list)-1, 86)) # Key does not exist

298 12 • Recursion

Access for free at openstax.org

The above code's output is:

8
Not found

CHECKPOINT

Binary search

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-5-using-recursion-to-solve-problems)

CONCEPTS IN PRACTICE

Binary search

1. Which list can be searched with the binary search algorithm?
a. [5, 2, 7, 1, 8]
b. [9, 8, 7, 6, 5]
c. [4, 5, 6, 7, 8]

2. If the binary_search() function is called with low = 4, and high = 7, mid computes to _____.
a. 5
b. 6
c. 11

3. How many calls to the binary_search() function occur in the animation?
a. 3
b. 4
c. 8

4. How many calls to the binary_search() function occur in the code example when searching 86?
a. 4
b. 14

Solving Three Towers
As discussed in an earlier section, the Three Towers problem can be solved using recursion. The solution
depends on calling the solution to the next smaller problem twice. As shown in the code example below, the
recursive solution can solve the problem for any number of rings.

12.5 • Using recursion to solve problems 299

https://openstax.org/books/introduction-python-programming/pages/12-5-using-recursion-to-solve-problems
https://openstax.org/books/introduction-python-programming/pages/12-5-using-recursion-to-solve-problems

EXAMPLE 12.4

Solving N towers

The solution to Three Towers is simple with recursion. In the code below, rings are numbered from the top
down. The smallest ring is 1, the next ring is 2, and when solving for three rings, the bottom ring is 3.

""" Solving the towers problem recursively """

def three_towers(N, source_tower, dest_tower, temp_tower):
Base case: simply move the single(bottom) ring from source to destination

tower
if N==1:

print("Move ring 1 from tower", source_tower, "to tower", dest_tower)
return # Exit when the base case is reached

Recursive case
Call the smaller version of the problem:
to move the N-1 stack to the middle tower
three_towers(N-1, source_tower, temp_tower, dest_tower)

Move the N ring to the destination tower
print("Move ring", N, "from tower", source_tower, "to tower", dest_tower)

Call the smaller version of the problem:
to now move the N-1 stack from the middle tower
to the destination
three_towers(N-1, temp_tower, dest_tower, source_tower)

Test code
print("Solution for 3 rings:")
three_towers(3, 't1', 't3', 't2') # t1, t2, t3 are the towers

The above code's output is:

Solution for 3 rings:
Move ring 1 from tower t1 to tower t3
Move ring 2 from tower t1 to tower t2
Move ring 1 from tower t3 to tower t2
Move ring 3 from tower t1 to tower t3
Move ring 1 from tower t2 to tower t1
Move ring 2 from tower t2 to tower t3
Move ring 1 from tower t1 to tower t3

300 12 • Recursion

Access for free at openstax.org

CONCEPTS IN PRACTICE

Solving Three Towers

5. For four rings, how many total lines will be printed by three_towers()?
a. 7
b. 15

6. Would an iterative solution to the Three Towers problem be more complex or less complex?
a. more complex
b. less complex

TRY IT

Coin combinations

Write a recursive function print_H_T() that produces all possible combinations of heads ("H") and tails
("T") for a given number of coin tosses.

Ex: For three coins, the program should print the output shown below.

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
12-5-using-recursion-to-solve-problems)

12.6 Chapter summary

Highlights from this chapter include:

• Describe the concept of recursion.
• Demonstrate how recursion uses simpler solutions to build a bigger solution.
• Identify a recursive case and a base case in a recursive algorithm.
• Demonstrate how to compute a recursive solution for the factorial function.
• Demonstrate the use of recursion to solve a string problem.
• Demonstrate the use of recursion to solve a list problem.
• Use the built-in count() list function.
• Define a recursive function to generate Fibonacci numbers.
• Use recursion to efficiently search a list.
• Demonstrate a solution to the Three Towers problem.

12.6 • Chapter summary 301

https://openstax.org/books/introduction-python-programming/pages/12-5-using-recursion-to-solve-problems
https://openstax.org/books/introduction-python-programming/pages/12-5-using-recursion-to-solve-problems

At this point, you should be able to solve problems using recursion.

Function Description

count(element)
Returns the number of times the element exists on the list on which the count()
function is called.

Table 12.1 Chapter 12 reference.

302 12 • Recursion

Access for free at openstax.org

Figure 13.1 credit: modification of work "Don't stare...only sheep dogs stare...", by Bernard Spragg. NZ/Flickr, Public Domain

Chapter Outline
13.1 Inheritance basics
13.2 Attribute access
13.3 Methods
13.4 Hierarchical inheritance
13.5 Multiple inheritance and mixin classes
13.6 Chapter summary

Introduction
Real-world entities are often described in relation to other entities. Ex: A finch is a type of bird. Similarly,
classes, which represent types of real-world entities, can be related to each other.

Inheritance describes the relationship in which one class is a type of another class. Classes within inheritance
relationships can inherit attributes and methods from other classes without needing to redefine everything.
Thus, inheritance in object-oriented programming reduces redundancy and promotes modularity.

13.1 Inheritance basics

Learning objectives
By the end of this section you should be able to

• Identify is-a and has-a relationships between classes.
• Differentiate between a subclass and a superclass.
• Create a superclass, subclass, and instances of each.

is-a vs has-a relationships
Classes are related to each other. An is-a relationship exists between a subclass and a superclass. Ex: A daffodil
is a plant. A Daffodil class inherits from a superclass, Plant.

Inheritance
13

Is-a relationships can be confused with has-a relationships. A has-a relationship exists between a class that
contains another class. Ex: An employee has a company-issued laptop. Note: The laptop is not an employee.

CHECKPOINT

is-a relationship between Employee and Developer

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-1-inheritance-basics)

CONCEPTS IN PRACTICE

Relationships between classes

1. What is the relationship between a Doughnut class and a Pastry class?
a. is-a
b. has-a

2. What is the relationship between a Kitchen class and a Freezer class?
a. is-a
b. has-a

3. A goalkeeper is a player. Goalkeeper is a ______class. Player is a ______class.
a. super; sub
b. sub; super

Inheritance in Python
Inheritance uses an is-a relationship to inherit a class from a superclass. The subclass inherits all the
superclass's attributes and methods, and extends the superclass's functionality.

In Python, a subclass is created by including the superclass name in parentheses at the top of the subclass's
definition:

class SuperClass:
SuperClass attributes and methods

class SubClass(SuperClass):
SubClass attributes and methods

CHECKPOINT

Using inheritance to create subclasses

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-1-inheritance-basics)

304 13 • Inheritance

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/13-1-inheritance-basics
https://openstax.org/books/introduction-python-programming/pages/13-1-inheritance-basics
https://openstax.org/books/introduction-python-programming/pages/13-1-inheritance-basics
https://openstax.org/books/introduction-python-programming/pages/13-1-inheritance-basics

CONCEPTS IN PRACTICE

Creating subclasses

4. How is a Daisy class that inherits from the Plant class defined?
a. class Plant(Daisy):
b. class Daisy(Plant):
c. class Daisy:

class Plant:

5. Suppose a CarryOn class is inherited from a Luggage class. How is a CarryOn instance created?
a. small_bag = CarryOn()
b. small_bag = Luggage(CarryOn)
c. small_bag = CarryOn(Luggage)

6. Given the following SuperClass and SubClass, which of the following can an instance of SubClass
access?

class SuperClass():
def func_1(self):

print('Superclass function')

class SubClass(SuperClass):
def func_2(self):

print('Subclass function')

a. func_1() only
b. func_2() only
c. func_1() and func_2()

7. Given the following SuperClass and SubClass, which of the following can an instance of SuperClass
access?

class SuperClass():
def func_1(self):

print('Superclass function')

class SubClass(SuperClass):
def func_2(self):

print('Subclass function')

a. func_1() only
b. func_2() only
c. func_1() and func_2()

ALTERNATIVE INHERITANCE TERMS

Python documentation for inheritance uses multiple terms to refer to the class that is inherited from and

13.1 • Inheritance basics 305

the class that inherits. This book uses superclass/subclass throughout for consistency.

Class inherited from Class that inherits

superclass subclass

base class derived class

parent class child class

Table 13.1

TRY IT

Employee and Developer classes

Given the Employee class, create a Developer class that inherits from Employee. The Developer class
has one method, update_codebase(), which prints "Employee has updated the codebase". Then,
use the Developer instance, python_dev, to call print_company() and update_codebase().

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-1-inheritance-basics)

TRY IT

Polygon classes

Define three classes: Polygon, Rectangle, and Square:

• Polygon has the method p_disp(), which prints "object is a Polygon".
• Rectangle inherits from Polygon and has the method r_disp(), which prints "object is a

Rectangle".
• Square inherits from Rectangle and has the method s_disp(), which prints "object is a

Square".

Create an instance of each class. Then, for each instance, call all the methods the instance has access to.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-1-inheritance-basics)

13.2 Attribute access

Learning objectives
By the end of this section you should be able to

• Implement a subclass that accesses inherited attributes from the superclass.
• Write a subclass's __init__() that inherits superclass instance attributes and creates new instance

attributes.

306 13 • Inheritance

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/13-1-inheritance-basics
https://openstax.org/books/introduction-python-programming/pages/13-1-inheritance-basics
https://openstax.org/books/introduction-python-programming/pages/13-1-inheritance-basics
https://openstax.org/books/introduction-python-programming/pages/13-1-inheritance-basics

Creating a simple subclass
Subclasses have access to the attributes inherited from the superclass. When the subclass's __init__() isn't
explicitly defined, the superclass's __init__() method is called. Accessing both types of attributes uses the
same syntax.

CHECKPOINT

Defining a simple subclass

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-2-attribute-access)

CONCEPTS IN PRACTICE

Using simple subclasses

1. Consider the Employee and Developer example above. What is the value of dev_1.e_id?
a. 1
b. 2
c. Error

2. Consider the following example. Line 13 executes and SubClass() is called. Which line does control
flow move to?

1 class SuperClass:
2 def __init__(self):
3 self.feat_1 = 1
4 self.feat_2 = ""
5
6 def bc_display(self):
7 print(f"Superclass: {self.feat_2}")
8
9 class SubClass(SuperClass):

10 def dc_display(self):
11 print(f"Subclass: {self.feat_2}")
12
13 dc_1 = SubClass()

a. 2
b. 10
c. Error

3. Consider the following example. Which instance attribute(s) does dc_1 have?

class SuperClass:
def __init__(self):

self.feat_1 = 1
self.feat_2 = ""

13.2 • Attribute access 307

https://openstax.org/books/introduction-python-programming/pages/13-2-attribute-access
https://openstax.org/books/introduction-python-programming/pages/13-2-attribute-access

def bc_display(self):
print(f"Superclass: {self.feat_2}")

class SubClass(SuperClass):
def dc_display(self):

print(f"Subclass: {self.feat_2}")

dc_1 = SubClass()

a. feat_2
b. feat_1 and feat_2
c. None

Using __init__() to create and inherit instance attributes
A programmer often wants a subclass to have new instance attributes as well as those inherited from the
superclass. Explicitly defining a subclass's __init__() involves defining instance attributes and assigning
instance attributes inherited from the superclass.

CHECKPOINT

Defining __init__() in a subclass

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-2-attribute-access)

CONCEPTS IN PRACTICE

Accessing a subclass's attributes

Consider the Employee and Developer example code:

class Employee:
count = 0
def __init__(self):

Employee.count += 1
self.e_id = Employee.count
self.hire_year = 2023

def emp_display(self):
print(f"Employee {self.e_id} hired in {self.hire_year}")

class Developer(Employee):
def __init__(self):

Employee.count += 1
self.e_id = Employee.count

308 13 • Inheritance

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/13-2-attribute-access
https://openstax.org/books/introduction-python-programming/pages/13-2-attribute-access

self.hire_year = 2023
self.lang_xp = ["Python", "C++", "Java"]

def dev_display(self):
print(f"Proficient in {self.lang_xp}")

emp_1 = Employee()
dev_1 = Developer()

4. What would be the output of dev_1.dev_display()?
a. Employee 2 hired in 2023
b. Proficient in ['Python', 'C++', 'Java']
c. Error

5. What would be the output of emp_1.dev_display()?
a. Employee 1 hired in 2023
b. Proficient in ['Python', 'C++', 'Java']
c. Error

6. Suppose dev_display() should be modified to display the developer's ID along with their
proficiencies. Ex: dev_1.dev_display() would output Employee 2 proficient in ['Python',
'C++', 'Java']. Which is the appropriate new print() call in dev_display()?
a. print(f"Employee {self.e_id} proficient in {self.lang_xp}")
b. print(f"Employee {self.Employee.e_id} proficient in {self.lang_xp}")
c. print(f"Employee 2 proficient in {self.lang_xp}")

TRY IT

Creating a subclass with an instance attribute

Given a class Dessert, create a class, Cupcake, inherited from Dessert. Cupcake class methods:

• __init__(self): initializes inherited instance attribute ingredients with ["butter", "sugar", "eggs",
"flour"], and initializes instance attribute frosting with "buttercream"

• display(self): prints a cupcake's ingredients and frosting

Then call the display() method on a new Cupcake object. The output should match:

Made with ["butter", "sugar", "eggs", "flour"] and topped with buttercream
frosting

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-2-attribute-access)

13.2 • Attribute access 309

https://openstax.org/books/introduction-python-programming/pages/13-2-attribute-access
https://openstax.org/books/introduction-python-programming/pages/13-2-attribute-access

13.3 Methods

Learning objectives
By the end of this section you should be able to

• Write overridden methods to change behavior of inherited methods.
• Use super() to access superclass methods.
• Identify applications of polymorphism in method and function use.

Overriding methods
Sometimes a programmer wants to change the functions a subclass inherits. Mint is a subclass that has the
same functionality as Plant, except for one function. A subclass can override a superclass method by defining
a method with the same name as the superclass method.

CHECKPOINT

Overriding a superclass method

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-3-methods)

CONCEPTS IN PRACTICE

Overriding methods

1. Suppose a programmer inherits the ContractTax class from class Tax and wants to override Tax's
calc_tax(). What should the programmer do?
a. Define another calc_tax() method in Tax.
b. Define a calc_tax() method in ContractTax.
c. Define a function that takes a ContractTax instance.

2. Which is the error in the program that attempts to override calc_tax() for ContractTaxDE?

class Tax:
def calc_tax(self):

print('Calculating tax')

class ContractTax(Tax):
def calc_tax(self):

print('Calculating contract tax')

class ContractTaxDE(ContractTax):
def calc_tax():

print('Calculating German contract tax')

my_tax = ContractTaxDE()
my_tax.calc_tax()

a. ContractTaxDE must inherit from Tax, not ContractTax.

310 13 • Inheritance

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/13-3-methods
https://openstax.org/books/introduction-python-programming/pages/13-3-methods

b. ContractTaxDE's definition of calc_tax() is missing a parameter.
c. ContractTaxDE can't override calc_tax() since ContractTax already has.

3. The following program doesn't override calc_tax(). Why?

class Tax:
def calc_tax(self):

print('Calculating tax')
total = 0 # To replace with calculation
return total

class ContractTax:
def calc_tax(self):

print('Calculating contract tax')
total = 0 # To replace with calculation
return total

my_tax = ContractTax()
my_tax.calc_tax()

a. An overridden method cannot return a value.
b. Tax doesn't specify calc_tax() can be overridden.
c. ContractTax isn't inherited from Tax.

super()
super() is a special method that provides a temporary superclass object instance for a subclass to use.
super() is commonly used to call superclass methods from a subclass. super() is commonly used in a
subclass's __init__() to assign inherited instance attributes. Ex: super().__init__().

CHECKPOINT

Using super() to call the superclass __init__() method

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-3-methods)

CONCEPTS IN PRACTICE

Using super()

Consider the following program.

1 class Polygon:
2 def __init__(self, num_sides=3):
3 self.num_sides = num_sides
4
5 class Rectangle(Polygon):

13.3 • Methods 311

https://openstax.org/books/introduction-python-programming/pages/13-3-methods
https://openstax.org/books/introduction-python-programming/pages/13-3-methods

6 def __init__(self, ln=1, wd=1):
7 super().__init__(4)
8 self.length = ln
9 self.width = wd

10
11 class Square(Rectangle):
12 def __init__(self, side=1):
13 super().__init__(side, side)
14 self.side = side
15
16 sq_1 = Square(5)
17 print(sq_1.num_sides)

4. Line 16 executes and Square's __init__() is called on line 12. Line 13 executes and the superclass's
__init__() is called. Which line does control flow move to next?
a. 2
b. 6
c. 14

5. The next line executes. Which line does control flow move to next?
a. 2
b. 6
c. 14

6. The method call returns. Lines 8 and 9 execute to initialize length and width, and Rectangle's
__init__() returns. Which line does control flow move to next?
a. 12
b. 14
c. 17

7. Square's __init__() returns and control flow moves to line 17. What is the output?
a. 3
b. 4
c. 5

Polymorphism
Polymorphism is the concept of having many forms. In programming, a single name can be used for multiple
functionalities. Within inheritance, polymorphism is the basis of method overriding, as multiple methods have
the same name.

EXAMPLE 13.1

Polymorphism and inheritance

The name display() maps to multiple methods. The class type of the calling object determines which
display() method is executed.

312 13 • Inheritance

Access for free at openstax.org

class Plant:
def display(self):

print("I'm a plant")

class Mint(Plant):
def display(self):

print("I'm a mint")

class Lavender(Mint):
def display(self):

print("I'm a lavender")

mint_1 = Mint()
mint_1.display()

lavender_1 = Lavender()
lavender_1.display()

The code's output is:

I'm a mint
I'm a lavender

Polymorphism can also be used with methods of unrelated classes. The class type of the calling object
determines the method executed.

EXAMPLE 13.2

Polymorphism and methods

Tax and ContractTax are unrelated classes that each define calc_tax(). calc_tax() isn't overridden as
ContractTax isn't inherited from Tax.

class Tax:
def __init__(self, value):

self.value = value

def calc_tax(self):
print("Calculating tax")
total = 0.10 * self.value # To replace with calculation
return total

13.3 • Methods 313

class ContractTax:
def __init__(self, value):

self.value = value

def calc_tax(self):
print("Calculating contracts tax")
total = 0.15 * self.value # To replace with calculation
return total

my_tax = ContractTax(value=1000) # Replace 1000 with any value
result = my_tax.calc_tax()
print(f"Total tax: ${result}")

The code's output is:

Calculating contracts tax
Total tax: $150.00

Polymorphism allows methods to be called with different parameter types. Many built-in operators and
functions have this utility.

EXAMPLE 13.3

Polymorphism and functions

len() can be called with multiple types, including lists and strings.

tree_list = ["ash", "hazel", "oak", "yew"]
tree_1 = tree_list[0]
print(len(tree_list))
print(len(tree_1))

The code's output is:

4
3

314 13 • Inheritance

Access for free at openstax.org

CONCEPTS IN PRACTICE

Polymorphism in practice

8. Consider the example. What is the output?

class Polygon:
def print_type(self):

print("Polygon type")

class Rectangle(Polygon):
def print_type(self):

print("Rectangle type")

class Square(Rectangle):
def print_type(self):

print("Square type")

sq_1 = Square()
sq_1.print_type()

a. Polygon type
b. Rectangle type
c. Square type

9. Which is an example of polymorphism for the multiplication operator?
a. x = 3 * 4

y = 3 * "la"
b. x = 3 * 4

y = str(x)
c. x = 3 * 4

y = x * x

TRY IT

Overriding methods

Given the Pet class, create a Bird class inherited from Pet and a Finch class inherited from Bird.
Override the display() method in Bird and Finch such that the program output is:

Pet type: Bird
Bird type: Finch

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-3-methods)

13.3 • Methods 315

https://openstax.org/books/introduction-python-programming/pages/13-3-methods
https://openstax.org/books/introduction-python-programming/pages/13-3-methods

TRY IT

Using super()

Given the Employee class, create a Developer class inherited from Employee with methods __init__()
and print_info() such that:

__init__()

• Uses super() to call Employee's __init__() to initialize e_id and hire_year.
• Assigns lang_xp with list parameter lang_xp.

print_info()

• Uses super() to print e_id and hire_year.
• Prints "Language(s):" followed by lang_xp.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-3-methods)

13.4 Hierarchical inheritance

Learning objectives
By the end of this section you should be able to

• Label relationships between classes as types of inheritance.
• Construct classes that form hierarchical inheritance.

Hierarchical inheritance basics
Hierarchical inheritance is a type of inheritance in which multiple classes inherit from a single superclass.
Multilevel inheritance is a type of inheritance in which a subclass becomes the superclass for another class.
Combining hierarchical and multilevel inheritance creates a tree-like organization of classes.

CHECKPOINT

Hierarchical organization and types of inheritance

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-4-hierarchical-inheritance)

CONCEPTS IN PRACTICE

Hierarchical organization

1. Which is an example of hierarchical inheritance?
a. Class B inherits from Class A

Class C inherits from Class A
b. Class B inherits from Class A

Class C inherits from Class B
c. Class B inherits from Class A

316 13 • Inheritance

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/13-3-methods
https://openstax.org/books/introduction-python-programming/pages/13-3-methods
https://openstax.org/books/introduction-python-programming/pages/13-4-hierarchical-inheritance
https://openstax.org/books/introduction-python-programming/pages/13-4-hierarchical-inheritance

Class C inherits from Class D

2. Which group of classes is hierarchical inheritance appropriate for?
a. Cat, Dog, Bird
b. Employee, Developer, SalesRep
c. Dessert, BakedGood, ApplePie

Implementing hierarchical inheritance
Multiple classes can inherit from a single class by simply including the superclass name in each subclass
definition.

EXAMPLE 13.4

Choir members

class ChoirMember:
def display(self):

print("Current choir member")

class Soprano(ChoirMember):
def display(self):

super().display()
print("Part: Soprano")

class Soprano1(Soprano):
def display(self):

super().display()
print("Division: Soprano 1")

class Alto(ChoirMember):
def display(self):

super().display()
print("Part: Alto")

class Tenor(ChoirMember):
def display(self):

super().display()
print("Part: Tenor")

class Bass(ChoirMember):
def display(self):

super().display()
print("Part: Bass")

mem_10 = Alto()

13.4 • Hierarchical inheritance 317

mem_13 = Tenor()
mem_15 = Soprano1()

mem_10.display()
print()
mem_13.display()
print()
mem_15.display()

The code's output is:

Current choir member
Part: Alto

Current choir member
Part: Tenor

Current choir member
Part: Soprano
Division: Soprano 1

CONCEPTS IN PRACTICE

Implementing hierarchical inheritance

Consider the program:

class A:
def __init__(self, a_attr=0):

self.a_attr = a_attr

class B(A):
def __init__(self, a_attr=0, b_attr=0):

super().__init__(a_attr)
self.b_attr = b_attr

class C(A):
def __init__(self, a_attr=0, c_attr=0):

super().__init__(a_attr)
self.c_attr = c_attr

class D(B):
def __init__(self, a_attr=0, b_attr=0, d_attr=0):

318 13 • Inheritance

Access for free at openstax.org

super().__init__(a_attr, b_attr)
self.d_attr = d_attr

b_inst = B(2)
c_inst = C(c_attr=4)
d_inst = D(6, 7)

3. What is the value of b_inst.b_attr?
a. 0
b. 2
c. Error

4. Which attributes does c_inst have access to?
a. a_attr
b. a_attr, c_attr
c. c_attr

5. Which attributes does d_inst have access to?
a. b_attr, d_attr
b. a_attr, b_attr, d_attr
c. d_attr

TRY IT

Overriding methods

Define three classes: Instrument, Woodwind, and String.

• Instrument has instance attribute owner, with default value of "unknown".
• Woodwind inherits from Instrument and has instance attribute material with default value of

"wood".
• String inherits from Instrument and has instance attribute num_strings, with default value of 4.

The output should match:

This flute belongs to unknown and is made of silver
This cello belongs to Bea and has 4 strings

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-4-hierarchical-inheritance)

13.4 • Hierarchical inheritance 319

https://openstax.org/books/introduction-python-programming/pages/13-4-hierarchical-inheritance
https://openstax.org/books/introduction-python-programming/pages/13-4-hierarchical-inheritance

13.5 Multiple inheritance and mixin classes

Learning objectives
By the end of this section you should be able to

• Construct a class that inherits from multiple superclasses.
• Identify the diamond problem within multiple inheritance.
• Construct a mixin class to add functionality to a subclass.

Multiple inheritance basics
Multiple inheritance is a type of inheritance in which one class inherits from multiple classes. A class
inherited from multiple classes has all superclasses listed in the class definition inheritance list. Ex: class
SubClass(SuperClass_1, SuperClass_2).

CHECKPOINT

Multiple inheritance organization

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-5-multiple-inheritance-and-mixin-classes)

CONCEPTS IN PRACTICE

Implementing multiple inheritance

Consider the program:

class A:
def __init__(self, a_attr=2):

self.a_attr = a_attr

class B:
def __init__(self, b_attr=4):

self.b_attr = b_attr

class C(A, B):
def __init__(self, a_attr=5, b_attr=10, c_attr=20):

A.__init__(self, a_attr)
B.__init__(self, b_attr)
self.c_attr = c_attr

b_inst = B(2)
c_inst = C(1, 2)

1. What is the value of c_inst.a_attr?
a. 1
b. 5

320 13 • Inheritance

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/13-5-multiple-inheritance-and-mixin-classes
https://openstax.org/books/introduction-python-programming/pages/13-5-multiple-inheritance-and-mixin-classes

c. Error

2. What is the value of c_inst.c_attr?
a. 2
b. 20
c. Error

3. What is the value of b_inst.a_attr?
a. 2
b. 4
c. Error

The diamond problem and mixin classes
Multiple inheritance should be implemented with care. The diamond problem occurs when a class inherits
from multiple classes that share a common superclass. Ex: Dessert and BakedGood both inherit from Food,
and ApplePie inherits from Dessert and BakedGood.

Figure 13.2 The diamond problem. If both Dessert and BakedGood override a Food method, the overridden Food method that
ApplePie inherits is ambiguous. Thus, diamond shaped inheritance should be avoided.

Mixin classes promote modularity and can remove the diamond problem. A mixin class:

• Has no superclass
• Has attributes and methods to be added to a subclass
• Isn't instantiated (Ex: Given MyMixin class, my_inst = MyMixin() should never be used.)

Mixin classes are used in multiple inheritance to add functionality to a subclass without adding inheritance
concerns.

CONCEPTS IN PRACTICE

Creating a mixin class

The following code isn't correct, as not all plants are carnivorous. Follow the programmer through the
programmer's edits to improve the program. Note: Rose, Pitcher, and VenusFlyTrap represent plants
that all photosynthesize. Pitcher and VenusFlyTrap represent plants that are also carnivorous and can
eat.

A pass statement is used in Python to indicate that code is to be written later and prevents certain errors
that would result if no code was written or a comment was used instead.

13.5 • Multiple inheritance and mixin classes 321

class Plant:
def photosynth(self):

print("Photosynthesizing")

def eat(self):
print("Eating")

class Rose(Plant):
pass

class Pitcher(Plant):
pass

class VenusFlyTrap(Plant):
pass

4. Which edit is appropriate?
a. Move eat() to a different class.
b. Remove Plant as a superclass.

5. The programmer edits the code as follows. How can the program be improved?

class Plant:
def photosynth(self):

print("Photosynthesizing")

class Rose(Plant):
pass

class Pitcher(Plant):
def eat(self):

print("Eating")

class VenusFlyTrap(Plant)
def eat(self):

print("Eating")

a. Move photosynth() into Rose.
b. Remove redundancy of eat().

6. The programmer edits the code to create a mixin class containing eat(). Which class name, replacing
X, is most appropriate for the mixin?

class Plant:
def photosynth(self):

print("Photosynthesizing")

322 13 • Inheritance

Access for free at openstax.org

class X:
def eat(self):

print("Eating")

class Rose(Plant):
pass

class Pitcher(Plant, X):
pass

class VenusFlyTrap(Plant, X)
pass

a. CarnivClass
b. CarnivMixin

TRY IT

Fixing the diamond problem with a mixin class

The program below represents multiple inheritance and has the diamond problem. Edit the program to use
a mixin class, OnlineMixin. OnlineMixin:

• Replaces OnlineShop.
• Is a superclass of FoodFast.
• Has one method, process_online(), which prints "Connecting to server" and is called by

FoodFast's process_order().

The output should match:

Processing meal order
Connecting to server
Enjoy your FoodFast order

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
13-5-multiple-inheritance-and-mixin-classes)

13.6 Chapter summary

Highlights from this chapter include:

• Inheritance describes an is-a relationship between classes. One class, the subclass, inherits from another
class, the superclass.

• Subclasses can access inherited attributes and methods directly.
• Subclasses can override superclass methods to change or add functionality.
• super() allows a subclass to access the methods of the superclass.

13.6 • Chapter summary 323

https://openstax.org/books/introduction-python-programming/pages/13-5-multiple-inheritance-and-mixin-classes
https://openstax.org/books/introduction-python-programming/pages/13-5-multiple-inheritance-and-mixin-classes

• Polymorphism describes a single representation for multiple forms and is applied in Python to define
multiple methods with the same name and allow the same method to take different arguments.

• Hierarchical inheritance is a type of inheritance in which multiple classes inherit from a single superclass.
• Multiple inheritance is a type of inheritance in which one class inherits from multiple classes.
• Mixin classes are used in multiple inheritance to add functionality to a subclass without adding inheritance

concerns.

At this point, you should be able to write subclasses that inherit instance attributes and methods, and
subclasses that have unique attributes and overridden methods. You should also be able to create hierarchical
inheritance relationships and multiple inheritance relationships between classes.

Task Example

Define a subclass

class SuperClass:
pass

class SubClass(SuperClass):
pass

Define a subclass's __init__() using
super()

class SubClass(SuperClass):
def __init__(self):

super().__init__() # Calls superclass
__init__()

Initialize subclass instance attributes

Override a superclass method

class SuperClass:
def display(self):

print('Superclass method')

class SubClass(SuperClass):
def display(self): # Same name as superclass

method
print('Subclass method')

Table 13.2 Chapter 13 reference.

324 13 • Inheritance

Access for free at openstax.org

Task Example

Implement hierarchical inheritance

class SuperClass:
def display(self):

print('Superclass method')

class SubClass1(SuperClass):
def display(self):

print('Subclass 1 method ')
class SubClass2(SuperClass):

def display(self):
print('Subclass 2 method')

class SubClass3(SuperClass):
def display(self):

print('Subclass 3 method')

Implement multiple inheritance

class SuperClass1:
pass

class SuperClass2:
pass

class SubClass(SuperClass1, SuperClass2):
pass

Table 13.2 Chapter 13 reference.

13.6 • Chapter summary 325

326 13 • Inheritance

Access for free at openstax.org

Figure 14.1 credit: Larissa Chu, CC BY 4.0

Chapter Outline
14.1 Reading from files
14.2 Writing to files
14.3 Files in different locations and working with CSV files
14.4 Handling exceptions
14.5 Raising exceptions
14.6 Chapter summary

Introduction
Programming often involves reading information from files and writing information into files. This chapter
begins by introducing how to read from and write into files in Python.

Reading and writing files can lead to exceptions when the file specified cannot be found. There are many other
situations in which exceptions can occur. The second half of the chapter introduces exceptions and how to
handle exceptions in Python.

14.1 Reading from files

Learning objectives
By the end of this section you should be able to

• Understand how to open a file using the open() function.
• Demonstrate how to read information from a file using read(), readline(), and readlines().

Opening a file
Reading information from and writing information to files is a common task in programming.

Python supports the opening of a file using the open() function.

Files
14

CHECKPOINT

Opening a file

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-1-reading-from-files)

CONCEPTS IN PRACTICE

Opening files

1. What is the correct way to open a file named firstfile.txt so that the file's contents can be read into a
Python program?
a. open("firstfile")
b. open("firstfile.txt")
c. fileobj = open("firstfile.txt")

2. Suppose that there is no file named input.txt. What is the result of trying to execute
open("input.txt")?
a. Error
b. nothing
c. "input.txt" file is created.

3. What is the result of the following code?

fileobj = open("newfile.txt")
print(fileobj)

a. Error
b. Information about the object fileobj is printed.
c. The contents of newfile.txt are printed.

Using read() and reading lines
Python provides functions that can be called on a file object for reading the contents of a file:

• The read() function reads the contents of a file and returns a string.
• The readline() function reads the next line in a file and returns a string.
• The readlines() function reads the individual lines of a file and returns a string list containing all the

lines of the file in order.

EXAMPLE 14.1

Using read() and readlines()

A file called input.txt has the following contents:

12

328 14 • Files

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/14-1-reading-from-files
https://openstax.org/books/introduction-python-programming/pages/14-1-reading-from-files

55
5
91

"""Demonstrating read() and readlines()"""

Using read()
Open the file and associate with a file object
infile = open("input.txt")

Read the contents of the file into a string
str1 = infile.read()

Print str1
print("Result of using read():")
print(str1)

Always close the file once done using the file
infile.close()

Using read()
Open the file and associate with a file object
infile2 = open("input.txt")

Read the contents of the file into a string list
str_list = infile2.readlines()

Printing the third item in the string list.
print("Result of using readlines() and printing the third item in the string

list:")
print(str_list[2])

Always close the file once done using the file
infile2.close()

The code's output is:

Result of using read():
12
55
5
91
Result of using readlines() printing the third item in the string list:
5

14.1 • Reading from files 329

CHECKPOINT

read() and readline()

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-1-reading-from-files)

CONCEPTS IN PRACTICE

Reading files

Suppose fileobj = open("input.txt") has already been executed for each question below.

input.txt:

Hello world!
How are you?

4. What is the correct way to use the read() function to read the contents of input.txt into a string
file_str?
a. file_str = read(fileobj)
b. file_str = read("input.txt")
c. file_str = fileobj.read()

5. What is the correct way to use the readlines() function?
a. file_lines = readlines(fileobj)
b. file_lines = fileobj.readlines()

6. What is printed as a result of executing print(fileobj.readline())?
a. The first line of input.txt is printed.
b. The contents of the file input.txt are printed.
c. Error

TRY IT

Reading from a file

Open the file test.txt and print the file's contents.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-1-reading-from-files)

330 14 • Files

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/14-1-reading-from-files
https://openstax.org/books/introduction-python-programming/pages/14-1-reading-from-files
https://openstax.org/books/introduction-python-programming/pages/14-1-reading-from-files
https://openstax.org/books/introduction-python-programming/pages/14-1-reading-from-files

TRY IT

Reading from a file line by line

The file input.txt is shown. The file represents a set of integers. Line 1 of the file specifies how many
integers follow. Write a program that reads from this file and determines the average of the numbers
following the first line.

input.txt

n: 5
25
13
4
6
19

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-1-reading-from-files)

14.2 Writing to files

Learning objectives
By the end of this section you should be able to

• Understand how to open a file for writing.
• Explain different modes for opening a file in Python.
• Demonstrate the use of the write() function to write to a file.
• Understand the importance of closing a file.

Opening a file for writing
A file may be opened for reading, allowing no changes, or for writing, allowing changes to occur in the file. The
mode defines whether a file is opened for reading only or for writing. The default mode of the open()
function is reading only. A second mode parameter defines the mode.

Ex: open("output.txt", 'w') opens the output.txt file in writing mode. The following table lists common
modes.

14.2 • Writing to files 331

https://openstax.org/books/introduction-python-programming/pages/14-1-reading-from-files
https://openstax.org/books/introduction-python-programming/pages/14-1-reading-from-files

Parameter Mode name and description Example

'r'

Read mode:
Open the specified file for reading.
If the file does not exist, an error occurs.
When no mode parameter is used, the default is to open a file
in read mode.

fileobj =
open("input.txt")
same as:
fileobj =
open("input.txt",
'r')

'w'

Write mode:
Open the specified file for writing.
If the file does not exist, then the file is created.
If the file already exists, the contents of the file are overwritten.

fileobj =
open("output.txt",
'w')

'a'

Append mode:
Open the specified file for appending, which means adding
information to the end of the existing file.
If the file does not exist, then the file is created.

fileobj =
open("log.txt", 'a')

Table 14.1 Modes for the open() function.

CONCEPTS IN PRACTICE

File modes

Assume that a file named logfile.txt exists.

1. To read logfile.txt, which of the following lines of code works best?
a. logfile = open("logfile.txt")
b. logfile = open("logfile.txt", 'w')
c. logfile = open("logfile.txt", 'a')

2. Additions are to be made to logfile.txt. Which of the following lines of code works best?
a. infile = open("logfile.txt")
b. infile = open("logfile.txt", 'w')
c. infile = open("logfile.txt", 'a')

3. A new file called newlog.txt must be created. Which of the following lines of code works best?
a. logfile = open("newlog.txt")
b. logfile = open("newlog.txt", 'w')
c. logfile = open("newlog.txt", 'a')

Using write() and close()
The write() function is used to write to an already opened file. The write() function will only accept a string
parameter. Other variable types must be cast to string before writing using write().

The write() function does not automatically add a newline character as the print() function does. A
newline must be added explicitly by adding a newline ('\n') character.

332 14 • Files

Access for free at openstax.org

The write() function writes automatically to a temporary store called the file buffer. To ensure that the
information is written to a file, the close() function must be used. The close() function finalizes changes
and closes the file.

EXAMPLE 14.2

Writing and appending to a file

"""Operations for writing and appending to files."""

Create a new file
opfile = open("output.txt", 'w')

Writing to the file
opfile.write("Writing to a new file.")

To add another line the newline character must be used
opfile.write("\nSecond line.")

Ensure changes are saved by closing the file
opfile.close()

Read and display the contents of the file
infile = open("output.txt")
print("\nRead the original file:\n")
print(infile.read())
infile.close()

Reopen the file in append mode to add to the file
opfile = open("output.txt", 'a')

Note the use of newline characters
opfile.write("\nAdding to the file.")
opfile.write("\nAdding another line.")

Ensure changes are saved by closing the file
opfile.close()

Read and display the contents of the modified file
infile = open("output.txt")
print("\nRead the modified file:\n")
print(infile.read())
infile.close()

The code's output is:

14.2 • Writing to files 333

Read the original file:

Writing to a new file.
Second line.

Read the modified file:

Writing to a new file.
Second line.
Adding to the file.
Adding another line.

CHECKPOINT

write() and close()

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-2-writing-to-files)

CONCEPTS IN PRACTICE

Writing to files

resources.txt already exists. What would happen for each of the following snippets of code?

4. outfile = open("resources.txt", 'w')
outfile.write("new content")

a. nothing
b. The contents of the resources.txt file is overwritten with the line "new content".
c. The resources.txt file is overwritten, but the contents of resources.txt are uncertain.

5. outfile = open("resources.txt", 'w')
outfile.write("new content")
outfile.close()

a. The content of the resources.txt file is overwritten with the line "new content".
b. The line "new content" is added to the end of resources.txt.

6. outfile = open("resources.txt", 'a')
outfile.write("new content")
outfile.close()

a. The content of the resources.txt file is overwritten with the line "new content".

334 14 • Files

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/14-2-writing-to-files
https://openstax.org/books/introduction-python-programming/pages/14-2-writing-to-files

b. The line "new content" is added to the end of resources.txt.

TRY IT

Writing to a new file

Write a line of text to a file called out.txt. Don't forget to use close(). out.txt should only have the line of
text that you have written.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-2-writing-to-files)

TRY IT

Writing to an existing file

Add two lines of text to the file called out.log, such that out.log has three lines after the code executes.

Hint: Don't forget that you need a newline character.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-2-writing-to-files)

14.3 Files in different locations and working with CSV files

Learning objectives
By the end of this section you should be able to

• Demonstrate how to access files within a file system.
• Demonstrate how to process a CSV file.

Opening a file at any location
When only the filename is used as the argument to the open() function, the file must be in the same folder as
the Python file that is executing. Ex: For fileobj = open("file1.txt") in files.py to execute successfully,
the file1.txt file should be in the same folder as files.py.

Often a programmer needs to open files from folders other than the one in which the Python file exists. A path
uniquely identifies a folder location on a computer. The path can be used along with the filename to open a file
in any folder location. Ex: To open a file named logfile.log located in /users/turtle/desktop the following
can be used:

fileobj = open("/users/turtle/desktop/logfile.log")

14.3 • Files in different locations and working with CSV files 335

https://openstax.org/books/introduction-python-programming/pages/14-2-writing-to-files
https://openstax.org/books/introduction-python-programming/pages/14-2-writing-to-files
https://openstax.org/books/introduction-python-programming/pages/14-2-writing-to-files
https://openstax.org/books/introduction-python-programming/pages/14-2-writing-to-files

Operating
System

File location open() function example

Mac /users/student/ fileobj = open("/users/student/output.txt")

Linux /usr/code/ fileobj = open("/usr/code/output.txt")

Windows
c:\projects\
code\

fileobj = open("c:/projects/code/output.txt")
or
fileobj =
open("c:\\projects\\code\\output.txt")

Table 14.2 Opening files on different paths. In each of the following cases, a file called output.txt is located in a different folder
than the Python folder. Windows uses backslash \ characters instead of forward slash / characters for the path. If the backslash is
included directly in open(), then an additional backslash is needed for Python to understand the location correctly.

CONCEPTS IN PRACTICE

Opening files at different locations

For each question, assume that the Python file executing the open() function is not in the same folder as
the out.txt file.

Each question indicates the location of out.txt, the type of computer, and the desired mode for opening the
file. Choose which option is best for opening out.txt.

1. /users/turtle/files on a Mac for reading
a. fileobj = open("out.txt")
b. fileobj = open("/users/turtle/files/out.txt")
c. fileobj = open("/users/turtle/files/out.txt", 'w')

2. c:\documents\ on a Windows computer for reading
a. fileobj = open("out.txt")
b. fileobj = open("c:/documents/out.txt", 'a')
c. fileobj = open("c:/documents/out.txt")

3. /users/turtle/logs on a Linux computer for writing
a. fileobj = open("out.txt")
b. fileobj = open("/users/turtle/logs/out.txt")
c. fileobj = open("/users/turtle/logs/out.txt", 'w')

4. c:\proj\assets on a Windows computer in append mode
a. fileobj = open("c:\\proj\\assets\\out.txt", 'a')
b. fileobj = open("c:\proj\assets\out.txt", 'a')

Working with CSV files
In Python, files are read from and written to as Unicode by default. Many common file formats use Unicode

336 14 • Files

Access for free at openstax.org

such as text files (.txt), Python code files (.py), and other code files (.c,.java).

Comma separated value (CSV, .csv) files are often used for storing tabular data. These files store cells of
information as Unicode separated by commas. CSV files can be read using methods learned thus far, as seen in
the example below.

Figure 14.2 CSV files. A CSV file is simply a text file with rows separated by newline \n characters and cells separated by commas.

Raw text of the file:

Title, Author, Pages\n1984, George Orwell, 268\nJane Eyre, Charlotte Bronte,
532\nWalden, Henry David Thoreau, 156\nMoby Dick, Herman Melville, 538

EXAMPLE 14.3

Processing a CSV file

"""Processing a CSV file."""
Open the CSV file for reading
file_obj = open("books.csv")

Rows are separated by newline \n characters, so readlines() can be used to
read in all rows into a string list

csv_rows = file_obj.readlines()

list_csv = []

Remove \n characters from each row and split by comma and save into a 2D
structure

for row in csv_rows:

14.3 • Files in different locations and working with CSV files 337

Remove \n character
row = row.strip("\n")
Split using commas
cells = row.split(",")
list_csv.append(cells)

Print result
print(list_csv)

The code's output is:

[['Title', ' Author', ' Pages'], ['1984', ' George Orwell', ' 268'], ['Jane
Eyre', ' Charlotte Bronte', ' 532'], ['Walden', ' Henry David Thoreau', ' 156'],
['Moby Dick', ' Herman Melville', ' 538']]

CONCEPTS IN PRACTICE

File types and CSV files

5. Why does readlines() work for reading the rows in a CSV file?
a. readlines() reads line by line using the newline \n character.
b. readlines() is not appropriate for reading a CSV file.
c. readlines() automatically recognizes a CSV file and works accordingly.

6. For the code in the example, what would be the output for the statement print(list_csv[1][2])?
a. 532
b. 268
c. Jane Eyre

7. What is the output of the following code for the books.csv seen above?

file_obj = open("books.csv")

csv_read = file_obj.readline()

print(csv_read)

a. ['Title, Author, Pages\n', '1984, George Orwell, 268\n', 'Jane Eyre,
Charlotte Bronte, 532\n', 'Walden, Henry David Thoreau, 156\n', 'Moby Dick,
Herman Melville, 538']

b. [['Title', ' Author', ' Pages'], ['1984', ' George Orwell', ' 268'], ['Jane
Eyre', ' Charlotte Bronte', ' 532'], ['Walden', ' Henry David Thoreau', '
156'], ['Moby Dick', ' Herman Melville', ' 538']]

c. Title, Author, Pages

338 14 • Files

Access for free at openstax.org

EXPLORING FURTHER

Files such as Word documents (.docx) and PDF documents (.pdf), image formats such as Portable Network
Graphics (PNG, .png) and Joint Photographic Experts Group (JPEG, .jpeg or .jpg) as well as many other file
types are encoded differently.

Some types of non-Unicode files can be read using specialized libraries that support the reading and writing
of different file types.

PyPDF (https://openstax.org/r/100readthedocs) is a popular library that can be used to extract information
from PDF files.

BeautifulSoup (https://openstax.org/r/100software) can be used to extract information from XML and HTML
files. XML and HTML files usually contain unicode with structure provided through the use of angled <>
bracket tags.

python-docx (https://openstax.org/r/100readwrtedocx) can be used to read and write DOCX files.

Additionally, csv (https://openstax.org/r/100csvlibrary) is a built-in library that can be used to extract
information from CSV files.

TRY IT

Processing a CSV file

The file fe.csv contains scores for a group of students on a final exam. Write a program to display the
average score.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-3-files-in-different-locations-and-working-with-csv-files)

14.4 Handling exceptions

Learning objectives
By the end of this section you should be able to

• Describe two exceptions that may occur when reading files.
• Write try/except statements that handle built-in exceptions.

Runtime errors
Various errors may occur when reading a file:

• FileNotFoundError: The filename or path is invalid.
• IndexError/ValueError: The file's format is invalid.
• Other errors caused by invalid contents of a file.

When an error occurs, the program terminates with an error message.

14.4 • Handling exceptions 339

https://openstax.org/r/100readthedocs
https://openstax.org/r/100software
https://openstax.org/r/100readwrtedocx
https://openstax.org/r/100csvlibrary
https://openstax.org/books/introduction-python-programming/pages/14-3-files-in-different-locations-and-working-with-csv-files
https://openstax.org/books/introduction-python-programming/pages/14-3-files-in-different-locations-and-working-with-csv-files

EXAMPLE 14.4

Typo in a file

A file named food_order.txt has the following contents:

5 sandwiches
4 chips
1 pickle
soft drinks

The following program expects each line of the file to begin with an integer:

for line in open("food_order.txt"):
space = line.index(" ")
qty = int(line[:space])
item = line[space+1:-1]
print(qty, item)

Unfortunately, the line "soft drinks" does not begin with an integer. As a result, the program terminates
and displays an error message:

Traceback (most recent call last):
File "food_order.py", line 3

qty = int(line[:space])
ValueError: invalid literal for int() with base 10: 'soft'

CONCEPTS IN PRACTICE

Common exceptions

What error might occur in each situation?

1. The line "soft drinks" is changed to "3-4 soft drinks".
a. FileNotFoundError
b. IndexError
c. ValueError

2. for line in open("food_order.text"):
a. FileNotFoundError
b. IndexError
c. ValueError

340 14 • Files

Access for free at openstax.org

3. parts = line.split()
qty = parts[0]
item = parts[1]

a. FileNotFoundError
b. IndexError
c. ValueError

EXPLORING FURTHER

The Built-in Exceptions (https://openstax.org/r/100exceptions) page of the Python Standard Library explains
the meaning of each exception.

Try and except
Programs can be designed to handle exceptions, rather than terminate. A try statement runs code that might
raise an exception. An except clause runs code in response to the exception.

EXAMPLE 14.5

Try to open a file

The following program, named try_open.py, asks the user for a filename and counts the number of lines in
the file.

name = input("Enter a filename: ")
try:

file = open(name)
lines = file.readlines()
count = len(lines)
print(name, "has", count, "lines")

except FileNotFoundError:
print("File not found:", name)

print("Have a nice day!")

When running this program with the input try_open.py, the name of the program file, the output is:

Enter a filename: try_open.py
try_open.py has 9 lines
Have a nice day!

If the filename does not exist, a FileNotFoundError is raised on line 3. The program then jumps to the
except clause on line 7 and continues to run. The resulting output is:

14.4 • Handling exceptions 341

https://openstax.org/r/100exceptions

Enter a filename: try_open.txt
File not found: try_open.txt
Have a nice day!

CONCEPTS IN PRACTICE

Predicting output with exceptions

For each code snippet, what is the output?

4. word = "one"
try:

number = int(word)
print(word, "equals", number)

except ValueError:
print(word, "is not a number")

a. one equals 1
b. one is not a number
c. ValueError: invalid literal for int() with base 10: 'one'

5. word = "one"
try:

number = int(word)
print(word, "equals", number)

except IndexError:
print(word, "is not a number")

a. one equals 1
b. one is not a number
c. ValueError: invalid literal for int() with base 10: 'one'

6. word = "one"
try:

char = word[3]
print("The char is", char)

except:
print("That didn't work")

a. The char is e
b. That didn't work
c. IndexError: string index out of range

342 14 • Files

Access for free at openstax.org

TRY IT

Type analyzer

Analysis programs often need to find numbers in large bodies of text. How can a program tell if a string like
"123.45" represents a number? One approach is to use exceptions:

1. Try converting the string to an integer. If no ValueError is raised, then the string represents an
integer.

2. Otherwise, try converting the string to a float. If no ValueError is raised, then the string represents a
float.

3. Otherwise, the string does not represent a number.

Implement the get_type() function using this approach. The provided main block calls get_type() for
each word in a file. get_type() should return either "int", "float", or "str", based on the word. The
output for the provided data.txt is:

str: Hello
int: 100
str: times!
float: 3.14159
str: is
str: pi.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-4-handling-exceptions)

TRY IT

United countries

Write a program that prompts the user to input a word and a filename. The program should print each line
of the file that contains the word. Here is an example run of the program (user input in bold):

United
Enter a filename: countries.csv
United Arab Emirates,9890402,83600,118
United Kingdom,67886011,241930,281
United States of America,331002651,9147420,36

Enter a word: United
Enter a filename: countries.csv
United Arab Emirates,9890402,83600,118
United Kingdom,67886011,241930,281
United States of America,331002651,9147420,36

This example uses a file named countries.csv based on the alphabetical list of countries

14.4 • Handling exceptions 343

https://openstax.org/books/introduction-python-programming/pages/14-4-handling-exceptions
https://openstax.org/books/introduction-python-programming/pages/14-4-handling-exceptions
https://openstax.org/r/100countries

(https://openstax.org/r/100countries) from Worldometer. Each line of the file includes a country's name,
population, land area, and population density, separated by commas.

The user might incorrectly type the filename (Ex: countries.txt instead of countries.csv). Your program
should output an error message if the file is not found, and keep prompting the user to input a filename
until the file is found:

countries
File not found: countries
Enter a filename: countries.txt
File not found: countries.txt
Enter a filename: countries.csv
...

...
Enter a filename: countries
File not found: countries
Enter a filename: countries.txt
File not found: countries.txt
Enter a filename: countries.csv
...

Hint: Try to open the file specified by the user. A FileNotFoundError is raised if the filename is invalid.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-4-handling-exceptions)

14.5 Raising exceptions

Learning objectives
By the end of this section you should be able to

• Use a raise statement to indicate that user input is invalid.
• Explain the flow of execution when an exception is raised.

The raise statement
A program can raise an exception when an error is detected. Raising an exception forces a program to deal
with the error. If the exception is not handled using try and except, the program displays an error message
and terminates.

EXAMPLE 14.6

Invalid pizza size

The following class represents a pizza for sale. The SIZES dictionary maps an abbreviation to a size's name
and price. Line 11 checks if the size received by the constructor is in the dictionary. Line 12 raises a
ValueError with specific error message.

1 class Pizza:

344 14 • Files

Access for free at openstax.org

https://openstax.org/r/100countries
https://openstax.org/books/introduction-python-programming/pages/14-4-handling-exceptions
https://openstax.org/books/introduction-python-programming/pages/14-4-handling-exceptions

2
3 SIZES = {
4 "S": ("Small", 5.99),
5 "M": ("Medium", 7.99),
6 "L": ("Large", 9.99),
7 "XL": ("X-Large", 11.99),
8 }
9

10 def __init__(self, size):
11 if size not in Pizza.SIZES:
12 raise ValueError(f"Unknown size '{size}'")
13 self.size = size
14
15 def __str__(self):
16 name, price = Pizza.SIZES[self.size]
17 return f"{name} pizza for ${price}"
18
19 if __name__ == "__main__":
20 p1 = Pizza("L")
21 print(p1)
22 p2 = Pizza("Z")
23 print(p2)

Large pizza for $9.99
Traceback (most recent call last):

File "pizza.py", line 23, in <module>
p2 = Pizza("Z")

File "pizza.py", line 12, in __init__
raise ValueError(f"Unknown size '{size}'")

ValueError: Unknown size 'Z'

Raising an exception in a constructor prevents an invalid object from being constructed. In the example, p1
is constructed but p2 is not constructed.

CONCEPTS IN PRACTICE

Predicting output with raise

For each code snippet, what is the output?

1. p3 = Pizza("M")
print(p3)

a. Medium pizza for $7.99
b. ValueError: Unknown size 'M'

14.5 • Raising exceptions 345

c. TypeError: missing argument

2. raise PizzaError("Invalid size")
a. Invalid size
b. PizzaError: Invalid size
c. NameError: name 'PizzaError' is not defined

3. raise ValueError
a. ValueError
b. NameError: name 'ValueError' is not defined
c. SyntaxError: Missing parenthesis in call to 'ValueError'

TRY IT

Language objects

The file top27.csv is based on Wikipedia's list of languages by number of native speakers
(https://openstax.org/r/100languages). A linguist would like to work with this data in an object-oriented
way and has already defined a Language class. However, the code is not working correctly because of
errors in the CSV file. (The CSV program cannot be changed because the program's purpose is to detect
these kinds of errors.)

Your task is to modify the constructor to raise a ValueError in the following situations:

• If the line does not have exactly four values (separated by commas).
• If the number of speakers is not a positive floating point number.

Note: The provided top27.csv includes mistakes for English, Korean, and French. Your program should raise
a ValueError only for these languages. No other errors (including IndexError) should be raised.

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-5-raising-exceptions)

TRY IT

Looking up keys

When looking up a value in a dictionary, a key has to match exactly. Ex: Given fruit = {"apple": 1,
"banana": 2}, the expression fruit["Apple"] raises a KeyError because "Apple" is not the same as
"apple". Likewise, fruit["NANA"] raises a KeyError because "nana" does not exactly match "banana".

Implement the lookup() function. This function tries to find a key in the dictionary that matches the
search term. A key matches if the search term is a substring of the key, ignoring case. Ex: The key
"banana" matches the search term "NANA".

If no matching keys are found, lookup() should raise a KeyError with the message "search term not
found". If multiple matches are found, lookup() should raise a KeyError with the message "multiple
keys found". Otherwise, lookup() should return both the key and the value for the matching item in the
dictionary.

346 14 • Files

Access for free at openstax.org

https://openstax.org/r/100languages
https://openstax.org/r/100languages
https://openstax.org/books/introduction-python-programming/pages/14-5-raising-exceptions
https://openstax.org/books/introduction-python-programming/pages/14-5-raising-exceptions

Given the books.csv file, the output should be:

Found: ('Pride and Prejudice', 9780141439518)
Found: ('The Hobbit', 9780547928227)
Error: search term not found
Error: multiple keys found

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
14-5-raising-exceptions)

14.6 Chapter summary

Highlights from this chapter include:

• Python can read and write data in files using the built-in open() function.
• Due to buffering, changes to a file may not be visible until the file is closed.
• Newline characters need to be removed/added when reading/writing files.
• Comma-separate-value (CSV) files are commonly used to represent data.
• Exceptions that cause a program to terminate can be handled using try and except.
• Raising an exception is an alternative way to return from a function when an error occurs.

Statement Description

file =
open("myfile.txt") Open a file for reading.

file =
open("myfile.txt",
'w')

Open a file for writing.

file =
open("myfile.txt",
'a')

Open a file for appending.

file.close() Close a file after making changes.

data = file.read() Read the entire contents of a file. The variable data is a string.

data =
file.readline()

Read the next line of a file. The variable data is a string.

Table 14.3 Chapter 14 reference.

14.6 • Chapter summary 347

https://openstax.org/books/introduction-python-programming/pages/14-5-raising-exceptions
https://openstax.org/books/introduction-python-programming/pages/14-5-raising-exceptions

Statement Description

data =
file.readlines()

Read all lines of a file. The variable data is a list of strings.

file.write("Have a
nice day!\n")

Writes a line to a file. In contrast to print(), the write() function does not
automatically append a newline.

file.write(["Line
1\n", "Line 2\n"])

Writes multiple lines to a file. As with write(), a newline is not automatically
added at the end of each line.

try:
Statements

except:
Statements

Try to run statements that might raise an error. If any error is raised, run other
statements.

try:
Statements

except ValueError:
Statements

Try to run statements that might raise a ValueError. If a ValueError is raised,
run other statements.

try:
Statements

except ValueError
as err:

Statements

Try to run statements that might raise a ValueError. If a ValueError is raised,
run other statements. The variable err contains more details about the
ValueError.

raise ValueError
Raises a ValueError with no specific error message.

raise
ValueError("number
is prime")

Raises a ValueError with the message "number is prime".

Table 14.3 Chapter 14 reference.

348 14 • Files

Access for free at openstax.org

Figure 15.1 credit: modification of work by Sebastian Sikora/Flickr, CC BY 2.0

Chapter Outline
15.1 Introduction to data science
15.2 NumPy
15.3 Pandas
15.4 Exploratory data analysis
15.5 Data visualization
15.6 Summary

Introduction
Data Science provides the ability to derive insights and make informed decisions from data. Data science
helps people make decisions in disciplines as diverse as healthcare, business, education, politics,
environmental science, and social sciences.

This chapter aims to provide an introduction to the field of data science and the data science life cycle. The
resources provided in this chapter are meant to guide readers using Python to further explore data science.

15.1 Introduction to data science

Learning objectives
By the end of this section you should be able to

• Describe data science.
• Identify different stages of the data science life cycle.
• Name data science tools and software.
• Use Google Colaboratory to run code.

Data science life cycle
Data science is a multidisciplinary field that combines collecting, processing, and analyzing large volumes of

Data Science
15

data to extract insights and drive informed decision-making. The data science life cycle is the framework
followed by data scientists to complete a data science project. The data science life cycle is an iterative process
that starts with data acquisition, followed by data exploration. The data acquisition stage may involve
obtaining data from a source or collecting data through surveys and other means of data collection that are
domain-specific. During the data exploration stage, data scientists will ensure that the data are in the right
format for the data analysis stage through data cleanup and they may also visualize the data for further
inspection. Once the data are cleaned, data scientists can perform data analysis, which is shared with
stakeholders using reports and presentations. The data analysis stage involves using data to generate
insights or make a predictive model. Data science is increasingly being adopted in many different fields, such
as healthcare, economics, education, and social sciences, to name a few. The animation below demonstrates
different stages of the data science life cycle.

CHECKPOINT

Data science life cycle

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
15-1-introduction-to-data-science)

CONCEPTS IN PRACTICE

What is data science?

1. What is the first stage of any data science life cycle?
a. data visualization
b. data cleanup
c. data acquisition

2. How many stages does the data science life cycle have?
a. 3
b. 4
c. 5

3. What does a data scientist do in the data exploration stage?
a. document insights and visualization
b. analyze data
c. data cleaning and visualization

Data science tools
Several tools and software are commonly used in data science. Here are some examples.

• Python programming language: Python is widely used in data science. It has a large system of libraries
designed for data analysis, machine learning, and visualization. Some popular Python libraries for data
science include NumPy, Pandas, Matplotlib, Seaborn, and scikit-learn. In this chapter, you will explore
some of these libraries.

• R programming language: R is commonly used in statistical computing and data analysis, and it offers a
wide range of packages and libraries tailored for data manipulation, statistical modeling, and visualization.

• Jupyter Notebook/JupyterLab: Jupyter Notebook and JupyterLab are web-based interactive computing
environments that support multiple programming languages, including Python and R. They allow a

350 15 • Data Science

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/15-1-introduction-to-data-science
https://openstax.org/books/introduction-python-programming/pages/15-1-introduction-to-data-science

programmer to create documents that contain code, visualizations, and text, making them suitable for
data exploration, analysis, and reporting.

• Google Colaboratory: Google Colaboratory is a cloud-based Jupyter Notebook environment that allows a
programmer to write, run, and share Python code online. In this chapter, you will use Google Colaboratory
to practice data science concepts.

• Kaggle Kernels: Kaggle Kernels is an online data science platform that provides a collaborative
environment for building and running code. Kaggle Kernels support Python and R and offers access to
datasets, pre-installed libraries, and computational resources. Kaggle also hosts data science competitions
and provides a platform for sharing and discovering data science projects.

• Excel/Sheets: Microsoft Excel and Google Sheets are widely used spreadsheet applications that offer
basic data analysis and visualization capabilities. They can help beginners get started with data
manipulation, basic statistical calculations, and simple visualizations.

CHECKPOINT

Google Colaboratory ecosystem

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
15-1-introduction-to-data-science)

CONCEPTS IN PRACTICE

Data science tools and software

4. Between Python, R, and Java, which is the most popular language in data science?
a. Python
b. R
c. Java

5. Which of the following is a data science-related library in Python?
a. list
b. NumPy
c. array

6. Google Colaboratory can be used for reporting and sharing insights.
a. true
b. false

Programming practice with Google
Open the Google Colaboratory document below. To open the Colaboratory document, you need to login to a
Google account, if you have one, or create a Google account. Run all cells. You may also attempt creating new
cells or modifying existing cells. To save a copy of your edits, go to "File > Save a Copy in Drive", and the edited
file will be stored in your own Google Drive.

Google Colaboratory document (https://openstax.org/r/100colabdoc)

15.1 • Introduction to data science 351

https://openstax.org/books/introduction-python-programming/pages/15-1-introduction-to-data-science
https://openstax.org/books/introduction-python-programming/pages/15-1-introduction-to-data-science
https://openstax.org/r/100colabdoc

15.2 NumPy

Learning objectives
By the end of this section you should be able to

• Describe the NumPy library.
• Create a NumPy array object.
• Choose appropriate NumPy functions to process arrays of numerical data.

NumPy library
NumPy (Numerical Python) is a Python library that provides support for efficient numerical operations on
large, multi-dimensional arrays and serves as a fundamental building block for data analysis in Python. The
conventional alias for importing NumPy is np. In other words, NumPy is imported as import numpy as np.
NumPy implements the ndarray object, which allows the creation of a multi-dimensional array of
homogeneous data types (columns with the same data type) and efficient data processing. An ndarray object
can have any number of dimensions and can store elements of various numeric data types. To create a NumPy
ndarray object, one of the following options can be used:

• Creating an ndarray by converting a Python list or tuple using the np.array() function.
• Using built-in functions like np.zeros() and np.ones() for creating an array of all 0's or all 1's,

respectively.
• Generating an array with random numbers using np.random.rand(n, m), where n and m are the

number of rows and columns, respectively.
• Loading data from a file. Ex: np.genfromtxt('data.csv', delimiter=',').

CHECKPOINT

Creating an ndarray object

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
15-2-numpy)

CONCEPTS IN PRACTICE

NumPy library

1. Which of the following creates an ndarray object with one row and two columns?
a. np.array([2, 3])
b. np.zeros(1, 2)
c. np.zeros((1, 2))

2. Which of the following is a NumPy data type?
a. ndarray
b. list
c. array

3. What is the benefit of using anndarray object compared to a list?
a. computational efficiency

352 15 • Data Science

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/15-2-numpy
https://openstax.org/books/introduction-python-programming/pages/15-2-numpy

b. array-oriented computing
c. memory efficiency
d. all the above

NumPy operations
In addition to the ndarray data type, NumPy's operations provide optimized performance for large-scale
computation. The key features of NumPy include:

• Mathematical operations: NumPy provides a range of mathematical functions and operations that can be
applied to entire arrays or specific elements. These operations include arithmetic, trigonometric,
exponential, and logarithmic functions.

• Array manipulation: NumPy provides various functions to manipulate the shape, size, and structure of
arrays. These include reshaping, transposing, concatenating, splitting, and adding or removing elements
from arrays.

• Linear algebra operations: NumPy offers a set of linear algebra functions for matrix operations, like matrix
multiplication, matrix inversion, eigenvalues, and eigenvectors.

CHECKPOINT

NumPy array operations

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
15-2-numpy)

CONCEPTS IN PRACTICE

NumPy operations

4. What is the output of the following code?

import numpy as np

arr = np.array([[1, 2], [3, 4]])
out = 2 * arr
print(out)

a. [[2 4]
[8 16]]

b. [[2 4]
[6 8]]

c. [[1 2]
[3 4]]

5. Which of the following results in a 2 by 3 ndarray?
a. import numpy as np

arr = np.array(2, 3)
b. import numpy as np

15.2 • NumPy 353

https://openstax.org/books/introduction-python-programming/pages/15-2-numpy
https://openstax.org/books/introduction-python-programming/pages/15-2-numpy

arr = np.array([[1, 2], [1, 2], [1, 2]])
c. import numpy as np

arr = np.array([[1, 2], [1, 2], [1, 2]]).T

6. The function np.multiply(arr1, arr2) receives two ndarray objects arr1 and arr2 with the same
dimensions, and performs element-wise multiplication. What is the output of the following code?

import numpy as np

arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[1, 0], [0, 1]])
out = np.multiply(arr1, arr2)
print(out)

a. [[1 0]
[0 4]]

b. [[1 2]
[3 4]]

c. [[2 2]
[3 5]]

EXPLORING FURTHER

Please refer to the NumPy user guide for more information about the NumPy library.

• NumPy User Guide (https://openstax.org/r/100numpyguide)

Programming practice with Google
Use the Google Colaboratory document below to practice NumPy functionalities to extract statistical insights
from a dataset.

Google Colaboratory document (https://openstax.org/r/100numpycolab)

15.3 Pandas

Learning objectives
By the end of this section you should be able to

• Describe the Pandas library.
• Create a DataFrame and a Series object.
• Choose appropriate Pandas functions to gain insight from heterogeneous data.

Pandas library
Pandas is an open-source Python library used for data cleaning, processing, and analysis. Pandas provides
data structures and data analysis tools to analyze structured data efficiently. The name "Pandas" is derived
from the term "panel data," which refers to multidimensional structured datasets. Key features of Pandas
include:

354 15 • Data Science

Access for free at openstax.org

https://openstax.org/r/100numpyguide
https://openstax.org/r/100numpycolab

• Data structure: Pandas implements two main data structures:
◦ Series: A Series is a one-dimensional labeled array.
◦ DataFrame: A DataFrame is a two-dimensional labeled data structure that consists of columns and

rows. A DataFrame can be thought of as a spreadsheet-like data structure where each column
represents a Series. DataFrame is a heterogeneous data structure where each column can have a
different data type.

• Data processing functionality: Pandas provides various functionalities for data processing, such as data
selection, filtering, slicing, sorting, merging, joining, and reshaping.

• Integration with other libraries: Pandas integrates well with other Python libraries, such as NumPy. The
integration capability allows for data exchange between different data analysis and visualization tools.

The conventional alias for importing Pandas is pd. In other words, Pandas is imported as import pandas as
pd. Examples of DataFrame and Series objects are shown below.

DataFrame example Series example

Name Age City

0 Emma 15 Dubai

1 Gireeja 28 London

2 Sophia 22 San Jose

0 Emma

1 Gireeja

2 Sophia

dtype: object

Table 15.1

Data input and output
A DataFrame can be created from a dictionary, list, NumPy array, or a CSV file. Column names and column data
types can be specified at the time of DataFrame instantiation.

15.3 • Pandas 355

Description Example Output Explanation

DataFrame
from a
dictionary

import pandas as pd

Create a dictionary of
columns
data = {

"Name": ["Emma",
"Gireeja", "Sophia"],

"Age": [15, 28, 22],
"City": ["Dubai",

"London", "San Jose"]
}

Create a DataFrame from
the dictionary
df = pd.DataFrame(data)

Display the DataFrame
df

Name Age City

0 Emma 15 Dubai

1 Gireeja 28 London

2 Sophia 22
San
Jose

The
pd.DataFrame()
function takes in a
dictionary and
converts it into a
DataFrame.
Dictionary keys will
be column labels
and values are
stored in respective
columns.

DataFrame
from a list

import pandas as pd

Create a list of rows
data = [

["Emma", 15, "Dubai"],
["Gireeja", 28,

"London"],
["Sophia", 22, "San

Jose"]
]

Define column labels
columns = ["Name", "Age",
"City"]

Create a DataFrame from
list using column labels
df = pd.DataFrame(data,
columns=columns)

Display the DataFrame
df

Name Age City

0 Emma 15 Dubai

1 Gireeja 28 London

2 Sophia 22
San
Jose

The
pd.DataFrame()
function takes in a
list containing the
records in different
rows of a
DataFrame, along
with a list of
column labels, and
creates a
DataFrame with the
given rows and
column labels.

Table 15.2 DataFrame creation.

356 15 • Data Science

Access for free at openstax.org

Description Example Output Explanation

DataFrame
from a
NumPy
array

import numpy as np
import pandas as pd

Create a NumPy array
data = np.array([

[1, 0, 0],
[0, 1, 0],
[2, 3, 4]

])

Define column labels
columns = ["A", "B", "C"]

Create a DataFrame from
the NumPy array
df = pd.DataFrame(data,
columns=columns)

Display the DataFrame
df

A B C

0 1 0 0

1 0 1 0

2 2 3 4

A NumPy array,
along with column
labels, are passed
to the
pd.DataFrame()
function to create a
DataFrame object.

Table 15.2 DataFrame creation.

15.3 • Pandas 357

Description Example Output Explanation

DataFrame
from a CSV
file

import pandas as pd

Read the CSV file into a
DataFrame
df =
pd.read_csv("data.csv")

Display the DataFrame
df

The content of the CSV file will
be printed in a tabular format.

The
pd.read_csv()
function reads a
CSV file into a
DataFrame and
organizes the
content in a tabular
format.

DataFrame
from a
Excel file

import pandas as pd

Read the Excel file into
a DataFrame
df =
pd.read_excel("data.xlsx")

Display the DataFrame
df

The content of the Excel file will
be printed in a tabular format.

The
pd.read_excel()
function reads an
Excel file into a
DataFrame and
organizes the
content in a tabular
format.

Table 15.2 DataFrame creation.

CONCEPTS IN PRACTICE

Pandas basics

1. Which of the following is a Pandas data structure?
a. Series
b. dictionary
c. list

2. A DataFrame object can be considered as a collection of Series objects.
a. true
b. false

3. What are the benefits of Pandas over NumPy?
a. Pandas provides integration with other libraries.
b. Pandas supports heterogeneous data whereas NumPy supports homogenous numerical data.
c. Pandas supports both one-dimensional and two-dimensional data structures.

358 15 • Data Science

Access for free at openstax.org

Pandas for data manipulation and analysis
The Pandas library provides functions and techniques to explore, manipulate, and gain insights from the data.
Key DataFrame functions that analyze this code are described in the following table.

import pandas as pd
import numpy as np

Create a sample DataFrame
days = {

'Season': ['Summer', 'Summer', 'Fall', 'Winter', 'Fall', 'Winter'],
'Month': ['July', 'June', 'September', 'January', 'October', 'February'],
'Month-day': [1, 12, 3, 7, 20, 28],
'Year': [2000, 1990, 2020, 1998, 2001, 2022]

}
df = pd.DataFrame(days)

Season Month Month-day Year

0 Summer July 1 2000

1 Summer June 12 1990

2 Fall September 3 2020

3 Winter January 7 1998

4 Fall October 20 2001

5 Winter February 28 2022

Table 15.3

15.3 • Pandas 359

Function name Explanation Example Output

head(n)

Returns the
first n rows.
If a value is
not passed,
the first 5
rows will be
shown.

df.head(4)

Season Month Month-day Year

0 Summer July 1 2000

1 Summer June 12 1990

2 Fall September 3 2020

3 Winter January 7 1998

tail(n)

Returns the
last n rows.
If a value is
not passed,
the last 5
rows will be
shown.

df.tail(3)

Season Month Month-day Year

3 Winter January 7 1998

4 Fall October 20 2001

5 Winter February 28 2022

info()

Provides a
summary of
the
DataFrame,
including
the column
names, data
types, and
the number
of non-null
values. The
function
also returns
the
DataFrame's
memory
usage.

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 4 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 Season 6 non-

null object
1 Month 6 non-

null object
2 Month-day 6 non-null int64
3 Year 6 non-null int64

dtypes: int64(2), object(2)
memory usage: 320.0+ bytes

Table 15.4 DataFrame functions.

360 15 • Data Science

Access for free at openstax.org

Function name Explanation Example Output

describe()

Generates
the column
count,
mean,
standard
deviation,
minimum,
maximum,
and
quartiles.

df.describe()

Month-day Year

count 6.000000 6.000000

mean 11.833333 2005.166667

std 10.457852 12.875040

min 1.000000 1990.000000

25% 4.000000 1998.500000

50% 9.500000 2000.500000

75% 18.000000 2015.250000

max 28.000000 2022.000000

value_counts()

Counts the
occurrences
of unique
values in a
column
when a
column is
passed as
an
argument
and
presents
them in
descending
order.

df.value_counts
\('Season')

Season
Fall 2
Summer 2
Winter 2
dtype: int64

unique()

Returns an
array of
unique
values in a
column
when called
on a
column.

df['Season']
\.unique()

['Summer' 'Fall' 'Winter']

Table 15.4 DataFrame functions.

15.3 • Pandas 361

CONCEPTS IN PRACTICE

DataFrame operations

4. Which of the following returns the top five rows of a DataFrame?
a. df.head()
b. df.head(5)
c. both

5. What does the unique() function do in a DataFrame when applied to a column?
a. returns the number of unique columns
b. returns the number of unique values in the given column
c. returns the unique values in the given column

6. Which function generates statistical information of columns with numerical data types?
a. describe()
b. info()
c. unique()

EXPLORING FURTHER

Please refer to the Pandas user guide for more information about the Pandas library.

• Pandas User Guide (https://openstax.org/r/100pandaguide)

Programming practice with Google
Use the Google Colaboratory document below to practice Pandas functionalities to extract insights from a
dataset.

Google Colaboratory document (https://openstax.org/r/100googlecolab)

15.4 Exploratory data analysis

Learning objectives
By the end of this section you should be able to

• Describe exploratory data analysis.
• Inspect DataFrame entries through appropriate indexing.
• Use filtering and slicing to obtain a subset of a DataFrame.
• Identify Null values in a DataFrame.
• Remove or replace Null values in a DataFrame.

Exploratory data analysis
Exploratory Data Analysis (EDA) is the task of analyzing data to gain insights, identify patterns, and
understand the underlying structure of the data. During EDA, data scientists visually and statistically examine
data to uncover relationships, anomalies, and trends, and to generate hypotheses for further analysis. The
main goal of EDA is to become familiar with the data and assess the quality of the data. Once data are
understood and cleaned, data scientists may perform feature creation and hypothesis formation. A feature is

362 15 • Data Science

Access for free at openstax.org

https://openstax.org/r/100pandaguide
https://openstax.org/r/100googlecolab

an individual variable or attribute that is calculated from the raw data in the dataset.

Data indexing can be used to select and access specific rows and columns. Data indexing is essential in
examining a dataset. In Pandas, two types of indexing methods exist:

• Label-based indexing using loc[]: loc[] allows you to access data in a DataFrame using row/column
labels. Ex: df.loc[row_label, column_label] returns specific data at the intersection of row_label
and column_label.

• Integer-based indexing using iloc[]: iloc[] allows you to access data in a DataFrame using integer-based
indexes. Integer indexes can be passed to retrieve specific data. Ex: df.iloc[row_index,
column_index] returns specific data at the index row_index and column_index.

CHECKPOINT

Indexing a DataFrame

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
15-4-exploratory-data-analysis)

CONCEPTS IN PRACTICE

DataFrame indexing

Given the following code, respond to the questions below.

import pandas as pd

Create sample data
data = {

"A": ["a", "b", "c", "d"],
"B": [12, 20, 5, -10],
"C": ["C", "C", "C", "C"]

}

df = pd.DataFrame(data)

1. What is the output of print(df.iloc[0, 0])?
a. a
b. b
c. IndexError

2. What is the output of print(df.iloc[1, 1])?
a. a
b. b
c. 20

3. What is the output of print(df.loc[2, 'A'])?
a. c
b. C

15.4 • Exploratory data analysis 363

https://openstax.org/books/introduction-python-programming/pages/15-4-exploratory-data-analysis
https://openstax.org/books/introduction-python-programming/pages/15-4-exploratory-data-analysis

c. b

Data slicing and filtering
Data slicing and filtering involve selecting specific subsets of data based on certain conditions or index/label
ranges. Data slicing refers to selecting a subset of rows and/or columns from a DataFrame. Slicing can be
performed using ranges, lists, or Boolean conditions.

• Slicing using ranges: Ex: df.loc[start_row:end_row, start_column:end_column] selects rows and
columns within the specified ranges.

• Slicing using a list: Ex: df.loc[[label1, label2, ...], :] selects rows that are in the list [label1,
label2, ...] and includes all columns since all columns are selected by the colon operator.

• Slicing based on a condition: df[condition] selects only the rows that meet the given condition.

Data filtering involves selecting rows or columns based on certain conditions. Ex: In the expression
df[df['column_name'] > threshold], the DataFrame df is filtered using the selection operator ([]) and
the condition(df['column_name'] > threshold) that is passed. All entries in the DataFrame df where the
corresponding value in the DataFrame is True will be returned.

CHECKPOINT

Indexing on a flight dataset

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
15-4-exploratory-data-analysis)

CONCEPTS IN PRACTICE

DataFrame slicing and filtering

Given the following code, respond to the questions.

import pandas as pd

Create sample data
data = {

"A": [1, 2, 3, 4],
"B": [5, 6, 7, 8],
"C": [9, 10, 11, 12]

}

df = pd.DataFrame(data)

4. Which of the following returns the first three rows of column A?
a. df.loc[1:3, "A"]
b. df.loc[0:2, "A"]
c. df.loc[0:3, "A"]

364 15 • Data Science

Access for free at openstax.org

https://openstax.org/books/introduction-python-programming/pages/15-4-exploratory-data-analysis
https://openstax.org/books/introduction-python-programming/pages/15-4-exploratory-data-analysis

5. Which of the following returns the second row?
a. df.iloc[2]
b. df[2]
c. df.loc[1]

6. Which of the following returns the first column?
a. df.loc[0, :]
b. df.iloc[:, 0]
c. df.loc["A"]

7. Which of the following results in selecting the second and fourth rows of the DataFrame?
a. df[df.loc[:, "A"] % 2 == 0]
b. df[df[:, "A"] % 2 == 0]
c. df[df.loc["A"] % 2 == 0]

Handling missing data
Missing values in a dataset can occur when data are not available or are not recorded properly. Identifying and
removing missing values is an important step in data cleaning and preprocessing. A data scientist should
consider ethical considerations throughout the EDA process, especially when handling missing data. They
might consider answering questions such as "Why are the data missing?", "Whose data are missing?", and
"Considering the missing data, is the dataset still a representative sample of the population under study?". The
functions below are useful in understanding and analyzing missing data.

• isnull(): The isnull() function can be used to identify Null entries in a DataFrame. The return value of
the function is a Boolean DataFrame, with the same dimensions as the original DataFrame with True
values where missing values exist.

• dropna(): The dropna() function can be used to drop rows with Null values.
• fillna(): The fillna() function can be used to replace Null values with a provided substitute value.

Ex: df.fillna(df.mean()) replaces all Null values with the average value of the specific column.

To define a Null value in a DataFrame, you can use the np.nan value from the NumPy library. Functions that
aid in identifying and removing null entries are described in the table below the following code.

import pandas as pd
import numpy as np

Create sample data
data = {

"Column 1": ["A", "B", "C", "D", "E"],
"Column 2": [np.NAN, 200, 500, 0, -10],
"Column 3": [True, True, False, np.NaN, np.NaN]

}

df = pd.DataFrame(data)

15.4 • Exploratory data analysis 365

Column 1 Column 2 Column 3

0 A NaN True

1 B 200.0 True

2 C 500.0 False

3 D 0.0 NaN

4 E -10.0 NaN

Table 15.5

366 15 • Data Science

Access for free at openstax.org

Function Example Output Explanation

isnull()
df.isnull()

Column
1

Column
2

Column
3

0 False True False

1 False False False

2 False False False

3 False False True

4 False False True

The df.isnull()
function returns a
Boolean array with
Boolean values
representing whether
each entry is Null.

fillna()

df["Column 2"] =\
df["Column
2"].fillna(df["Column
2"]

.mean())

Column
1

Column
2

Column
3

0 A 172.5 True

1 B 200.0 True

2 C 500.0 False

3 D 0.0 NaN

4 E -10.0 NaN

Null values in
Column 2 are
replaced with the
mean of non-Null
values in the column.

dropna()
Applied after the
run
of the previous row
df = df.dropna()

Column
1

Column
2

Column
3

0 A 172.5 True

1 B 200.0 True

2 C 500.0 False

All rows containing a
Null value are
removed from the
DataFrame.

Table 15.6 Null identification and removal examples.

15.4 • Exploratory data analysis 367

CONCEPTS IN PRACTICE

Missing value treatment

8. Which of the following is used to check the DataFrame for Null values?
a. isnan()
b. isnull()
c. isnone()

9. Assuming that a DataFrame df is given, which of the following replaces Null values with zeros?
a. df.fillna(0)
b. df.replacena(0)
c. df.fill(0)

10. Assuming that a DataFrame df is given, what does the expression df.isnull().sum() do?
a. Calculates sum of the non-Null values in each column
b. Calculates the number of Null values in the DataFrame
c. Calculates the number of Null values in each column

Programming practice with Google
Use the Google Colaboratory document below to practice EDA on a given dataset.

Google Colaboratory document (https://openstax.org/r/100edapractice)

15.5 Data visualization

Learning objectives
By the end of this section you should be able to

• Explain why visualization has an important role in data science.
• Choose appropriate visualization for a given task.
• Use Python visualization libraries to create data visualization.

Why visualization?
Data visualization has a crucial role in data science for understanding the data. Data visualization can be used
in all steps of the data science life cycle to facilitate data exploration, identify anomalies, understand
relationships and trends, and produce reports. Several visualization types are commonly used:

Visualization
type

Description
Benefits/common

usage

Bar plot Rectangular bars
Compare values across
different categories.

Line plot A series of data points connected by line segments
Visualize trends and
changes.

Table 15.7 Common visualization types.

368 15 • Data Science

Access for free at openstax.org

https://openstax.org/r/100edapractice

Visualization
type

Description
Benefits/common

usage

Scatter plot
Individual data points representing the relationship between
two variables

Identify correlations,
clusters, and outliers.

Histogram
plot

Rectangular bars representing the distribution of a
continuous variable by dividing the variable's range into bins
and representing the frequency or count of data within each
bin

Summarizing the
distribution of the data.

Box plot
Rectangular box with whiskers that summarize the
distribution of a continuous variable, including the median,
quartiles, and outliers

Summarizing the
distribution of the data
and comparing different
variables.

Table 15.7 Common visualization types.

CHECKPOINT

Visualization types

Access multimedia content (https://openstax.org/books/introduction-python-programming/pages/
15-5-data-visualization)

CONCEPTS IN PRACTICE

Comparing visualization methods

1. Which of the following plot types is best suited for comparing the distribution of a continuous variable?
a. scatter plot
b. histogram plot
c. line plot

2. Which of the following plot types is best suited for visualizing outliers and quartiles of a continuous
variable?
a. histogram plot
b. bar plot
c. box plot

3. Which of the following plot types is effective for displaying trends and changes over time?
a. line plot
b. bar plot
c. histogram plot

Data visualization tools
Many Python data visualization libraries exist that offer a range of capabilities and features to create different

15.5 • Data visualization 369

https://openstax.org/books/introduction-python-programming/pages/15-5-data-visualization
https://openstax.org/books/introduction-python-programming/pages/15-5-data-visualization

plot types. Some of the most commonly used frameworks are Matplotlib, Plotly, and Seaborn. Here, some
useful functionalities of Matplotlib are summarized.

Plot type Method

Bar plot

The plt.bar(x, height) function takes in two inputs, x and height,
and plots bars for each x value with the height given in the height
variable.

Example Output

import
matplotlib.pyplot as
plt

Data
categories = ["Course
A", "Course B", "Course
C"]
values = [25, 40, 30]

Create the bar chart
fig =
plt.bar(categories,
values)

Customize the chart
plt.title("Number of
students in each
course')
plt.xlabel("Courses")
plt.ylabel("Number of
students")

Display the chart
plt.show()

Table 15.8 Matplotlib functionalities. Bar plot.

370 15 • Data Science

Access for free at openstax.org

Plot type Method

Line plot
The plt.plot(x, y) function takes in two inputs, x and y, and plots
lines connecting pairs of (x, y) values.

Example Output

import matplotlib.pyplot
as plt

Data
month = ["Jan", "Feb",
"Mar", "Apr", "May"]
inflation = [6.41, 6.04,
4.99, 4.93, 4.05]

Create the line chart
plt.plot(month, inflation,
marker="o",
linestyle="-",
color="blue")

Customize the chart
plt.title("Inflation trend
in 2023")
plt.xlabel("Month")
plt.ylabel("Inflation")

Display the chart
plt.show()

Table 15.9 Matplotlib functionalities. Line plot.

15.5 • Data visualization 371

Plot type Method

Scatter plot
The plt.scatter(x, y) function takes in two inputs, x and y, and
plots points representing (x, y) pairs.

Example Output

import matplotlib.pyplot
as plt

Data
x = [1, 2, 3, 4, 5, 6, 7,
8, 9, 10]
y = [10, 8, 6, 4, 2, 5, 7,
9, 3, 1]

Create the scatter plot
plt.scatter(x, y,
marker="o", color="blue")

Customize the chart
plt.title("Scatter Plot
Example")
plt.xlabel("X")
plt.ylabel("Y")

Display the chart
plt.show()

Table 15.10 Matplotlib functionalities. Scatter plot.

372 15 • Data Science

Access for free at openstax.org

Plot type Method

Histogram plot
The plt.hist(x) function takes in one input, x, and plots a histogram
of values in x to show distribution or trend.

Example Output

import matplotlib.pyplot
as plt
import numpy as np

Data: random 1000
samples
data =
np.random.randn(1000)

Create the histogram
plt.hist(data, bins=30,
edgecolor="black")

Customize the chart
plt.title("Histogram of
random values")
plt.xlabel("Values")
plt.ylabel("Frequency")

Display the chart
plt.show()

Table 15.11 Matplotlib functionalities. Histogram plot.

15.5 • Data visualization 373

Plot type Method

Box plot
The plt.boxplot(x) function takes in one input, x, and represents
minimum, maximum, first, second, and third quartiles, as well as outliers in x.

Example Output

import
matplotlib.pyplot
as plt
import numpy as np

Data: random 100
samples
data =
[np.random.normal(0,
5, 100)]

Create the box
plot
plt.boxplot(data)

Customize the
chart
plt.title("Box Plot
of random values")
plt.xlabel("Data
Distribution")
plt.ylabel("Values")

Display the chart
plt.show()

Table 15.12 Matplotlib functionalities. Box plot.

CONCEPTS IN PRACTICE

Matplotlib methods

4. Given the following code, which of the function calls is appropriate in showing association between x
and y?

import matplotlib.pyplot as plt

Data

374 15 • Data Science

Access for free at openstax.org

x = [1, 2, 3, 4, 5]
y = [10, 15, 12, 18, 20]

a. plt.boxplot(x)
b. plt.hist(y)
c. plt.scatter(x, y)

5. What is being plotted using the code below?

import matplotlib.pyplot as plt

Data
categories = ['A', 'B', 'C', 'D']
values = [10, 15, 12, 18]
plt.bar(categories, values)

a. a histogram plot
b. a bar plot
c. a line plot

6. Which library in Python is more commonly used for creating interactive visualizations?
a. Matplotlib
b. Plotly
c. Pandas

EXPLORING FURTHER

Please refer to the following user guide for more information about the Matplotlib, Plotly, and Seaborn
libraries.

• Matplotlib User Guide (https://openstax.org/r/100matplotguide)
• Plotly User Guide (https://openstax.org/r/100plotlyguide)
• Seaborn User Guide (https://openstax.org/r/100seabornguide)

Programming practice with Google
Use the Google Colaboratory document below to practice a visualization task on a given dataset.

Google Colaboratory document (https://openstax.org/r/100visualization)

15.6 Summary

Highlights from this chapter include:

• Data science is a multidisciplinary field that combines collection, processing, and analysis of large volumes
of data to extract insights and drive informed decision-making.

• The data science life cycle is the framework followed by data scientists to complete a data science project.
• The data science life cycle includes 1) data acquisition, 2) data exploration, 3) data analysis, and 4)

reporting.

15.6 • Summary 375

https://openstax.org/r/100matplotguide
https://openstax.org/r/100plotlyguide
https://openstax.org/r/100seabornguide
https://openstax.org/r/100visualization

• Google Colaboratory is a cloud-based Jupyter Notebook environment that allows programmers to write,
run, and share Python code online.

• NumPy (Numerical Python) is a Python library that provides support for efficient numerical operations on
large, multi-dimensional arrays and serves as a fundamental building block for data analysis in Python.

• NumPy implements an ndarray object that allows the creation of multi-dimensional arrays of
homogeneous data types and efficient data processing.

• NumPy provides functionalities for mathematical operations, array manipulation, and linear algebra
operations.

• Pandas is an open-source Python library used for data cleaning, processing, and analysis.
• Pandas provides Series and DataFrame data structures, data processing functionality, and integration with

other libraries.
• Exploratory Data Analysis (EDA) is the task of analyzing data to gain insights, identify patterns, and

understand the underlying structure of the data.
• A feature is an individual variable or attribute that is calculated from raw data in a dataset.
• Data indexing can be used to select and access specific rows and columns.
• Data slicing refers to selecting a subset of rows and/or columns from a DataFrame.
• Data filtering involves selecting rows or columns based on certain conditions.
• Missing values in a dataset can occur when data are not available or were not recorded properly.
• Data visualization has a crucial role in data science for understanding the data.
• Different types of visualizations include bar plot, line plot, scatter plot, histogram plot, and box plot.
• Several Python data visualization libraries exist that offer a range of capabilities and features to create

different plot types. These libraries include Matplotlib, Seaborn, and Plotly.
• The conventional aliases for importing NumPy, Pandas, and Matplotlib.pyplot are np, pd, and plt,

respectively.

At this point, you should be able to write programs to create data structures to store different datasets and
explore and visualize datasets.

Function Description

np.array() Creates an ndarray from a list or tuple.

np.zeros() Creates an array of zeros.

np.ones() Creates an array of ones.

np.random.rand(n, m) Creates an array of random numbers with n rows and m columns

np.genfromtxt('data.csv',
delimiter=',') Creates an array from a CSV file.

pd.DataFrame() Creates a DataFrame from a list, dictionary, or an array.

pd.read_csv() Creates a DataFrame from a CSV file.

Table 15.13 Chapter 15 reference.

376 15 • Data Science

Access for free at openstax.org

Function Description

df.head() Returns the first few rows of a DataFrame.

df.tail() Returns the last few rows of a DataFrame.

df.info() Provides a summary of the DataFrame, including the column
names, data types, and the number of non-Null values.

df.describe() Generates the column count, mean, standard deviation, minimum,
maximum, and quartiles.

df.value_counts() Counts the occurrences of unique values in a column and presents
them in descending order.

df.unique() Returns an array of unique values in a column.

loc[] Allows for accessing data in a DataFrame using row/column labels.

iloc[] Allows for accessing data in a DataFrame using row/column
integer-based indexes.

df[condition] Selects only the rows that meet the given condition.

df.loc[start_row:end_row,
start_column:end_column] Slices using label ranges.

df.loc[[label1, label2,
...], :]

Slices rows that are in the list [label1, label2, ...].

df.isnull()
Returns a Boolean array with Boolean values representing whether
each entry has been Null.

fillna() Replaces Null values.

dropna() Removes all rows containing a Null value.

plt.bar(x, height)
Takes in two inputs, x and height, and plots bars for each x value
with the height given in the height variable.

plt.plot(x, y)
Takes in two inputs, x and y, and plots lines connecting pairs of (x,
y) values.

Table 15.13 Chapter 15 reference.

15.6 • Summary 377

Function Description

plt.scatter(x, y)
Takes in two inputs, x and y, and plots points representing (x, y)
pairs.

plt.hist(x)
Takes in one input, x, and plots a histogram of values in x to show
distribution or trend.

plt.boxplot(x)
Takes in one input, x, and represents minimum, maximum, first,
second, and third quartiles, as well as outliers in x.

Table 15.13 Chapter 15 reference.

378 15 • Data Science

Access for free at openstax.org

Answer Key
Chapter 1
1.1 Background
1. b. Each image in the animation represents a different type of computer program.
2. a. This type of analysis requires basic knowledge of programming.
3. c. Like mobile apps, wi-fi speakers run small programs that connect to servers.
4. b. This book assumes readers understand the basics of algebra, but nothing too difficult.
5. c. Python's syntax is more concise than Java's.
6. a. Python does not require a semicolon at the end of each line. Braces are also not required.

1.2 Input/output
1. c. The hello world program is just one line of code.
2. c. The end="" option removes the newline character after hello, producing Hello world! on the same

line.
3. c. The default space character that separates multiple items has been replaced with the dash character.
4. c. The user input is stored in memory and can be referenced using today_is.
5. b. The print() function outputs "You entered:" followed by a space character, followed by the input

data, Sophia, which is referenced by the variable name.
6. a. The input is stored exactly as the user enters the input. So, the retrieved value is displayed exactly as

entered by the user.

1.3 Variables
1. c. This would produce the output string, "The city where you live is Chicago" .
2. b. These two lines of code would produce the output string, "Total = 6" .
3. c. The single = character is the assignment operator.
4. a. An assignment statement has the variable name on the left side and the value on the right side of the

assignment statement.
5. a. median is a descriptive name for a variable that stores a median value.
6. b. A variable name can contain, but not start with, a digit.
7. c. The name clearly indicates the value being stored is a zip code.
8. a. Snake case separates each word with an underscore and uses only lowercase letters.

1.4 String basics
1. c. A string that is enclosed by matching double quotes is a valid string. Note that '7 days' is also a

string.
2. c. The string, fred78@gmail.com, is enclosed in matching double quotes, and is assigned to the variable

email. A string can contain characters such as "@" or "." in addition to letters and numbers.
3. c. The string has matching double quotes. Since a single quote is a part of this string, double quotes must

be used.
4. c. Note that the enclosing single quotes (') are not part of the string but the double quotes (") are.
5. c. The len() function returns the number of characters in the string. 6 characters exist in "Hi Ali"

which are "H", "i", " ", "A", "l", and "i".
6. b. The length of an empty string equals 0.
7. b. The number_of_digits variable's value is 2 , and as such, the output is "Number 12 has 2

digits." .
8. c. The 1 and 0 are enclosed in quotes indicating valid strings, and the + is not, indicating a concatenation

operation. Thus, the string "10" is produced. Note that concatenation operator does not include any
default separator characters like the space character.

379

9. c. "A" and "wake" are valid strings, and the + is not enclosed in quotes, indicating a concatenation
operation. Thus the string "Awake" is produced. Note that the concatenation operator does not include
any default separator characters like the space character.

10. c. Note that space characters must be explicitly included when using the concatenation operator.
11. c. A concatenation of the two strings is assigned to the variable holiday. Note that "one-sided" would

assign the same string to holiday.

1.5 Number basics
1. c. x = 1 is an integer, and when printing the type of an integer variable, the output is <class 'int'>.
2. b. y = 2.0 is floating-point number.
3. a. Any value defined within quotation marks is a string value regardless of the content.
4. c. Line 2 of the code evaluates as follows: c = x - z = 7 - 2 = 5. Line 3 increments variable c by 1,

making the total equal to 6.
5. b. The output of 3.5-1.5 equals 2.0 , which is a floating-point number.
6. c. The result of the division operation is a floating-point number that isn't rounded down. 7/2 = 3.5.
7. c. The output of the 20/2 equals 10.0 because the division operation results in a float.
8. c. The output of an arithmetic operator on any floating-point operand results in a floating-point value. 2 *

1.5 = 3.0.
9. a. 3 raised to the power 2 is 9, times 4 is 36, plus 1 is 37.

10. b. Although addition has lower precedence than exponentiation, the parentheses cause 1 + 3 to be
evaluated first.

11. a. In Python, exponentiation, or raising to a power, has higher precedence than making a value negative.
Python's -16 result can be confusing because, in math, "-4 squared" is 16 .

12. c. The statement uses the assignment operator (=), the negative operator (-), and the exponentiation
operator (**).

1.6 Error messages
1. b. The filename can be found after the last slash (/). Other names, like Desktop, refer to folders.
2. b. Line 2 is mentioned immediately after the filename.
3. b. The type of error is always the first word on the last line of the error message.
4. a. The middle three lines are indented. In Python, lines may not begin with spaces or tabs unexpectedly.
5. c. The quote marks are missing at the end of the input prompt.
6. b. The name for "input" is misspelled.

1.7 Comments
1. b. Comments help explain the purpose of code so that other programmers understand what the code

intends.
2. a. The hash character indicates the beginning of a comment.
3. b. Having one space after the # is the community standard.
4. c. This comment explains the intent of the code. If the code had a mistake, the programmer reading the

comment might notice the mistake more easily.
5. a. A blank line separates the input from the output.

Then again, inserting a blank line in a three-line program is generally unnecessary.
6. c. The # symbol "comments out" the line without removing the line permanently.
7. a. The docstring is primarily written for others who will use the program.
8. c. Docstrings must be a valid string, not a multi-line comment. Docstrings are stored in the program's

memory, but comments are ignored.
9. b. The amount of information in this docstring is just right. In most cases, the docstring should not be

longer than the code.

380

Access for free at openstax.org

1.8 Why Python?
1. a. The language was named after Monty Python. Just for fun, the official documentation makes subtle

references to Monty Python comedy sketches.
2. b. Python's first release was in 1991, after being developed in the late 1980's.
3. c. Making Python open source early on allowed for many programmers to provide feedback.
4. b. For 20 years, Java and C traded places as the top language until Python took over in 2021!
5. a. The line for Python crosses the line for JavaScript in the middle of 2018.
6. b. TIOBE started tracking language popularity in 2001, several years after web search engines became

popular.

Chapter 2
2.1 The Python shell
1. a. Most programming languages are high-level and meant to be understood by humans.
2. c. The most basic line of Python code is a single expression, such as the integer 1 .
3. b. After the input is stored in memory, the shell displays a prompt for the next line.
4. c. The up arrow displays the previous line, and the left arrow moves within that line.
5. a. Pressing the up arrow twice moves to the line before the previous line.

2.2 Type conversion
1. a. book_rating was assigned with 3.5 on line 5 and converted from an integer to a float by the

interpreter. book_rating isn't modified after line 5.
2. a. Combining a float and an integer in a calculation produces a float. book_rating would be assigned

with 4.0 .
3. a. A calculation with a float and an integer produces a float. x is a float, 42.0 , after the code executes.
4. a. float() converts the input number of slices from a string to a float for the pizza order calculation.
5. b. int() removes any fractional part. Many calculations will produce a fractional part. Ex: 46 people with

3.0 slices per person will need 138 slices or 17.25 pizzas. int(17.25) is 17 , so adding 1 produces 18
pizzas, a better estimate to ensure enough pizza is ordered.

6. a. y = int(4.5) = 4. The fractional part, 0.5, is removed.
7. b. str(4.5) produces "4.5" .
8. a. float(y) = float(4) = 4.0.The fractional part, 0.5, was removed during the integer conversion,

int(x).

2.3 Mixed data types
1. b. Multiplying an integer and a float produces a float.
2. a. Multiplying two integers produces an integer.
3. b. Dividing two integers produces a float, even when the result is a whole number.
4. b. Dividing two integers produces a float and does not round.
5. b. Dividing a float by an integer produces a float, even when the result is a whole number.
6. a. Subtraction of a float from an integer produces a float.
7. b. Subtraction of a float from an integer produces a float and does not round.
8. b. 34 + 56 produces 90 , an integer.
9. a. '12' + ' red roses' performs string concatenation.

10. c. Multiplying a string by an integer is a useful shortcut.
11. c. Adding '5.2' , a string, and 7 , an integer, is not an accepted operation and leads to an error.
12. b. Adding a float and an integer produces a float.
13. b. '3.14' and '159' are concatenated.
14. c. String repetition only works with strings and integers.

381

2.4 Floating-point errors
1. b. An overflow error occurs because the value is larger than the upper limit of the floating-point range.
2. a. The digits starting from the eighteenth place after the decimal are inaccurate due to approximation, so

a round-off error occurs.
3. c. round(6.6) = 7 as 7 is the closest whole number to 6.6.
4. c. round(3.5, 2) = 3.50 as the input is rounded to two decimal places.
5. b. When round() is applied to an integer value without specifying the number of decimal places, there

will be no change to the value.
6. a. The round(0.1, 1) rounds the value 0.1 to one decimal place, which is 0.1 .

2.5 Dividing integers
1. b. 13 divided by 5 is 2 and 3/5. The / operator computes the result as a float.
2. c. 5 goes into 13 two times, remainder 3. The % operator computes the remainder.
3. a. 4 goes into 1 zero times, remainder 1. The // operator computes the quotient.
4. c. Dividing by zero is undefined in math. Python raises an error when dividing by zero.
5. b. The modulus is the amount to divide by. To convert hours to minutes, a program divides by 60.
6. a. Programs that use floor division often use modulo on the next line.

2.6 The math module
1. c. The import statement defines the math variable needed to access the module.
2. b. The round() function, for rounding floating-point numbers, is built-in.
3. a. abs() is a built-in function. The math module does not have an abs() function.
4. b. Tau is equal to 2π, so tau divided by 2 is π.
5. a. The math.sqrt() function returns a float, even when given an integer.
6. b. This expression is a concise way to write πr2.
7. a. When given integers, the ** operator returns an integer result.

2.7 Formatting code
1. a. The code has one space before and after the assignment operator (=).
2. c. Each operator (=, +) has one space both before and after.
3. b. The comma is followed by a space.
4. a. The expressions b**2 and 4*a*c are evaluated first. Adding space around the - operator makes the

order of operations more readable.
5. b. The two consecutive strings are automatically combined into one string before printing.
6. a. The original strings do not have a space between the words "is" and "a" .
7. c. The literal "Hello," and the variable name cannot be concatenated without using a + operator.

Alternatively, the two values could be separated by a comma in the print function.
8. b. The backslash, when used at the end of a line, indicates a multi-line statement.
9. a. Using one print statement with parentheses joins the lines implicitly and does not increase the number

of statements.
10. c. The first line assigns "Happy " to the variable saying. The second line has no effect on the program.

2.8 Python careers
1. d. Python is one of the most-used programming languages in the world, especially in fields outside of CS

and IT.
2. a. Matplotlib is a popular library for creating charts, plots, and other visualizations.
3. b. As of 2023, Instagram is the largest deployment of the Python Django web framework.

382

Access for free at openstax.org

Chapter 3
3.1 Strings revisited
1. a. Since index values start at 0, the index 1 refers to the second character of the string.
2. b. The character at index 1 is y, and the character at index -1 is !.
3. c. The result of s[0] is "P" , which is a string of length 1.
4. b. Code points 65 to 90 are used for uppercase letters.
5. b. The code point for the character "0" is 48.
6. b. Tilde (~) is the character for code point 126. The chr() function returns a string of length one.
7. c. An escape sequence is two characters long and begins with a backslash (\).
8. c. The first backslash indicates an escape sequence, and the second backslash indicates the character.
9. c. The escape sequence \n produces a new line. print("Enter\nhere") produces the same result.

3.2 Formatted strings
1. b. The same variable, says, is used in three replacement fields.
2. a. The string is not an f-string, so the brace characters (around temp and food) are printed literally.
3. c. Using an f-string allows the entire output to be specified without commas and extra quote marks.
4. a. The format specifier 02d appends a 0 to the front of the integer when the integer is only one digit.
5. c. The format specifier ".2f" (with a period) means fixed-point, rounded to two decimal places.
6. b. This format specifier is useful for displaying large amounts of money.

3.3 Variables revisited
1. b. Each line of the program in the animation is an assignment statement.
2. c. The program assigns the int object 10 and the float object 9.7 , as shown in the memory diagram.
3. a. An arrow shows which object a variable currently refers to.
4. a. An object's identity is an integer representing the memory location.
5. c. The type function returns an object's class name like int, float, or str.
6. b. A variable refers to an object, so the variable's value is the object's value.

3.4 List basics
1. b. A list of numbers can be set up using an assignment operator.
2. a. Individual elements in a list must be separated by a comma. Python does not understand what is meant

by 2 3.
3. c. Since indexes start at 0, the required number is one less than the position being accessed.
4. a. The index -1 always refers to the last element of a list. The expression len(name_list)-1, which

evaluates to 3 and refers to the last element in a list of 4 elements, can also be used in place of -1 here.

3.5 Tuple basics
1. a. The first element, 2 , is at index 0.
2. c. Tuples can have elements of the same type as well as elements of different types.
3. a. A tuple must be created using commas. Parentheses are optional but recommended. The three

elements are "a" , "b" , and "c" .
4. b. my_tuple is initially assigned with the tuple (0.693, 0.414, 3.142). Then my_tuple is assigned

with the new tuple, (0.693, 1.414, 3.142), to correct a mistake with the second element.
5. a. Tuples are immutable. No changes, including appending, can be made after the tuple is created.
6. b. Tuples are immutable, so attempted changes produce errors. Using a tuple would protect the constants

from accidental changes.

383

Chapter 4
4.1 Boolean values
1. c. "True" uses quotation marks, so the value is a string.
2. b. is_vegetable is an integer and can be used in arithmetic operations.
3. a. A variable assigned with either True or False is a Boolean variable.
4. a. A Boolean variable represents the value True or False .
5. b. True and False are the only two values for a Boolean variable.
6. b. Assigning a bool with an int results in implicit type conversion. The type conversion can cause issues

later in the code if the programmer assumes is_dessert is still a Boolean.
7. b. Any numeric type representing 0 converts to False . Non-zero numbers convert to True .
8. a. A negative number is non-zero and converts to True .
9. b. The empty string is the only string that converts to False .

10. a. "0" is a non-empty string and is converted to True .
11. a. The input is read in as a string, so bool("False") is True .
12. b. True converted to a float is 1.0. False converted to a float is 0.0.
13. b. True converted to a string is "True" . False converted to a string is "False" .
14. b. When a Boolean is converted to a numeric type, True is converted to 1 , and False is converted to 0

.
15. b. 14 is greater than 13, so 14 is not less than or equal to 13.
16. a. 0 is less than 0.4, so 0 is not equal to 0.4.
17. b. 4 is equal to 4.0, so 4 is not less than 4.0.
18. c. Numeric types cannot be compared to strings using the comparison operators: >, <, >=, <=. Using == or

!= will produce a Boolean.
19. b. Strings are compared by comparing each character's Unicode values. Letters have ascending Unicode

values in alphabetical order (and are case sensitive). "c" and "c" are equal, so "i" is compared to "o"
. "i" is not equal to "o" so False is produced, though cilantro and coriander come from the same
plant.

20. b. Letters have ascending Unicode values in alphabetical order (and are case sensitive). "d" is greater
than, not less than, "c" , so False is produced.

4.2 If-else statements
1. b. age < 12 is between "if" and ":" and is an expression that evaluates to True or False .
2. c. The program executes the body when the condition is true.
3. b. The body, line 3, isn't executed because the condition is false.
4. c. -10 < 0 is true, so num is assigned with 25 . Then 25 < 100, so num is assigned with 25 + 50, which is

75 .
5. b. Line 4 is not indented, so positive_num is always assigned with 0 . The positive input value is lost.
6. c. The if branch is taken when x >= 15, so the else branch is taken when x is not greater than or equal

to 15 .
7. a. 40 > 30, so the body of the if statement is executed. y = 40 - 10 = 30.
8. b. One of the branches is always taken in an if-else statement. Depending on x's value, y will either

have a final value of 30 or 105 .

4.3 Boolean operations
1. a. 2500 < 3000 is True , and 2.5 > 1.0 is True , so Jaden can enter.
2. b. 3000 > 3000 is False . False and True is False . False and False is False . So no value of

hrs_to_close will allow Darcy to enter.
3. b. False and True is False .

384

Access for free at openstax.org

4. b. (8 < 10) and (21 > 20) evaluates to True and True, which is True . So the body of the if is
executed, and z is assigned with 5 .

5. a. (21 < 30) or False evaluates to True or False, which is True .
6. c. The discount does not apply for ages between 12 and 65 inclusive.
7. a. (9%2==0 and 10%2 ==1) evaluates to (False and False), which is False . (9%2 == 1 and 10%2

== 0) evaluates to (True and True), which is True . False or True is True . The if statement
checks whether the numbers form an even-odd or odd-even pair.

8. a. not(13 < 10) evaluates to not(False), which is True .
9. b. not(18 > 15 and 18 < 20) evaluates to not(True and True), then not(True), and finally, False

.
10. a. 65 > 60 is True , so is_turn is assigned with not(False), which is True .

4.4 Operator precedence
1. b. Exponentiation has the highest precedence, then division, then addition.
2. a. Multiplication has the highest precedence, then greater than, then not.
3. b. Division has the highest precedence, then equality and less than, then and .
4. b. Multiplication and division have the highest precedence, are left associative, and have higher

precedence than addition.
5. b. Exponentiation is right associative and has higher precedence than multiplication.
6. c. The expression is valid and is separated into comparisons connected with and .
7. a. The equality operator, ==, has higher precedence than the logical and .
8. a. The expression is evaluated as x + (3*y) - 5. 8 + (3*9) - 5 = 30.
9. b. The expressions in parentheses are evaluated first. (8+3) * (9-5) = 11 * 4 = 44.

4.5 Chained decisions
1. b. elif will evaluate condition_2 if condition_1 is False and execute Body 2 if condition_2 is

True .
2. b. x > 44, 42 > 44, is False , so x < 50 is evaluated. 42 < 50 is True , so y = 0 + 5. Only one of the

if and elif branches is taken.
3. a. If x < 0, Body 1 executes. Else if x == 0, Body 2 executes.
4. a. The elif must be chained to a preceding statement and at the same indentation level.
5. c. The if and if-elif statements are not chained. The first if evaluates to True and executes. Then

the if-elif is evaluated and the elif branch executes.
6. b. The third branch executes if hour < 8 and hour < 12 is False and hour < 13 is True .
7. c. An elif can be chained to another elif to form a longer chained decision.
8. a. Only one branch is executed in a chained decision statement. -1 < 0 and -2 < 0 is True , so y =

10.
9. c. The first branch executes if price < 9.99. The second branch executes if price < 19.99 and the first

condition fails: that is, price >= 9.99. The third branch executes if the first and second conditions fail:
that is, price >= 19.99. Chaining can simplify decision statements.

4.6 Nested decisions
1. c. leaf_count == 3 is False , so the outer else ' s body is executed.
2. c. num_dancers is positive, so the else branch is taken. num_dancers is odd, so the error is printed

before the program continues after the nested if and prints num_dancers.
3. b. 256 == 513 is False , and 256 < 513 is True , so the elif branch is taken and Body 2 executes.

513 >= 512 is True , so Body 3 executes.
4. c. The first else isn't indented and is treated as the else to the original if . Thus the second else is

not connected to an if statement and produces an error.

385

4.7 Conditional expressions
1. c. The conditional expression will assign response with "even" if x is even. response is assigned with

"odd" if x is odd.
2. a. 100 < 100 is False so result is assigned with x - offset = 100 - 10 = 90.
3. c. min_num cannot be assigned with min_num = y. The correct expression is min_num = x if x < y

else y"
4. b. Conditional expressions that evaluate to a Boolean are redundant. The Boolean expression should be

used instead.
5. b. The expression is evaluated as (fee + 10) if hours > 12 else 2. So if hours > 12, the result will

be fee + 10; otherwise, the result will be 2.

Chapter 5
5.1 While loop
1. b. The loop runs six times for values of g = 1 , 2 , 3 , 5 , 8 , and 13 .
2. c. 21 is the first Fibonacci number larger than 20, and for g = 21, the condition will evaluate to False for

the first time.
3. a. The code first prints the variable f's initial value. Then, at each iteration, g's value is printed, and g's

value throughout the code's execution will be 1 , 2 , 3 , 5 , 8 , and 13 . Thus, all printed values are 1 , 1
, 2 , 3 , 5 , 8 , and 13 .

4. b. The loop runs for n = 4, 3 , 2 , 1 .
5. b. The loop's termination condition is n = 0; therefore, the value of n after the loop equals 0 . The last

printed line will be: value of n after the loop is 0.
6. c. Since the initialization value for n equals 4 and the value of n is only increasing, the loop condition will

always remain true. The loop will never terminate.

5.2 For loop
1. b. Eight characters exist in the str_var. Iterating over all characters and incrementing the value of count

variable at each iteration results in the count's value of 8 .
2. a. Since the initial count's value is 0 , multiplying count by any number results in the output of 0 .
3. c. The added line prints each character that is looped on (character c), and prints an additional * after the

character.
4. a. The output will be an increasing sequence between 10 and 22 (inclusive of both): 10 , 13 , 16 , 19 ,

and 22 .
5. c. The expression starts a sequence from 5 , decreases by 1 at every step, and ends at 1 .
6. a. The range() function generates a descending sequence, beginning from -1 until -2. Hence, the output

is -1.
7. c. When the step size is negative, the generated sequence will be in descending order. Hence, start must

be larger than end; otherwise, no sequence will be generated.
8. c. When two arguments are provided to the range() function, arguments are considered as start and

end of the sequence, and the step size will be 1 . When step size is positive, the generated sequence will
be in ascending order, and hence, start must be less than end. Otherwise, no sequence will be
generated.

5.3 Nested loops
1. b. The combination of i and j values, (i, j), that meet the inner and outer loop conditions are as

follows:
(1, 1), (1, 2), (1, 3), (1, 4),
(2, 1), (2, 2), (2, 3),

386

Access for free at openstax.org

(3, 1), (3, 2),
(4, 1)

2. b. Each inner loop's full execution prints three "*" characters, and the outer loop executes twice.
3. b. Each line i of the output (i = 1 , 2 , 3 , and 4) contains i times values 1 through 4 .

Hence, the outer loop executes while i <= 4, and the inner loop iterates overj while j's value is less than
or equal to 4 .

4. a. The outer loop's execution range is 0 , 1 , and 2 ; hence, the outer loop executes three times.
5. b. The inner loop is evaluated four times (j = 0, 1 , 2 , and 3) for every i's value set by the outer loop.

In the given example i = 0, 1 , and 2 ; hence, the total number of times the inner loop executes is 3 *
4 = 12.

6. c. The printed output displays three rows with each row i displaying i * values in the range of 0 to 3 .
Hence, the code must iterate over row ID in the outer loop, and in each row, iterate over elements' ID in
the range of 0 to 3 .

5.4 Break and continue
1. c. The code prints all characters before the first occurrence of a space character in separate lines. Hence

the output is:

H
e
l
l
o

2. b. As soon as the print statement is executed, the break statement causes the loop's termination. Also,
for i = 15, the condition (i%3 == 0 and i%5 == 0) is met, and hence the print statement will be
executed exactly once.

3. b. The loop finds the first five numbers that are divisible by 2 or 3 . These numbers are 2 , 3 , 4 , 6 ,
and 8 , and thus 8 is the final i's value.

4. b. The print statement is executed for numbers within the range of 0 and 10 (inclusive) that are divisible by
3. The printed output is:

9
6
3
0

5. b. The loop checks whether the character being evaluated is a space character or not. If so, the remainder
of the loop will be skipped and the space character will not be printed.

5.5 Loop else
1. b. The variable i is initialized to 16 , and the while loop executes with i = 16, 8 , 4 , and 2 . In each

loop's iteration, the variable exp's value is incremented by 1. Hence, at the end of the loop, exp = 4. Since
the loop terminates without interruption, the else statement after the loop is executed and prints 16 is
2 to the 4.

2. a. The initial i's value is 7 . Hence, in the first loop's iteration, the else statement within the loop
executes, and the break statement terminates the loop. Since the loop's execution is interrupted, the
else after the loop will not execute and there will be no output.

3. b. The loop iterates over all integer values in the list. If a value is less than 5 , the value will be printed, and
if the value is greater than 5 , the code prints "Not all numbers are less than 5." and the code's

387

execution terminates.

Chapter 6
6.1 Defining functions
1. c. The print() function is called to output the variable, offset_num.
2. b. Lines 1, 4, and 5 each call print() once. Lines 2 and 3 call a different function, input().
3. b. Line 1 is a comment that is not executed. Lines 2 and 3 each call float() and input(). Line 3 calls

print() for a total of five function calls.
4. b. The corrected line is def water_plant(): .
5. c. The main program outputs "User info:" and then calls print_phone_num(), which outputs the

phone number.
6. b. A function call includes the function name and parentheses.
7. a. calc_tax is concise, in snake case, and indicates the function's task.
8. c. Each calculation uses four statements to read in the x,y values of a pair of points. The original program

performs three calculations by repeating code for a total of 12 input statements. The revised program
performs three calculations by executing the four input statements multiple times with function calls.

9. c. The benefits of a function's reusability is highlighted by many function calls that drastically reduce the
amount of cluttered, redundant code. Calling calc_distance() 10 times is equivalent to 60 statements
in the original program.

6.2 Control flow
1. c. Line 5 is the start of the main program, which is not indented. park_greet() is called on line 6 and

executed.
2. b. Control flow moves to where park_greet() is defined, at line 4.
3. c. Control flow returns to the line that called the function. Line 12 contains the function call to

extra_lot(), so control flow returns to line 12.
4. c. The program has an indentation mistake. print("Open ...") is unindented, so the statement is not a

part of park_greet() and is executed first. Then, park_greet() is called, and print("Welcome ...")
is executed.

5. c. The for loop has three iterations. Each iteration calls print_book_club(), which calls print_conf().
So the program calls print_book_club() three times and print_conf() three times.

6. b. Control flow returns to line 11, which called print_conf(). Then print_book_club() finishes, and
control flow returns to line 16, which called print_book_club().

6.3 Variable scope
1. c. Both num and num_sq are created outside of functions and are global variables.
2. a. num is created outside of a function and is global. num_sq is created in print_square() and is not

global.
3. c. num is global and can be accessed anywhere in the program, including both print_double() and

print_square().
4. b. out_str is the only variable declared in print_time() and is a local variable.
5. c. out_str is accessed in print_greeting() but created in statements outside of print_greeting().
6. b. print_time() creates out_str as a local variable. out_str is only in scope in print_time() and

cannot be accessed elsewhere.
7. a. The global variable hour is not edited in update_hour(). tmp is the local variable edited. tmp is

discarded after update_hour() finishes.
8. c. new_hour is a local variable that the print statement tries to access after update_hour() finishes.

new_hour is out of scope, so an error is produced.

388

Access for free at openstax.org

9. b. The global keyword can be used to create a global variable from within a function. new_hour has
global scope and can be accessed outside update_hour().

6.4 Parameters
1. b. username is the argument passed to print_welcome(). name is print_welcome()'s parameter that

is assigned with username's value.
2. a. name is the only parameter defined with print_welcome(). username is the argument passed on line

5's function call.
3. a. name is a parameter that exists only within a call to print_welcome().
4. a. The program would run correctly. Arguments and parameters can have the same name, and a local

variable called name would still be created in print_welcome(). Scope can be confusing with variables of
the same name.

5. a. p1_x is the first argument used in line 9's function call. x1 is defined as the first parameter of
calc_distance().

6. b. y1 is defined as calc_distance()'s second parameter. p1_y is the second argument on line 9's
function call.

7. c. 3 is a literal passed as the third argument, which corresponds to x2, the third parameter.
8. a. A list is mutable, so the object referred to by wknd_temps and temps is modified without needing a

local copy.
9. b. A string is immutable, so convert_temps() makes a new object for unit to refer to.

10. a. An immutable object's value cannot be changed.
11. b. unit no longer exists after convert_temps() finishes and returns to line 14.

6.5 Return values
1. a. calc_mpg() specifies mpg to be returned with the return statement.
2. b. return is a valid statement to end the function and return to the calling code without a specified value.

calc_sqft() should return sqft with the line return sqft.
3. c. If the return value or return statement is not specified, the function returns None .
4. b. num == 3 is True , so the return "dk" statement executes.
5. a. For inc_volume(9,10), return level returns 9 , and level += 1 is never reached.
6. b. bill += tax(bill) + auto_tip(bill) evaluates to bill += 6.0 + 20.0 to bill = 100.0 +

6.0 + 20.0 to 126.0.
7. a. val2 = sq(offset(5)) evaluates to val2 = sq(3) to 9.

6.6 Keyword arguments
1. d. The function call uses all keyword arguments to assign values to the named parameters.
2. b. "Hiya" is the value of msg and "Ash" is the value of name in the function.
3. a. "Welcome" is unnamed and assigned correctly to count. Positional arguments must come before

keyword arguments.
4. b. The positional arguments, "Hi" and "Bea" , follow the keyword argument count=1, which produces

an error.
5. b. name's default value is "Friend" , and count's default value is 1 . msg does not have default value.
6. c. msg is a required argument assigned with "Greetings" . name and count use the default values.

"Greetings Friend" is printed.
7. b. msg="Hello", name="Friend", and count=0, so the call is valid. The function executes but doesn't

enter the for loop because count=0.

389

Chapter 7
7.1 Module basics
1. b. The code has ten def statements, each of which defines a function.
2. a. Many modules consist of function definitions only. The functions are intended to be called in other

modules.
3. c. area.cube(5) is 6 * 5**2, which is 6 * 25, which is 150 .
4. a. When importing a module from another file, the suffix .py is removed.
5. b. The circle function must be called using the area variable that refers to the module.
6. b. Adding the function to the area module makes the function easier to reuse in other programs.

7.2 Importing names
1. a. This statement imports the sqrt function defined in the math module.
2. b. A variable is defined for each function imported: sin, cos, and tan.
3. b. A name error occurs when a variable name is not found, which might be due to a missing import

statement.
4. b. This statement replaces the previously imported circle function, even though circle() and

area.circle() have different parameters.
5. a. Assigning the area variable replaces the previously imported module with the integer 51 . The variable

can no longer be used to call functions in the area module.
6. b. The most recent definition of hello() requires one argument, so this line would result in an error.

7.3 Top-level code
1. b. Whenever this module is imported, Python will output "Defining sphere function" as a side effect.
2. a. Even though nothing is printed, calling the sphere function ten million times causes a delay in the main

program.
3. a. All code is at the top level, and no functions are defined. Importing this module would run all code as a

side effect.
4. c. The variable __name__ is the module's name, unless the module was run as the main program. In that

case, __name__ is "__main__" .
5. a. Since test.py was imported, the value of __name__ is "test" .
6. c. This line is found in many Python modules to check if the module was run as the main program.

7.4 The help function
1. b. The digits have 0 red and 0 green, so the color must be a shade of blue. Navy is a darker version of

standard blue, #0000FF .
2. c. FF in hexadecimal is 255, the maximum amount of red, green, or blue in a color.
3. a. The red, green, and blue values for orange are higher than the red, green, and blue values for green.
4. b. The hexadecimal for YELLOW is #FFFF00 , meaning 255 red + 255 green + 0 blue.
5. c. Both the darken function and the BLUE variable must be accessed via the colors variable.
6. a. Function names that begin with an underscore are intended to be used only within the current module.
7. b. Only docstrings are included in the documentation. All comments are ignored by the help function.
8. a. The functions are sorted alphabetically by name to make looking up a function easier.
9. a. Functions that begin with an underscore are intended to be used only within a module, not in other

modules.

7.5 Finding modules
1. a. This reference describes the standard library, including built-in functions, types, and modules.
2. b. As explained in the documentation of the calendar module, MONDAY is 0 and SUNDAY is 6 .
3. a. The tkinter module stands for Tk interface. Tk is a standard toolkit for creating windows, text boxes,

390

Access for free at openstax.org

buttons, and other graphical widgets.
4. c. MoviePy is a module for video editing, and Pillow is a module for image processing.
5. a. According to the "Features" section of the documentation, Arrow's is a "fully-implemented, drop-in

replacement for datetime."
6. a. This function converts a color code to a color name. Ex: hex_to_name("#daa520") returns

"goldenrod" .

Chapter 8
8.1 String operations
1. a. Since a's ASCII value is less than b's ASCII value, the output for "aaa" < "aab" is True.
2. b. Since "a" is shorter than "aa" , and the prefix "aa" with length 1 equals the second operand ("a"

), the shorter string is considered smaller. As such, "aa" < "a" evaluates to False.
3. c. While all characters in "aples" exist in "apples" , the characters are not sequential, so the string

"aples" is not a substring of "apples" . Therefore, "aples" in "apples" returns False.
4. a. "aBbA".lower() converts all characters to lowercase, and the output is "abba" .
5. b. "aBbA".upper() converts all characters to uppercase, and the output is "ABBA" .
6. a. The upper() converts "a" to uppercase ("A"). When checking "a".upper() == "A", the output is

True.

8.2 String slicing
1. b. Since indexing starts from 0, the character at index 1 is the second character in the string, which is "e"

.
2. b. Since negative indexing starts from -1 from the right of the string to the left, "u" is at index -2.
3. a. Character "e" in the string "chance" has index of -1 (negative indexing) and 5 (positive indexing).
4. b. a_string[2:4] is a slice including the third and fourth characters, which is "ll" .
5. b. The slice [-3:-1] includes characters at index -3 and -2, which are "oo" .
6. b. The string slice of greeting[3:] is the substring starting from index 3 up to the end of the string,

which is "Leila" .
7. b. To modify string content, a new variable must be created with desired modifications.
8. a. Attempting to assign a value to an index or range of indexes in a string results in TypeError: 'str'

object does not support item assignment.
9. c. The character at index 1, "o" , is replacing the content of variable str . As such, the print statement

prints "o" .

8.3 Searching/testing strings
1. c. Since "a" is a substring of "an umbrella" , the output of "a" in "an umbrella" is True .
2. b. "ab" is not a substring of "arbitrary" ; hence, the output is False .
3. a. Since "" is a substring of length 0 for "string" , the output is True .
4. a. The for loop iterates through the characters in "string" and prints all character without any

separator character.
5. c. The given code iterates over characters in string "abca" , and each time character "a" is observed, a

counter variable is increased by 1. Since "a" appears twice in "abca" , the output will be 2 .
6. c. The code iterates over the characters in "cab" and prints each character's uppercase equivalent.

Therefore, the output is "CAB" .
7. c. "aaa".count("a") returns 3 , which is the number of occurrences of "a" in string "aaa" .
8. a. Zero occurrence of "b" exists in "weather" ; hence, the output of "weather".count("b") is 0 .
9. b. Two substrings "aa" exist in "aaa" , one starting from index 0 and one starting from index 1.

10. a. The find() method returns the index for the first occurrence of the substring in the given string. The

391

index for the first occurrence of "a" is 1.
11. b. Since "c" is not a substring in "banana" , the find() method returns -1.
12. a. Since "banana" is not a substring of "b" , -1 is returned.
13. a. The index() method returns the index of the start of the first occurrence of a substring in the given

string. The index of the first occurrence of "o" in "school" is 3.
14. c. Substring "ooo" does not exist in the string "ooo" and hence the index() method returns a

ValueError.
15. a. sentence.index(" ") returns the index of the first space character. The print statement prints the

prefix of the sentence ending just before the first space character, so the output is "This" .

8.4 String formatting
1. c. "Ana" is substituted for the replacement field {} in the template and hence the output is "Hello

Ana!" .
2. b. The two arguments are passed to the template "{}:{}" that outputs "One:1" .
3. a. The arguments for the format() function are passed in order and will be substituted for the

replacement fields. Additional arguments may be ignored by the template and remain unused.
4. c. "Bengio" is substituted in the named replacement field associated with the tag name; hence, the

output is "Hey Bengio!" .
5. b. Since the string template uses a named argument, inputs are only accepted through the corresponding

keys. Hence, the code generates KeyError: 'name'.
6. b. The greeting variable with value "Hi" is substituted for the greeting replacement field. The same is

also done for the name replacement field and the name variable. The output is "Hi Jess" .
7. b. The template specifies the minimum length for the name field to be 12, so len(formatted_name) is 12

.
8. c. The alignment and the field length specifications format the greeting field to be six characters in

length and right-aligned. Therefore, the variable formatted_greeting will take value " Hello" , and
character 0 of the string is a space character.

9. c. The field length specification enforces the minimum length of the string. Inputs that are longer than the
specified minimum length will not be modified.

10. c. The .3 format specification shows that the output precision must be three decimal places.
11. a. The {:1>3d} specification outputs a 3-digit number in the output, and if the given argument does not

have three digits, the number will be padded with 1's from the left side.
12. b. {:+d} formats the decimal number by adding the positive sign.

8.5 Splitting/joining strings
1. b. When "1*2*3*" is broken into substrings using the '*' delimiter, the output is ["1", "2", "3"].
2. c. When "a year includes 12 months" is broken into substrings using blank space characters, the list

["a", "year", "includes", "12", "months"] is created.
3. b. When splitting the multi-line string, the output is ['This', 'is', 'a', 'test'].
4. c. Elements of the list elements are concatenated together using a comma, so the output is

'A,beautiful,day,for,learning' .
5. b. The output of "sss".join(["1","2"]) is "1sss2" , which has a length of 5.
6. b. Since the separator is an empty string, elements of the list will be concatenated without a separator and

the output will be "12" .

Chapter 9
9.1 Modifying and iterating lists
1. b. The append() operation adds an element to the end of a list.

392

Access for free at openstax.org

2. c. The element to be removed is passed as a parameter to the remove operation. The remove is performed
on the specified list.

3. c. Both pop() and remove() can be used to remove the last element of a list. pop() automatically
removes the last element, whereas remove() requires the last element be specified.

4. a. The length of the list is 5, so the iterative for loop executes five times.
5. b. len(my_list) is 5. A counting for loop ends at 1 less than the second value in the range function, so

the final value of i is 4 .
6. a. The for loop steps by two each time, so index 0, 2, and 4 are printed. Due to the "end=" in the print

statement, all elements are printed on one line.

9.2 Sorting and reversing lists
1. b. Sorting in descending order means to arrange the elements from largest to smallest. -3 is the smallest

element of the list and would be the last element when the list is sorted in descending order.
2. a. For strings, ascending order refers to dictionary order.
3. c. In alphabetical order, "h" comes before "k". The first four characters are the same, so "flash" comes

before "flask" .
4. b. The sort() function must be applied on the list. The default for the sort() function is to arrange

elements in ascending order.
5. a. The correct syntax for the reverse() function requires the function to be applied to the list.
6. a. "go" is the first element of board_games, so "go" would be the last element once board_games is

reversed.

9.3 Common list operations
1. a. The min() function takes a list as a parameter and returns the minimum for the list.
2. b. "Austin City Limits" is the first string in dictionary order.
3. c. The summation of the given floats is 12.4 .
4. c. list2 refers to the same list as my_list, so any changes made to list2 also reflect on my_list. 18 is

the summation of the values in the list.
5. a. 3 is the maximum value in the list my_list. Line 3 changes the value of the first element in list2.
6. b. sum() function is not defined for string values.

9.4 Nested lists
1. a. Each row of the matrix is represented as a list in the larger list-of-lists, matA. matA represents the

complete matrix.
2. c. 6 is in the 2nd row and 3rd column. Using zero-indexing results in index 1 for the row and 2 for the

column.
3. c. The first element of the list matA is a list [7, 4, 5] representing the first row of the matrix.
4. a. The outer for loop iterates row by row. The inner for loop iterates through each element in a row. So

all the numbers are printed, starting from 7 and ending in -5.
5. c. The outer for loop runs for three iterations because there are three elements in the list-of-lists. The

inner for loop iterates through each element of each row using the length of each row.

9.5 List comprehensions
1. a. The expression tells Python what element to put in the new list.
2. c. i+2 results in adding 2 to each element of a_list to generate b_list.
3. b. The for loop starts at 1 and steps by three, so it begins at 1 and ends at 13. Dividing using the //

operator results in dropping the part after the decimal.
4. c. The list comprehension filters for negative numbers in my_list.
5. b. The list comprehension selects vowels from the given string.

393

6. a. The for loop ranges from 0 through 20, stepping by two, but each iterated element is even, so nothing
is added to new_list.

Chapter 10
10.1 Dictionary basics
1. a. The first item in each key-value pair is the key. Hence "Sunday", "Monday", "Tuesday" are key

items.
2. b. The second item in each key-value pair is the value. Hence 1, 2, 3 are value items.
3. b. Based on the days dictionary object, the value assigned to "Sunday" is 1 .
4. b. The type of a dictionary object is dict .
5. b. A dictionary cannot have duplicate keys, and "a" and "A" are two different keys because "a" and "A"

are different characters.
6. a. A dictionary can have duplicate values, but not duplicate keys.

10.2 Dictionary creation
1. b. Curly braces can be used to create an empty dictionary.
2. c. {"one": 1} creates a dictionary object with one item "one": 1.
3. b. Two pairs of items exist in the my_dict dictionary. The two pairs are "a": 1 and "b": 2.
4. b. dict() function, along with keyword arguments, can be used to create a dictionary object.
5. a. my_dict is a dictionary with one key-value pair, "a": 1.
6. b. The dict() function can create a dictionary object from a list of tuples. The first element of each tuple

acts as the key, and the second element is the value.

10.3 Dictionary operations
1. c. The value associated with the key "Jaya" is "Student" .
2. b. When a key does not exist in a dictionary, None is returned by default.
3. b. The second argument to the get() function will be returned if the key is not found in the dictionary.
4. a. The return type of keys() function is dict_keys.
5. c. The values in the numbers dictionary are 1 , 2 , and 3 . When printing numbers.values(),

dict_values([1, 2, 3]) is printed.
6. b. Keys in the dictionary are "one", "two", "three". Using the list() constructor, a list object

containing all keys is returned.
7. c. When accessing a dictionary key and assigning a new value, the associated value for the key will be

updated.
8. b. Using the del keyword, items can be deleted from a dictionary using the key.
9. a. The update() function modifies the value associated with the key "Kabob" and adds a new item,

"Sushi": "$16".

10.4 Conditionals and looping in dictionaries
1. a. "apple" is a key in the dictionary and exists in the returned keys from fruit_count.keys().
2. b. The key "orange" , with associated value 5 , exists in the dictionary and the return value is True .
3. b. Conditional statements can be written to examine keys and values.
4. b. The values() method iterates over values in a dictionary.
5. a. The loop iterates over the keys "apple" , "orange" , and "banana" , and prints the keys space-

separated.
6. c. The loop multiplies all values by 2 and prints the output. So, 4 , 10 , and 2 are printed.

394

Access for free at openstax.org

10.5 Nested dictionaries and dictionary comprehension
1. b. A nested dictionary contains another dictionary.
2. c. Both outer and inner keys must be used to index into both outer and inner dictionaries, respectively, to

obtain an inner value.
3. b. A nested dictionary is a value of another dictionary, representing the data in a two-layer structure.
4. b. Keys in the dictionary are even values in the list numbers, and associated values are the powers of two.
5. a. Dictionary keys are string values in the names list, and associated values are the length of each string.
6. a. The dictionary is created from key values from 0 up to and including 3. The associated values are powers

of two of the keys.

Chapter 11
11.1 Object-oriented programming basics
1. b. Ellis's username represents the post creator.
2. b. An object models a real-world entity with fields and procedures.
3. a. A procedure, such as Change venue, can make changes to the field and protect the field from

inappropriate access.
4. b. Limiting data access prevents accidental changes and makes relationships between objects clearer.
5. b. Correct abstraction makes only necessary information visible. An overheated engine can cause

irreparable damage, so an indicator is necessary for the driver.
6. a. Showing only the necessary information reduces clutter and improves the overall experience.

11.2 Classes and instances
1. a. Cat follows the class keyword at the top of the class definition and is the name of the class.
2. c. pet_1 is an instance of the Cat class created by calling Cat(). The other instance is pet_2.
3. a. breed is an instance attribute defined in __init__(). The other instance attributes are name and age.
4. c. CapWords style, with all words capitalized and no spaces between words, is recommended for class

names. "Pet" and "cat" are separate words, so each is capitalized and one directly follows the other.
5. b. Two instances, room_1 and room_3, are created by calling Rectangle(), which calls the constructor

__init__().
6. b. room_1 is the instance that called the method area(), so self represents the specific instance.
7. a. Line 3 is in __init__(), which initializes length and the other instance attributes for each new instance.
8. c. __init__() has one required parameter, conventionally called self, which allows the constructor to

access the instance.
9. b. order_id is an instance attribute defined in __init__(). The other instance attribute is cup_size.

10. b. Changing order_1.cup_size does not affect order_3.cup_size. order_1.cup_size changes to 8
and order_3.cup_size is still 16 .

11. a. order_1, order_2, and order_3 all share the class attribute CoffeeOrder.loc. Changing loc affects
all instances, so Caffeine Cafe is printed as the location.

12. b. Trying to access a class attribute using an instance is unsafe. In __init__(), trying to access the class
attribute creates a new instance attribute called cls_id. Though possible, programmers should avoid
using the same name for class attributes and instance attributes to avoid confusion.

11.3 Instance methods
1. b. Removing the default parameter value makes bp a required parameter.
2. b. self is the first parameter in __init__() definition, not an explicit argument. self should not be

included in the call.
3. c. The second definition overwrites the first as multiple explicit definitions of __init__() aren't allowed.

__init__() requires all parameters, so the first two __init__() calls for patient_1 and patient_2

395

are incorrect.
4. c. order_1 is originally a coffee without milk or sugar, but the call to change() adds sugar to the order by

assigning order_1.with_sugar with True .
5. c. An instance method's first parameter indicates the method can change an instance. change() allows a

change in whether a coffee order has milk or sugar.
6. b. Unindenting print_order() would produce an error. An instance method must be defined in the class.

11.4 Overloading operators
1. c. __add__() is a magic method, indicated by the double underscores at the start and end of the method

name.
2. b. Magic methods are designed to be invoked internally to perform under-the-hood actions to simplify

tasks for the user.
3. c. __init__() is defined by the programmer to initialize instance attributes. __str__() is defined by the

programmer to customize an Engineer instance's string representation.
4. a. A programmer can overload an operator to customize the built-in operator's function.
5. b. The addition operation maps the left operand, acct_a, to the parameter self and the right operand,

acct_b, to the parameter other.
6. c. - is a binary operator, so __sub__() has two parameters. The parameters' x and y attributes are

subtracted from each other, and the resulting values are made into a new Pair.
7. a. <, >, and == are overloaded with __lt__(), __gt__(), and __eq__(), respectively.
8. b. __le__() is the magic method for the <= operator. __le__() takes two parameters for the left and

right operand, and returns the correct comparison of the two amount values.
9. b. __gt__() overloads the > operator, which makes a comparison and returns True or False .

11.5 Using modules with classes
1. b. Level and XP are classes imported from the character module into the program. Any other class in the

character module is not imported.
2. b. A single class or multiple classes can be imported from a module using the class name(s).
3. c. The number of classes in a module is unlimited, but classes should be grouped in modules to maximize

reusability.
4. b. The character module is aliased as game_char, so character is not defined in the program. game_char

is used in place of character.
5. c. game_char referred to the imported module, but assigning game_char replaces the imported module

with the string 'Ranger' . game_char can no longer be used to access classes.

Chapter 12
12.1 Recursion basics
1. a. The move of the smaller ring, which is a smaller problem, is done twice on the way to solving for the two

rings overall. The task of moving all three rings is broken down into smaller tasks of moving one ring at a
time.

2. b. The two-ring solution from question 1 is used in the solution for three rings.
3. b. Once to move two rings to the middle tower following the rules, then to move two rings to the target

tower.
4. c. The small ring is moved to the middle tower. The bigger ring is moved to the target tower. Then, the

small ring is moved from the middle to the target.
5. c. To solve, the two-ring solution is used twice, and there is one extra step to move the biggest ring from

the source to the target. Each solution of two rings requires three steps each. So 3 + 1 + 3 = 7 steps total.
6. a. The four-ring problem uses the three-ring solution twice. The three smaller rings are moved to the

396

Access for free at openstax.org

middle tower, taking seven steps as in question 2. One step is needed to move the biggest ring from the
source to the target. It takes seven more steps move three smaller rings from the middle to the target. The
total is 7 + 1 + 7 = 15 steps.

12.2 Simple math recursion
1. The summation can be calculated using recursion because there is a regular pattern and the summation

to n depends on the summation to n - 1.
2. Each number in the sequence can be found by adding 2 to the previous number, with the solution at 1

being 1 .
3. A prime number does not depend on a smaller prime number; thus, no recursion can be found to

generate new prime numbers based on an existing list of prime numbers.
4. A given number in the Fibonacci sequence is found by summing the previous two numbers in the

sequence, so the Fibonacci sequence can be found recursively.
5. c. There is a missing base case, so there is no place for the recursion to end.
6. b. This definition of rec_fact() uses a base case of n == 0, which works because, just like 1!, 0! = 1.

However, the base case of n == 0 returns n, which at this stage is 0 , and therefore zeroes out the rest of
the computation.

7. a. The recursive function begins returning correctly at the base case of n == 0. 0! = 1.
8. b. The base case of n == 1 is not used in the function. When n is 0 , the overall multiplication becomes 0

. The recursion begins returning once the n < 0 base case is reached, initially returning -1. But the
previous recursive call would return 0 , thereby zeroing out all computations and leaving an overall result
of 0 .

12.3 Recursion with strings and lists
1. b. Once changed to all lower case, the word "madam" is a palindrome, so the function will recognize the

word as a palindrome.
2. a. When a palindrome has an even number of letters, eventually an empty string is left as pairs of letters

are removed. Thus, the base case should include len(word) == 0, which is resolved with the condition
len(word) <= 1.

3. b. The strip() function removes a given letter from the beginning and end of the string, including
repeated letters. When strip('m') is used with "madamm" , the resultant string is "ada" .

4. a. Both lists have the same items in a different order.
5. b. The two lists have four overlapping items, but list_num has an extra 15, and other_list has an extra

22.
6. a. Both lists have the same items in a different order. The function works for items of any type.
7. a. Both lists have the same items in a different order. The function works for items of any type, including

other lists.
8. a. Both lists have the same items in the same order.

12.4 More math recursion
1. c. fib(9) = fib(8) + fib(7). fib(9) = fib(8) + fib(7) = 21 + 13 = 34.
2. c. There are eight calls to base cases as seen in the animation. Those calls result in the recursion returning

and the final value being computed.
3. b. The structure that shows which function calls are made is called a recursion tree. A recursion tree can be

used to trace how the final values are computed.
4. c. 5 * 3 = 15 and 5 * 7 = 35, so 5 is a the greatest common divisor of 15 and 35 .
5. a. The first call gcd(24, 30) results in 30 - 24 = 6, so the next call is gcd(24, 6). Thereafter, other

calls are gcd(18, 6), gcd(12, 6), and gcd (6,6) for a total of four recursive calls after the initial
function call.

397

6. b. When the two numbers have no common divisors, the GCD is 1.
7. b. The first call gcd(13, 23) results in 23 - 13 = 10, so the next call is gcd(13, 10). Thereafter, other

calls are gcd(10, 3), gcd(7, 3), gcd (4,3), gcd(3,2), gcd(2,1), and gcd(1,1) for a total of eight
calls.

12.5 Using recursion to solve problems
1. c. This array is sorted in ascending order, as is required for using the binary search algorithm.
2. a. mid = (4 + 7) // 2 = 11 // 2 = 5. The operator // is used for floor division.
3. a. The first call results in mid being 3 , next mid becomes 5 , and finally, mid becomes 4 . The element

found at index 4 is equal to the key 16 .
4. a. The first call results in mid being (0 + 13) // 2 = 6. The next call has mid (7 + 13) // 2 = 10.

The next call has mid (11 + 13) // 2 = 12. At this point, 86 < 99, so the final call is to mid 11, after
which there is nowhere else to go.

5. b. As seen in the code example for three rings, the solution requires seven steps. The seven steps are
called twice, along with one additional step, for a total of 2 x 7 + 1 = 15.

6. a. The iterative solution to Three Towers requires significantly more code and uses additional
programming capabilities.

Chapter 13
13.1 Inheritance basics
1. a. A doughnut is a type of pastry, so Doughnut inherits from Pastry.
2. b. A kitchen has a freezer, so a Kitchen class would contain a Freezer instance. A has-a relationship is

also called a composition.
3. b. The Goalkeeper class inherits from the Player class.
4. b. The subclass name is followed by the superclass name in parentheses.
5. a. Deriving CarryOn from Luggage is specified in CarryOn's class definition. Ex: class

CarryOn(Luggage): . Instances of a subclass, like CarryOn, are created like other classes and do not
require the base class name.

6. c. A SubClass instance has access to func_1(), inherited from SuperClass, as well as to func_2(), a
SubClass method.

7. a. A SuperClass instance has access to SuperClass's func_1() but doesn't have access to anything in
SubClass, including func_2().

13.2 Attribute access
1. b. dev_1 is the second Employee created. So dev_1 is the second object to call Employee.__init__(),

and dev_1.e_id is assigned with 2 .
2. a. SubClass's __init__() is not explicitly defined, so SuperClass's __init__() is executed.
3. b. dc_1 inherits feat_1 and feat_2 from SuperClass.
4. b. dev_display() is a Developer method that accesses dev_1's instance attribute lang_xp.
5. c. dev_display() is a Developer method. emp_1 is not a Developer instance, so emp_1 cannot access

dev_display().
6. a. Instance attributes inherited from Employee, the superclass, are accessed the same way as the subclass

Developer's instance attributes.

13.3 Methods
1. b. Overriding involves defining a subclass method that has the same name as the superclass method.
2. b. The self parameter is missing from the overridden method's definition.
3. c. The class definition doesn't indicate inheritance. The definition should be class ContractTax(Tax):.

398

Access for free at openstax.org

4. b. Square's superclass is Rectangle. Rectangle's __init__() is called on line 6.
5. a. super().__init__(4) calls the __init__() of Rectangle's superclass, Polygon. Control moves to

line 3, and num_sides is initialized with 4.
6. b. The instance attribute side is initialized with 5.
7. b. Rectangle's __init__() always calls Polygon's __init__() with num_sides=4.
8. c. Polymorphism allows print_type() to be overridden in subclasses of Polygon.
9. a. The * operator can be used with integer operands as well as strings and other types.

13.4 Hierarchical inheritance
1. a. Class A is the superclass for Class B and Class C.
2. b. Employee would be an appropriate superclass for Developer and SalesRep. Developer and

SalesRep are not directly related.
3. a. B(2) resolves to B(2, 0), as b_attr has a default value of 0 . a_attr is assigned with 2 .
4. b. c_inst has access to C's instance attribute, c_attr, as well the inherited attribute from A, a_attr.
5. b. D, which inherits from B, so d_inst inherits b_attr. B also inherits from A, so d_inst inherits d_attr.

13.5 Multiple inheritance and mixin classes
1. a. 1 is the argument passed to C's __init__() for a_attr.
2. b. An argument is not passed to C's __init__() for c_attr, so c_attr is assigned with the default

value, 20 .
3. a. 2 maps to b_attr in B' s __init__().
4. a. eat() only applies to carnivorous plants, which Pitcher and VenusFlyTrap represent.
5. b. eat() can be moved into a mixin class included in Pitcher's and VenusFlyTrap's inheritance list.
6. b. Good practice is to have a mixin class name end in "Mixin" to identify the class's purpose. The final

implementation is:

class Plant:
def photosynth(self):

print("Photosynthesizing")

class CarnivMixin:
def eat(self):

print("Eating")

class Rose(Plant):
pass

class Pitcher(Plant, CarnivMixin):
pass

class VenusFlyTrap(Plant, CarnivMixin)
pass

Chapter 14
14.1 Reading from files
1. c. The file is opened and is associated with the fileobj object. Reading from the file will be possible using

fileobj.
2. a. The file must exist in the same folder as the Python file in order for the file to be opened.

399

3. b. Python interprets this command as the programmer trying to print the object details. The object details
are printed. Ex: <_io.TextIOWrapper name='newfile.txt' mode='r' encoding='cp1252'>.

4. c. The read() function is called on fileobj. The file's contents will be read into file_str.
5. b. The readlines() function is called on fileobj. file_lines is the string list ['Hello world!\n',

'How are you?\n'].
6. a. The readline() function reads the next line of a file. Since readline() is called right after opening

the file the first line is read. The resulting string "Hello world!" is printed. Note that readline()
includes the '\n' character so the print will include an additional newline.

14.2 Writing to files
1. a. The default mode for the open() function is read.
2. c. 'a' indicates append mode allowing additions to the file.
3. b. 'w' indicates write mode, and newlog.txt will be created or overwritten (if newlog.txt already exists)

and will allow writing.
4. c. resources.txt is likely empty, but the state of resources.txt is uncertain. To ensure the contents are saved

correctly, the close() function must be used.
5. a. Write mode will overwrite the existing file. The close() statement finalizes changes to the file.
6. b. Append mode adds to the existing file. resources.txt is opened such that additions can be made to the

file.

14.3 Files in different locations and working with CSV files
1. b. The path followed by the filename enables the file to be opened correctly and in read mode by default.
2. c. The use of forward slashes / replacing the Windows standard backslashes \ enables the path to be read

correctly. The path followed by the filename enables the file to be opened and when reading a file read
mode is preferable.

3. c. The file is created or overwritten and changes can be written into the file.
4. a. Since the backslashes in the Windows path appear in the string argument, which usually tells Python

that this is part of an escape sequence, the backslashes must be ignored using an additional backslash \
character.

5. a. The newline \n character indicates where line breaks are in a file and is used by the readlines()
function to tell lines apart.

6. b. The cell at the 2nd row and 3rd column contains '268' .
7. c. The first line of the books.csv is read into csv_read. The first line is 'Title, Author, Pages' , which

is the same as the first row.

14.4 Handling exceptions
1. c. The string "3-4" is not an integer, so the int() function raises a ValueError like before.
2. a. The filename should end with .txt, not .text.
3. b. If the line has no spaces, then len(parts) will be only 1, and parts[1] will be out of range.
4. b. The int() function raises a ValueError when trying to convert "one" to an integer, so the program

jumps to the except clause.
5. c. The program crashes and displays this error because the except clause does not handle ValueError.
6. b. If an except clause does not specify a specific error type, then any error type is handled.

14.5 Raising exceptions
1. a. "M" is a valid size, so the Pizza object is constructed.
2. c. PizzaError is not a built-in exception type.
3. a. An exception can be raised without providing an error message. In this case, the error message is

empty, but the exception name is still printed.

400

Access for free at openstax.org

Chapter 15
15.1 Introduction to data science
1. c. Data acquisition is the first stage of the data science life cycle. Data can be collected by the data scientist

or gathered previously and provided to the data scientist.
2. b. The data science life cycle has four stages: 1) data acquisition, 2) data exploration, 3) data analysis, and

4) reporting.
3. c. The data exploration stage includes data cleaning and visualization.
4. a. Python is the most popular programming language in data science.
5. b. NumPy is a Python library used in numerical data analysis.
6. a. Google Colaboratory is a Google document that can be shared with other Google accounts for viewing

or editing the content.

15.2 NumPy
1. c. To create an m by n matrix of all zeros, np.zeros((m,n)) can be used.
2. a. ndarray is a data type supported by NumPy. When printing the type of an ndarray object,

<'numpy.ndarray'> is printed.
3. d. NumPy array is optimized for computational and memory efficiency while also offering array-oriented

computation.
4. b. 2 * arr multiplies all elements by 2 resulting in:

[[2 4]
[6 8]]

5. c. np.array([[1, 2], [1, 2], [1, 2]]) creates an ndarray of 3 by 2. The T operator transposes the
array. The transpose operator takes an array of m by n and converts the array to an n by m array. The result
of applying the transpose operator on the given array is a 2 by 3 array.

6. a. The result of element-wise multiplication between arr1 and arr2 is:

[[1 0]
[0 4]]

15.3 Pandas
1. a. Series is a Pandas data structure representing one-dimensional labeled data.
2. a. A DataFrame object can be considered a collection of one-dimensional labeled objects represented by

Series objects.
3. b. The Pandas DataFrame can store columns of varying data types, while NumPy only supports numeric

data types.
4. c. The function head() returns a DataFrame's top rows. If an argument is not specified, the default

number of returned rows is five.
5. c. The unique() function when applied to a column returns the unique values (rows) in the given column.
6. a. When the function describe() is applied to a DataFrame, summary statistics of numerical columns will

be generated.

15.4 Exploratory data analysis
1. a. The element in the first row and the first column is a.
2. c. The element in the second row and the second column is 20 .
3. a. The element at row label 2 and column label A is c.
4. b. df.loc[0:2, "A"] returns rows 0 to 2 (inclusive) of column A.

401

5. c. loc[1] returns the row with label 1 , which corresponds to the second row of the DataFrame.
6. b. iloc[:, 0] selects all rows corresponding to the column index 0, which equals returning the first

column.
7. a. The condition returns all rows where the value in the column with label A is divisible by 2.
8. b. isnull() returns a Boolean DataFrame representing whether data entries are Null or not.
9. a. fillna() replaces all Null values with the provided value passed as an argument.

10. c. The function sum() is applied to each column separately and sums up values in columns. The result is
the number of Null values in each column.

15.5 Data visualization
1. b. A histogram is used to plot the distribution of continuous variables.
2. c. A box plot is used to show the distribution of a continuous variable, along with visualizing outliers,

minimum, maximum, and quartiles.
3. a. A line plot is used to show trends and changes over time between two variables.
4. c. The function call plt.scatter(x, y) creates a scatter plot based on the data stored in the variables x

and y.
5. b. The given code plots a bar plot with four bars representing the given categories. The height of the bars

corresponds to the values stored in the values variable.
6. b. Plotly is a library that creates interactive visualizations.

402

Access for free at openstax.org

Index
Symbols
!= 94
< 94
<= 94
= 14
== 94
> 94
>= 94

A
Abstraction 267
Aliasing 282
and 100
append 223
argument 158
Arithmetic operators 21
ASCII 72
assignment operator 14

B
base case 290
bool 92
bool() 93
branch 91
break 134
built-in function 55

C
class 267
class attribute 270
code point 72
Comments 27
Comparison operators 94
computer 8
condition 97
conditional expression 116
container 71, 125
continue 135
Control flow 149
count() 206

D
data analysis 350
Data filtering 364
Data indexing 363
Data science 349
Data Science 349
data science life cycle 350

Data slicing 364
data type 20
DataFrame 355
def 147
delimiter 217
diamond problem 321
dict 242
dictionary 241, 241
Dictionary comprehension 258
docstring 29

E
elif 108
else statement 98
Encapsulation 266
escape sequence 74
explicit type conversion 43
Exploratory Data Analysis (EDA)
362
expression 39

F
f-string 76
feature 362
field width 214
find() 207
float() 43
Floor division 51
for loop 125
format specifier 77
format() 210
formatted string literal 76
Formatting string 209
function 146

G
global scope 153
Google Colaboratory 351
Google Sheets 351

H
Hierarchical inheritance 316

I
identity 81
if statement 97
iloc[] 363
immutable 86, 161, 203

implicit type conversion 43
import statement 55
in 205
index 88
index() 208
infinite loop 134
inner loop 129
Input 12
input() 12
instance attribute 270
instance method 273
instances 267
int() 43
interpreter 40

J
join() 218
Jupyter Notebook 350
JupyterLab 350

K
Kaggle Kernels 351
key-value 241
keyword arguments 168
keywords 15

L
len() 17
library 9
list comprehension 235
list-of-lists 232
loc[] 363
local scope 154
logical operator 100
loop 121
loop else 137
lower() 199

M
Magic methods 276
memory diagram 80
Microsoft Excel 351
Mixin classes 321
mode 331
module 55, 173
modulo operator 51
modulus 52
Multilevel inheritance 316

Index 403

Multiple inheritance 320
mutable 86, 161

N
name collision 178
named replacement fields 211
ndarray 352
Nested dictionaries 256
nested list 232
nested loop 129
newline 10
not 103
numbered replacement fields
212
NumPy 352

O
object 71
Object-oriented programming
265
open() 327
Operator overloading 277
or 102
outer loop 129
Output 10
overflow error 49
override 310

P
Pandas 354
parameter 158

pass-by-object-reference 161
path 335
PEP 60
Polymorphism 312
positional arguments 168
precedence 22
print() 10
program 8
prompt 12
Python Package Index 191
Python Standard Library 190

R
range() 126
read() 328
readline() 328
readlines() 328
Recursion 287
recursion tree 294
recursive case 290
REPL 41
replacement field 76
Replacement fields 209
return statement 163
round-off error 48
round() 50

S
scope 153
self 269
Series 355

shell 40
snake case 15
Sorting 226
split() 217
statement 7
step size 123
str() 43
string 88, 197
string alignment type 214
String slicing 201
syntax 9

T
Traceback 24
True division 51
try 341
tuple 85
type 81

U
Unicode 72
upper() 199

V
value 81
variable 12

W
while loop 121
write() 332

404 Index

Access for free at openstax.org

Index 405

	Contents
	Preface
	Chapter 1 Statements
	Introduction
	1.1 Background
	1.2 Input/output
	1.3 Variables
	1.4 String basics
	1.5 Number basics
	1.6 Error messages
	1.7 Comments
	1.8 Why Python?
	1.9 Chapter summary

	Chapter 2 Expressions
	Introduction
	2.1 The Python shell
	2.2 Type conversion
	2.3 Mixed data types
	2.4 Floating-point errors
	2.5 Dividing integers
	2.6 The math module
	2.7 Formatting code
	2.8 Python careers
	2.9 Chapter summary

	Chapter 3 Objects
	Introduction
	3.1 Strings revisited
	3.2 Formatted strings
	3.3 Variables revisited
	3.4 List basics
	3.5 Tuple basics
	3.6 Chapter summary

	Chapter 4 Decisions
	Introduction
	4.1 Boolean values
	4.2 If-else statements
	4.3 Boolean operations
	4.4 Operator precedence
	4.5 Chained decisions
	4.6 Nested decisions
	4.7 Conditional expressions
	4.8 Chapter summary

	Chapter 5 Loops
	Introduction
	5.1 While loop
	5.2 For loop
	5.3 Nested loops
	5.4 Break and continue
	5.5 Loop else
	5.6 Chapter summary

	Chapter 6 Functions
	Introduction
	6.1 Defining functions
	6.2 Control flow
	6.3 Variable scope
	6.4 Parameters
	6.5 Return values
	6.6 Keyword arguments
	6.7 Chapter summary

	Chapter 7 Modules
	Introduction
	7.1 Module basics
	7.2 Importing names
	7.3 Top-level code
	7.4 The help function
	7.5 Finding modules
	7.6 Chapter summary

	Chapter 8 Strings
	Introduction
	8.1 String operations
	8.2 String slicing
	8.3 Searching/testing strings
	8.4 String formatting
	8.5 Splitting/joining strings
	8.6 Chapter summary

	Chapter 9 Lists
	Introduction
	9.1 Modifying and iterating lists
	9.2 Sorting and reversing lists
	9.3 Common list operations
	9.4 Nested lists
	9.5 List comprehensions
	9.6 Chapter summary

	Chapter 10 Dictionaries
	Introduction
	10.1 Dictionary basics
	10.2 Dictionary creation
	10.3 Dictionary operations
	10.4 Conditionals and looping in dictionaries
	10.5 Nested dictionaries and dictionary comprehension
	10.6 Chapter summary

	Chapter 11 Classes
	Introduction
	11.1 Object-oriented programming basics
	11.2 Classes and instances
	11.3 Instance methods
	11.4 Overloading operators
	11.5 Using modules with classes
	11.6 Chapter summary

	Chapter 12 Recursion
	Introduction
	12.1 Recursion basics
	12.2 Simple math recursion
	12.3 Recursion with strings and lists
	12.4 More math recursion
	12.5 Using recursion to solve problems
	12.6 Chapter summary

	Chapter 13 Inheritance
	Introduction
	13.1 Inheritance basics
	13.2 Attribute access
	13.3 Methods
	13.4 Hierarchical inheritance
	13.5 Multiple inheritance and mixin classes
	13.6 Chapter summary

	Chapter 14 Files
	Introduction
	14.1 Reading from files
	14.2 Writing to files
	14.3 Files in different locations and working with CSV files
	14.4 Handling exceptions
	14.5 Raising exceptions
	14.6 Chapter summary

	Chapter 15 Data Science
	Introduction
	15.1 Introduction to data science
	15.2 NumPy
	15.3 Pandas
	15.4 Exploratory data analysis
	15.5 Data visualization
	15.6 Summary

	Answer Key
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15

	Index

