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1 K-Nearest Neighbors Algorithm 

In the learning algorithms we have seen, we select a hypothesis space and learn a set of 
parameters (𝜃0, 𝜃1, … , 𝜃𝑑) or a set of weights (𝑤0, 𝑤1, … , 𝑤𝑑) from the  training data so that the 
target function 𝑓(𝑥̅) is approximated as  𝑦̂ = ℎ𝜃(𝑥̅) 𝑜𝑟 ℎ𝑤(𝑥̅) , where 𝑥̅ is the training sample and 
𝑓 is the classification or regression function. 𝑦̂  is the learned version of the target function. Once 
the model parameters are computed, we do not need the training data. These methods are called 
parametric models. 

A non-parametric model is one that cannot be characterized by a fixed set of parameters. A family 
of non-parametric models is known as Instance Based Learning methods. Instance based 
learning is based on the memorization of the dataset. The learning phase is absent, the cost is in 
the computation of the prediction. This kind learning is also known as lazy learning. However, the 
dataset should always be available. 

1.1 K-NN Algorithm 
K-NN classification falls in the supervised learning family of instance-based algorithms or lazy 
learning algorithms. K-nearest neighbors uses the notion of local neighborhood to obtain a 
prediction. The k-Nearest Neighbors (k-NN) algorithm is a simple, yet powerful, supervised 
learning algorithm used for both classification and regression tasks, 

i. The value of 'k', which is the number of nearest neighbors to consider is decided first. This is 
a hyperparameter to be selected before running the algorithm. 

ii. For a given test point (the data point to be classified or for which the target value in regression 
is to be predicted), the distance between this test point and all the points in the training 
dataset is calculated.  
The distance measures that are normally used are Euclidean distance and Manhatten 
distance measures.  Let 𝑋 = < 𝑥1, … , 𝑥𝑗, … 𝑥𝑑 > be the training sample.  Let 𝑍 = <

𝑧1, … , 𝑧𝑗, … 𝑧𝑑 > is the test sample.  The Euclidean distance 𝑑(𝑋, 𝑍) is calculated as  

𝑑(𝑋, 𝑍) = √∑ 𝑤𝑗(𝑥𝑗 − 𝑧𝑗)
2

𝑗

 

The Manhatten distance is calculated as 
𝑑(𝑋, 𝑍) =  ∑ 𝑤𝑗|𝑥𝑗 − 𝑧𝑗|𝑗 . 

𝑤𝑗is the weight given to the sample 𝑗 depending upon the nature of the dataset. Normally, it 
is equal to 1. 

iii. Identify the 'k' points in the training data that are closest to the test point. These are the 'k' 
nearest neighbors. 

iv. For classification purposes, count the number of neighbors belonging to each class. The 
class with the highest count among the 'k' neighbors is assigned to the test point. 

v. For regression tasks, calculate the average (or sometimes the weighted average) of the target 
values of the 'k' nearest neighbors.  The result is the predicted value for the test point in 
regression. 
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The k-NN algorithm is intuitive and easy to implement, but it can be computationally expensive 
for large datasets, as it involves calculating distances between the test point and all training 
points. It's also sensitive to the choice of 'k' and the distance metric used. 

 
The following diagram shows the samples with two features of a dataset plotted on the 𝑋 − 𝑌 
plane. The sample 𝑋 represents the test point. In (a) the nearest neighbor is a negative class 
sample. In (b) the nearest neighbors belong to each of the classes. In (c) two nearest neighbors 
belong to the positive class and one of the neighbors belong to the negative class. 

 
The following is a worked-out example of applying K-NN algorithm for the finding the class of a 
test sample. The dataset and the distances of the test sample are shown.  With 𝑘 = 3, it can be 
observed that the target class of the test sample in the last row of the dataset is 1. 
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Nearest neighbor algorithm is easily misled by noisy/irrelevant features. 𝐾 = 1 captures the 
finest structure of the input samples but is vulnerable to noise. The diagram shows the predicted 
classes for a two-class dataset with two features. It may be observed that the classification 
accuracy is very high. 

 

The following diagram shows the predicted boundaries for the same dataset with 𝑘 = 20. The 
boundary is more generalized. However, the training accuracy is low. It can be easily concluded 
by observing the spread of the data that the misclassified examples belong to noise. 
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2 Unsupervised learning-Clustering 

Unsupervised learning is a machine learning technique used to find patterns and relationships in 
data without target labels. It involves exploring the structure of data to extract meaningful 
information. Common tasks include clustering, dimensionality reduction, and anomaly 
detection. Clustering is a fundamental task in unsupervised learning. It involves grouping similar 
data points together based on some similarity measure. The goal is to partition the data into 
distinct groups, or clusters, where data points within the same cluster are more similar to each 
other than to those in other clusters. 

In hard clustering, each data point is assigned to exactly one cluster. The assignment is based on 
a distance metric or similarity measure, such as Euclidean distance or cosine similarity. K-means 
is a popular algorithm for hard clustering, where the goal is to minimize the within-cluster sum of 
squares. 

Soft clustering, also known as fuzzy clustering, allows data points to belong to multiple clusters 
with varying degrees of membership. Instead of assigning data points to a single cluster, each 
point is assigned a probability of membership value for each cluster. Expectation-Maximization 
(EM) is an algorithm for soft clustering. 

Clustering has numerous applications across various domains, including: 

i. Customer segmentation in marketing. 
ii. Document clustering in natural language processing. 
iii. Image segmentation in computer vision. 
iv. Anomaly detection in cybersecurity. 

2.1 K-means Clustering 
Given a training set {𝑥(1), 𝑥(2), … , 𝑥(𝑚)}, 𝑥(𝑖) ∈  𝑅𝑛, the output is  𝑘 (which is a hyper-parameter) 

cohesive clusters. No labels 𝑦(𝑖) are given. Given a new 𝑥 find out which cluster does it belong to? 

k-Means clustering is a popular unsupervised learning algorithm used to partition a dataset into 
k distinct, non-overlapping subsets (clusters). The algorithm works as follows. 

Choose the number of clusters, k, that the dataset is to be partitioned into.  

Randomly select k points from the dataset as initial cluster centroids. These points can be actual 
data points or chosen randomly within the data space. 

Assignment Step: Assign each data point in the dataset to the nearest cluster centroid. The 
nearest centroid is typically determined using the Euclidean distance, although other distance 
metrics can be used. This creates k clusters, each containing the points closest to one of the k 
centroids. 

Update Step: Recalculate the centroids of each cluster thus formed. The new centroid is the 
mean (average) of all the points assigned to that cluster. Specifically, for each cluster, sum the 
coordinates of all points in the cluster and then divide by the number of points in that cluster. This 
gives the new centroid. 
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Repeat Step: Repeat the Assignment and Update steps until the centroids no longer change 
significantly, or until a maximum number of iterations is reached. This means the algorithm has 
converged, and the clusters are stable. Once the algorithm has converged, it outputs the final 
positions of the centroids and the clusters of data points. 

Prediction Step: Given a test data point, calculate the distance of the test sample from the 
cluster centroids. The test sample is attributed with the cluster to which it is found to be the 
nearest. 

Consider the following example. The dataset comprises of 2D samples. The test sample is at the 
end of the table. 

 

Let 𝑘 = 3. Assume the three Centroids as, 

𝜇1 = (3,4), 𝜇2 = (5,1), 𝜇3 = (8,2) 

The assignment step results as follows. 
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The update step results as follows. 

𝜇1 = (2.2,2.6), 𝜇2 = (5,1.6), 𝜇3 = (8.3,1.7) 

The process is repeated till the cluster allocations of samples do not change or for the maximum 
number of iterations is reached. The following is the algorithm. 

 

2.2 Hierarchical Clustering 
In contrast to K-means clustering, this method builds a hierarchy of clusters either in a bottom-
up (agglomerative) or top-down (divisive) manner. Agglomerative Clustering starts with each 
data point as a separate cluster and merges the closest pairs of clusters step by step until all 
points are in one cluster. Divisive Clustering starts with all data points in a single cluster and 
recursively splits the cluster into smaller clusters. 

Agglomerative Clustering: 

Initially, each cluster contains a single point and the distance can be calculated as Euclidian 
distance between the clusters/data points. However, as we merge the datapoints into clusters, 
the question arises regarding the way distance is to be calculated between two clusters, each 
comprising of several data points. The following explains the same. 

Cluster distance measures. 
Single link: smallest distance between the 
points in the clusters.  

𝑑(𝐶𝑖, 𝐶𝑗 ) = min {𝑑(𝑥𝑖𝑝, 𝑥𝑗𝑞} 
Complete link: smallest distance between 
the points in the clusters.  

𝑑(𝐶𝑖, 𝐶𝑗 ) = max {𝑑(𝑥𝑖𝑝, 𝑥𝑗𝑞} 
Average link: smallest distance between the 
points in the clusters.  

𝑑(𝐶𝑖, 𝐶𝑗 ) = avg {𝑑(𝑥𝑖𝑝, 𝑥𝑗𝑞} 

 
The dataset comprises of six 2D samples. The objective is to perform Agglomerative clustering. 
Initially, each data point is in its own cluster. The process of agglomerative clustering is 
implemented with the help of a distance matrix. Initially, the distance matrix comprises of rows 
and columns corresponding to each data point. The cells contain the distance between the 
points representing the row and column of each cell. Of course, it would be enough to fill either 
the lower or higher diagonal matrix. 
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Consider the following example dataset.  

 

The distance matrix is calculated as follows. We find that the (single point) clusters 𝐷 𝑎𝑛𝑑 𝐹 are 
nearest and hence are merged. The new distance matrix will have the rows/columns 
corresponding to 𝐷 𝑎𝑛𝑑 𝐹 as merged. Distance measure is made in accordance with Single Link. 

 

If 𝐷 𝑎𝑛𝑑 𝐹 are merged, then we have to recompute the distances of the clusters 𝐴, 𝐵, 𝐶, 𝑎𝑛𝑑 𝐸 
from the cluster {𝐷, 𝐹}. For example, to calculate the distance between the clusters 
𝐴 𝑎𝑛𝑑 {𝐷, 𝐹}, we compute the minimum of distance between (𝐴, 𝐷) 𝑎𝑛𝑑 (𝐴, 𝐹). The resulting 
matrix appears below. In the new matrix, we find that the distance between 𝐴 𝑎𝑛𝑑 𝐵 clusters is 
the minimum and hence will be merged in the next step. 

  
The new  distance matrix appears below. The clusters {𝐷, 𝐹} and 𝐸 are merged in the next step. 
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The subsequent steps are 

 

 
 

 

 
 

The above steps can be shown in the form of a dendogram. A dendrogram is a diagrammatic 
representation of hierarchical merging of clusters (vertical lines/bars). The vertical axis of the 
dendrogram typically represents the distance between clusters. The height of each horizontal line 
(branch) indicates the distance between the clusters (vertical lines) being merged. 

 

Lifetime of a Cluster: The distance between  a cluster is created and that it disappears/merges 
with another cluster during clustering. Lifetime of A, B, C, D, E and F is 0.71, 0.71, 1.41, 0.5, 1.0 
and 0.5 respectively. 

k-cluster Lifetime :The distance from that 𝑘 clusters between that emerge to that 𝑘 clusters 
vanish. The distance from that 𝑘 clusters become  𝑘−1 clusters. 

5−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒=0.71−0.50=0.21 

4−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒=1.00−0.71=0.29 

3−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒=1.41−1.00=0.41 

2−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒=2.5−1.41=1.09 
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3 Expectation-Maximization Algorithm 

Clustering can be classified as hard clustering and soft clustering. In hard clustering any training 
sample belongs finally to a fixed cluster. Clusters are mutually exclusive in hard clustering. Soft 
clustering advocates the probability with which a sample belongs to a cluster. 

3.1 EM Algorithm 
Assume that the samples come from 𝑘 sources, where 𝑘 is the number of clusters. We consider 
Gaussian distributions and hence the name Gaussian Mixture Model (GMM). Expectation-
Maximization algorithm targets to identify the distributions (clusters) and their parameters. With 
parameters of GD known, we can compute 𝑃(𝑐𝑗 |𝑥), the probability with which the sample 𝑥 
belongs to the cluster 𝑐𝑗. 

If we know the clusters from which points come, we can easily formulate the distributions. 

 

𝜇𝑗 =
∑ 𝑥𝑖

𝑁
 

𝜎𝑗 = √
∑(𝑥𝑖 − 𝑥̅)2

𝑁 − 1
 

𝑃(𝑐𝑗|𝑥𝑖) =
1

𝜎𝑗√2𝜋
𝑒

−
1
2

(
𝑥𝑖−𝜇𝑗

𝜎𝑗
)

2

 

However, we are given only the mixed samples but not their distributions. In fact, we have to 
separate out the samples into their respective clusters, compute the parameters of the 
distribution and be able to find out the distribution to which a new test sample belongs to. The 
following diagram shows the task to be performed. All the 1D samples are shown in white colour 
meaning that the whole set is given from which their distributions are to be extracted. 

 

Initialization Step: 

The approach is to fix the value of 𝐾 (the number of clusters/distributions). Assume 
𝜇𝑗 , 𝜎𝑗, 𝜋𝑗 𝑓𝑜𝑟 𝑗 = 1. . 𝑘. 𝜋𝑗  is called latent/hidden variable and specifies the prior probability that 
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𝑥_𝑖 is generated by  𝑗𝑡ℎ distribution or cluster. It may be noted that ∑ 𝜋𝑗 = 1𝑗 . The EM algorithm 
works as follows. 

Expectation Step: 

for each sample 𝑥𝑖: 

compute responsibility(membership weight) 𝑟𝑖𝑗, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 sample 𝑖 is from 
distribution 𝑗 as follows. 

𝒓𝒊𝒋 =
𝝅𝒋𝑵(𝒙𝒊|𝝁𝒋, 𝝈𝒋) 

∑ 𝝅𝒋𝑵(𝒙𝒊|𝝁𝒋, 𝝈𝒋)𝒋

, which represents the Bayes theorem.  𝜋𝑗 is the probability of the 

distribution 𝑗  and  𝑵(𝒙𝒊|𝝁𝒋, 𝝈𝒋) =
𝟏

𝝈𝒋√𝟐𝝅
𝒆

−
𝟏

𝟐
(

𝒙𝒊−𝝁𝒋

𝝈𝒋
)

𝟐

 is the probability that the sample 𝑥𝑖 is 

from the given GD with the parameters  𝜇𝑗, 𝜎𝑗. 

Maximization  Step: In the maximization step, the parameters of the distributions are updated 
as follows. 

𝑵𝒋 = ∑ 𝒓𝒊𝒋

𝒊

 

𝝁𝒋 =
𝟏

𝑵𝒋
∑ 𝒓𝒊𝒋𝒙𝒊

𝒊

 

𝝈𝒋 =
𝟏

𝑵𝒋
∑ 𝒓𝒊𝒋

𝒊

(𝒙𝒊 − 𝝁𝒋)
𝟐

 

𝝅𝒋 =
𝑵𝒋

𝒎
  

 

 

 


