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1 Performance metrics 

Performance metrics in machine learning are essential for evaluating the effectiveness of models 
and understanding their predictive power. Key metrics include accuracy, which measures the 
proportion of correctly classified instances, and precision, which indicates the proportion of true 
positive predictions among all positive predictions. Recall, or sensitivity, assesses the model's 
ability to predict the fraction of positive samples correctly in total positive samples, while the F1 
score provides a harmonic mean of precision and recall, offering a single metric that balances 
both concerns.  

For regression tasks, metrics like Mean Squared Error (MSE) and R-squared value are commonly 
used, where MSE quantifies the average squared difference between actual and predicted 
values, and R-squared explains the proportion of variance in the dependent variable captured by 
the model. These metrics are crucial for diagnosing model performance, comparing different 
models, and ultimately guiding improvements in algorithm selection and tuning. 

1.1 Classification Metrics 
Accuracy: The simplest performance matrix for classification is Classification Accuracy.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜. 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 /  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

However, accuracy may not exactly predict the behavior of the model. For example, in a binary 
classification model, the model may correctly classify all the positive samples and 
misclassification may occur only for negative samples. 

Confusion Matrix: A more concise way for evaluating a model is confusion matrix. In a confusion 
matrix, the rows represent the actual classes, while the columns represent the predicted classes. 
Each cell in the matrix represents the number of instances where the actual class was predicted 
correctly (true positives/true negatives), incorrectly (false positives/false negatives). 

 
 

Accuracy can be defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
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Precision : Precision gives the fraction of positive samples correctly predicted  (True Positives) in 
total predictions as positive, which includes False Positives also. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall : Recall gives the fraction of positive samples correctly predicted in total positive samples. 
This is also called as sensitivity or True Positive Rate(TPR). 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision Vs Recall: Suppose we want videos of different types  to be classified as suitable  for 
children as positive and negative. Negative videos include crime, horror and obscenity. We prefer 
High Precision because negative videos should not be classified as positive, which means False 
Positives should be zero. We can afford to have some good videos being classified as negative ( 
False negatives). Thus, we prefer to have low recall though some positive videos are classified as 
negative. 

A simple example where high recall is more important than precision is in medical diagnostics for 
a serious disease, such as COVID screening. In this context, recall (sensitivity) is crucial because 
it measures the proportion of actual positive cases (patients with COVID) that are correctly 
identified by the model. Missing a COVID diagnosis (a false negative) could have severe 
consequences for the patient's health and treatment outcomes. Therefore, ensuring that almost 
all patients with the disease are identified, even if it means some healthy individuals are 
incorrectly flagged as potentially having COVID (false positives), is prioritized.  

F1 Score : F1 Score is the harmonic mean of Precision and Recall. Harmonic mean favours 
towards small value. F1 Score will be high only when both Precision and Recall are high. The 
maximum value of F1 is 1. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑃𝑅

𝑃 + 𝑅
 

Specificity: Specificity gives the fraction of negative samples correctly predicted in total negative  
samples. This is also called as  True Negative Rate(TNR). This can be regarded as counterpart of 
recall. Recall is for positive samples and specificity is for negative samples. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

False Positive Rate(FPR): FPR gives the fraction of negative samples incorrectly predicted as 
positive in total negative  samples. 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
= 1 −

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= 1 − 𝑆 

Receiver Operating Characteristic (ROC) : In many models of classification, the output of the 
model is the probability with which the sample belongs to class 1 (Positive). The output of such 
models is between 0 and 1. Thus, the question arises regarding the limiting value of the output 
probability above which the input sample can be treated as Positive. Normally, the limiting value 
is 0.5, above which the input sample is regarded as Positive. The idea behind ROC is can we 
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measure performance metrics by varying the limiting value of probability like 0.5, 0.6 and  0.7 
likewise. 

The following figure illustrates the results in case of a dataset which contains 150 positive 
samples and 1000 negative samples. The threshold probability 𝑝𝑡 is varied to have the values as 
0.5, 0.7 and 0.9. We see that as the threshold is increased more positive samples are predicted 
as negative.  

 
 

For each threshold value of classification, sensitivity (recall) and specificity are calculated. The 
ROC curve plots sensitivity (recall) versus 1 – specificity. In other words, the ROC curve plots the 
True Positive Rate (another name for recall) against the 1−𝑇𝑁𝑅. 1−𝑇𝑁𝑅  is also equal to False 
Positive Rate (FPR). It can also be said that, it is plotted between TPR and FPR. The following figure 
shows a sample ROC. 

 
The dotted line represents the ROC curve of a purely random classifier. A good classifier stays as 
far away from that line as possible (toward the top-left corner). This means that all the samples 
are predicted correctly as belonging to their calss. 
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2 Cross-Validation 

Cross-validation is a statistical technique used in machine learning to evaluate how well a 
predictive model will generalize to new, unseen data. Its primary goal is to assess the 
performance of a model and to understand how it might perform on independent datasets. 
Cross-validation comes in several variants, each with its own strengths and applications. The 
most common variants are : K-Fold Cross-Validation, Stratified K-Fold Cross-Validation, Leave-
One-Out Cross-Validation (LOOCV), Leave-p-Out Cross-Validation (LpOCV), Repeated K-Fold 
Cross-Validation, Nested Cross-Validation and Time Series Cross-Validation. 

2.1 K-Fold Cross-Validation 
The dataset is divided into k subsets (folds) of approximately equal size. The model is trained on 
k-1 folds and tested on the remaining fold. The performance metrics are calculated based on the 
test results. This process is repeated k times, with each fold used as the testing set exactly once. 
The final performance metrics are averaged across all the folds. The following figure illustrates 
the process. 

 

2.2 Stratified K-Fold Cross-Validation 
Similar to k-fold cross-validation, but the class distribution in each fold is preserved to mitigate 
the impact of class imbalance. Suppose we have a dataset with two classes: Class A and Class 
B. Let the class sizes be: Class A: 800 samples and Class B: 200 samples. Now, let's say we want 
to perform 5-fold cross-validation with stratification. Here's how we might split the dataset: 

Stratification: Before splitting, the dataset is divided into two strata based on the class labels. 
Each stratum contains data points belonging to a particular class. Stratum 1 (Class A): 800 
samples. Stratum 2 (Class B): 200 samples 

Folding: The dataset is divided into 5 folds while maintaining the same class distribution in each 
fold. Each fold contains: 160 Class A and 40 Class B samples. 



5 
 

2.3 Leave-One-Out Cross-Validation (LOOCV) 
Each data point is used as a validation set, and the model is trained on all other data points. This 
process is repeated for each data point. LOOCV is computationally expensive but provides a low 
bias estimate of the model's performance, especially for small datasets. The performance 
metrics are calculated for each fold and finally averaged. The following figure shows the details. 

 

2.4 Leave-𝑝-Out Cross-Validation (LpOCV)  
Each time 𝑝 data points are used as a validation set, and the model is trained on all other data 
points. This process is repeated for different sets of 𝑝 data points. LpOOCV is computationally 
expensive but provides a low bias estimate of the model's performance, especially for small 
datasets. The performance metrics are calculated for each fold and finally averaged. 

2.5 Repeated K-Fold Cross-Validation 
The k-fold cross-validation process is repeated multiple times with different random splits of the 
data. This helps in obtaining more reliable estimates of the model's performance with small 
datasets or when the performance is sensitive to the data split. 

2.6 Nested Cross-Validation 
It involves using multiple cross-validation loops to evaluate the performance of nested models, 
such as models with hyperparameters.  
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The outer loop performs model evaluation using k-fold cross-validation, while the inner loop 
performs hyperparameter tuning using another k-fold cross-validation. The following figure ill  

2.7 Time Series Cross-Validation:  
Specifically designed for time series data, where the order of data points is important. It involves 
splitting the dataset into consecutive folds, ensuring that each fold contains a continuous 
segment of data. This helps in assessing the model's ability to generalize to future unseen data. 
The following figure illustrates the same. 
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3 Ensemble Learning 

If we aggregate the predictions of a group of predictors (such as classifiers or regressors), you will 
often get better predictions than with the best individual predictor. A group of predictors is called 
an ensemble. This technique is called Ensemble Learning. Ensemble Learning algorithm is called 
an Ensemble method.  

As an example of an Ensemble method, we can train a group of Decision Tree classifiers, each on 
a different random subset of the training set. To make predictions, we obtain the predictions of all 
the individual trees, then predict the class that gets the most votes. Such an ensemble of 
Decision Trees is called a Random Forest. The following explains the various ensemble methods. 

3.1 Voting Classifiers 
Suppose we have trained a few classifiers on a dataset, each one achieving about 80% accuracy. 
They can be a Logistic Regression classifier, an SVM classifier, and a Random Forest classifier. 
The following diagram shows the principle of voting classifier. 

 
Training Testing 

 
 

A voting classifier is an ensemble machine learning technique that combines the predictions of 
multiple individual models (classifiers) to improve overall performance. The fundamental idea is 
that by aggregating the predictions from various models, the ensemble can achieve better 
accuracy and robustness compared to any single model. There are two main types of voting 
classifiers: hard voting and soft voting. 

Hard Voting: In hard voting, each classifier in the ensemble makes a prediction (vote) for each 
instance. The final prediction is determined by a majority vote. In other words, the class that 
receives the most votes from the individual classifiers is chosen as the final prediction. 

Example: Suppose you have three classifiers (A, B, and C) and you want to classify a new 
instance. If classifier A predicts class 0, classifier B predicts class 1, and classifier C predicts 
class 0, the final prediction by the voting classifier would be class 0 because it has the majority 
of votes (2 out of 3). 

Soft Voting:  In soft voting, each classifier outputs a probability for each class. The final prediction 
is made by averaging the predicted probabilities for each class across all classifiers and selecting 
the class with the highest average probability. 
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Example: Suppose you have three classifiers (A, B, and C) and they provide the following 
probability distributions for two classes (class 0 and class 1) for a new instance: 

Classifier A: [0.7, 0.3] (70% probability for class 0, 30% for class 1) 

Classifier B: [0.4, 0.6] 

Classifier C: [0.8, 0.2] 

The average probabilities are: [(0.7+0.4+0.8)/3, (0.3+0.6+0.2)/3] = [0.63, 0.37]. The final prediction 
would be class 0, as it has the highest average probability (0.63). 

3.2 Bagging and Pasting 
One way to get a diverse set of classifiers is to use very different training algorithms. Another 
approach is to use the same training algorithm for every predictor and train them on different 
random subsets of the training set. When sampling is performed with replacement, this method 
is called bagging (short for bootstrap aggregating). When sampling is performed without 
replacement, it is called pasting. The following diagram shows the bagging method. 

 
Once all predictors are trained, the ensemble can make a prediction for a new instance by simply 
aggregating the predictions of all predictors. The aggregation function is typically the statistical 
mode (i.e., the most frequent prediction, just like a hard voting classifier) for classification, or the 
average for regression. By default, a BaggingClassifier samples 𝑚 training instances with 
replacement (bootstrap=True), where 𝑚 is the size of the training set. 
 
This means that only about 63% of the training instances are sampled on average for each 
predictor. The remaining 37% of the training instances that are not sampled are called out-of-bag 
(oob) instances. Note that they are not the same 37% for all predictors. Since a predictor never 
sees the oob instances during training, it can be evaluated on these oob instances, without the 
need for a separate validation set. We can evaluate the ensemble itself by averaging out the oob 
evaluations of each predictor. 
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3.3 Random Patches and Random Subspaces 
The BaggingClassifier class supports sampling the features as well. Sampling is controlled by two 
hyperparameters: max_features and bootstrap_features. Thus, each predictor will be trained 
on a random subset of the input features. This technique is particularly useful when we are 
dealing with high-dimensional inputs (such as images). Sampling both training instances and 
features is called the Random Patches method. Keeping all training instances but sampling 
features is called the Random Subspaces method. 

3.4 Random Forest 
Random forests are a specific implementation of bagging that is applied to decision trees. In 
addition to sampling from the training data, random forests also introduce randomness in the 
feature selection process. Instead of considering all features at each split, random forests 
randomly select a subset of features to consider for splitting at each node of the tree. 

This randomness further diversifies the individual trees and prevents them from being highly 
correlated, which can lead to improved generalization performance. When making predictions, 
random forests aggregate the predictions of all the trees, typically using a majority vote for 
classification or averaging for regression. 

3.5 Boosting. 
Boosting (originally called hypothesis boosting) refers to any Ensemble method that can combine 
several weak base learners into a strong learner. The general idea of most boosting methods is to 
train predictors sequentially, each trying to correct its predecessor. The two popular algorithms 
are AdaBoost and Gradient Boosting. 

AdaBoost: Consider an AdaBoost classifier, which uses Decision Tree as a base classifier. Each 
sample is given a weight. These weighted samples are used to train a Decision tree stump. The 
resulting Decision Tree is used to make predictions on the training set. Depending on the no. of 
training samples correctly/incorrectly classified and their weights, the weighted error of this weak 
classifier is calculated. Consider the following example, where three Decision Tree stumps are 
trained. The dataset consists of positive (circles) and negative(triangle) samples. Each has its 
own classification errors. The first two trees used the feature 𝑥1 at the root node. Each tree has it 
classification error 𝛼. 
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The algorithm then increases the relative weight of misclassified training instances. Then it trains 
a second classifier, using the updated weights, and again makes predictions on the training set, 
calculates the weighted error of the second classifier and updates the instance weights, and so 
on. A new instance is classified based on the sum of predictions of each weak classifier 
multiplied by the weighted error of the respective weak leaner. 

Let us combine these three classifiers for prediction. The resulting classifier looks as follows. The 
prediction is made as follows. Consider any sample and input it to each of the classfiers. The 
prediction is based on the sign of the following sum. 𝛼𝑐  indicates the error of a particular classifier 
and ℎ𝑐(𝑥) is the prediction of the corresponding classifier as +1(blue region) or -1(pink region). 

𝑆 = ∑ 𝛼𝑐 ∗ ℎ𝑐(𝑥)

3

𝑐=1

 

For the example shown, the three classifiers output -1, +1, -1 respectively. These values are 
multiplied with the corresponding classification errors. Thus, 𝑆 as shown below has negative sign 
and hence the sample is negative which conforms with the given label in the dataset. 

𝑆 =  −1 ∗ 0.69 + 1 ∗ 0.73 +  −1 ∗ 1.00 

 

 

 
 

Gradient Boosting: Gradient Boosting works by sequentially adding predictors to an ensemble, 
each one correcting its predecessor. However, instead of tweaking the instance weights at every 
iteration like AdaBoost does, this method tries to fit the new predictor to the residual errors made 
by the previous predictor. Consider a simple regression example, using Decision Trees as the 
base predictors. This is called Gradient Tree Boosting, or Gradient Boosted Regression Trees 
(GBRT). 
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The following diagram shows the principle of Gradient Boosting. First, we fit a 
DecisionTreeRegressor to the training set (Learner-1).  Then the residual error (RE) is calculated 
between the target value and the predicted values. The residual error is taken as the target value 
for the same feature set and then a new tree (Learner-2) is trained on the residual errors of the 
first tree. Similarly, another tree is trained on the residual errors of the second tree. 

The prediction is done by giving the test sample as the input  to all the learners and sum up the 
predictions of all the learners to get the final predicted value. An efficient implementation version 
of Gradient Boosting is known as XGBoost. 

 

3.6 Stacking 
In this ensemble method, instead of aggregating/voting technique used in predictions from an 
ensemble, another meta model is trained with Predictions of the individual predictors as the 
features along with the actual target value. Once the training is over, the target value for the new 
sample can be obtained in two steps. Initially, the predicted values are obtained for the test 
sample from the individual predictors and these are input to the blender to get the target value. 

 
 


