Locally Weighted Linear Regression

e Consider a use case where the

relation between the feature //\
vector (independent variables) “
and the target value (dependent -
variable) is not linear. \/

* y =sin(x) o
e Suppose we perform linear
regression in such case.
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Locally Weighted Linear Regression
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Locally Weighted Linear Regression

R

query point x,



Locally Weighted Linear Regression

* Obviously, linear regression does not work.

* The principle of locally weighted regression is
as follows.

* Suppose, we know the query point x, where
the value of y, is to be calculated.

* The samples in the vicinity of the query point
contribute more to linear regression, than the
samples farther from the query point.



Locally Weighted Linear Regression




Locally Weighted Linear Regression

Find 6 to minimize —Z w (y —y )
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where w' = exp (—

w! is the weight given to the error of regression
contributed by sample i@ for updating the model
parameters.

The farther is x' from the query point Xq, smaller is the
weight.



Locally Weighted Linear Regression

* 7 controls how quickly the weight of a training
example falls off with distance of x(i) from
the query point x;

* T is called the bandwidth parameter,



Locally Weighted Linear Regression
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Locally Weighted Linear Regression

Find 68 to minimize J(0) = an w (h (x ) y )

(x' —xg) )
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where w' = exp (
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LWR-Batch Gradient Descent
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* grad = %np.sum(g, axis = 0)
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Bias and Variance of a Model

Consider the problem of predicting y from x € R.

In regression we have several options (linear and
non-linear) of fitting y =hg(x) to a dataset.

The following questions are important to judge
the choice.

How well does the fit/model perform?
How is its training error often referred to as bias?

How is its testing error over different datasets
often referred to as variance?




Bias and Variance of a Model

Consider the problem of
predicting y from x € R.

The figure shows the
result of fitting y =hg(x)=
6, + 6,x,to a dataset.

Price

The fit is not very good. Size

. . f)() "y 91.1'
The model has high bias
and suffers from underfit. High bias

(underfit)



Bias and Variance of a Model

The figure is the result of
fitting a 4-th order
polynomial.

The Fitted curve passes
through the data perfectly.

The model has less bias.

But, the variance i.e the test
error may be high.

This is often referred to as
overfitting.
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High variance
(overfit)



Bias and Variance of a Model

* Instead, if we perform non-
linear regression, and fit y 00
=hg(x)= 0y + O1x1+ O,x%,
then we obtain a slightly
better fit to the data. .
|ze

* This model has low bias and B0 + 0, + 022
low variance and proves to
be a right fit. “Just right”

Price



Over fitting

* Qver fitting refers to a model that fits the training
data too well.

* Let errory(h) and errorp(h) be the errors of
hypothesis h over training samples and the entire
distribution of samples respectively.

 Hypothesis h € H is said to overfit training data iff
there is an alternate hypothesis h' € H such that
—errory(h) < errory(h') (h performs well on

training data but h' doesn't)

—errorp(h) > errorp(h’) (h does not perform
well on test data but h' does)



