Bapatla Engineering College::Bapatla (Autonomous)

BAPATLA

Department of Computer Science and Engineering B.Tech

Computer Science and Engineering
Curriculum Effective from A.Y. 2018-19
(R18 Regulations)

Bapatla Engineering College::Bapatla

(Autonomous under Acharya Nagarjuna University)

(Sponsored by Bapatla Education Society)

BAPATLA - 522102 Guntur District, A.P.,India www.becbapatla.ac.in

Bapatla Engineering College::Bapatla (Autonomous) Department of Computer Science and Engineering

TABLE OF CONTENTS

S.No.	Category	Page No.
1	VISION, MISSION and PEOs	1
2	Transitory Regulations - R14 to R18 - Equivalence Subjects	2-5
3	Course Structure	6
4	List of Abbreviations	7
5	Scheme of Instruction and Examination	8-15
6	List of Institutional Electives	16
7	Semester – I Syllabus	17-31
8	Semester – II Syllabus	32-49
9	Semester – III Syllabus	50-68
10	Semester – IV Syllabus	69-87
11	Semester – V Syllabus	88-110
12	Semester – VI Syllabus	111-139
13	Semester – VII Syllabus	140-164
14	Semester – VIII Syllabus	165-174
15	Annexure - 1 : Institution Elective - I	175-208
16	Annexure - 2 : Institution Elective - II	209-245

(Autonomous)

Computer Science and Engineering

VISION

• To produce Computer Science Engineers with Global Standards who can handle the challenges of the society and industry with their innovations and services.

MISSION

- To impart high quality education with effective teaching and learning process.
- To provide an environment where the students can handle research problems confidently.
- To prepare the students with latest technologies with fidelity towards industry.
- To inculcate professional ethics and human values in handling the engineering challenges.

PROGRAM EDUCATIONAL OBJECTIVES

- **PEO1:** Choose diverse professional careers in software industry, research, academia, engineering, and administrative services.
- **PEO2:** Apply the principles of basic sciences, mathematics and computer science to solve real world problems using digital computing systems.
- **PEO3:** Analyze, design, implement and evaluate robust, scalable and cost-effective computer-based systems and processes in the industry with sustained self learning.
- **PEO4:** Be aware of professional and ethical practices in the context of social impacts of computing.

Transitory Regulations - R14 to R18 - Equivalence Subjects

	R-18 1-1 SEM		R-14 1-1 SEM	SEM
18MA001	Linear Algebra and ODE	14MA101	Engineering Mathematics – I	1.1
18CY001	Engineering Chemistry	14CY103 / 14CY203	Engineering Chemistry – I / Engineering Chemistry – II	1.1
18EL001	Communicative English	14EL204	Communicative English	1.2
18MEL01	Engineering Graphics	14EG106	Engineering Graphics	1.1
18CYL01	Chemistry Lab	14CYL101	Chemistry Lab	1.1
18ELL01	English Communication Lab	14ELL202	English Communication Skills Lab	1.2
18MEL02	Workshop	14WSL103	Workshop	1.1
18CE001	Environmental Studies	14ES105	Environmental Studies	1.1

	R-18 1-2 SEM		R-14 1-2 SEM	SEM
18MA002	Numerical methods and Advanced Calculus	14MA201	Engineering Mathematics – II	1.2
18PH001	Semiconductor Physics	14PH102/ 14PH202	Engineering Physics – I/ Engineering Physics – II	1.2
18CS203	Professional Ethics & Human Values	14CS402	Professional Ethics and Human Values	2.2
18CS204	Digital Logic Design	14CS303	Digital Logic Design	2.1
18EE001	Basic Electronics & Electrical Engineering	14EE104	Basic Electrical and Electronics Engineering	1.1
18CS001	Problem Solving using Programming	14CP206	Problem Solving with Programming	1.2
18PHL01	Semiconductor Physics Lab	14PHL201	Physics lab	1.2
18EEL01	Basic Electronics & Electrical Engineering Lab	14HWL102	Hardware Lab	1.1
18CSL01	Problem Solving using Programming Lab	14CPL203	Problem Solving with Programming Lab	1.2

	R-18 2-1 SEM		R-14 2-1 SEM	SEM
18MA003	Probability & Statistics	14MA301	Engineering Mathematics – III	2.1
18CS302	Data Structures	14CS305	Data Structures	2.1
18CS303	Discrete Mathematics	14CS302	Discrete Mathematical Structures	2.1

18CS304	Object Oriented Programming	14CS405	GUI Programming	2.2	
18CS305	Operating System	14CS304	Operating System	2.1	
18CS306	Microprocessor & Microcontrollers	14CS503	Microprocessor & Microcontrollers	3.1	
18CSL31	Unix Programming Lab				
18CSL32	Data Structures Lab	14CSL302	Data Structures Lab	2.1	
18CSL33	OOPs Lab	14CSL402	GUI Programming Lab	2.2	

	R-18 2-2 SEM		R-14 2-2 SEM	SEM
18MA005	Operations Research	14MA401	Engineering Mathematics - IV	2.2
18CS402	Web Technologies	14CS406	Web Technologies	2.2
18CS403	Database Management System	14CS504	Database Management Systems	3.1
18CS404	Computer Organization	14CS403	Computer Organization	2.2
18EL002	Technical English			
18CS406	Design and Analysis of Algorithms	14CS404	Design and Analysis of Algorithms	2.2
18CSL41	Python Programming Lab			
18CSL42	Web Technologies Lab	14CSL403	Web Technologies Lab	2.2
18CSL43	RDBMS Lab	14CSL502	RDBMS Lab	3.1

	R-18 3-1 SEM		R-14 3-1 SEM	SEM
18CS501	Software Engineering	14CS501	Software Engineering	3.1
18CS502	Automata Theory & Formal Languages	14CS502	Automata Theory & Formal Languages	3.1
18CS503	Enterprise Programming	14CS604	Enterprise Programming-II	3.2
18CS504	Computer Networks	14CS603	Computer Networks	3.2
18CS505	Essence of Indian Traditional Knowledge			
18CSD1_	Department Elective-I	14CS506	Elective – I	3.1
18CSL51	C# Programming	14CSL303	OOPS Lab	2.1
18CSL52	Enterprise Programming Lab	14CSL602	Enterprise Programming-II Lab	3.2
18ELL02	Soft Skills Lab	14ELL701	Business Communication and Presentation Skills Lab	4.1
18CSMO1	MOOCs			

R-18 3-2 SEM		R-14 3-2 SEM	SEM
18CS601	Machine Learning		

18CS602	Compiler Design	14CS602	Compiler Design	3.2
18CS603	Cryptography & Network Security			
18CS604	Middleware Technologies	14CS505	Enterprise Programming-I	3.1
18CSD2_	Department Elective-II	14CS606	Elective - II	3.2
18CSD3_	Department Elective-III	14CS705	Elective-III	4.1
18CSL61	Machine Learning Lab			
18CSL62	Middleware Technologies Lab	14CSL503	Enterprise Programming-I Lab	3.1
18CSLD2_	Dept. Elective-II Lab			

	R-18 4-1 SEM		R-14 4-1 SEM	SEM
18CS701	Full Stack Development			
18CS702	Wireless Networks	14CS704	Wireless Networks	4.1
18I	Institutional Elective -I	14OE706	Open Elective	4.1
18CSD4_	Department Elective-IV	14CS803	Elective – IV	4.2
18CS705	Constitution of India			
18CSL71	Unified Modeling Language Lab			
18CSL72	Full Stack Development Lab			
18CSLD4_	Dept. Elective-IV Lab			
18CSP01	Project - I	14CSL704	Term Paper	4.1
18CSII1	Internship			

	R-18 4-2 SEM		R-14 4-2 SEM	SEM
18ME005	Industrial Management & Entrepreneurship	14ME801	Industrial Management & Entrepreneurship	4.2
18I	Institutional Elective -II		1 1	
18CSD5_	Department Elective - V	14CS804	Elective - V	4.2
18CSP02	Project - II	14CSPR801	Project Work	4.2

List of Residual Subjects **to be completed by students** of R-14 Regulations who migrate into R-18 Regulations

R-14 Stream	R-18 Stream	Code	Subject Name
1-1 SEM	1-2 SEM	18EL001	Communicative English
I-I SEM	1-2 SEIVI	18ELL01	English Communication Lab
1-2 SEM	2-1 SEM	18CS203	Professional Ethics & Human Values
1 2 52111	2 1 55111	18CS204	Digital Logic Design
		18CS304	Object Oriented Programming
2-1 SEM	2-2 SEM	18CS306	Microprocessor & Microcontrollers
		18CSL33	OOPs Lab
		18CS403	Database Management System
2-2 SEM	3-1 SEM	18EL002	Technical English
2-2 SEWI	3-1 SEW	18CSL41	Python Programming Lab
		18CSL43	RDBMS Lab
	3-2 SEM	18CS503	Enterprise Programming
		18CS504	Computer Networks
3-1 SEM		18CS505	Essence of Indian Traditional Knowledge
3 I SENI	3 2 51111	18CSL52	Enterprise Programming Lab
		18ELL02	Soft Skills Lab
		18CSMO1	MOOCs
		18CS601	Machine Learning
3-2 SEM		18CS603	Cryptography & Network Security
	4-1 SEM	18CSD3_	Department Elective-III
		18CSL61	Machine Learning Lab
		18CSLD2_	Dept. Elective-II Lab
4-1, 4-2 SEM	The students have	ve to continue with R14 regul	lation only

COURSE STRUCTURE

Course Structure Summary:

S.No.	Category	Proposed	Percentage
1	Humanities & Social Science including Management Courses	9	6
2	Basic Science Courses	26	16
3	Engineering Science courses including workshop, drawing, basics of electrical/mechanical/computer etc.	22	13
4	Professional Core Courses	71	41
5	Professional Elective Courses	17	11
6	Open Elective Courses	6	4
7	Project work, seminar and internship in industry or elsewhere	12	7
8	Industry Internship	2	1
9	MOOCs	2	1
10	Mandatory Courses [Indian Constitution, Essence of Indian Traditional Knowledge etc]	(non-credit courses)	
	Total	167	100

Semester wise Credits

SEMESTER	Credits
I	16
II	22
III	24
IV	22
V	22
VI	21
VII	21
VIII	19
Total	167

	List of Abbreviations						
CIE	Continuous Internal Evaluation						
SEE	Semester End Examination						
L	Lecture						
Т	Tutorial						
P	Practical						

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System) For

Computer Science and Engineering Effective from the Academic Year 2018-2019 (R18 Regulations) First Year B.Tech (SEMESTER – I)

				eme o		S Ex	No. of		
Code No.	Code No. Subject				week)	Examination (Maximum marks)			
		L	Т	P	Total	CIE	SEE	Total Marks	
			JCTIO GRA						
18MA001	Linear Algebra and ODE	4	0	0	4	50	50	100	3
18CY001	Engineering Chemistry	4	0	0	4	50	50	100	3
18CE001	Environmental Studies	3	0	0	3	50	50	100	2
18EL001	Communicative English	3	0	0	3	50	50	100	2
18MEL01	Engineering Graphics	1	0	4	5	50	50	100	3
18CYL01	Chemistry Lab	0	0	3	3	50	50	100	1
18MEL02	Workshop	0	0	3	3	50	50	100	1
18ELL01	English Communication Lab	0	0	3	3	50	50	100	1
	TOTAL	15	0	13	28	400	400	800	16

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System) For

Computer Science and Engineering Effective from the Academic Year 2018-2019 (R18 Regulations)

First Year B.Tech (SEMESTER – II)

Code No.	Code No. Subject		Scheme of Instruction ubject (Periods per week)				Scheme of Examination (Maximum marks)			
		L	Т	P	Total	CIE	SEE	Total Marks		
18MA002	Numerical methods and Advanced Calculus	4	0	0	4	50	50	100	3	
18PH001	Semiconductor Physics	4	1	0	5	50	50	100	4	
18CS203	Professional Ethics & Human Values	4	0	0	4	50	50	100	3	
18CS204	Digital Logic Design	4	0	0	4	50	50	100	3	
18EE001	Basic Electronics & Electrical Engineering	4	0	0	4	50	50	100	3	
18CS001	Problem Solving using Programming	4	0	0	4	50	50	100	3	
18PHL01	Semiconductor Physics Lab	0	0	3	3	50	50	100	1	
18EEL01	Basic Electronics & Electrical Engineering Lab	0	0	3	3	50	50	100	1	
18CSL01	Problem Solving using Programming Lab	0	0	3	3	50	50	100	1	
	TOTAL	24	1	9	34	450	450	900	22	

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System)

For

Computer Science and Engineering Effective from the Academic Year 2018-2019 (R18 Regulations) Second Year B.Tech (SEMESTER – III)

Code No. Subject		Scheme of Instruction (Periods per week)					Scheme of Examination (Maximum marks)			
		L	Т	P	Total	CIE	SEE	Total Marks	Credits	
18MA003	Probability & Statistics	4	0	0	4	50	50	100	3	
18CS302	Data Structures	4	0	0	4	50	50	100	3	
18CS303	Discrete Mathematics	4	0	0	4	50	50	100	3	
18CS304	Object Oriented Programming	4	0	0	4	50	50	100	3	
18CS305	Operating System	4	0	0	4	50	50	100	3	
18CS306	Microprocessor & Microcontrollers	4	0	2	6	50	50	100	4	
18CSL31	Unix Programming Lab	2	0	3	5	50	50	100	3	
18CSL32	Data Structures Lab	0	0	3	3	50	50	100	1	
18CSL33	OOPs Lab	0	0	3	3	50	50	100	1	
	TOTAL	26	0	11	37	450	450	900	24	

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System)

For

Computer Science and Engineering Effective from the Academic Year 2018-2019 (R18 Regulations) Second Year B.Tech (SEMESTER – IV)

Code No.	Code No. Subject		Scheme of Instruction (Periods per week)						No. of
		L	Т	P	Total	CIE	SEE	Total Marks	Credits
18MA005	Operations Research	4	0	0	4	50	50	100	3
18CS402	Web Technologies	4	0	0	4	50	50	100	3
18CS403	Database Management System	4	0	0	4	50	50	100	3
18CS404	Computer Organization	4	0	0	4	50	50	100	3
18EL002	Technical English	3	0	0	3	50	50	100	2
18CS406	Design and Analysis of Algorithms	4	0	0	4	50	50	100	3
18CSL41	Python Programming Lab	2	0	3	5	50	50	100	3
18CSL42	Web Technologies Lab	0	0	3	3	50	50	100	1
18CSL43	RDBMS Lab	0	0	3	3	50	50	100	1
	TOTAL	26	0	9	35	450	450	900	22

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System)

For

Computer Science and Engineering Effective from the Academic Year 2018-2019 (R18 Regulations) Third Year B.Tech (SEMESTER – V)

Code No. Subject		(Pe	Inst	eme ruction per		S Ex (Max	No. of Credits		
	-	L	Т	P	Total	CIE	SEE	Total Marks	Credits
18CS501	Software Engineering	4	0	0	4	50	50	100	3
18CS502	Automata Theory & Formal Languages	4	0	0	4	50	50	100	3
18CS503	Enterprise Programming	4	0	0	4	50	50	100	3
18CS504	Computer Networks	4	0	0	4	50	50	100	3
18CS505	Essence of Indian Traditional Knowledge	3	0	0	3	50	50	100	0
18CSD1_	Department Elective-I	4	0	0	4	50	50	100	3
18CSL51	C# Programming	2	0	3	5	50	50	100	3
18CSL52	Enterprise ProgrammingLab	0	0	3	3	50	50	100	1
18ELL02	Soft Skills Lab	0	0	3	3	50	50	100	1
18CSMO1	MOOCs								2
	TOTAL	25	0	9	34	450	450	900	22

Department Elective-I					
18CSD11 Advanced Computer Architecture.					
18CSD12	Data Warehousing & Data Mining				
18CSD13 Distributed Computing.					

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System)

For

Computer Science and Engineering Effective from the Academic Year 2018-2019 (R18 Regulations)

Third Year B.Tech (SEMESTER - VI)

Code No. Subject		Scheme of Instruction (Periods per week)				S Ex (Max	No. of Credits		
		L	Т	P	Total	CIE	SEE	Total Marks	Credits
18CS601	Machine Learning	4	0	0	4	50	50	100	3
18CS602	Compiler Design	4	0	0	4	50	50	100	3
18CS603	Cryptography & NetworkSecurity	4	0	0	4	50	50	100	3
18CS604	Middleware Technologies	4	0	0	4	50	50	100	3
18CSD2_	Department Elective-II	4	0	0	4	50	50	100	3
18CSD3_	Department Elective-III	4	0	0	4	50	50	100	3
18CSL61	Machine Learning Lab	0	0	3	3	50	50	100	1
18CSL62	Middleware TechnologiesLab	0	0	3	3	50	50	100	1
18CSLD2_	Dept. Elective-II Lab	0	0	3	3	50	50	100	1
	TOTAL	24	0	9	33	450	450	900	21

Department Elective-II						
18CSD21	Mobile Application Development					
18CSD22	Cloud Programming					
18CSD23	Statistics with R					

Dept. Elective-II Lab						
18CSLD21	Mobile Application					
18CSLD21	Development Lab					
18CSLD22	Cloud Programming Lab					
18CSLD23	Statistics with R Lab					

Department Elective-III						
	18CSD31	Artificial Intelligence				
	18CSD32	Software Project Management				
	18CSD33	Block chain Technologies				

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System)

For

Computer Science and Engineering Effective from the Academic Year 2018-2019 (R18 Regulations)

Forth Year B.Tech (SEMESTER – VII)

Code No.	Subject				struction week)	S Ex (Max	No. of Credits		
		L	Т	P	Total	CIE	SEE	Total Marks	Credits
18CS701	Full Stack Development	4	0	0	4	50	50	100	3
18CS702	Wireless Networks	4	0	0	4	50	50	100	3
18I	Institutional Elective -I	4	0	0	4	50	50	100	3
18CSD4_	Department Elective-IV	4	0	0	4	50	50	100	3
18CS705	Constitution of India	3	0	0	3	50	50	100	0
18CSL71	Unified Modeling Language Lab	2	0	3	5	50	50	100	3
18CSL72	Full Stack Development Lab	0	0	3	3	50	50	100	1
18CSLD4_	Dept. Elective-IV Lab	0	0	3	3	50	50	100	1
18CSP01	Project - I	0	0	4	4	50	50	100	2
18CSII1	Internship						100	100	2
	TOTAL	21	0	13	34	450	550	1000	21

Department Elective-IV					
18CSD41 Cyber Security					
18CSD42	Internet of Things				
18CSD43	Big Data Analytics				

Department Elective-IV Lab					
18CSLD41	Cyber Security Lab				
18CSLD42	Internet of Things Lab				
18CSLD43	Big Data Analytics Lab				

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System) For

Computer Science and Engineering
Effective from the Academic Year 2018-2019 (R18
Regulations)Forth Year B.Tech (SEMESTER – VIII)

Code No.	Subject		Sche Instr (Perio	uctio	on	S Ex (I	No. of Credits		
		L	Т	P	Total	CIE	SEE	Total Marks	
18ME005	Industrial Management &Entrepreneurship Development	4	0	0	4	50	50	100	3
18I	Institutional Elective -II	4	0	0	4	50	50	100	3
18CSD5_	Department Elective - V	4	0	0	4	50	50	100	3
18CSP02	Project - II	0	0	10	10	75	75	150	10
	TOTAL	12	0	10	22	225	225	450	19

	Department Elective – V
18CSD51	Protocols for Secure Electronic Commerce
18CSD52	Artificial Neural Networks and Deep Learning
18CSD53	Natural Language Processing.

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System)

For

Computer Science and Engineering

List of Institutional Electives

Institutional Elective-I						
18CEI01	Air Pollution & Control					
18CEI02	Rural Water Supply And Environment Sanitation					
18CSI01	Java Programming					
18CSI02	Database Management System					
18ECI01	Digital Image Processing					
18ECI02	Embedded Systems					
18EEI01	Application of Wavelets to Engineering Problems					
18EEI02	Industrial Electrical Systems					
18EII01	Principles & Applications of MEMS					
18EII02	Power Plant Instrumentation					
18ITI01	Introduction to Data Analytics					
18ITI02	Cyber Security					
18MEI01	Fluid Power and Control Systems					
18MEI02	Project Management					
18MAI01	Linear Algebra					
18PHI01	Nano-Materials and Technology					
18PHI02	Fiber Optics Communications					

Institutional Elective-II						
18CEI03	Disaster Management					
18CEI04	Remote sensing & GIS					
18CSI03	Python Programming					
18CSI04	Computer Networks					
18ECI03	Wireless Communications					
18ECI04	Artificial Neural Networks					
18EEI03	High Voltage Engineering					
18EEI04	Electrical Energy Conservation and Auditing					
18EII03	Robotics and Automation					
18EII04	Sensors And Signal Conditioning					
18ITI03	Mobile Application Developments					
18ITI04	Web Technologies					
18MEI03	Non-Conventional Energy Sources					
18MEI04	Automobile Engineering					
18MAI02	Graph Theory					
18PHI03	Advanced Materials					
18PHI04	Opto Electronic Devices And Applications					
18ELI03	Professional Communication					

LINEAR ALGEBRA AND ODE I B.Tech – I Semester (Code: 18MA001)							
Lectures	:	4 Periods/Week	Continuous Assessment	:	50		
Final Exam	:	3 hours	Final Exam Marks	:	50		

Pre-Requisite: None.

Course Objectives: Students will be able to

- Solve a system of linear homogeneous and non-homogeneous equations, finding the inverse of a given square matrix and also its Eigen values and Eigen vectors. Identify the type of a given differential equation and select and apply the appropriate
- > analytical technique for finding the solution of first order and higher order ordinary Differential equations.
- Create and analyze mathematical models using first and second order differential equations to solve application problems that arises in engineering.
- Solve a linear differential equation with constant coefficients with the given initial

conditions using Laplace Transforms.

Cours	Course Outcomes : At the end of the course students will be able to							
	Find the eigen values and eigen vectors of a given matrix and its inverse.							
CO2	Apply the appropriate analytical technique to find the solution of a first order ordinary differential equation.							
CO3	Solve higher order linear differential equations with constant coefficients arise in engineering applications.							
CO4	Apply Laplace transforms to solve differential equations arising in engineering							

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes															
		PO'S								PSO'S					
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	-	-	-	-	-	-	-	-	2	-	3	-
CO2	3	3	3	-	-	-	-	-	-	-	-	2	-	2	-
CO3	3	3	3	-	-	-	-	-	-	-	-	2	-	2	-
CO4	3	3	3	_	_	-	_	-	_	-	-	2	_	2	_

Linear Algebra: Rank of a Matrix; Elementary transformations of a matrix; Gauss-Jordan method of finding the inverse;

Consistency of linear System of equations: Rouches theorem, System of linear Nonhomogeneous equations, System of linear homogeneous equations; vectors; Eigen values; properties of Eigen values (without proofs); Cayley-Hamilton theorem (without proof). [Sections: 2.7.1; 2.7.2; 2.7.6; 2.10.1; 2.10.2; 2.10.3; 2.12.1; 2.13.1; 2.14; 2.15.]

UNIT-2 15 Periods

Differential Equations of first order: Definitions; Formation of a Differential equation; Solution of a Differential equation; Equations of the first order and first degree; variables separable; Linear Equations; Bernoulli's equation; Exact Differential equations.

Equations reducible to Exact equations: I.F found by inspection, I.F of a Homogeneous

equation, In the equation M dx+ N dy=0, $\frac{\partial M}{\partial y} \frac{\partial N}{\partial x}$ is a function of x and $\frac{\partial N}{\partial x} \frac{\partial M}{\partial y}$ is a function

Applications of a first order Differential equations: Newton's law of cooling; Rate of

decay of Radio-active materials. [Sections: 11.1; 11.3; 11.4; 11.5; 11.6; 11.9; 11.10; 11.11; 11.12.1; 11.12.2; 11.12.4; 12.6; 12.8] UNIT-3 15 Periods Linear Differential Equations: Definitions; Theorem; Operator D; Rules for finding the complementary function; Inverse operator; Rules for finding the Particular Integral; Working procedure to solve the equation; Method of Variation of Parameters; Applications of Linear Differential Equations: Oscillatory Electrical Circuits. [Sections: 13.1; 13.2.1; 13.3; 13.4; 13.5; 13.6; 13.7;13.8.1;14.1;14.5] UNIT-4 15 Periods Laplace Transforms: Definition; conditions for the existence; Transforms of elementary functions; properties of Laplace Transforms; Transforms of derivatives; Transforms of integrals; Multiplication by tⁿ; Division by t; Inverse transforms- Method of partial fractions; Other methods of finding inverse transforms; Convolution theorem(without proof); Application to differential equations: Solution of ODE with constant coefficients using Laplace transforms. [Sections:21.2.1; 21.2.2; 21.3; 21.4; 21.7; 21.8; 21.9; 21.10; 21.12; 21.13; 21.14; 21.15.1] Text Books: 1. B.S.Grewal, "Higher Engineering Mathematics", 44thedition, Khanna publishers, 2017. References: 1. ErwinKreyszig, "Advanced Engineering Mathematics", 9th edition, John

2. N.P.Bali and M.Goyal, "A Text book of Engineering Mathematics" Laxmi

Wiley & Sons.

Publications, 2010.

ENGINEERING CHEMISTRY (Common to all branches) I B. Tech. – I Semester (Code: 18CY001) Lectures : 4 Periods/Week Continuous : 50 Assessment Final Exam : 3 hours Final Exam Marks : 50

Pre-Requisite: None.

Course Objectives: At the end of the course students will be able to

- With the principles of water characterization and treatment of water for industrial purposes and methods of producing water for potable purposes.
 - To understand the thermodynamic concepts, energy changes, concept of corrosion
- > &
 - its control.
- With the conventional energy sources, solid, liquid and gaseous Fuels & knowledge of knocking and anti-knocking characteristics
- With aim to gain good knowledge of organic reactions, plastics, conducting polymers
- **&** biodegradable polymers.

Course	Course Outcomes: Students will be able to							
CO1	Develop innovative methods to produce soft water for industrial use and potable water							
	at cheaper cost.							
CO2	Apply their knowledge in converting various energies of different systems and							
CO2	protection of different metals from corrosion.							
CO2	Have the capacity of applying energy sources efficiently and economically for							
CO3	various needs.							
CO4	With aim to gain good knowledge of organic reactions, plastics, conducting polymers							
004	& biodegradable polymers.							

Mappir	ng of	Cour	se O	utcon	nes w	ith P	rogra	am O	utcoi	nes &	Progra	m Spe	cific (Outco	mes	
	PO'S													PSO'S		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	3	2	3	-	2	3	-	-	-	-	3	-	-	-	
CO2	2	3	2	3	-	2	3	-	-	-	-	3	-	-	-	
CO3	2	3	2	3	-	2	3	-	-	-	-	3	-	-	-	
CO4	2	3	3	3	-	2	3	-	-	-	-	3	-	-	-	
					U	NIT-	-1						15 Pe	riods		

Introduction: water quality parameters

Characteristics: Alkalinity, Hardness - Estimation & simple neumerical problems,

Boiler Troubles - Sludges, Scales, Caustic embrittlement, boiler corrosion, Priming and foaming;

Internal conditioning- phosphate, calgon and carbonate methods.

External conditioning - Ion exchange process & Zeolite process WHO Guidelines, Potable water, Sedimentation, Coagulation, Filtration.

Disinfection methods: Chlorination, ozonization and UV treatment.

Salinity – Treatment of Brackish water by Reverse Osmosis and Electrodialysis.

UNIT-2 15 Periods

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications.

Corrosion: Types of corrosion - Chemical or dry corrosion, Electrochemical or wet corrosion; Galvanic, stress, pitting and differential aeration corrosion; Factors effecting

			•
CO	rr	OS.	ion

Corrosion control – Cathodic protection, and electro plating (Au) & electrodes Ni plating.

UNIT-3

Fuels: Classification of fuels; Calorific value of fuels (lower, higher)

Solid fuels: Determination of calorific value (Bomb Calorimeter) & related problems, Coal ranking.

Liquid Fuels: Petroleum refining and fractions, composition and uses. Knocking and anti-

knocking Agents, Octane number and Cetane number; Bio fuels- Biodiesel, general methods of preparation and advantages Gaseous fuels: CNG and LPG, Flue gas analysis – Orsat apparatus.

UNIT-4 15 Periods

15 Periods

Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution (SN¹, SN²), addition (Markownikoff's and anti-Markwnikoff's rules), elimination (E₁& E₂), Synthesis of a commonly used drug molecule. (Aspirin and Paracetamol)

Polymers: Conducting polymers: Classification, Intrinsic and Extrinsic conducting polymers and their applications. Plastics: Thermoplasts and thermosetting plastics, Bskelite and PVC. Bio degradable polymers: types, examples-Polyhydroxybuterate (PHB), Polyhydroxybuterate-co-β-hydroxyvalerate (PHBV), applications.

P.C. Jain and Monica Jain, "Engineering Chemistry" DhanpatRai Pub, Co., New Delhi 17th edition (2017). SeshiChawla, "Engineering Chemistry" DhanpatRai Pub, Co LTD, New Delhi 13 th edition, 2013.

References: 1. Essential Of Physical Chemistry by ArunBahl, B.S. Bahl, G.D.Tuli, by ArunBahl, B.S. Bahl, G.D.Tuli, Published by S Chand Publishers, 12th Edition, 2012.

- 2. Text Book of Engineering Chemistry by C.P. Murthy, C.V. Agarwal, A. Naidu B.S. Publications, Hyderabad (2006).
- 3. Engineering Chemistry by K. Maheswaramma, Pearson publishers 2015.

		ENVIRONMENTA	L STUDIES		
		I B. Tech. –I Semester (Co	ode: 18CE001)		
Lectures	:	4 Periods/Week	Continuous	:	50
			Assessment		
Final Exam	:	3 hours	Final Exam Marks	:	50

Pre-Requisite: None.

CO4

Course Objectives: Students will be able to

- > To develop an awareness, knowledge, and appreciation for the natural environment.
- > To understand different types of ecosystems exist in nature.
- > To know our biodiversity.
- > To understand different types of pollutants present in Environment.
- Create awareness among the youth on environmental concerns important in the long-term interest of the society

Course Outcomes: At the end of the course students will be able to CO1 Develop an appreciation for the local and natural history of the area. Hope for the better future of environment in India which is based on many positive factors like Biodiversity, successive use of renewable energy resources and other resources, increasing number of people's movements focusing on environment. CO3 Know how to manage the harmful pollutants. Gain the knowledge of Environment. CO4 Create awareness among the youth on environmental concerns important in the long-term interest of the society.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes **PSO'S** PO'S \mathbf{CO} 1 2 3 5 7 8 9 12 1 2 3 4 6 10 11 CO₁ 3 CO₂ 3 3 2 -_ 3 3 2 CO₃

UNIT-1 15 Periods

Introduction: Definition, Scope and Importance, Need for public awareness. Ecosystems: Definition, Structure and Functions of Ecosystems, types - Forest, Grassland, Desert, Aquatic (Marine, pond and estuaries).

3

3

Biodiversity: Definition and levels of Biodiversity; Values of Biodiversity - Consumptive, Productive, Social, Aesthetic, Ethical and Optional; Threats and Conservation of Biodiversity;

Hot Spots of Biodiversity, Bio-geographical Classification of India, India as a mega diversity nation. Chipko movement case study

UNIT-2 15 Periods

Natural resources: Land: Land as a resource, Causes and effects of land degradation - Soil erosion, Desertification. Forest: Use of forests, Causes and effects of deforestation, Afforestation, Mining - benefits and problems. Water: Uses, floods and drought, Dams - benefits and problems.

Energy: Importance of energy, Environmental Impacts of Renewable and Non-renewable energy resources. Silent Valley Project and Narmada BachaoAndolan case studies Sustainability: Definition, Concept and Equitable use of resources for sustainable development; Rain water harvesting and Watershed management. Fieldwork on Rain water harvesting and Watershed management.

UNIT-3	15 Periods
Pollution: Definition; Causes, effects and control of air, water and nu	iclear pollution;
Chernobyl Nuclear Disaster case study; Solid Waste: urban, Industrial and h	•
Integrated waste management - 3R approach, composting and vermicompos	
Environmental acts: Water and air (Prevention and Control of	
Environmental	1 /
protection act, Forest Conservation act.	
UNIT-4	15 Periods
Environmental issues: Green house effect & Global warming, Ozone layer	depletion, Acid
rains, Green Revolution, Population Growth and environmental quality	, Environmental
Impact Assessment. Environmental Standards (ISO 14000, etc.)	
Case Studies: Bhopal Tragedy, Mathura Refinery and TajMahal, and Rales	gan Siddhi (Anna
Hazare).	
Field work: Visit to a local area to document environmental assets – Ponda	/Forest/Grassland.
Visit to a local polluted site- Urban and industry/ Rural and Agriculture.	
Text Books: 1. "Environmental Studies" by Benny Joseph, Tata McGrav	v-Hill Publishing
Company Limited, New Delhi.	_
2. "Comprehensive environmental studies"- JP Sharma, La:	xmi Publications.
Text Book of environmental Studies – ErachBharucha	
References: 1. "Environmental studies", R.Rajagopalan, Oxford Univer	sity Press.
2. "Introduction to Environmental Science", Anjaneyulu Y,	B S Publications
"Environmental Science", 11th Edition – Thomson Se	
Tylon Millon	•

Tyler Miller.

										GLISI 18EL0					
Lecture	es	: 4	Perio			. – 1 .			tinuo		101)	:	50)	
									essme						
Final E	xam	: 3	hour	S				Fina	ıl Exa	ım Mar	ks	:	50)	
Pre-Re	quisit	e: N	one.												
Course											211				
>	To co		ehenc	the 1	ımpoı	tance	e, barı	ners a	nd st	rategies	s of list	tening s	skills	ın	
>			ate an	d imp	art p	ractic	e Pho	nemi	c syn	nbols, s	tress a	nd into	nation	1.	
>									•			ormano			
>								itexts	throu	ıgh pai	r work	, role p	olays,	grou	p
	work	and	dialo	gue c	onvei	satio	ns								
Course	Oute	ome	s: At	the e	nd of	the o	cours	e stuc	lents	will be	able t	0			
CO1												writing	g skil	ls.	
CO2	Prod	uce a	ccura	te gra	ımma	tical	senter	ices.	,						
CO3			he cor						*.1	1 .		, 1	1 . "1	1	
CO4												ort and			
Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO'S PSO'S															
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	_	-	_	-	-	-	2	2	3	2	2	-	2	-
CO2	-	-	-	-	-	-	-	2	2	3	2	2	-	2	-
CO3	-	-	-	-	-	-	-	2	2	3	2	2	-	2	-
CO4	-	-	-	-		-	-	2	2	3	2	2	-	2	
1.1 Voc	ماريطه	m. D.	27.21.0#			JNIT		on E		ion of	Mauma	Vanles		Perio	
from Ro							ıman	011-110	mmaı	1011 01	inouiis,	VEIUS	∝ F	Aujec	live
1.2 Esse							Conju	nctio	ns, A	rticles					
1.3 Basi															
1.4 Writ	_				Mapp	oing,	Parag	raph	writii	ng (stru	cture-I	Descrip	tive,]	Narra	tive
Exposito	ory &	Persi	ıasıve	e)											
					τ	JNIT	-2						15	Perio	ods
2.1 Voca	abulaı	ry De	evelop	omen				d An	tonyı	ns					
2.2 Esse										non Er	rors				
2.3 Basi		_			_										
2.4 Writ	ing P	ractio	ces: H	lint L	evel	opme	nt, E	ssay \	N ritii	ng					
					I	JNIT	`-3						15	Perio	ods
3.1 Voca	abulaı	ry De	evelo	omen				bstitu	ites						
3.2 Esse	ntial	Gran	ımar:	Tens	ses, V	Voice	S								
3.3 Basi							ctures	(Sim	ple, (Comple	ex, Cor	npound	d)		
3.4 Writ	ing P	racti	ces: N	Note I	Vlakı	ng									
					J	JNIT	`-4						15	Perio	ods
4.1 Voca	abulaı	ry De	evelo	omen				confu	sed						
4.2 Esse		•	•							rors					
4.3 Basic									ımble	d Sente	ences				
11/mating	Pract	ices:	Para	phras	ıng 8	Sum	ımari	zıng							

Text Books :	1. Communication Skills, Sanjay Kumar & PushpaLatha. Oxford
	University Press:2011.
	2. Practical English Usage, Michael Swan. Oxford University Press:1995.
	3. Remedial English Grammar, F.T. Wood. Macmillan: 2007.
	4. Study Writing, Liz Hamplyons & Ben Heasley. Cambridge University
	Press:2006
-	

										PHICS 18ME					
Lecture	es	:	4 Per	iods/	Week					Continu			:	50	
Final E	lyom.	:	3 hou	140						Assessm	nent kam Marl	Iza	:	50	
Fillal E	XaIII	•	3 1100	IIS					Г	mai Ex	Kaiii Iviaii	KS	•	30	
Pre-Re	quisit	te: N	one.												
Course	Obi	ectiv	es: S	tuder	ıts w	ill be	e able	e to							
>									eng	ineerin	g graphi	ics in	the	field	1 0
	engir					1			8	•	0 0 1				
\triangleright											au of Ind				
>								nstru	ctions	s, Engi	neering	curve	s, ortł	nogra	phi
ĺ				picto				0		1.	0		, .		
							ntatio	n of	point	s, lines	s, surfac	es an	d sol	ıds b	asi
	araiti	ng sk	AIIIS O	f Aut	o CA	ש									
Course	Out	oma	c• A t	the e	nd o	fthe	courc	e ctu	lente	will be	able to				
CO1												CAL	`		
CO2											ing Auto	CAL	,		
										nd rho					
CO4											vs of sim	nle ol	hiects		
											Program				m
							PO's				• 9 - ···	- ~ p		PSO'	
			2	4	5	6	7	8	9	10	11	12	1	2	3
CO	1	2	3	4									_		
CO CO1	1		1	-	_	_		_	_	_	_	_	1	1	
CO1	1	2	1	-	-	-	-	-	-	<u>-</u>	-	-	1 2	1	
CO1 CO2	1 3	2 2	1 1	-	-		-	-	-	-	-	-	2	3	2
CO1 CO2 CO3	1 3 1	2 2 2	1 1 3	-	-		-			- - -		- - -	2	3	2
CO1 CO2	1 3	2 2	1 1	- - -	-	- - -	-		-	- - -	- - -	- - -	2 1 1	3 2	2
CO1 CO2 CO3 CO4	1 3 1 1	2 2 2 2	1 1 3 1		- - - - U	- - - - - - -			-	-			2 1 1 15 Pe:	3 3 2 riods	2
CO1 CO2 CO3 CO4	1 3 1 1	2 2 2 2 2	1 1 3 1		- - - - U				-	-			2 1 1 15 Pe:	3 3 2 riods	2
CO1 CO2 CO3 CO4	1 3 1 1 DUCT	2 2 2 2 2 TION proceed	1 1 3 1 1 : Introdures	- - - -	- - - - Ution	to D			-	-	- - - - and thei		2 1 1 15 Pe:	3 3 2 riods	2
CO1 CO2 CO3 CO4 INTROI construction TRO	1 3 1 1 DUCTotion production prod	2 2 2 2 2 2 TION	1 1 3 1 1 : Introdures N TO	roduc	- - - - tion	to E	Orawi	- - - - ng in	- - - strun	- nents a			2 1 1 15 Pe:	3 3 2 riods	
CO1 CO2 CO3 CO4 INTROI construction TRO Basics of	1 3 1 1 DUCTotion p DUC of she	2 2 2 2 2 TION procee	1 1 3 1 1 : Introduces N TO ection	- - - - roduc AUT	Ution	to E AD: ols, M	Orawi Modif	- - - ng in	- - strun	nents a	ning	r use	2 1 1 15 Peres, ge	3 3 2 riods	2 2 2 cric
CO1 CO2 CO3 CO4 INTROI construction TRO Basics of METHO	1 3 1 1 DUCTotion p DUC of she	Z Z Z Z Z Z TION Orocco TION et sel OF PF	1 1 3 1 1 : Introdures N TO ection ROJE	roduc AUT n, Dra	Ution	to E AD: ols, M Prine	Orawi Modify	ng in	- - strun	nents a	ning First an	r use	2 1 1 15 Peres, ge	3 3 2 riods	zric
CO1 CO2 CO3 CO4 INTROI construction TRO Basics of METHO	1 3 1 1 DUCTotion p DUC of she	Z Z Z Z Z Z TION Orocco TION et sel OF PF	1 1 3 1 1 : Introdures N TO ection ROJE	roduc AUT n, Dra	Ution	to E AD: ols, M Prine	Orawi Modify	ng in	- - strun	nents a	ning First an	r use	2 1 1 15 Peres, ge	3 3 2 riods	2 2 2 cric
CO1 CO2 CO3 CO4 INTROI construction TRO Basics of METHO projecti	DUCTotion production production production production production sheet on or	2 2 2 2 2 7ION proced TION et sell	1 1 3 1 1 : Introduces N TO ection ROJE ts. Pro	roduc AUT n, Dra CTIC ojecti	tion TOCA w to ONS: on or	to D AD: ols, M Prince f strai	Modify ciples ight li	ng in	- - strun s, din projec Γrace	nents anension etion - es of lin	ning First an	r use	2 1 1 15 Pers, ge	3 3 2 riods comet	rric

UNIT-3 15 Periods
PROJECTIONS OF SOLIDS: Projections of Cubes, Prisms, Pyramids, Cylinders and Cones

Inclined to one plane

15 Periods UNIT-4

ISOMETRIC PROJECTIONS: Isometric Projection and conversion of Orthographic views into isometric views. (Treatment is limited to simple objects only).

15 Periods UNIT-5

ORTHOGRAPHIC PROJECTIONS: Conversion of pictorial views into Orthographic views. (Treatment is limited to simple castings).

Text Books :	1. Engineering Drawing with AutoCAD by Dhananjay M. Kulkarni (PHI publication)
	2. Engineering Drawing by N.D. Bhatt & V.M. Panchal. (Charotar PublishingHouse, Anand). (First angle projection)
	1 donshing flouse, Anana). (This angle projection)
References:	1. Engineering Drawing by Dhananjay A Jolhe, Tata McGraw hill
	publishers
	2. Engineering Drawing by Prof.K.L.Narayana& Prof. R.K.Kannaiah.

	CHEMISTRY LAB											
I B.Tech –I Semester (Code: 18CYL01)												
Lectures	:	3 Periods/Week	Continuous	:	50							
			Assessment									
Final Exam	:	3 hours	Final Exam Marks	:	50							

Pre-Requisite: None.

Course Objectives: Students will be able to

- The basics of chemistry lab to carry out the qualitative and quantitative analysis of any given sample.
- To determine the percentage purity of washing soda bleaching powder and given salt. The measurement of quality parameters of water to check its suitability for domestic and industrial purpose
- To estimate the characteristic properties of oil for its use at various level
- To synthesize the Soap, Resin and Aromatic Ester followed by their applications. The use and utility of some instruments like PH meter, Conductometer and Potentiometer for various applications

Course	e Outcomes: At the end of the course students will be able to									
CO1	J .									
CO2	Estimate purity of washing soda, bleaching powder and quantity of Iron and other salts.									
CO3	Gain the knowledge regarding the quality parameters of water & oil like Salinity, hardness, alkalinity saponification and iodine value.etc.									
CO4	Prepare high polymers and soap & Instrumentation techniques									
Mappi	ing of Course Outcomes with Program Outcomes & Program Specific Outcomes									

Mappii	ng of	Cour	se O	utcon	nes w	ith P	rogra	ım O	utcor	nes & 1	Progra	m Spec	enfic (ific Outcomes			
		PO's													PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO2	2	2	2	2	-	2	-	-	-	-	1	2	-	-	-		
CO3	2	2	2	2	-	2	-	-	-	-	1	2	-	-	-		
CO4	2	2	2	2	-	-	-	-	-	-	-	2	-	-	-		

LIST OF EXPERIMENTS

- 1. Introduction to Chemistry Lab (the teachers are expected to teach fundamentals like Calibration of Volumetric Apparatus, Primary, Secondary Solutions, Normality, Molarity, Molality etc. and error, accuracy, precision, theory of indicators, use of volumetric titrations).
- 2. Volumetric Analysis:
 - a. Estimation of Washing Soda.
 - b. Estimation of Active Chlorine Content in Bleaching Powder
 - c. Estimation of Mohr's salt by permanganometry.
 - d. Estimation of given salt by using Ion-exchange resin using Dowex-50.
- 3. Analysis of Water:
 - a. Determination of Alkalinity of Tap water.
 - b. Determination of Total Hardness of ground water sample by EDTA method
 - c. Determination of Salinity of water sample.
- 4. Estimation of properties of oil:
 - a. Estimation of Acid Value
 - b. Estimation of Saponification value.

5. Preparations: a. Preparation of Soap b. Preparation of Urea-formaldehyde resin c. Preparation of Phenyl benzoate. 6. Demonstration Experiments (Any two of the following): a. Determination of p^H of given sample. b. Determination of conductivity of given sample by conductometer. c. Potentiometric Determination of Iron. 1. Practical Engineering Chemistry by K.Mukkanti, Etal, B.S. Publicaitons, Text Books: Hyderabad, 2009. 2. Inorganic quantitative analysis, Vogel, 5th edition, Longman group Ltd. London, 1979. 1. Text Book of engineering chemistry by R.n. Goyal and HarrmendraGoel. References: 2. A text book on experiments and calculations- Engineering Chemistry.

3. Instrumental methods of chemical analysis, Chatwal, Anand, Himalaya

S.S.Dara.

Publications.

WORKSHOP I B. Tech. – I Semester (Code: 18MEL02)										
Lectures	:	3 Periods/Week	Continuous Assessment	:	50					
Final Exam	:	3 hours	Final Exam Marks	:	50					

Pre-Requisite: None.

Course Objectives: Students will be able to

- To impart student knowledge on various hand tools for usage in engineering applications.
- ➤ Be able to use analytical skills for the production of components.
- > Design and model different prototypes using carpentry, sheet metal and welding.
- > Electrical connections for daily applications.
- > To make student aware of safety rules in working environments.

Course	Course Outcomes: At the end of the course students will be able to									
CO1	Make half lap joint, Dovetail joint and Mortise & Tenon joint.									
CO2	Produce Lap joint, Tee joint and Butt joint using Gas welding.									
CO3	Prepare trapezoidal tray, Funnel and T-joint using sheet metal tools.									
CO4	Make connections for controlling one lamp by a single switch, controlling two lamps by a single switch and stair case wiring.									

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's									PSO's					
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2	-	2	-	2	-	-	1	-	2	1	2	3
CO2	2	3	2	-	2	-	2	-	-	1	-	2	1	2	3
CO3	2	3	2	-	2	-	2	-	-	1	-	1	1	2	3
CO4	-	-	2	-	2	-	2	-	-	1	-	1	-	-	2

- 1. Carpentry
 - a. Half Lap joint
 - b. Dovetail joint
 - c. Mortise & Tenon joint
- 1. Welding using electric arc welding process/gas welding
 - a. Lap joint
 - b. Tee joint
 - c. Butt joint
- 2. Sheet metal operations with hand tools
 - a. Trapezoidal tray
 - b. Funnel
 - c. T-joint
- 3. House wiring
 - a. To control one lamp by a single switch
 - b. To control two lamps by a single switch

Stair-case wiring

Text Books	1. P.Kannaiah and K.L.Narayana, Workshop Manual, SciTech Publishers,
Text Books.	2009.
	2. K. Venkata Reddy, Workshop Practice Manual, BS Publications, 2008

	ENGLISH COMMUNICATION LAB												
	I B. Tech. – I Semester (Code: 18ELL01)												
Lectures	:	3 Periods/Week	Continuous	:	50								
			Assessment										
Final Exam	:	3 hours	Final Exam Marks	:	50								

Pre-Requisite: None.

Course Objectives: Students will be able to

- > To comprehend the importance, barriers and strategies of listening skills in English.
- ➤ To illustrate and impart practice Phonemic symbols, stress and intonation.
- > To practice oral skills and receive feedback on learners' performance.
- To practice language in various contexts through pair work, role plays, group work and dialogue conversations

Course	Course Outcomes: At the end of the course students will be able to									
CO1	Better understand the nuances of English language through audio- visual experience and group activities.									
CO2	Develop neutralization of accent for intelligibility.									
CO3	Build confidence to enhance their speaking skills.									
CO4	Use effective vocabulary both in formal and informal situations.									

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's									PSO's					
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	-	-	-	3	2	2	2	-	2	-
CO2	-	-	-	-	-	-	-	-	3	2	2	2	-	2	-
CO3	-	-	-	-	-	-	-	-	3	2	2	2	-	2	-
CO4	-	-	-	-	-	-	-	-	3	2	2	2	-	2	-

- 1.1 Listening Skills; Importance Purpose- Process- Types
- 1.2 Barriers to Listening
- 1.3 Strategies for Effective Listening
- 2.1 Phonetics; Introduction to Consonant, Vowel and Diphthong sounds
- 2.2 Stress
- 2.3 Rhythm
- 2.4 Intonation
- 3.1 Formal and Informal Situations
- 3.2 Expressions used in different situations
- 3.3 Introducing Yourself & Others-Greeting & Parting-Congratulating-Giving Suggestions & Advices-Expressing Opinions-Inviting People-Requesting-Seeking Permission-Giving Information- Giving Directions- Sympathizing- Convincing People- Complaining & Apologizing-Thanking Others- Shopping- Travelling- Conversational Gambits
- 4.1 JAM Session
- 4.2 Debates
- 4.3 Extempore

Text Books:	 Communication Skills, Sanjay Kumar and Pushpa Lata. Oxford UniversityPress. 2011 Better English Pronunciation, J.D. O' Connor. Cambridge University Press:1984 New Interchange (4rth Edition), Jack C Richards. Cambridge University Press:2015 English Conversation Practice, Grant Taylor. McGraw Hill:2001
Software:	1. Buzzers for conversations, New Interchange series
	2. English in Mind series, Telephoning in English
	3. Speech Solutions, A Course in Listening and Speaking

Pre-Requisite: None.

Course Objectives: Students will be able to

- Solve algebraic, transcendental and system of linear equations with the help of numerical methods.
- Apply the techniques numerical integration whenever and wherever routine methods are not applicable and solve the first order ordinary differential equations numerically with the given initial condition using different methods.
- Evaluate double and triple integrals and apply them to find areas and volumes.
- Evaluate the line, surface and volume integrals and learn their inter-relations and applications.

Course	Course Outcomes : At the end of the course students will be able to									
CO1	Solve non-linear equations and system of linear equations with the help of Numerical techniques.									
CO2	Solve the first order ordinary differential equations numerically with the given initial condition.									
CO3	Find the area and volume of plane and three dimensional figures using multiple integrals.									
CO4	Apply vector integral theorems to obtain the solutions of engineering problems involving circulation, flux, and divergence in vector fields.									

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's										PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	-	-	-	-	-	-	-	-	2		3	
CO2	3	3	2	-	-	-	-	-	-	-	-	2		3	
CO3	3	3	2	-	-	-	-	-	-	_	-	2		2	
CO4	3	3	2	-	-	_	-	_	-	-	-	2		3	

UNIT-1 15 Periods

Numerical Solution of Equations: Introduction: Solution of algebraic and transcendental equations: Bisection method, Method of false position, Newton-Raphson method; Useful deductions from the Newton-Raphson formula; Solution of linear simultaneous equations; Direct methods of solution: Gauss elimination method, Gauss-Jordan method, Factorization method; Iterative methods of solution: Jacobi's iterative method, Gauss-Seidel iterative method.

[Sections: 28.1; 28.2; 28.3; 28.5; 28.6; 28.7.1; 28.7.2].

UNIT-2 15 Periods

Finite differences and Interpolation: Finite differences: Forward differences, Backward differences; Newton's interpolation formulae: Newton's forward interpolation formula, Newton's backward interpolation formula; Interpolation with unequal intervals; Lagrange's interpolation formula; Divided differences; Newton's divided difference formula; Numerical integration; Trapezoidal rule; Simpson's one-third rule; Simpson's three-eighth rule; Numerical solution of ODE's: Introduction; Picard's method; Euler's method; Runge-Kutta method.

[Sections:29.1; 29.1-1; 29.1.2; 29.6; 29.9; 29.10; 29.11; 29.12; 30.4; 30.6; 30.7; 30.8; 32.1; 32.2; 32.4; 32.7].

	UNIT-3		15 Periods
N / 14 1 T / 1	D 11 ' 4 1 01	C 1 C'	' D 11 ' 1

Multiple Integrals: Double integrals; Change of order of integration; Double integrals in polar coordinates; Area enclosed by plane curves; Triple integrals; Volumes of solids: Volumeas Triple integrals, Change of variables.

[Sections: 7.1; 7.2; 7.3; 7.4; 7.5; 7.6.2; 7.7.2].

UNIT-4 15 Periods

Vector calculus and its applications: Scalar and vector point functions; Del applied to scalar point functions-Gradient: Definition, Directional derivative; Del applied to vector point functions: Divergence, Curl; Line integral; Surfaces: Surface integral, Flux across a surface; Green's theorem in the plane (without proof); Stokes theorem (without proof); Gauss divergence theorem (without proof).

[Sections: 8.4; 8.5.1; 8.5.3; 8.6; 8.11; 8.12; 8.13; 8.14; 8.16]

Text Books :	1. B.S.Grewal, "Higher Engineering Mathematics", 44thedition, Khanna publishers, 2017.
References:	1. ErwinKreyszig, "Advanced Engineering Mathematics", 9th edition,
	John Wiley & Sons.
	2. N.P.Bali and M.Goyal, "A Text book of Engineering Mathematics"
	Laxmi Publications, 2010.

SEMICONDUCTOR PHYSICS

I B. Tech. II-semester: CODE:18PH001

	(Common for CSE, 11, EEE, & EIE)										
Lectures	:	4 Periods/Week	Continuous	:	50						
			Assessment								
Final Exam	:	3 hours	Final Exam Marks	:	50						

Pre-Requisite: None.

Course Objectives: Students will be able to

- This unit aim to build the foundation and inspires interest of freshmen into electrical and electronics and to focus on fundamental concepts and basic principles regarding electrical conduction.
- This unit provides various properties of semiconductor materials and their importance in various device fabrications
- This unit aim to educate the student on various opto-electronic devices and their applications.
- This unit provide information about the principles of processing, manufacturing and characterization of nano materials, nanostructures and their applications

Course Outcomes: At the end of the course students will be able to

- CO1 Recognize the concepts of hole, effective mass of the electron in semiconductors, and band structure of solids.
- CO2 Know the concept of Fermi level and various semiconductor junctions.
- CO3 Knowledge the principles of operation and applications of various opto-electronic devices.
- CO4 | Recognize the significance of nanomaterials and their distinctive features.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's												PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	-	2	-	-	-	-	-	-	-	-	2	-	-	
CO2	3	2	2	2	-	- 1	-	-	-	-	-	-	2	- 1	-	
CO3	3	_	_	2	2	_	2	_	_	_	2	_	2	_	_	
CO4	3	-	-	2	2	1	-		1	-	2	2	2	1	-	
	UNIT-1													15 Periods		

ELECTRONIC MATERIALS:

Somerfield free electron theory, Fermi level and energy, density of states, Failure of free electron theory (Qualitative), Energy bands in solids, E-K diagrams, Direct and Indirect band gaps. Types of Electronic materials: Metals, Semi conductors and Insulators, OccupationProbability, effective mass, Concept of hole

UNIT-2 15 Periods

15 Periods

SEMICONDUCTORS:

Introduction to semiconductors, intrinsic and extrinsic semiconductors, carrier concentrations, Fermi level and temperature dependence, Continuity equation, Diffusion and drift, P-N junction (V-I characteristics), Metal – Semiconductor junction (Ohmic and Schottky), Semiconductor materials of interest for opto- electronic devices.

UNIT-3

OPTO-ELECTRONIC DEVICES AND DISPLAY DEVICES:

Photo voltaic effect, principle and working of LED, Applications of Photo diode, Solar cell, PIN & APD Diode, Liquid crystal display, Opto electric effect: Faraday Effect and Kerr effect.

	UNIT-4	15 Periods									
NANO-MATE	ERIALS:										
Introduction to nano technology, quantum confinement, surface to volume ratio, properties											
ofnano materials, synthesis of nano-materials: CVD, sol-gel methods, laser ablation.											
Carbon nano	tubes: types, properties, applications. Characterization of	nano materials:									
XRD, SEM, a	oplications of nano materials.										
Text Books :	1. A text book of engineering physics by Avadhanulu	and Kshirsagar									
	S.Chand & Co. (2013)										
	2. Applied physics by Dr.P.Srinivasa Rao. Dr.K.Muralidh										
	3. Introduction to solid state state physics, Charles Kittel,	8 th edition									
	4. Solid state physics, S.O. Pillai										
References:	1. Text book on Nanoscience and Nanotechnology (2013)	: B.S. Murty, P.									
	Shankar, Baldev Raj, B.B. Rath and J. Murday, Spi	ringer Science &									
	Business Media.	-									
	2. Basic Engineering Physics, Dr.P.Srinivasa Rao. I	Dr.K.Muralidhar.									
	Himalaya Publications, 2016										

PROFESSIONAL ETHICS & HUMAN VALUES (Common for all branches) I B. Tech. – II Semester (Code:18CS203) Lectures 4 Periods/Week Continuous 50 Assessment Final Exam 3 hours Final Exam Marks 50 Pre-Requisite: None. Course Objectives: Students will be able to Comprehend a specific set of behavior and values any professional must know and must abide by, including confidentiality, honesty and integrity. Understand engineering as social experimentation. Know, what are safety and Risk and understand the responsibilities and rights of an engineer such as collegiality, loyalty, bribes/gifts. Recognize global issues visualizing globalization, cross-cultural issues, computer ethics and also know about ethical audit Discuss case studies on Bhopal gas tragedy, Chernobyl and about codes of Institute of Engineers, ACM **Course Outcomes:** At the end of the course students will be able to Acquires the basic concepts of Professional ethics and human values & Students CO₁ also gain the connotations of ethical theories. CO2 Knows the duties and rights towards the society in an engineering profession Would realize the importance and necessity of intellectual property rights. CO₃ Debate on Ethical Theories like Kohlberg's Theory, Gilligan's Argument. CO4 Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's \mathbf{CO} 1 2 3 5 7 8 9 10 11 12 1 2 3 4 6 **CO1** 3 3 3 3 CO₂ 3 3 3 3 **CO3** 3 3 3 3 **CO4** 3 3 3 3 UNIT-1 15 Periods Human Values: Morals, Values and Ethics, Integrity, Work Ethics, Service and Learning, Civic Virtue, Respect for Others, Living Peacefully, Caring and Sharing, Honesty, Courage, Value Time, Cooperation, Commitment and Empathy, Spirituality, Character. Engineering Ethics: History of Ethics, Engineering Ethics, Consensus and Controversy, Profession and Professionalism, Professional Roles of Engineers, Self Interest, Customs and Religion, Uses of Ethical Theories, Professional Ethics, Types of Inquiry, Kohlberg's Theory, Gilligan's Argument, Heinz's Dilemma. Engineering as Social Experimentation: Comparison with Standard Experiments,

Engineering as Social Experimentation: Comparison with Standard Experiments, Knowledge Gained, Conscientiousness, Relevant Information, Learning from the Past, Engineers as Managers, Consultants, and Leaders, Accountability, Roles of Codes, Codes and Experimental Nature of Engineering.

UNIT-2	15 Periods

Engineers' Responsibility for Safety and Risk: Safety and Risk, Types of Risks, Safety and the Engineer, Designing for Safety, Risk-Benefit Analysis, Accidents. Responsibilities and Rights: Collegiality, Two Senses of Loyalty, Obligations of Loyalty, Misguided Loyalty, Professionalism and Loyalty, Professional Rights, Professional Responsibilities, Conflict of Interest, Self-interest, Customs and Religion, Collective Bargaining, Confidentiality, Acceptance of Bribes/Gifts, Occupational Crimes, Whistle Blowing.

UNIT-3 15 Periods

Global Issues: Globalization, Cross-cultural Issues, Environmental Ethics, Computer Ethics, Weapons Development, Ethics and Research, Analyzing Ethical Problems in Research, Intellectual Property Rights (IPRs).

Ethical Audit: Aspects of Project Realization, Ethical Audit Procedure, The Decision Makers, Variety of Interests, Formulation of the Brief, The Audit Statement, The Audit Reviews.

UNIT-4 15 Periods

Case Studies: Bhopal Gas Tragedy, The Chernobyl Disaster.

Appendix 1: Institution of Engineers (India): Sample Codes of Ethics.

Appendix 2: ACM Code of Ethics and Professional Conduct.

Text Books: "Professional Ethics & Human Values", M.Govinda Rajan, S.Natarajan, V.S.Senthil Kumar, PHI Publications 2013.

References: "Ethics in Engineering", Mike W Martin, Ronald Schinzinger, TMH Publications.

	DIGITAL LOGIC DESIGN											
I B.Tech – II Semester(Code: 18CS204)												
Lectures	:	4 Periods/Week	Continuous	:	50							
			Assessment									
Final Exam	:	3 hours	Final Exam Marks	:	50							

Pre-Requisite: Basic Computer Knowledge.

Course Objectives: Students will be able to

- Understand of the fundamental concepts and techniques used in digital electronics, and Number conversions.
- Understand basic arithmetic operations in different number systems and simplification of Boolean functions using Boolean algebra and K-Maps.
- Simplify the Boolean functions using Tabulation method, Concepts of combinational logic circuits.
- ➤ Understand the concepts of Flip-Flops, Analysis of sequential circuits
- > Understand the concepts of Registers, Counters and classification of Memory units.

Course Outcomes: At the end of the course students will be able to Understand different number systems and binary codes and conversion between number system. Understand and apply boolean algebra and K-maps to simplify boolean functions Understand and apply tabulation method to simplify the boolean functions. Understand, analyze and design various combinational circuits. Know the fundamentals of various flip flops and analyze and design sequential curcuits. Understand various registers, design various counters. Design various PLD's for boolean functions.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's 2 CO 2 5 7 9 1 3 4 6 8 10 11 12 1 3 **CO1** 3 3 3 _ _ 3 _ _ 3 3 3 CO₂ 3 CO₃ 3 3 3 3 **CO4** 3 3 3 3 _ UNIT-1 15 Periods

DIGITAL SYSTEMS AND BINARY NUMBERS: Digital System, Binary Numbers, Number base Conversions, Octal and Hexadecimal Numbers, Complements of Numbers, Signed Binary Numbers, Binary Codes, Binary Storage and Registers, Binary Logic, Error Detection and Correction: 7 bit Hamming Code.

BOOLEAN ALGEBRA & LOGIC GATES: Introduction, Basic definitions, Axiomatic definition of Boolean algebra, Basic theorems and properties of Boolean algebra, Boolean functions, Canonical and Standard Forms, Other Logic Operations, Digital logic gates.

GATE –LEVEL MINIMIZATION: Introduction, The map method, Four-variable K-Map, Product-of-Sums Simplification, Don't –Care Conditions, NAND and NOR implementation, Other Two level Implementations.

UNIT-2 15 Periods

MINIMIZATION: The Tabulation method, Determination of prime implicants, Selection of prime-implicants.

COMBINATIONAL LOGIC: Introduction, Combinational Circuits, Analysis Procedure, Design Procedure, Binary Adders - Subtractor, Decimal Adder, Magnitude Comparator, Decoders, Encoders, Multiplexers.

UNIT-3 15 Periods

SYNCHRONOUS SEQUENTIAL LOGIC: Introduction, Sequential Circuits, Storage Elements - Latches, Storage Elements -Flip Flops, Analysis of Clocked Sequential Circuits: State Equations, State Table, State Diagram, Flip Flop Input Equations, Analysis with D, JK and T Flip Flops; State reduction and Assignment, Design Procedure.

with D, JK and T Flip Flops; State reduction and Assignment, Design Procedure.												
UNIT-4	15 Periods											
REGISTERS and COUNTERS: Registers, Shift registers, Ri	pple Counters,											
Synchronous Counters.												
MEMORY and PROGRAMMABLE LOGIC: Introduction, Random Access Memory:												
Read and Write Operations, Types of Memories; Read Only Memory, Programmable												
LogicDevices: PROM, PLA, PAL.												
Text Books : 1. M. Morris Mano, Michael D. Ciletti, "Digital Design", 5 ^t	^h Edition, Prentice											
Hall, 2013.												
2. A. Anand Kumar, "fundamentals of digital circuits", 4 th	Edition, PHI.											
References: 1. John F. Wakerly, "Digital Design: Principles and Practi	ces", 4 th Edition,											
Pearson, 2006.												
2. Brian Holdsworth, Clive Woods, "Digital Logic Desi	gn", 4th Edition,											
Elsevier Publisher, 2002.												
3. Donald E Givone, "digital principles and design", TMT.												

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (Common for CSE, IT, ME branches) I B. Tech. – II Semester (Code: 18EE001) Lectures : 4 Periods/Week Continuous : 50 Assessment Final Exam : 3 hours Final Exam Marks : 50

Pre-Requisite: None.

Course Objectives: Students will be able to

- To understand basic Laws in circuits, analysis of simple DC circuits, Theorems and its applications, fundamentals of AC circuits & its analysis and concepts of three phase balanced circuits
- To learn basic properties of magnetic materials and its applications.
- To understand working principle, construction, applications and performance of DC machines, AC machines.
- To learn basic concepts, working principal, characteristics and applications of semiconductor diode and transistor family.
- To gain knowledge about the static converters and regulators.
- To learn basic concepts of power transistors and operational amplifiers closer to practical applications.

Course Outcomes: At the end of the course students will be able to Explain basic Laws in circuits, analysis of simple DC circuits, Theorems and its CO₁ applications, fundamentals of AC circuits. Compare basic properties of magnetic materials and applications. CO₂ Assess the working principle, construction, applications and performance of DC CO₃ machines, AC machines. Explain basic concepts, working principal, characteristics and applications of CO₄ semiconductor diode and transistor family. CO5 Differentiate the static converters and regulators. Illustrate the Transistor family and Operational amplifiers. CO6

Mappir	Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes														
				PSO's											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO2	2	3	1	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-	3	-	-
CO5	3	3	2	-	-	-	-	-	-	-	-	-	3	-	-

UNIT-1 15 Periods

Electrical Circuits

CO6

Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-2	15 Periods

Electrical Machines

Magnetic materials, BH characteristics, Construction, working of DC machines, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction and working of synchronous generators.

UNIT-3 15 Periods

Semiconductor Diodes and applications

Semiconductor materials, semiconductor diode, Resistance levels, Diode equivalent circuits, Zener diode, Light emitting diode, Load line analysis, half wave rectification, Full wave rectification, Bridge rectifier, Use of capacitor filter in rectifier, Zener diode voltage regulator, Clippers, Clampers

Bipolar Junction Transistors

Transistor construction and operation, Common base configuration, Transistor amplifying action, Common emitter configuration, Common collector configuration, Limits of operation.DC load line and bias point, Voltage divider bias of transistor.

UNIT-4 15 Periods

Field Effect Transistors

Construction and characteristics of JFET and MOSFET

Operational Amplifiers

Introduction, Differential and common mode operation, OP-AMP Basics, Practical OP-AMP circuits: Inverting amplifier, Non inverting amplifier, Unity follower, summing amplifier, Integrator and differentiator

Text Books :	1. S.K. Bhattacharya, "Basic Electrical and Electronics Engineering",													
	PearsonPublications													
	2. Robert L. Boylestad & Louis Nashelsky, 'Electronic Devices and circuit													
	theory', PHI Pvt.Limited, 11 th edition "Basics of Electrical and Electronics Engineering", Nagsarkar T K and													
	Sukhija M S, Oxford press University Press.													
References:	1. David A. Bell, 'Electronic Devices and Circuits', oxford publisher,5th													
	edition													
	2. "Basic Electrical, Electronics and Computer Engineering",													
	Muthusubramanian R, Salivahanan S and Muraleedharan K A, Tata													
	McGraw Hill, Second Edition, (2006).													

Pre-Requisite: BASIC MATHEMATICS

Course Objectives: Students will be able to

- Understand basic concepts of C Programming such as: C-tokens, Operators, Input/output, and Arithmetics.
- Develop problem-solving skills to translate 'English' described problems into programs written using C language.
- ➤ Use Conditional Branching, Looping, and Functions.
- Apply pointers for parameter passing, referencing and differencing and linking data structures.
- Manipulate variables and types to change the problem state, including numeric, character, array and pointer types, as well as the use of structures and unions, File.

Course Outcomes: At the end of the course students will be able to CO1 Formulate simple algorithms for arithmetic and logical problems and remember the basics of computer fundamentals of computer history. Translate the algorithms to programs also to test and execute the programs and correct syntax and logical errors and implementing conditional branching, iteration and recursion. CO3 Analyze the problem for its decomposition into functions. Understand the file handling and dynamic memory allocation using c programming language.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

				PSO's											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3	-
CO2	3	3	3	-	-	-	-	-	-	-	-	3	3	3	-
CO3	3	3	3	-	-	-	-	-	-	-	-	3	3	3	-
CO4	3	3	3	-	-	-	-	-	-	-	-	3	3	3	-
					II	NIT.	-1						15 Periods		

Overview of C, Constants, Variables and Data Types, Operators and Expressions, Managing I/O Operations. Decision Making and Branching.

Programming Exercises for Unit I: C-expressions for algebraic expressions, evaluation of arithmetic and Boolean expressions. Syntactic and logical errors in a given program, output of a given program, values of variables at the end of execution of a program fragment, Programs using Scientific and Engineering formulae. Finding the largest of the three given numbers. Computation of discount amount on different types of products with different discount percentages. Finding the class of an input character, finding the type of triangle formed with the given sides, computation of income-tax, finding given year is leap year or not, and conversion of lower case character to its upper case.

L		
	UNIT-2	15 Periods

Decision Making and Looping, Arrays, Character Arrays and Strings.

Programming Exercises for Unit II: To print the sum of the digits of a given number and to display the image of a given number. To find whether a given number is prime, printing Fibonacci sequence and to find prime factors of a given number. To print graphic patterns of symbols and numbers. To find the length of a string, compare strings, reverse a string, copy a string and to find whether the given string is palindrome or not with and without using String Handling Functions. Transpose of a matrix and sorting of names using arrays.

UNIT-3 15 Periods

User-defined Functions, Structures and Unions, Pointers

Programming Exercises for Unit - III: Functions - Recursive functions to find factorial & GCD (Greatest Common Divisor), string operations using pointers and pointer arithmetic. Swapping two variable values. Sorting a list of student records on register number using arrayof pointers

UNIT-4 15 Periods

File Management in C, Dynamic Memory Allocation, Preprocessor

Programming Exercises for Unit - IV: Operations on complex numbers, and to read an input file of marks and generate a result file, sorting a list of names using command line arguments. Copy the contents of one file to another file. Allocating memory to variables dynamically.

Text Books:	Programming in ANSI C by E.Balaguruswamy, Fifth Edition.													
References:	1. Kernighan BW and Dennis Ritchie M, "C programming language",													
	2nded, Prentice Hall.													
	2. Yashavant P. Kanetkar, "Let us C", BPB Publications.													
	3. Herbert Schildt, "C: The Complete Reference", 4th edition, Tata													
	Mcgraw-Hill.													
	4. Ashok N.Kamthane, "Programming in C", PEARSON 2 nd Edition.													
1														

SEMICONDUCTOR PHYSICS LAB I B.Tech – II Semester (Code: 18PHL01) (COMMON TO ALL BRANCHES) Lectures : 3 Periods/Week Continuous Assessment : 50 Final Exam : 3 hours Final Exam Marks : 50

Pre-Requisite: None.

Course Objectives: Students will be able to

- Basic experiments such as Magnetic Field Measurements, Hall Effect and LCR resonance give the knowledge to apply them in magnetic applications.
- The experiments CRO, Solar Cell, LASER diode provides the thorough understanding of OPTO Electronic devices useful in Engineering and Industrial applications.
- The measurements relating to various physical parameters of materials make the student to understand their utility, design and fabrication of several devices.

Course	e Outo	ome	s: At	the e	nd of	the o	cours	e stud	lents	will be	able to	0			
CO1										magne ations	etic fie	ld, real	ize t	he us	e of
CO2		Realization of material properties and parameters.													
CO3		Get hands on experience in various opto-electronic devices like Solar Cell, Photo Cell and their applications.													
Mapp	ing of	Cour	se O	utcon	nes w	rith P	rogra	am O	utcor	mes &	Progra	m Spec	cific (Outco	mes
		g of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's													
CO	- 1	2	2	4	_		7	0	_	10	11	12	1	1	

mapping of course outcomes with Frogram outcomes & Frogram specific outcomes														711103	
				PSO's											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	2	-	-	-	-	2	0	-	-	2	-	-
CO2	3	3	2	2	-	-	-	-	2	2	-	-	2	-	-
CO3	3	3	2	2	2	-	-	-	2	-	-	-	2	-	-

LIST OF EXPERIMENTS

- 1. Determination of acceleration due to gravity at a place using compound pendulum.
- 2. Study the variation of intensity of magnetic field along the axis of a circular coil using Stewart-Gee's apparatus.
- 3. Determination of thickness of thin wire using air wedge interference bands.
- 4. Determination of radius of uatue of a Plaooelesfoig Newton's rings.
- 5. Determination of wavelengths of mercury spectrum using grating normal incidence method.
- 6. Determination of dispersive power of a given material of prism using prism minimum deviation method.
- 7. Draw the resonant characteristic curves of L.C.R. series circuit and calculate the resonant frequency.
- 8. Draw the characteristic curves of a photocell and calculate the maximum velocity of electron.
- 9. Verify the laws of transverse vibration of stretched string using sonometer.
- 10. Determine the rigidity modulus of the given material of the wire using Torsional pendulum.
- 11. Draw the load characteristic curves of a solar cell.
- 12. Determination of Hall coefficient of a semiconductor.
- 13. Determination of voltage and frequency of an A.C. signal using C.R.O.
- 14. Determination of Forbidden energy gap of Si &Ge.
- 15. Determination of wavelength of laser source using Diode laser.

Any three exp	eriments are virtual
Text Books:	Engineering physics laboratory manual P.Srinivasarao & K.Muraldhar, Himalaya publications.

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB (Common for CSE, IT, ME branches) I B.Tech – II Semester (Code: 18EEL01) ures : 3 Periods/Week Continuous : 50

Lectures	:	3 Periods/Week	Continuous	:	50
			Assessment		
Final Exam	:	3 hours	Final Exam Marks	:	50

Pre-Requisite: None.

Course Objectives: Students will be able to

- To understand basic Laws in circuits, analysis of simple DC circuits, Theorems and its applications, fundamentals of AC circuits & its analysis and concepts of three phase balanced circuits
- To learn basic properties of magnetic materials and its applications.
- To understand working principle, construction, applications and performance of DC machines, AC machines.
- To learn basic concepts, working principal, characteristics and applications of semiconductor diode and transistor family.
- To gain knowledge about the static converters and regulators.
- To learn basic concepts of power transistors and operational amplifiers closer to practical applications.

Course Outcomes: At the end of the course students will be able to CO1 Validate the basic network theorems such as KCL, KVL, superposition, Thevenin's and Norton's theorems. CO2 Measure the parameters of choke coil. CO3 Figure out the parameters, regulation, and efficiency of single-phase transformer. CO4 Discriminate between the characteristics of PN junction diode, Zener diode and Transistor.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's										PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	3	-	-	-	-	3	2	-	-	3	-	1
CO2	3	3	1	3	-	-	-	-	3	2	_	_	3	-	-
CO3	3	3	1	3	-	-	-	-	3	2	-	-	3	-	-
CO4	3	3	1	3	-	-	-	-	3	2	-	-	3	-	-

- 1. Verification of KCL and KVL
- 2. Verification of Superposition theorem
- 3. Verification of Thevenin's theorem
- 4. Verification of Norton's theorem
- 5. Parameters of choke coil
- 6. Measurement of low and medium resistance using volt ampere method
- 7. OC & SC test of single phase transformer
- 8. Load test on single phase transformer
- 9. V-I characteristics of PN junction Diode

- 10. V-I characteristics of Zener Diode
- 11. Characteristics of CE Configuration
- 12. Transfer and Drain Characteristics of JFET
- 13. Calculation of Ripple factor using Half wave rectifier
- 14. Calculation of Ripple factor using Full wave rectifier
- 15. Non linear wave shaping clippers/clampers

Note: Minimum 10 experiments should be carried

PROBLEM SOLVING USING PROGRAMMING LAB									
I B.Tech – II Semester (Code: 18CSL01)									
Lectures	:	3 Periods/Week	Continuous	:	50				
			Assessment						
Final Exam	:	3 hours	Final Exam Marks	:	50				

Course Objectives: Students will be able to

- Understand basic concepts of C Programming such as: C-tokens, Operators, Input/output, and Arithmetics.
- Develop problem-solving skills to translate 'English' described problems into programs written using C language.
- Use Conditional Branching, Looping, and Functions.
- Apply pointers for parameter passing, referencing and differencing and linking data structures.
- Manipulate variables and types to change the problem state, including numeric, character, array and pointer types, as well as the use of structures and unions, File.

Course	Course Outcomes: At the end of the course students will be able to							
CO1	Address the challenge, pick and analyze the appropriate data representation formats							
COI	and algorithms.							
CO2	Choose the best programming construct for the job at hand by comparing it to other							
CO2	structures and considering their constraints.							
CO3	Develop the program on a computer, edit, compile, debug, correct, recompile and							
COS	run it.							
CO4	Identify tasks in which the numerical techniques learned are applicable and apply							
	them to write programs, and hence use computers effectively to solve the task.							

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's									PSO's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO2	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO3	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO4	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3

List of Programs

1. A program for electricity bill taking different categories of users, different slabs ineach category. (Using nested if-else statement).

Domestic Customer:									
Consumption Units	Rate of Cl	Rate of Charges (Rs.)							
0 - 200	0.50 per ui	nit							
201 – 400	100 plus	0.65 per unit							
401 – 600	230 plus	0.80 per unit							
601 and above	390 plus	1.00 per unit							
Commercial Customer:	Commercial Customer:								
Consumption Units	Rate of Cl	Rate of Charges (Rs.)							
0 - 100	0.50 per ui	0.50 per unit							

101 - 200	50 plus	0.6 per unit
201 - 300	100 plus	0.70 per unit
301 and above	200 plus	1.00 per unit

- 2. Write a C program to evaluate the following (using loops):
 - a) $1 + x^2/2! + x^4/4! + ...$ up to ten terms
 - b) $x + x^3/3! + x^5/5! + ...$ up to ten terms
- 3. Write a C program to check whether the given numbers
 - a) Prime or not.
 - b) Perfect or Abundant or Deficient.
- 4. Write a C program to display statistical parameters (using one dimensional array).
 - a) Mean
 - b) Mode
 - c) Median
 - d) Variance.
- 5. WriteaCprogramtoreadalistofnumbersandperformthefollowingoperations
 - a) Print the list.
 - b) Delete duplicates from the list.
 - c) Reverse the list.
- 6. Write a C program to read a list of numbers and search for a given number using Binary search algorithm and if found display its index otherwise display the message "Element not found in the List".
- 7. Write a C program to read two matrices and compute their sum and product.
- 8. Write a C program to read list of student names and perform the following operations
 - a) To print the list of names.
 - b) To sort them in ascending order.
 - c) To print the list after sorting.
- 9. Write a C program that consists of recursive functions to
 - a) Find factorial of a given number
 - b) Solve towers of Hanoi with three towers (A, B & C) and three disks initiallyon tower A.
- 10. A Bookshop maintains the inventory of books that are being sold at the shop. The list includes details such as author, title, price, publisher and stock position. Whenever a customer wants a book the sales person inputs the title and the author, and the system searches the list and displays whether it is available or not. If it is not, an appropriate message is displayed, if it is, then the system displays the book details and request for the number of copies required, if the requested copies are available the total cost of the requested copies is displayed otherwise the message "required copies not in stock" is displayed. Write a program for the above in structures with suitable functions.
- 11. Write a C program to read a data file of students' records with fields (Regno, Name, M1,M2,M3,M4,M5) and write the successful students data (percentage > 40%) to a data file.
- 12. Write a C program to read a file as command line argument and count the given word frequency in a file

PROBABILITY & STATISTICS II B. Tech. – III Semester (Code: 18MA003)									
Lectures	:	4 Periods/Week	Continuous Assessment	:	50				
Final Exam	:	3 hours	Final Exam Marks	:	50				

Course Objectives: Students will be able to

engineering.

- Apply the continuous probability densities to various problems in science and engineering.
- Estimate the point and interval estimators of the mean, variance and proportion for the given Sample data and apply Z-test, t-test to various real-life problems
- Apply various sample tests like F-test and $\chi 2$ -test for decision making regarding the population based on sample data.
- Compute the level of correlation, the best fit curve to the given data by the method of least squares and also perform ANOVA arising in the field of engineering.

Course Outcomes: At the end of the course students will be able to

CO1	Understand various continuous probability density functions and apply them to various problems in science and engineering.
CO2	Estimate the point and interval estimators of the mean, variance and proportion for
	the given Sample data and apply Z-test and t-test to various real life problems
CO3	Apply various sample tests like F-test and χ2 -test for decision making regarding
	the population based on sample data and perform one way and two way analysis
	of variance to different realistic problems.
CO4	Compute the level of correlation, the linear relationship for the given bivariate
	data, the best fit curve to the given data by the method of least squares and perform
	multiple regression analysis to the regression model arising in the field of

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's											PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	-	-	-	-	-	-	-	-	2	-	3	-
CO2	3	3	2	-	-	-	-	-	-	-	-	2	-	3	-
CO3	3	3	2	-	-	-	-	-	-	-	-	2	-	3	-
CO4	3	3	3	-	-	-	-	-	-	-	-	2	-	3	-
UNIT-1 15 Perio										iods					

Continuous Random Variables, Normal Distribution, Normal Approximation to the Binomial Distribution, Uniform Distribution, Gamma Distribution and its applications, Beta Distribution and its applications, Joint Distributions (Discrete), Joint Distributions (Continuous). Populations and Samples, Law of large numbers, Central limit theorem and its applications, The sampling distribution of the mean (\sigma unknown), The sampling distribution of the variance.

(Sections 5.1, 5.2, 5.3, 5.5,5.7, 5.8, 5.10, 6.1, 6.2, 6.3, 6.4 of Text Book [1])

UNIT-2 15 Periods

Point estimation, Interval estimation, Tests of Hypotheses, Null Hypothesis and Tests of Hypotheses, Hypothesis concerning one mean, Comparisons-Two independent Large samples, Comparisons-Two independent small samples, Paired sample t test. (Sections 7.1,7.2, 7.4, 7.5, 7.6, 8.2, 8.3, 8.4 of Text Book [1])

UNIT-3 15 Periods

The Estimation of variances, Hypotheses concerning one variance, Hypotheses Concerning two variances, Estimation of proportions, Hypotheses concerning one proportion, Hypotheses concerning several proportions, Procedure for Analysis of Variance (ANOVA) for comparing the means of k (>2) groups- one way classification (Completely randomized designs), Procedure for Analysis of Variance (ANOVA) for comparing the means of k (>2) groups- two way classification (Randomized block designs). (Sections 9.1, 9.2, 9.3, 10.1, 10.2, 10.3, 12.2, 12.3 of Text Book [1])

UNIT-4 15 Periods

Multivariate Analysis: The concept of bivariate relationship, scatter diagram, Pearson's correlation and correlation matrix. Simple linear regression model and assumptions, Least Squares Estimation of the parameters of the model, Testing the significance of the model. Regression versus Correlation, Multiple linear regression model with k explanatory variables and assumptions of the model. Least Square Estimation of regression coefficients. Concept of the coefficient of determination R^2 . Test for significance of the regression model and individual regression coefficients. Applications of multiple regression analysis.

(1st and 2nd Chapters of Text Book [2])1

(1 dild 2 c	nupreis of Tent Book [2])1
Text Books:	1. Miller & Freund"s "Probability and Statistics for Engineers", Richard A. Johnson, 8 th Edition, PHI.
	Richard A. Johnson, 8 th Edition, PHI.
	2. Introduction to Linear Regression Analysis, Douglas C. Montgomery,
	E.A. Peck and G.G. Vining, 3 rd edition, Wiley.
References:	1. R.E Walpole, R.H. Myers & S.L. Myers, Probability & Statistics for
	Engineers and Scientists", 6 th Edition, PHI.
	2. Fundamentals of Mathematical Statistics, S. C. Gupta and V.K.Kapoor,
	11 th Edition, Sultan Chand & Sons.
	3. Murray R Spiegel, John J. Schiller, R. Alu Srinivas Probability &
	Satistics", Schaum's outline series.
	4. K.V.S. Sarma, Statistics Made Simple – Do it yourself on PC", Prentice
	Hall India, Second Edition, 2015.

					D	ATA	STI	RUCT	ΓUR	ES					
]	I B. 7						e: 18CS	302)				
Lecture	s	:	4 Per	iods/V	Week						nuous			:	50
D' 1D	Assessment									N			7.0		
Final E	Final Exam : 3 hours Final Exam Marks													:	50
Pre-Re	quisit	e: No	one.												
Course	Obj	ectiv	es: S	tuder	nts w	ill be	able	to							
>	Ana	lyse o	conce	pts of	f Abs	tract	data t	ype,	data s	structur	e, perfo	ormance	e mea	surei	ment
>	Tim	e and	Spac	e cor	nplex	ities	of alg	gorithi	ns.						
>	To develop the implementation of array list and linked lists.														
>	To learn the implementation linear data structures such as stacks, queues and their														
Course															
CO1	1	•		_					ime &	& space	compl	exity ar	nd ma	inipu	lating
			g arra						110112	and are	12770 41.	o tromin	110 00	atim ~	
CO2		nique		appıı	catio	ns oi	Stack	a Q	ueue	and ana	uyze tn	e vario	us soi	rting	
				nto n	ractio	e sev	eral t	ree al	gorith	nme ell	ch as th	ne binar	v tree	RS	<u></u>
CO3			tree.	шо р	racii	Je sev	Ciai i	ice ai	goriu	iiiis, su	cii as ii.	ie omai	y ii cc	, вз	1,
CO4				hashi	ng m	ethod	s and	prior	ity aı	ieues ai	nd analy	yze thei	r peri	form	ance.
	1 1 PP	1y 5C	verar	IIusiii	iig iii	Ctilou	5 and	prior	ity qu	icaes ai	ia anai.	y ZC thei	ı peri	101111	arree.
Mappi	ng of	Cour	se O	utcon	nes w	ith P	rogra	am O	utcor	nes &]	Progra	m Spec	ific (Outco	omes
							PO's							PSO ⁹	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO2	3	3	3	-	ı	-	-	-	-	-	ı	-	3	3	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-	3	3	-
			,			UNI				•		•		Peri	
Algorith	m Ar	nalysi	s: Ma	them	atica	l Bac	kgrou	ınd, N	Mode!	l, what	to Ana	alyze, F	Runni	ng [Гіте
Calculat															
Lists: A															
ADT, C	ircula	r Lin	ked L	ist A	DT, I	Polyn	omia	ADT	: add	dition, r	nultipli	cation of	opera	tions	•
						UNI	Т-2						1.5	Per	inde
Stacks a	nd O	161160	· The	Stac				annlic	ation	e euch	ac Infix	v to Pos			
conversi	-													•	
sort.	0113, 1	Jvara	ation	0110	SIIIA	слргс	2331011	.s. 111v	Que	ac M	i, Qui	cuc 11p	piica	1011-1	Kaaix
Basic So	orting	Tecl	nniqu	es: B	ubble	e sort,	Sele	ction	sort,	Inserti	on sort,	, Shell s	sort		
						-									
						UNI								Per	
Trees:															
Search T			y Tree	es, In	plem	entat	ions,	AVL	Tree	s-Singl	e Rotat	ions, D	ouble	rota	tions,
Impleme	entatio	ons.													
						UNI	Т_4						15	Per	iods

Hashing: General Idea, Hash Function, Separate Chaining, Open Addressing. Priority Queues (Heaps): Model, Simple implementations, Binary Heap, Heap Sort. Disjoint Set ADT: Dynamic equivalence problem, Basic Data Structure, Smart Union Algorithms, Path Compression.									
Text Books:	1. Mark Allen Weiss, "Data Structures and Algorithm Analysis inC",								
	Second Edition, Pearson Education.								
References:	1. Y.Langsam, M.J.Augeustein and A.M.Tenenbaum, "Data Structures								
	Using C, Pearson Education Asia, 2004.Richard F.Gilberg, Behrouz A.								
	Forouzan, "Data Structures – A								
	·								
	2. Pseudocode Approach with C", Thomson Brooks / COLE, 1998. Aho, J.E.								
	Hopcroft and J.D. Ullman, "Data Structures and Algorithms", Pearson								
	Education Asia, 1983.								

DISCRETE MATHEMATICS												
II B. Tech. – III Semester (Code: 18CS302)												
Lectures	:	4 Periods/Week	Continuous	:	50							
			Assessment									
Final Exam	:	3 hours	Final Exam Marks	:	50							

Course Objectives: Students will be able to

- Understand operations on discrete structures such as sets, functions, relations, and Sequences. Formulate short proofs using the following methods: direct proof, indirect proof, and proof by contradiction, and case analysis etc. Apply algorithms and use definitions to solve problems to prove statements in elementary number theory. Construct mathematical arguments using logical connectives and quantifiers. Verify the correctness of an argument using propositional and predicate logic and truth tables.
- Understand to solve problems using counting techniques and combinatory in the context of discrete probability.
- Understand problems on involving recurrence relations and generating functions. And Know the properties of equivalence relations and partial orderings.
- ➤ Understand basic definitions and properties associated with simple planar graphs, including isomorphism, connectivity, and Euler's formula, and describe the difference between Eulerian and Hamiltonian graphs. Use graphs and trees as tools to visualize and simplify situations.

Course Outcomes: At the end of the course students will be able to									
CO1	Recognize the fundamental ideas behind sets, relations, and functions.								
CO2	Demonstrate the principles of inference used to support claims. Utilize a variety of								
	counting strategies to solve computation-related issues.								
CO3	Discuss different methods for solving the different types of recurrence relations.								
CO4	Apply graph theory in solving computing problems.								

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	-	-	ı	-	-	-	-	ı	ı	ı	-	3	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	-	3	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	-	3	-
CO4	3	3	-	-	-	-	-	-	-	-	-	-	-	3	-

UNIT-1 15 Periods

Set Theory: Sets and subsets, Venn Diagrams, Operations on sets, laws of set theory, Power sets and products, Partition of sets, The principle of inclusion - Exclusion. Relations: Definition, Types of relation, Composition of relations, Domain and range of a relation, Representation of Relations, Operations of relation, Special properties of a binary relation, Equivalence Relations and Partial Ordering Relations, POSET diagram and lattice, Paths and Closures.

Functions: Definition and types of functions, Composition, Inverse and Identity of functions.

UNIT-2	15 Periods

Logic: Fundamentals of Logic, Logical Inferences, Methods of Proof of an implication, First order Logic & Other methods of proof, Rules of Inference for Quantified propositions, Mathematical Induction.

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumerating Combinations and Permutations with repetitions.

UNIT-3 15 Periods

Recurrence relations: Generating functions of sequences, Calculating Coefficients of Generating Functions. Solving recurrence relations by Substitution and generating functions. The methods of characteristic roots, solutions of inhomogeneous recurrence relations.

UNIT-4 15 Periods

Graphs: Basic concepts, Directed Graphs and Adjacency Matrices, Application: Topological Sorting. Isomorphism and Sub graphs, Planar Graphs, Euler's Formula; Multigraphs and EulerCircuits, Hamiltonian Graphs, Chromatic Numbers, The Four Color Problem.

Text Books:	1. Toe L.Mott, Abraham Kandel& Theodore P.Baker, "Discrete Mathematics for Computer Scientists & Mathematicians", PHI 2 nd edition.
References:	 C.L. Liu, "Elements of Discrete Mathematics". Rosen, "Discrete Mathematics".

OBJECT ORIENTED PROGRAMMING												
II B. Tech. – III Semester (Code: 18CS304)												
Lectures	:	4 Periods/Week Continuous : 50										
			Assessment									
Final Exam	:	3 hours	Final Exam Marks	:	50							

Course Objectives: Students will be able to

- Understand advantages of OO programming over procedural oriented programming, learn the basics of variables, operators, control statements, arrays, strings, classes and objects.
- Understand, write and implement Operator Overloading, Indexers, Properties, Inheritance, Interfaces, Structures, and Enumerations.
- Understand and write programs on Exception Handling, I/O, Delegates and Events.
- Understand Namespaces, the Preprocessor, Assemblies, Generics, Collections, Enumerators, and Iterators.

Course Outcomes: At the end of the course students will be able to

CO1	Demonstrate variables, conditional and iterative execution techniques, etc., and
	comprehend basic java language syntax and semantics.
CO2	Understand the concepts of Inheritance, Packages, Interfaces, Strings and Collections.
CO3	Explain the concepts of Exception Handling, Multithreading programming, and I/O.
CO4	Apply AWT and Swing concepts to demonstrate and develop GUI applications.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's													PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3	3	
CO2	3	3	3	-	-	-	-	-	-	-	-	3	3	3	3	
CO3	3	3	3	-	-	-	-	-	-	-	-	3	3	3	3	
CO4	3	3	3	-	-	-	-	-	-	-	-	3	3	3	3	
	IINIT_1										15 F	Period	C			

The History and Evolution of Java

An Overview of Java

Data Types, Variables and Arrays

Operators

Control Statements

Introducing Classes

A Closer Look at Methods and Classes

UNIT-2	15 Periods

Inheritance

Packages and Interfaces

Strings: String Constructors, Program using 10 String methods

String Buffer class, Program using 10 String Buffer methods Introducing StringBuilder class.

Type Wrappers, Auto boxing/unboxing.

Collections: Collections Overview, Names of Collection Interfaces, Classes. Programs using Collection classes LinkedList<String>, ArrayList<String>

UNIT-3	15 Periods

Exception Handling Multithreaded Programming I/O: I/O Basics, Reading Console Input, Writing Console Output, The Print Writer class, Reading and Writing Files, Automatically Closing a File UNIT-4 15 Periods The Applet Class: Applet Architecture, An Applet Skeleton, Applet program to draw shapes, setting Color, Font using Graphics class. Event Handling: Introducing the AWT: Window Fundamentals, Program using AWT components Label, Text Field, Text Area, Checkbox, Checkbox Group, Button, Program using Flow Layout, Grid Layout, and Border Layout. GUI Programming with Swing: The Origins of Swing, Advantages of Swing over AWT, The MVC Connection, Program using Swing Components JLabel, JText Field, JText Area, JCheck box, JButton, JTabbed Pane, JTable, JTree, JCombo Box 1. "Java The Complete Reference", 9th **Text Books:** Edition, Herbert Schildt, TMH Publishing Company Ltd, New Delhi.

References:

OPERATING SYSTEMS										
II B. Tech. –III Semester (Code: 18CS305)										
Lectures	:	4 Periods/Week	Continuous	:	50					
			Assessment							
Final Exam	:	3 hours	Final Exam Marks	:	50					

Course Objectives: Students will be able to

- Understand different structures, services of the operating system and the use of scheduling and operations on process.
- Understand the use of scheduling, operations on process, the process scheduling Algorithms and synchronization concepts.
- Understand the concepts of deadlock, memory and virtual memory management techniques.
- Understand the concepts of File System, Input/output systems and system protection of various operating systems.

Course Outcomes: At the end of the course students will be able to

CO1	Analyze the structure of OS and basic architectural components involved in OS
CO1	design.
CO2	Develop various process scheduling algorithms for a given specification of CPU
	utilization, throughput, TAT, WT & RT.
CO3	Articulate the causes and effects of deadlocks and comprehend memory
CO3	management concepts, including virtual memory.
CO4	Design and implement various file allocation methods and Disk Scheduling
	Algorithms.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	1	-	-	1	-	-	-	-	-	3	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	3	3	-	-	-	-		-	-		-	3	-	-
	UNIT-1										15	Perio	ds		

Introduction: What OSs Do, Computer System Operation, Storage structure, OS Structure, OS Operations.

Operating-System Structures: OS Services, User and operating system Interface, System Calls, Types of System Calls, System Programs, OS Design and Implementation, OS Structure.

Processes: Process Concept, Process Scheduling, Operations on Processes, Inter-process Communication.

Threads: Overview, Multicore Programming, Multithreading Models.

[Sections:1.1, 1.2.1, 1.2.2,1.4,1.5, 1.5.1,2.1, 2.2,2.3,2.4, 2.5, 2.6, 2.7,2.7.1,2.7.2,2.7.3,2.7.43.1, 3.2,3.3,3.4, 4.1,4.2,4.3]

UNIT-2 15 Periods

CPU Scheduling: Basic Concepts, Scheduling Criteria, Scheduling Algorithms.

Process Synchronization: Background, The Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic problems of Synchronization, Monitors.

[Sections : 5.1,5.2,,5.3,5.4,5.5,5.6,5.7,5.8, 6.1,6.2,6.3]

UNIT-3 15 Periods

Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Avoidance, Detection and Recovery.

Main Memory: Background, Swapping, Contiguous Memory Allocation, Segmentation, Paging, Structure of Page Table.

Virtual-Memory: Background, Demand Paging, Copy-on-Write, Page eplacement, Allocation of Frames, Thrashing, Other Considerations.

[Sections; 7.1,7.2,7.3,7.4,7.5,7.6,7.7,8.1,8.2,8.3,8.4,8.5,8.6,9.1, 9.2,9.3,9.4,9.5,9.6,9.9]

UNIT-4 15 Periods

File System Interface: File concept, Access Methods, Directory and Disk Structure,

File System Implementation: File System Structures, Directory Implementation, Allocation Methods

Protection: Goals of Protection, Principles of Protection, Domain of Protection- Domain Structure, Access Matrix, Implementation of Access Matrix.

Mass Storage Structure: Over View, Disk Structure, Disk Scheduling, Disk Management, RAID

[Sections:10.1,10.2,10.4,10.5,10.7,11.1,11.2,11.3,11.5,12.1,12.3,12.4,14.1,14.2,14.3,14.3.1, 14.4,14.5]

Text Books :	1. Silberschatz & Galvin, "Operating System Concepts", 9th edition, John Wiley & Sons (Asia) Pvt.Ltd.
References:	1. William Stallings, "Operating Systems – Internals and Design Principles",
	5/e,Pearson
	2. Charles Crowley, "Operating Systems: A Design-Oriented Approach",
	TataMcGraw Hill Co., 1998 edition
	3. Andrew S.Tanenbaum, "Modern Operating Systems", 2nd edition, PHI

		CROPROCESSORS & MIC II B. Tech. –III Semester (C			
Lectures	:	4 Periods/Week	Continuous Assessment	:	50
Final Exam	:	3 hours	Final Exam Marks	:	50

Course Objectives: Students will be able to

- Learn the architecture and the instruction set of an Intel 8086 microprocessor.
- ➤ Develop the skills of programming and interfacing peripherals of microprocessors and microcontrollers.
- Analyse and design algorithms for solving problems in 8086 assembly language
- Understand the 8086 bus activities during the read and write cycles.

Course	Course Outcomes: At the end of the course students will be able to									
CO1	Acquire the knowledge of 8086 microprocessor's architecture.									
CO2	Develop Assembly language programs using procedures and Macros.									
CO3	Outline the 8086 Interrupt system and pin diagram.									
CO4	Recognize and utilize the standard programming instructions of 8051									
	microcontrollers also peripherals and its interfacing with processors.									

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's											PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	-	-	-	2	-	-	-	-	-	-	-	3	-	-
CO3	-	-	2	-	-	-	-	-	-	-	-	-	3	-	-
CO4	3	-	2	-	2	-	-	-	-	-	-	-	3	-	-
	UNIT-1										15 Pe	eriods			

The 8086 Microprocessor Family, The 8086 Internal Architecture,

Introduction to Programming the 8086: 8086 Family Assembly Language Programming; Implementing standard Program Structures in 8086 Assembly language.

UNIT-2 15 Periods

Writing and Using Procedures: Introduction, The 8086 CALL and RET instructions, The 8086 Stack, A Near Procedure CALL and Example, Another Look at Stack Operation during CALL and RET, Using PUSH and POP to save register content, Passing Parameters to and from Procedures, Writing and debugging programs containing Procedures, Reentrant and Recursive

Procedures, Recursive Procedure example, Writing and Calling Far Procedures. Writing and Using Assembler Macros.

UNIT-3 15 Periods

8086 Interrupts and Interrupt Applications: 8086 Interrupts and Interrupts Responses. 8086 System Connections & Timing: The Basic 8086 Microcomputer System, 8086 Bus activities during the Read and Write Machine Cycles, 8086 pin Diagram. The 8086 String Instructions.

UNIT-4 15 Periods

Interfacing Peripherals and Applications: Interfacing the Microprocessor to the Keyboard, Alphanumeric displays, 8259 Priority Interrupt Controller, 8237 DMA Controller. The 8051 Microcontrollers – Assembly language Programming- JUMP, LOOP, CALL Instructions. Addressing Modes, Arithmetic, Logic, Single – bit instructions. 1. Douglas V. Hall, "Microprocessors and Interfacing", **Text Books:** McGraw- Hill, Revised Second Edition References: 1. Yu-cheng Liu, Glenn A. Gibson, "Microcomputer systems: The 8086/8088 Family architecture, Programming and Design", Second 2. Barry Brey, "The Intel Microprocessors, 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, PentiumPro Processor, Pentium II, Pentium IV, Architecture, Programming & Interfacing", Sixth Edition, Pearson Education Prentice Hall of India,

2002.

	UNIX PROGRAMMING LAB										
II B. Tech. –III Semester (Code: 18CSL301)											
Lectures	:	: 3 Periods/Week Continuous :									
			Assessment								
Final Exam	:	3 hours	Final Exam Marks	:	50						

Course Objectives: Students will be able to

- Organize and manipulate files and directories
- Use the vi text editor to create and modify files
- Use SED command for insertion, deletion, and search and replace (substitution).
- Understand pattern scanning and processing using AWK.
- Create structured shell programming which accept and use positional parameters and exported variables.
- Understand File management system calls to provide I/O support for storage device types and multiple users.

Course Outcomes: At the end of the course students will be able to CO1 Understand the major components, architecture of UNIX operating system and commands related to UNIX os. CO2 Understand SED, commands related to text processing and usage of AWK in scripting language. CO3 Able to understand concepts related to shell programming. CO4 Able to understand system calls related to file management.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	ı	-	-	2	-	2	•	3	3	3	3
CO2	3	3	3	-	ı	-	ı	2	-	2	-	3	3	3	3
CO3	3	3	3	-	-	-	-	2	-	2	-	3	3	3	3
CO4	3	3	3	-	-	-	-	2	-	2	-	3	3	3	3

UNIT-1

12 Periods

Directory commands – pwd, cd, mkdir, rmdir commands. The dot (.) and double dots (..) notations to represent present and parent directories and their usage in relative path names. File related commands –Editing with vi, cat, mv, rm, cp, wc. File attributes and permissions and knowing them. The ls command with options. Changing file permissions: (chmod) the relative and absolute permissions changing methods. Recursively changing file permissions. Directory Permissions. Other Basic commands: cal, date, df, du, find, jobs, kill ,less and more, ps, set, wc, who.

LIST OF EXPERIMENTS

- 1. Obtain the following results (i) To print the name of operating system (ii) To print the login name (iii) To print the host name
- 2. Find out the users who are currently logged in and find the particular user too.
- 3. Display the calendar for (i) Jan 2000 (ii) Feb 1999 (iii) 9th month of the year 7
- 4. A.D (iv) For the current month (v) Current Date Day Abbreviation, MonthAbbreviation along with year
- 5. Display the time in 12-Hour and 24 Hour Notations.
- 6. Display the Current Date and Current Time.

- 7. Display the message "GOOD MORNING" in enlarged characters.
- 8. Display the name of your home directory.
- 9. Create a directory SAMPLE under your home directory.
- 10. Create a subdirectory by name TRIAL under SAMPLE.
- 11. Change to SAMPLE.
- 12. Change to your home directory.
- 13. Change from home directory to TRIAL by using absolute and relative pathname.
- 14. Remove directory TRIAL.
- 15. Create a directory TEST using absolute pathname.
- 16. Using a single command change from current directory to home directory.
- 17. Remove a directory using absolute pathname.
- 18. Create files my file and your file under Present Working Directory.
- 19. Display the files my file and your file.
- 20. Append more lines in the my file and your file files.
- 21. How will you create a hidden file?.
- 22. Copy myfile file to emp.
- 23. Write the command to create alias name for a file.
- 24. Move yourfile file to dept.
- 25. Copy emp file and dept file to TRIAL directory
- 26. Compare a file with itself.
- 27. Compare myfile file and emp file.

UNIT-2

12 Periods

The Stream editor(sed): Line addressing, multiple instructions, context addressing, writing selected lines to a file, text editing, substitution, basic regular expressions.

File Handling and Text Processing utilities: grep, egrep, fgrep.

AWK: sample awk filtering, splitting a line into fields, formatting output, variables and expressions, comparison operators, number processing, storing awk programs in a file, the BEGIN and END sections, Built in variables and arrays, control structures.

LIST OF EXPERIMENTS

- 1. A. Create the following file as sed.lab: unix is great os. unix is open source. unix is freeos. learn operating system. Unix linux which one you choose. (*Each sentence in a line*)
- 1. Replace 'unix' with 'linux'.
- 2. Replace only the third (3rd) instance of 'unix' with 'linux'.
- 3. Try sed 's/unix/linux/g' sed.lab.
- 4. Replace 'unix' with 'linux' but only on line 3.
- 5. Add a new line, 'Actually Windows is best' after the second line.

В.

- 1. Viewing a range of lines of a document
- 2. Viewing the entire file except a given range
- 3. Viewing non-consecutive lines and ranges
- 4. Replacing words or characters inside a range
- 5. Using regular expressions
- 6. Viewing lines containing with a given pattern
- 7. Inserting spaces in files
- 8. Performing two or more substitutions at once

C.

- 1. Design a command "wishme" that will great you "good morning", "good Afternoon", according to current time.
- 2. Design a command "fags" thats will list the files and their ages, to date.
- 3. Design a command "word-freq" that will print the words and number of Occurrences of that word in the given text.

UNIT-3	12 Periods

Shell programming: shell, functions of shell, metacharacters, input redirections and output redirections, pipes, shell as a programming language, shell variables, predefined local variables, predefined environment variables, arithmetic and conditional expressions, control structures, positional parameters, passing command line arguments, built in shell commands, shell programs, functions and arrays.

LIST OF EXPERIMENTS

1.

- A. Design a command "which" that prints the path of the command given as Argument
- B. Design a command "filelist[-c <char>]" which prints all file names beginning with The charter specified as argument to the command, if the position is not specified It should print all the file names.
- C. Design a command getline[-f <filename> -n n number>] which prints the line number lineno in the file specified with -f option. If the line number is not specified it should list all the lines in the given file
- D. Design a command monthly-file[-m <month>] which list the files created in a given month where month is argument to be command. If the options is not specified it list the files in all the months.

2.

- A. Design a command list lines[-f <file name> -v <varname>] which prints the line from the given file file name ,which containing the variable varname.if arname Is not specified it should list ,all the lines.
- B. Design a command avg[-n <colon> -f <file name>] which prints the average of the given column in a file where colon and file name are arguments to the commands

UNIT-4 12 Periods

File management System calls: Regular File management system calls: open(), read(), write(), lseek(), close(), unlink(), stat(), getdents().

LIST OF EXPERIMENTS

- 1. Write a C program to copy data from source file to destination file, where the file names are provided as command-line arguments.
- 2. Write a C program that reads every 100th byte from the file, where the file name is given ascommand-line argument.
- 3. Write a C program to display information of a given file which determines the type of file and inode information, where the file name is given as command-line arguments.

Text Books:	1. UNIX Concepts and Applications, Sumitabha Das, 4th edition, TATA McGraw Hill.
	2.UNIX for programmers and users", 3rd edition, Graham Glass, King
	Ables, Pearson education.
References:	
	2. "Advanced programming in the UNIX environment", W Richard Stevens,
	2nd Edition, Pearson education.
	3. "UNIX programming environment", Kernighan and pike, Pearson
	Education.
	4. "Your UNIX the ultimate guide, Sumitabha Das, TMH, 2 nd edition.
	5. "Advanced UNIX programming", Marc J. Rochkind, 2nd edition, Pearson
	Education.

DATA STRUCTURES LAB										
II B. Tech. – III Semester (Code: 18CSL302)										
Lectures	:	3 Periods/Week	Continuous	:	50					
			Assessment							
Final Exam	:	3 hours	Final Exam Marks	:	50					

Course Objectives: Students will be able to

- Understand and program basic data structures like arrays and linked lists with their applications.
- ➤ Understand and Program data structures like stacks and queues with their applications. Understand and implement sorting algorithms.
- Understand and program on trees, binary trees, binary search trees, avl trees, expression trees and their traversal methods.
- Understand and program on priority queues, hashing and their mechanisms. Basic knowledge of graphs representations and traversing methods.

Course Outcomes : At the end of the course students will be able to										
CO1	Recognize Big O notation, data types, algorithms, and dynamic memory									
	management.									
CO2	Recognize fundamental data structures like queues, stacks, linked lists, and arrays.									
CO2	Apply Algorithm for solving problems like sorting, searching, insertion and									
CO3	deletion of data.									
CO4	Fix the issue with the trees, piles, and Describe the collision concepts, hash									
	function, and techniques for resolution.									

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3	
CO2	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3	
CO3	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3	
CO4	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3	

LIST OF EXPERIMENTS

- 1. Write a program to perform the following operations on Array List 1.Creation, 2.Insertion, 3.Deletion, 4.Search, 5.Display.
- 2. Write a program that reads two lists of elements, prints them, reverses them, prints the reverse list, sort the lists, print the sorted lists, merges the list, prints merge list using array list.
- 3. Write a program to perform the following operations on Single Linked List.a). Creation b). Insertion c). Deletion d). Search e). Display.
- 4. Write a program to perform the following operations on Doubly Linked List.a). Creation b).Insertion c).Deletion d).Search e).Display.
- 5. Write a program to perform addition and multiplication of two polynomials using single Linked List.
- 6. Write a program to convert the given infix expression into postfix expression using stack.
- 7. Write a program to evaluate the postfix expression using stack.
- 8. Write a program that performs Radix sort on a given set of elements using queue.
- 9. Write a program to read n numbers in an array. Redisplay the arraylist withelements being sorted in ascending order using the following techniques (a) Bubble Sort (b) Selection Sort (c) Insertion Sort (d) Shell Sort.

- 10. Write a program to demonstrate Binary Expression tree.
- 11. Write a program to perform Binary Search tree operations and traversals.
- 12. Write a program to implement AVL tree that interactively allows (a) Insertion (b) Deletion (c) Find_min (d) Find_max.
- 13. Write a program to read n numbers in an array. Redisplay the arraylist withelements being sorted in ascending order using Heap Sort.
- 14. Write a program to find an element using Open Addressing.
- 15. Write a program to perform the following operations on Disjoint Set. a). Make-Set b). Find-Set c). Union.

Text Books:	1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education
References :	 Y.Langsam, M.J.Augeustein and A.M.Tenenbaum, "Data Structures Using C", Pearson Education Asia, 2004. Richard F.Gilberg, Behrouz A. Forouzan, "Data Structures – A Pseudocode Approach with C", ThomsonBrooks / COLE, 1998.

OBJECT ORIENTED PROGRAMMING LAB												
II B.Tech –III Semester (Code: 18CSL303)												
Lectures	:	3 Periods/Week	Continuous	:	50							
			Assessment									
Final Exam	:	3 hours	Final Exam Marks	:	50							

Course Objectives: Students will be able to

- Write and implement programs using variables, operators, control statements, arrays, strings, classes and objects.
- Write and implement programs on Operator Overloading, Indexers,
- Properties, Inheritance, Interfaces, Structures, and Enumerations.
- Understand and write programs on Exception Handling, I/O, Delegates and Events.
- Write programs on Namespaces, Preprocessors, Assemblies, Generics, Collections, Enumerators, and Iterators.

Course	Outcomes: At the end of the course students will be able to
CO1	Implement OOP concepts using its advantages over structured programming.
CO2	Develop and implement inheritance, polymorphism.
CO3	Analyze Exception Handling, Multithreading, I/O.
CO4	Create code for Event Handling, Applets, AWT and Swings.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	-	3	-	-	2	-	2		3	3	3	3	
CO2	3	3	3	-	3	-	-	2	-	2		3	3	3	3	
CO3	3	3	3	-	3	-	-	2	-	2		3	3	3	3	
CO4	3	3	3	-	3	-	-	2	-	2		3	3	3	3	

LIST OF EXPERIMENTS

- 1. Write a Java program to declare, initialize and accessing the elements of Single dimensional Arrays, Multidimensional Arrays.
- 2. Write a Java program to demonstrate recursion.
- 3. Write a Java program to demonstrate static member, static method and static block.
- 4. Write a Java program to demonstrate method overloading and method overriding using simple inheritance.
- 5. Write a Java program to demonstrate multiple inheritance using interfaces.
- 6. Write a Java program to demonstrate packages.
- 7. Write a Java program to demonstrate String class methods.
- 8. Write a Java program to create user defined exception class, use couple of built-in Exception classes.
- 9. Write a Java program to demonstrate inter-thread communication.
- 10. Write an Applet program passing parameters to Applet, using Graphics, Color and Font classes.
- 11. Write a Java program to demonstrate handling Action events, Item events, Keyevents, Mouse events, Mouse Motion events.
- 12. Write a GUI application which uses AWT components Label, Text Field, Text Area, Checkbox, Checkbox Group, Button.

Write a GUI application using JTable, JTree, JCombo Box.

Text Books:	1.	"Java	The	Complete	Reference",	9th	Edition,	Herbert	Schildt,	TMH
	Pυ	ıblishin	g Co	npany Ltd,	New Delhi.					

OPERATIONS RESEARCH

(Common for all branches)

II B. Tech. –IV Semester(Code: 18MA005)

	II B. Teen. –IV Semester (Code. Town 2003)												
Lectures	:	4 Periods/Week	Continuous	:	50								
			Assessment										
Final Exam	:	3 hours	Final Exam Marks	:	50								

Pre-Requisite: None.

Course Objectives: Students will be able to

- To derive the best and most economical solution to the given LPP within all of it's limitations in the fields of Engineering, Agricultural and manufacturing etc.
- To apply these techniques constructively to make effective decisions in various competitive game fields.
- To impart the knowledge of Operations Research in the concepts of Integer Programming and Dynamic Programming Problems.
- To understand various mathematical models of Queuing systems used in Operations Research.

Course Outcomes: At the end of the course students will be able to

	CO1	Understand the basic concepts of optimization, Linear programming and solve the LPP's using graphical method, simplex method and big-M method.
	CO2	Learn how to recognize and model strategic situations for any game, to predict when and how their action will have an influence on others and exploit strategic
		situations for the benefit of their own.
	CO3	Solve all integer programming problems by Gomory cutting plane method and
	CO3	able to apply dynamic programming algorithm to solve a given problem.
	CO4	Evaluate the performance of a queuing system and can make performance analysis
		by understanding basic concepts of queuing theory.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	-	-	-	-	-	-	-	-	2	-	2	-	
CO2	3	3	3	-	-	-	-	-	-	-	-	2	-	2	-	
CO3	3	3	3	-	-	-	-	-	-	-	-	2	-	2	-	
CO4	3	3	3	-	-	-	-	-	-	-	-	2	- 5 D	2	-	

UNIT-1

15 Periods

LINEAR PROGRAMMING PROBLEM-GRAPHICAL METHOD:

Introduction; Graphical Solution Method; Some exception cases; General Linear Programming Problem; Canonical and Standard Forms of L.P.P;

LINER PROGRAMMING-SIMPLEX METHOD: Introduction, Fundamental Properties of Solutions (without proofs);the Computations Procedure, Use of Artificial Variables (Big-M method), Degeneracy in Linear Programming.

[Sections:3.1; 3.2; 3.3; 3.4; 3.5; 4.1; 4.2; 4.3; 4.4; 4;5]

UNIT-2

15 Periods

GAMES AND STRATEGIES: Introduction; Two-person Zero –Sum Games; Some Basic terms; The Maximin-Minimax Principle; Games Without Saddle Points-Mixed Strategies; Graphic Solution of 2xn and mx2 games; Dominance Property.

[Sections:17.1; 17.2; 17.3; 17.4; 17.4; 17.6; 17.7]

UNIT-3	15 Periods								
INTEGER PROGRMMING PROBBLEM: Introduction; Pure and	_								
Programming Problem; Gomory's All-Integer Programming Problem Method; Construction of Gomory's Constraints; Fractional Cut Method-All integer LPP; Branch and Bound Method.									
DYNAMIC PROGRAMMING : Introduction; the Recursive Equation Approach; Characteristics of Dynamic Programming; Dynamic Programming Algorithm. [Sections:7.1; 7.2; 7.3; 7.4; 7.5; 7.7; 13.1; 13.2; 13.3; 13.4]									
UNIT-4	15 Dania da								
	15 Periods								
QUEUING THEORY: Introduction; Queuing System; Elements of a Q									
Operating Characteristic of a Queuing System; Deterministic Queuing Sys	tem; Probability								
Distributions in Queuing System; Classifications of Queuing Models; Definit	tion of Transient								
and Steady States; Poisson Queuing Systems: Model-I(M/M/I): (∞/FIFO),Model-								
II(M/M/I):(\infty/SIRO), Model-III(M/M/I):(N/FIFO), Model-IV(Generalized	, ·								
Death Process).									
[Sections: 21.1; 21.2; 21.3; 21.4; 21.5; 21.6; 21.7; 21.8; 21.9]									
Sections: 21.1, 21.2, 21.3, 21.1, 21.3, 21.0, 21.7, 21.0, 21.7									
Text Books: 1. Kanthi Swarup, P.K Gupta & Man Mohan, 'Operations Re	esearch' Sultan								
Chand & Sons, New Delhi, 13th Edition, 2007.	esearen Sartan								
Chang & Sons, New Denn, 13th Euron, 2007.									
The state of the s	0.0								
References: 1. SD.Sharma, "Operations Research", Kedarnath, Ramnath 2. Hamdy A. <i>Taha</i> , <i>Operations Research</i> : An introduction, Hall, New Jersey.									

	WEB TECH II B.Tech – IV Semes			
Lectures	: 4 Periods/Week	Continuous Assessment	:	50
Final Exam	: 3 hours	Final Exam Marks	:	50

Course Objectives: Students will be able to

- ➤ Know elements and tags of HTML and apply Styles using Cascading Style Sheets.
- ➤ Know basics of Java Script, Functions, Events, Objects and Working with browser objects.
- ➤ Know basics of XML, DOM and advanced features of XML
- To convert XML documents into other formats and XSLT.

Course Outcomes: At the end of the course students will be able to CO1 Create HTML document using appropriate tags to structure content. Analyze the structure of web page and asses the use of display values for layout and evaluate the usability of an interactive element on a web page. CO3 Create a dynamic web pager that utilizes browser objects and DOM interfaces to create, modify and remove elements and attributes in an HTML. CO4 Develop HTML documents based on specific DTD (or) XML schema definitions and XSLT style sheets to transform XML data into different formats.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

							PO's	3]	PSO'	S
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	-	3	-	3	-	-	-	-	-	-	3	3	-	3
CO2	3	-	3	-	3	-	-	-	-	-	-	3	3	-	3
CO3	3	-	3	-	3	-	-	-	-	-	-	3	3	-	3
CO4	3	-	3	-	3	-	-	-	-	-	-	3	3	-	3

UNIT-1 15 Periods

HTML5: Fundamentals of HTML, Working with Text, Organizing Text in HTML, Working with Links and URLs, Creating Tables, Working with Images, Colors, and Canvas, Working with Forms.

UNIT-2 15 Periods

CSS: Overview of CSS, Backgrounds and Color Gradients in CSS, Fonts and Text Styles, Creating Boxes and Columns Using CSS, Displaying, Positioning, and Floating an Element, List Styles, Table Layouts.

Dynamic HTML: Overview of JavaScript, JavaScript Functions, Events, Image Maps, and Animations.

UNIT-3 15 Periods

Dynamic HTML (Cont..):JavaScript Objects, Working with Browser Objects, Working withDocument Object.

Document Object Model: Understanding DOM Nodes, Understanding DOM Levels, Understanding DOM Interfaces- Node, Document, Element, Attribute.

UNIT-4 15 Periods

XML: Working with Basics of XML, Implementing Advanced Features of XML, Working with XSLT.

AJAX: Overview of AJAX, Asynchronous Data Transfer with XML Http Request, Implementing AJAX Frameworks, Working with jQuery.

Text Books: 1. Kogent Learning Solutions Inc., HTML5 BlackBook: Covers CSS3, Javascript, XML, XHTML, Ajax, PHP and Jquery

References: 1. HarveyM.DeitelandPaulJ. Deitel, "Internet & World Wide Web How to Program" 4/e Pearson Education

Javascript, XML, XHTML, Ajax, PHP and Jquery
 HarveyM.DeitelandPaulJ. Deitel, "Internet & World Wide Web How toProgram", 4/e, Pearson Education.
 Jason Cranford Teague, "Visual Quick Start Guide CSS, DHTML&AJAX", 4e, Pearson Education.
 Tom Nerino Doli smith, "Java Script& AJAX for the web", Pearson Education 2007.
 Joshua Elchorn, "Understanding AJAX", Prentice Hall 2006.

DATABASE MANAGEMENT SYSTEM								
II B.Tech – IV Semester(Code:18CS403)								
Lectures	:	4 Periods/Week	Continuous	:	50			
			Assessment					
Final Exam	:	3 hours	Final Exam Marks	:	50			

Course Objectives: Students will be able to

- Familiarize with fundamental concepts of database and various database architectures and Design relations for Relational databases using conceptual data modeling.
- > Implement formal relational operations in relational algebra and SQL.
- ➤ Identify the Indexing types and normalization process for relational databases
- Use mechanisms for the development of multi user database applications.

Course Outcomes: At the end of the course students will be able to

	Use database design approach knowledge that provides a solid formal foundation for
CO1	the relational data model and Utilizing the ER Model, comprehend and put data
	modeling principles into practice.
CO2	Create relational algebra expressions, relational calculus, and SQL for queries and
CO2	be familiar with relational database theory.
CO3	Design database schema and Identify and solve the redundancy problem in database
003	tables using normalization.
CO4	Recognize strategies for recovery concurrency control and transaction processing

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

							PO's	S					l	PSO's	S
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	-	-	-	-	-	-	-	-	3	3	2
CO2	3	3	3	3	3	-	-	-	-	-	-	-	3	3	2
CO3	3	3	3	3	-	-	-	-	-	-	-	-	3	3	2
CO4	3	3	3	3	-	-	-	-	-	-	-	-	3	3	2
						UNIT	Γ-1						15	Perio	ds

Databases and Database Users: Introduction - An Example - Characteristics of the Database Approach—Actors on the Scene- Workers behind the Scene-Advantages of Using the DBMS Approach.

Database System Concepts and Architecture: Data Models, Schemas, and Instances- Three-Schema Architecture and Data Independence- Database Languages and Interfaces- The Database System Environment -Centralized and Client/Server Architectures for DBMSs.

Data Modeling Using the Entity-Relationship(ER)Model: Using High-Level Conceptual Data Models for Database Design-An Example Database Application-Entity Types, Entity Sets, Attributes, and Keys-Relationship Types, Relationship Sets, Roles, and StructuralConstraints-Weak Entity Types-Refining the ER Design for the COMPANY Database-ER Diagrams, Naming Conventions, and Design Issues

UNIT-2	15 Periods

The Relational Algebra and Relational Calculus: Unary Relational Operations: SELECT and PROJECT -Relational Algebra Operations from Set Theory-Binary Relational Operations: JOINand DIVISION—Additional Relational Operations-The Tuple Relational Calculus-The Domain Relational Calculus Schema Definition, Constraints, Queries, and Views: SQL Data Definition and Data Types—Specifying Constraints in SQL-Schema Change Statements in SQL-Basic Queries in SQL —More Complex SQL Queries-INSERT, DELETE, and UPDATE Statements in SQL- Views (VirtualTables) in SQL

UNIT-3 15 Periods

The Relational Algebra and Relational Calculus: Unary Relational Operations: SELECT and PROJECT -Relational Algebra Operations from Set Theory-Binary Relational Operations: JOIN and DIVISION—Additional Relational Operations-The Tuple Relational Calculus-The Domain Relational Calculus Schema Definition, Constraints, Queries, and Views: SQL Data Definition and Data Types —Specifying Constraints in SQL-Schema Change Statements in SQL-Basic Queries in SQL — More Complex SQL Queries-INSERT, DELETE, and UPDATE Statements in SQL-Views (VirtualTables) in SQL

UNIT-4 15 Periods

Introduction to Transaction Processing Concepts and Theory: Introduction to Transaction Processing-Transaction and System Concepts-Desirable Properties of Transactions-Characterizing Schedules Based on Recoverability –Characterizing Schedules Based on Serializability

Concurrency Control Techniques: Two-Phase Locking Techniques for Concurrency Control—Concurrency Control Based on Time stamp Ordering—Multi version Concurrency ControlTechniques-Validation(Optimistic) Concurrency Control Techniques-Granularity of Data Itemsand Multiple Granularity Locking

Database Recovery Techniques: Recovery Concepts-Recovery Techniques Based on Deferred Update - Recovery Techniques Based on Immediate Update-Shadow Paging

Text Books :	1.	Fundamentals of Database Systems, Ramez Elmasri and Navathe Pearson Education, 6thedition
		Introduction to Database Systems, C.J. Date Pearson Education
	2.	Database Management Systems, Raghu Rama krishnan, JohannesGehrke,
		TATA McGraw Hill3rdEdition
	3.	Database System Concepts, Silberschatz, Korth, McGraw hill,5thedition

COMPUTER ORGANIZATION							
I B.Tech –IV Semester (Code: 18CS404)							
Lectures	:	4 Periods/Week	Continuous	:	50		
			Assessment				
Final Exam	:	3 hours	Final Exam Marks	:	50		

Course Objectives: Students will be able to

- Understand the basic structure, operation of a digital computer, machine instruction and programs.
- Understand the execution of instructions, Hardwired control and Micro programmed control unit design.
- Understand basic computer arithmetic algorithms and operations.
- Understand the hierarchical memory system including cache memories and virtual memory. Identify where, when and how enhancements of computer performance can be accomplished

Course Outcomes: At the end of the course students will be able to CO1 Understand the basic structure of computer and analyzing the concepts of machine instructions. CO2 Illustrate the various arithmetic operation and learn about basic processing time. Review the basic computer instruction set and create flowcharts for the arithmetic operations. CO4 Recognize the I/O and memory organizations.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

							PO's	5]	PSO'	S
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	-	2	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	-	2	ı	-	-	-	-	-	-	-	-	3	-	-
CO3	2	-	2	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	-	2	-	-	-	-	-	-	-	-	-	3	-	-
					U	NIT-	-1					1	l 5 Pei	riods	

DATA REPRESENTATION: Data Types, Complements, Fixed-Point Representation, Floating- Point Representation, Other Binary Codes.

REGISTER TRANSFER LANGUAGE AND MICROOPERATIONS: Register Transfer Language, Register Transfer, Bus and Memory Transfers, Arithmetic Micro Operations, Logic Micro operations, Shift Micro Operations, Arithmetic Logic Shift Unit.

UNIT-2 15 Periods

BASIC COMPUTER ORGANIZATION AND DESIGN: Instruction Codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory-ReferenceInstructions, Input-Output and Interrupt, Complete Computer Description, Design of Basic Computer, Design of Accumulator Logic.

MICROPROGRAMMED CONTROL: Control Memory, Address Sequencing, Microprogram Example, Design of Control Unit.

UNIT-3	15 Periods

CENTRAL PROCESSING UNIT: General Register Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced Instruction Set Computer.

COMPUTER ARITHMETIC: Addition and Subtraction, Multiplication Algorithms, Division Algorithms, Floating-Point Arithmetic Operations, Decimal Arithmetic Unit, Decimal Arithmetic Operations.

UNIT-4

15 Periods

THE MEMORY SYSTEM: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory, Memory Management Hardware. INPUT-OUTPUT ORGANIZATION: Peripheral Devices, Input-Output Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access, Input-Output Processor

- **Text Books:** 1. Computer System Architecture, M.Morris Mano, 3rdEdition, Pearson/PHI.
 - 2. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.
 - 3. Fundamentals of Computer Organization and Design, Sivarama Dandamudi, Springer International Edition.

TECHNICAL ENGLISH							
I B.Tech –IV Semester (Code: 18EL002)							
Lectures	:	4 Periods/Week	Continuous	:	50		
			Assessment				
Final Exam		3 hours	Final Exam Marks	:	50		

Course Objectives: Students will be able to

- At enhancing the vocabulary competency of the students
- To enhance the understanding of the elements of grammar
- To enable the students to use proper spelling, grammar in constructing the sentences
- To enhance the learner's ability to communicate accurately

Course Outcomes: At the end of the course students will be able to

CO1	Make use of contextual clues to infer meanings of unfamiliar words from context.
CO2	Understand how to apply technical information and knowledge in practical
	documents for a variety of purposes.
	Analyse the content of the text in writing use grammatical, stylistic, and
CO3	mechanical formats and conventions appropriate to various audiences and
	disciplines.
CO4	Build confidence to participate actively in writing activities (individually and in
CO4	collaboration) that model effective technical communication in the workplace.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	-	-	-	-	-	-	-	2	2	3	2	2	-	2	-	
CO2	-	-	-	-	-	-	-	2	2	3	2	2	-	2	-	
CO3	-	-	-	-	-	-	-	2	2	3	2	2	-	2	-	
CO4	-	-	-	-	-	-	-	2	2	3	2	2	-	2	-	
UNIT-1 15										5 Per	iods					

1.1 Vocabulary Development: Familiarizing Idioms & Phrases

- 1.2 Grammar for Academic Writing: Making Requests
- 1.3 Language Development: Using Transition & Link words
- 1.4 Technical Writing: Letter Writing & Email Writing

UNIT-2 15 Periods

- 2.1 Vocabulary Development: Analogous words, Gender Sensitive language
- 2.2 Grammar for Academic Writing: Tenses: Simple Past /Present Perfect, The Future: Predicting &Proposing
- 2.3 Language Development: Cloze tests
- 2.4 Technical Writing: Technical Reports

UNIT-3

15 Periods

- 3.1 Vocabulary Development: Abbreviations & Acronyms
- 3.2 Grammar for Academic Writing: Describing(People/Things/Circumstances) : Adjectival & Adverbial groups
- 3.3 Language Development: Transcoding (Channel conversion from chart to text)
- 3.4 Technical Writing: Circular, Memos, Minutes of Meeting

	UNIT-4 15 Periods										
4.1 Vocabulary	4.1 Vocabulary Development: Corporate vocabulary										
4.2 Grammar for Academic Writing: Inversions & Emphasis											
4.3 Language Development: Reading Comprehension4.4 Technical Writing: Resume Preparation											
References:	1. Communication Skills, Sanjay Kumar & Pushpa Latha. Oxford										
	UniversityPress:2011.										
	2. Technical Communication Principles and Practice. Oxford										
	UniversityPress:2014.										
	3. Advanced Language Practice, Michael Vince. Macmillan										
	Publishers:2003.										
	4. Objective English (Third Edition), Edgar Thorpe & Showick.Pearson										
	Education:2009										
	5. English Grammar: A University Course (Second Edition), Angela										
	Downing Philip Locke, Routledge Taylor & Francis Group 2016										

	DESIGN AND ANALYSIS OF ALGORITHMS										
II B.Tech – IV Semester (Code:18CS406)											
Lectures	:	4 Periods/Week	Continuous	:	50						
			Assessment								
Final Exam	:	3 hours	Final Exam Marks	:	50						

Course Objectives: Students will be able to

- Understand about designing and effectiveness of an algorithm, and divide and conquer method.
- Know the optimal solution finding with the greedy and dynamic programming method.
- Easy know the major graph algorithms and their analyses, and backtracking information.
- Get the ability to branch with bound value and NP problems.

Course Outcomes: At the end of the course students will be able to

CO1	Analyze the performance of algorithms through various strategies and apply
	the Master theorem to estimate the complexity of divide-and-conquer algorithms.
CO2	Apply the divide-and-conquer and greedy techniques to solve problems and
CO2	perform complexity analysis.
CO3	Articulate on graph problems and identify the applicability of the dynamic-
CO3	programming paradigm for designing solutions to problems.
	Utilize the Backtracking and Branch and Bound algorithms, find every potential
CO4	solution to the combinatorial and optimixation issues. In addition, classify the P
	and NP complicated problems.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3	-
CO2	3	3	3	-	-	-	-	-	-	-	-	3	3	3	-
CO3	3	3	3	-	-	-	-	-	-	-	-	3	3	3	-
CO4	3	3	3	-	-	-	-	-	-	-	-	3	3	3	-
	TINIT 1											5 Das	rioda		

UNIT-I 15 Periods

Introduction: Algorithm, Pseudo code for expressing algorithms, Performance Analysis-Space complexity, Time complexity, Asymptotic Notation-Bigoh-notation, Omega notation, Theta notation and Little oh notation, Probabilistic analysis, Amortized analysis. Master Theorem: Introduction, Generic Form- Case1, Case2, Case3, Inadmissible equations, Application to common algorithms.

UNIT-2 15 Periods

Divide and conquer: General method, applications-Quicksort, Merge sort, Stassen's matrix multiplication.

Greedy method: General method, applications-Job sequencing with deadlines, Fractional

knapsack problem, Minimum cost spanning trees-Prims, Kruskal, Single source shortest path problem- Dijkstra.

UNIT-3 15 Periods

Dynamic Programming: General method, applications-0/1 knapsack problem, Travelling salesperson problem, Longest common sequence algorithm, Multi stage graphs using Forward& Backward approach, Reliability design. Graph Applications: Graph traversals - Depth first, Breadth first, Bio Connected Components, Strongly Connected Components. UNIT-4 15 Periods Backtracking: General method, applications-n-queen problem, sum of subsets problem. Branch and Bound: General method, applications- 0/1 knapsack problem-LC Branch and Bound solution. NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP-Hardand NP Complete classes, Cook's theorem. Text Books: 1. E. Horowitz, S.Sahniand, S. Rajasekaran, "Fundamentals of Computer Algorithms", Galgotia Publication. 1. T. H. Cormen, Leiserson, Rivest and Stein, "Introduction of Computer References:

2. Sara Basse, A.V.Gelder, "Computer Algorithms", Addison Wesley.

Algorithm", PHI.

Ì	PYTHON PROGRAMMING LAB										
			II B.Tech-IV Semester	(Code: 18CSL41)							
Ī	Lectures	:	Periods (2T+3P)	Continuous Assessment	:	50					
j	Final Exam	:	3 hours	Final Exam Marks	:	50					

Course Objectives: Students will be able to

- Understand and write code using the basics of Python, Statements, Expressions, Conditional Executions, and Functions.
- Write code for Iteration, Strings, File I/O.
- Write code in creating, usage of Lists, Dictionaries, and Tuples.
- Understand the concept of Object Orientation database and write code implementing them.

Course	Course Outcomes: At the end of the course students will be able to										
CO1	Identify the basic python constructs with a view of using them in problem solving.										
CO2	Explore the usability of functions and strings in modular programming.										
CO3	Apply lists, dictionaries, tuples and file operations to organize the data in real world problems.										
CO4	Implement the problems in terms of real world objects using object oriented and database concepts.										

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO2	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO3	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO4	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3

Introduction: Overview, History of Python, Python Features, Environment Setup. Variables, expressions, and statements: values and types, variables, names and keywords, statements, operators and operands, expressions, order of operations, modulus operator, string operations, asking the user for input, comments, choosing mnemonic variable names.

Conditional execution: Boolean expressions, logical operators, conditional execution, Alternative execution, chained conditionals, nested conditionals, catching exceptions using tryand except, short-circuit evaluation of logical expressions.

Functions: function calls, built-in functions, type conversion functions, random numbers, math functions, adding new functions, definitions and uses, flow of execution, parameters and arguments, fruitful functions and void functions.

Iteration: updating variables, the while statement, infinite loops and break, finishing iterations with continue, definite loops using for, loop patterns.

Strings: string is a sequence, getting the length of a string using len, traversal through a string with a loop, string slices, strings are immutable, looping and counting, the in operator, string comparison, string methods, parsing strings, format operator.

Files I/O:persistence, opening files, text files and lines, reading files, searching through a file, letting the user choose the file name, using try except and open, writing files.

Lists: a list is a sequence, lists are mutable, traversing, operations, slices, methods, deleting elements, functions, strings, parsing lines, objects and values, aliasing, arguments.

Dictionaries: dictionary as a set of counters, dictionaries and files, looping and dictionaries, advanced text parsing.

Tuples: tuples are immutable, comparing tuples, tuple assignment, dictionaries and tuples, multiple assignment with dictionaries, the most common words, using tuples as keys in dictionaries, sequences.

Object-Oriented Programming: Managing Larger Programs, Using Objects, starting with Programs, Subdividing a Problem–Encapsulation, First Python Object, Classes as Types, Object Lifecycle, Many Instances, Inheritance.

Using Databases and SQL: Database concepts, Database Browser for SQLite, creating a database table, Structured Query Language summary, Basic data modeling, Programming with multiple tables, three kinds of keys, Using JOIN to retrieve data.

LIST OF EXPERIMENTS

- Write a python program to check if the number is positive or negative or zero and displayan appropriate message.
- 2 Write a python program to take a string from user and count number of vowelspresent and percentage of vowels in it.
- 3 Write a python program to find the most frequent words in a text file.
- Write a Python Program to Find the Sum of first n Natural Numbers.
- Write a python program to find those number which are divisible by 7 and multiple of 5between 1500 and 2700.
- 6 Write a Python Program to Solve Quadratic Equation.
- 7 Create a program that ask the user for a number and then prints out a list of all the divisors of that number.
- 8 Write a Python Program to Find HCF or GCD.
- 9 Write a Python Program to Find LCM.
- 10 Write a Python program to construct the following pattern, using a nested loop number.1

666666

11 Write a Python Program to Sort Words in Alphabetic Order.

- 12 Write a Python function to create the HTML string with tags around the word(s).
- 13 Write a Python program to reverse words in a string.
- 14 Write a Python program to strip a set of characters from a string.
- 15 Write a python function to find the maximum and minimum of a list of numbers.
- 16 Write a Python Program to Find the Square Root.
- 17 Write a Python Program to Convert Decimal to Binary Using Recursion.
- 18 Write a python recursive function to a find the factorial of a given number.
- 19 Write a python program to find the longest word in each line of given file.
- 20 Write a Python program to combine each line from first file with the corresponding line insecond file.
- 21 Write a Python program to read a random line from a file.
- 22 Write a Python program to create a list by concatenating a given list which range goesfrom 1 to n.

```
Sample list : ['p', 'q'] n =5
Sample Output : ['p1', 'q1', 'p2', 'q2', 'p3', 'q3', 'p4', 'q4', 'p5', 'q5']
```

23 Write a Python program to split a list every Nth element.

```
Sample list: ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n'] 
Expected Output: [['a', 'd', 'g', 'j', 'm'], ['b', 'e', 'h', 'k', 'n'], ['c', 'f', 'i', 'l']]
```

24 Write a Python program to compute the similarity between two lists.

```
Sample data: ["red", "orange", "green", "blue", "white"], ["black", "yellow", "green", "blue"]
Expected Output:
```

```
Color1-Color2: ['white', 'orange', 'red']
         Color2-Color1: ['black', 'yellow']
25 Write a Python program to replace the last element in a list with another list.
         Sample data: [1, 3, 5, 7, 9, 10], [2, 4, 6, 8]
         Expected Output: [1, 3, 5, 7, 9, 2, 4, 6, 8]
26 Write a Python program to find the repeated items of a tuple.
27 Write a Python program to convert a list with duplicates to a tuple without duplicates.
28 Write a Python program to reverse the elements of a tuple.
29 Write a Python program to replace last value of tuples in a list.
     Sample list: [(10, 20, 40), (40, 50, 60), (70, 80, 90)]
     Expected Output: [(10, 20, 100), (40, 50, 100), (70, 80, 100)]
30 Write a python program to find the most frequent words in a text file.
31 Write a Python program to combine two dictionary adding values for common keys.
     d1
                     {'a':
                            100,
                                   'b':
                                           200, 'c':300}
     d2
                                           200, 'd':400}
                     {'a':
                            300,
                                   'b':
     Sample output: Counter({'a': 400, 'b': 400, 'd': 400, 'c': 300})
32 Write a Python program to print all unique values in a dictionary.
     SampleData :[{"V":"S001"},
                                           {"V": "S002"},
                                                                  {"VI": "S001"},
             {"VI": "S005"}, {"VII":"S005"}, {"V":"S009"}, {"VIII":"S007"}]
     Expected Output: Unique Values: {'S005', 'S002', 'S007', 'S001', 'S009'}
33 Write a Python program to create and display all combinations of letters, selecting each
   letter from a different key in a dictionary.
     Sample data : {'1':['a','b'], '2':['c','d']}
     Expected Output: ac ad bc bd
34 Write a Python program to get the top three items in a shop.
     Sample data: {'item1': 45.50, 'item2':35, 'item3': 41.30, 'item4':55, 'item5':
     Expected Output:
              item4 55
              item1 45.5
              item3 41.3
35 Write a Python program to match key values in two dictionaries.
     Sample dictionary: {'key1': 1, 'key2': 3, 'key3': 2}, {'key1': 1, 'key2':2}
     Expected output: key1: 1 is present in both x and y
36 Write a Python class named Rectangle constructed by a length and width and a method
    which will compute the area of a rectangle.
37 Write a Python class named Circle constructed by a radius and two methods which will
    compute the area and the perimeter of a circle.
38 Write a Python program to create a class of Single Linked List.
39 Write a Python program to create a class of FIFO queue.
40 Predict the output of following Python programs and write the justification.
   class X(object):
     def
           init (self,a):
             self.num = a
     def doubleup(self):
             self.num *= 2
  class Y(X):
            init (self,a):
     def
             X. init (self, a)
     def tripleup(self):
             self.num *= 3
```

```
print(obj.num)
       obj.doubleup()
       print(obj.num)
       obj.tripleup()
       print(obj.num)
41 Predict the output of following Python programs and write the
   justification.# Base or Super class
         class Person(object):
           def __init__(self, name):
             self.name = name
           def getName(self):return
             self.name
           def isEmployee(self):
             return False
         # Inherited or Subclass (Note Person in bracket)
         class Employee(Person):
          def init (self, name, eid):
          "In Python 3.0+, "super().__init_(name)" also works"
             super(Employee, self).__init_(name)
             self.empID = eid
           def isEmployee(self):
             return True
           def getID(self): return
             self.empID
         # Driver code
         emp = Employee("Geek1", "E101")
         print(emp.getName(), emp.isEmployee(), emp.getID())
42 Create a employees database with the following attributes and insert rows.
    employee id, first name, last name, email, phone number, hire date, job id, salary,
    commission pct, manager id, department id
43 Write a query to get the highest, lowest, sum, and average salary of all employees.
44 Write a query to get the average salary for all departments employing more than
    10employees.
45 Write a query to find the names (first name, last name), the salary of the
    employees whose salary is greater than the average salary.
46 Write a query to get nth max salaries of employees
                 1. A Python Book: Beginning Python, Advanced Python, and Python
Text Books
                   Exercises, Dave Kuhlman, Open Source MIT License.
                2. Python for Data Analysis, Wes McKinney, O' Reilly.
                 1. Python Data Science Handbook-Essential Tools for Working with
References
                2. Data Science from Scratch, JoelGrus, O'Reilly.
```

obj = Y(4)

	WEB TECHNOLOGIES LAB										
	II B.Tech–IV Semester (Code:18CSL42)										
Lectures	:	3 Periods	Continuous Assessment	:	50						
Final Exam	:	3 hours	Final Exam Marks	:	50						

Course Objectives: Students will be able to

- > Know elements and tags of HTML and apply Styles using Cascading Style Sheets.
- Know basics of Java Script, Functions, Events, Objects and Working with browser objects.
- > Know basics of XML, DOM and advanced features of XML.
- To convert XML documents into other formats and XSLT.

Course Outcomes: At the end of the course students will be able to CO1 Create a web page layout using HTML5 elements and CSS stylings. Implement functions to modularize code, use arrays for storing and manipulating data efficiently and event handling techniques to create dynamic and interactive web applications. CO3 Demonstrate the knowledge of Javascript objects and DOM to develop interactive and responsive web applications. CO4 Demonstrate how to handle XML for data exchange and use of Jquery in creating dynamic, data-driven and interactive web applications.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	-	3	-	3	-	-	2	-	2	-	3	3	-	ı	
CO2	3	-	3	-	3	-	-	2	-	2	-	3	3	-	1	
CO3	3	-	3	-	3	-	-	2	-	2	-	3	3	-	1	
CO4	3	-	3	-	3	-	-	2	-	2	-	3	3	-	-	

LIST OF EXPERIMENTS

- 1. Write HTML5 document to design a webpage. (Using all fundamental elements, Organizingtext, Links, URLs and Tables).
- 2. Write HTML5 document to design a webpage. (Using Images, Colors, Canvas & Forms).
- 3. Write codes for different types of styles in CSS3.
- 4. Write java scripts covering Function, Arrays and Events.
- 5. Demonstrate JavaScript objects.
- 6. Demonstrate browser objects.
- 7. Demonstrate Document Object Model for an HTML document.
- 8. Write well-formed and valid XML documents.
- 9. Write code for converting XML document to HTML using XSLT.
- 10. Build a webpage using JQuery and its components.

Text Books:	 Kogent Learning Solutions Inc., HTML5 Black Book: Covers CSS3, Javascript, XML, XHTML, Ajax, PHP and Jquery.
References:	1. Harvey M. Deitel and Paul J.Deitel, "Internet &World Wide WebHow to
	Program",4/e, Pearson Education.
	2. Joshua Elchorn, "Understanding AJAX", Prentice Hall 2006.

	RDBMS LAB										
	II B.Tech – IV Semester(Code: 18CSL43)										
Lectures	:	3 Periods	Continuous Assessment	:	50						
Final Exam	:	3 hours	Final Exam Marks	:	50						

Course Objectives: Students will be able to

- Familiarize with fundamental concepts of database and various database architectures and Design relations for Relational databases using conceptual data modeling.
- Implement formal relational operations in relational algebra and SQL.
- ldentify the Indexing types and normalization process for relational databases
- Use mechanisms for the development of multi user database applications.

Course C	Course Outcomes: At the end of the course students will be able to					
CO1	Design database by using ER diagrams					
CO2	Implement DDL, DML and DCL commands.					
CO3	Understand the aggregate functions and sub query concepts in SQL.					
CO4	Implement Pocedures, functions and cursors using PL/SQL.					

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's								PSO's						
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	2	-	2	-	3	3	3	3
CO2	3	3	3	3	3	-	-	2	-	2	-	3	3	3	3
CO3	3	3	3	3	3	-	-	2	-	2	-	3	3	3	3
CO4	3	3	3	3	3	-	-	2	-	2	-	3	3	3	3

LIST OF EXPERIMENTS

Experiment 1: Working with ER Diagram and Normalization

Example: ER Diagram for Sailors DatabaseEntities:

- 1. Sailor
- 2. Boat Relationship:

Reserves Primary KeyAttributes:

- 1. SID (Sailor Entity)
- 2. BID (Boat Entity)

Experiment 2: Working with DDL, DML, DCL and KeyConstraints Creation, Altering and Dropping of Tables and Inserting Rows into a Table (Use Constraints While Creating Tables) Examples Using Select Command.

Experiment 3: Working with Queries and NestedQUERIES Queries (along with sub Queries) using ANY, ALL, IN, EXISTS, NOTEXISTS, UNION, INTERSET, Constraints

Expriment 4: Working with Queries USING Aggregate Operators &views Queries using Aggregate Functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and Dropping of Views

Experiment 5: Working with Conversion Functions & StringFunctions Queries using Conversion Functions (TO_CHAR, TO_NUMBER AND TO_DATE), String Functions (CONCATENATION, LPAD, RPAD, LTRIM, RTRIM, LOWER, UPPER, INITCAP, LENGTH, SUBSTR AND INSTR), Date Functions (SYSDATE, NEXT_DAY, ADD_MONTHS, LAST_DAY, MONTHS_BETWEEN), LEAST, GREATEST, TRUNC, ROUND, TO CHAR, TO DATE

Experiment 6: Working with Triggers using PL/SQL

Develop Programs using BEFORE and AFTER Triggers, Row and Statement Triggers and INSTEAD OF Triggers

Experiment 7: Working with PL/SQLProcedures

Programs Development using Creation of Procedures, Passing Parameters IN and OUT of PROCEDURES

Experiment 8: Working with LOOPS using PL/SQL and Exception Handling Program Development using WHILE LOOPS, Numeric FOR LOOPS, Nested Loops using ERROR Handling, BUILT-IN Exceptions, USE Defined Exceptions, RAISE-APPLICATION ERROR

Experiment 9: Working with Functions Using PL/SQL

Program Development using Creation of Stored Functions, Invoke Functions in SQL Statements and Write Complex Functions.

Experiment 10: Working CURSORS

Develop Programs using Features Parameters in a CURSOR, FOR UPDATE CURSOR, WHERE CURRENT of Clause and CURSOR Variables

Experiment 11: Installation of SQL

Text Books:

- 1. Oracle PL/SQL by Example, Benjamin Rosenzweig, ElenaSilvestrova, Pearson Education 3rdEd
- 2. Oracle Database Logic PL/SQL Programming, Scott Urman, Tata Mc-GrawHll.
- 3. SQL and PL/SQL for Oracle 10g, Black Book, Dr.P.S.Deshpande

SOFTWARE ENGINEERING III B.Tech – V Semester (Code: 18CS501)								
Lectures:	Lectures: 4 Periods / Week Continuous Internal Assessment 50 Marks							
Final Exam :	3 hours	Semester End Exam:	50 Marks					

Course Objectives: Students will be able to

- > Understand different process models of Software Engineering and
- ➤ Understand Agile Software Development. How to collect requirements from client and how to analyze the collected requirements.
- > Understand how to design and implement the Software Product or Project.
- ➤ Understand the concepts of Testing and Measuring the software project or Product.

Course	Course Outcomes: At the end of the course students will be able to						
CO1	Recognize the many generic and agile process models.						
CO2	Choose appropriate process model depending on the user requirements.						
CO3	Develop different design models for the software project.						
CO4	Distinguish various testing techniques, software metrics, and measures.						

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's									PSO's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	3	-	-	ı	-	-	-	3	3	2	3
CO2	3	3	3	-	3	-	-	-	-	-	-	3	3	2	3
CO3	3	3	3	-	3	-	-	-	-	-	-	3	3	2	3
CO4	3	3	3	-	3	-	-	-	-	-	-	3	3	2	3

UNIT-I 15 Periods

INTRODUCTION TO SOFTWARE ENGINEERING: The Evolving Role of Software, Software, the Changing Nature of Software, Legacy Software, Software Myths.

A GENERIC VIEW OF PROCESS: Software Engineering - A Layered Technology, a Process Framework, the CMMI, Process Patterns, Process Assessment, Personal and Team Process Models, Product and Process.

PROCESS MODELS: Prescriptive Models, the Waterfall Model, Incremental Process Models, Evolutionary Models, the Unified Process.

AN AGILE VIEW OF PROCESS: What Is Agility? What Is an Agile Process? Agile Process Models.

UNIT-II	15 Periods
---------	------------

SOFTWARE ENGINEERING PRACTICE: Software Engineering Practice, Communication Practices, Planning Practices, Modeling Practices, Construction Practice, Deployment.

REQUIREMENTS ENGINEERING: A Bridge to Design and Construction, Requirements Engineering Tasks, Initiating the Requirements Engineering Process, Eliciting Requirements, Developing Use-cases, Building the Analysis Model, Negotiating Requirements, Validating Requirements.

BUILDING THE ANALYSIS MODEL: Requirements Analysis, Analysis Modeling Approaches, Data Modeling Concepts, Flow-Oriented Modeling, Class Based Modeling Creating a Behavioral Model.

UNIT-III

15 Periods

DESIGN ENGINEERING: Design within the Context of Software Engineering, Design Process and Design Quality, Design Concepts The Design Model, Pattern Based Software Design.

CREATING AN ARCHITECTURAL DESIGN: Software Architecture, Data Design, Architectural Styles and Patterns, Architectural Design, Assessing Alternative Architectural Designs.

MODELING COMPONENT-LEVEL DESIGN: What Is a Component? Designing Class-Based Components, Conducting Component-Level Design, Designing Conventional Components.

PERFORMING USER INTERFACE DESIGN: The Golden Rules, User Interface Analysis and Design, Interface Analysis, Interface Design Steps, Design Evaluation.

UNIT-IV

15 Periods

SOFTWARE PROCESS AND PROJECT METRICS: Introduction: Metrics Process and Project Domains, Software Measurement, Metrics for Software Quality, Integrating Metrics with Process.

SOFTWARE QUALITY ASSURANCE: Quality Concepts, Quality Movement, SQA, Software Reviews, Formal Technical Reviews, Formal Approaches to SQA, Software Reliability, ISO 9000 Quality Standards, SQA Plan.

SOFTWARE TESTING STRATEGIES: Strategic Approach, Strategic Issues, Test strategies for Conventional Software, Test strategies for Object Oriented Software, Validation Testing, System Testing, The Art of Debugging.

Text Book(s):

1. Roger S.Pressman, "Software Engineering- A Practitioner's Approach", Sixth Edition, McGraw- Hill International.

References:

- 1. Ian Sommerville, "Software Engineering", Sixth Edition, Pearson Education.
- 2. Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, "Fundamentals of Software Engineering", Second Edition, PHI.
- 3. Rajib Mall, "Fundamentals of Software Engineering", Second Edition, PHI.

AUTOMATA THEORY & FORMAL LANGUAGES III B.Tech – V Semester (Code: 18CS502)								
Lectures:	Lectures: 4 Periods / Week Continuous Internal S0 Marks Assessment:							
Final Exam:	3 hours	Semester End Exam:	50 Marks					

Course Objectives: Students will be able to

- ➤ Understand the theory of automata and formal languages. Construct finite automata, and conversion between DFA and NFA.
- > Demonstrate the connection between regular expressions, languages, and finite automata
- ➤ Demonstrate the connection between pushdown automata and context-free languages and Context Free Grammars.
- ➤ Construct Turing machines for a given task. Understand undecidability problems about Turing Machine and post correspondence problem (PCP).

Course Outcomes: At the end of the course students will be able to

CO1	Comprehend automata and its uses. Create a finite automata and switch between
COI	implementations that are deterministic and nondeterministic.
GO2	Transform finite automata into regular expressions and the other way around.
CO2	Make a DFA that is minimal.
CO3	Build push-down automata for several context-free languages. Explain how PDA
COS	and context-free grammars are related.
CO4	Design Turing machines for different languages. Learn about TM and post
CO4	correspondence problems that are undecidable and undecidable.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's								PSO's						
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	-	-	ı	-	-	ı	-	ı	ı	2	2	-
CO2	2	2	2	-	-	-	-	-	-	-	-	-	2	2	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-	2	2	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-	2	2	-

UNIT-I 15 Periods

Automata: Why Study Automata Theory, The central concepts of automata theory Alphabets, Strings, Languages, Problems.

Finite Automata: An Informal picture of finite automata, Deterministic finite automata (DFA) - Definition of DFA, DFA processing strings, Notations for DFA, Extended transition function, the language of DFA, Non deterministic finite automata (NFA) – Definition of NFA, Extended transition function, the language of NFA, Equivalence of DFA and NFA. Automata with \hat{I} transitions: Use of \hat{I} - transition, notation for an \hat{I} - NFA, Epsilon closures, extended transitions and languages, Eliminating \hat{I} - transitions.

UNIT-II 15 Periods

Regular Expressions and Languages: Regular expressions, finite automata and regular expressions, Algebraic laws of regular expressions.

Properties of Regular Languages: Proving languages are not regular – Pumping lemma for regular languages, Applications of the pumping lemma, Closure Properties of Regular Languages, Equivalence and minimization of automata – Minimization of DFA.

UNIT-III 15 Periods

(Construction based treatment & proofs are excluded)

Context Free Grammars: Context Free Grammars, Parse Trees, ambiguous grammars. Pushdown Automata: Definition of the Pushdown automata, the languages of PDA, Equivalences of PDA's and CFG's.

Context free languages: Normal form's for context- Free grammars, the pumping lemma forcontext free languages.

UNIT-IV 15 Periods

Properties of Context free languages: closure properties for context free languages, Decision properties for CFL's.

Introduction to Turing Machines: The Turing Machine, programming techniques for Turing machines.

Undecidability: a language that is not recursively enumerable, an undecidable problem that is RE, Undecidability problems about TM, Post's Correspondence problem.

mat is KE, Olide	celeability problems about TW, Tost's Correspondence problem.								
Text Book(s):	. John E.Hopcroft, Rajeev Motwani, & Jeffery D. Ullman, "Introduction to Automata Theory Languages and Computations", Third Edition,								
	Pearson Education, 2008.								
References:	1. Cohen, "Computer Theory", KLP Mishra & N.Chandrasekharan, "Theory of Computation", PHI.								
	2. H.R.Lewis, C.H.Papadimitriou, "Elements of The theory of Computation", Second Edition, Pearson Education, 2003.								
	3. J.Martin, "Introduction to Languages and the Theory of Computation", Third Edition, Tata McGraw Hill, 2003.								
	4. MichealSipser, "Introduction of the Theory and Computation", Thomson Brokecole, 1997.								
	5. Ragade, "Automata and Theoretical Computer Science", First Edition, Pearson Education, 2004.								

ENTERPRISE PROGRAMMING III B.Tech – V Semester (Code: 18CS503)								
Lectures:	4 Periods / Week	Continuous Internal Assessment:	50 Marks					
Final Exam :	3 hours	Semester End Exam:	50 Marks					

Course Objectives: Students will be able to

- > Develop an application using servlets and JDBC.
- Design an application using JSP and JSF.
- > Create an application on web services and web sockets.
- ➤ Code an enterprise application using EJBs and Persistence API.

Course Outcomes: At the end of the course students will be able to

CO1	Understand J2EE as an architecture and platform for building and deploying web-based enterprise applications. Learn how to build database-driven, Web applications using Java. Demonstrate the functionality of Java Servlets.
CO2	Demonstrate the functionality of JSP and JSF applications
CO3	Develop Web Service and Socket applications.
CO4	Understand the EJB architecture and have a good grasp on when to use and how to use various EJB bean types and acquire relevant Java programming experience.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's										PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	-	3	-	-	-	-	1	-	2	3	3	3
CO2	3	2	3	-	3	ı	-	ı	-	-	-	2	3	3	3
CO3	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3
CO4	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3

UNIT-I 15 Periods

.The Big Picture: Java EE Architecture, The Many Variations of Java EE Applications, Packaging and Deploying the Java EE Application, Java EE Platform and Implementations. Classic Memories: JDBC - Introduction to JDBC, Structured Query Language, The JDBC APIs.

Java Servlets and Web Applications: Foundations of the Web Tier: The HTTP Protocol, Introducing Java Servlets, Understanding the Java Servlet API, Web Applications, Java Servlets: The Good and the Bad

UNIT-II 15 Periods

Dynamic Web Pages: JSP - JSP Runtime Architecture, JSP Syntax, The Java Environment for JSPs, JSP Standard Tags, Custom Tag Libraries, Expression Language.

Assembling Dynamic Web Pages: JavaServer Faces - Architecture of a JSF Application, JavaServer Faces Tags, Java EE Managed Beans, f: Core Tags, JSTL Core Tags, Extensibility and Modularity.

UNIT-III	15 Periods
U1111=111	15 I CHOUS

Web Sites for Non-browsers: JAX-RS - What Are RESTful Web Services, The Java API for RESTful Web Services, Deploying JAX-RS Resources, Content Production, Content Consumption, Accessing Web Service Context, Exception Mapping, Number of Instances of Resource Classes, Path Mapping.

JSON Processing: Streaming API: Consuming JSON Using the Streaming API, Producing JSON Using the Streaming API; Object Model API: Consuming JSON Using the Object Model API.

Adding Sparkle: Java WebSockets - Introduction to the WebSocket Protocol, The WebSocket Lifecycle, Overview of the Java WebSocket API, Java WebSocket Encoders and Decoders, Message Processing Modes, Path Mapping, Deployment of Server Endpoints.

UNIT-IV 16 Periods

The Fundamentals of Enterprise Beans: Introduction to Enterprise Beans, Hello Enterprise Beans, Flavors of Enterprise Beans, Exposing Enterprise Beans, Finding Enterprise Beans, EJB Lifecycle, Packaging Enterprise Beans.

Advanced Thinking with Enterprise Beans : Multithreading and Enterprise Beans, Asynchronous Enterprise Beans, Enterprise Bean Contexts, The Timer Service, Transactions and Enterprise Beans, Interceptors.

Modern Memories: The Java Persistence API - Persistence Entities, The Entity Manager, Java Persistence Query Language, Configuring JPA Applications.

Text Book(s):	 Dr. Danny Coward, "Java EE 7: The Big Picture", oracle press. Arun Gupta "Java EE 7 Essentials" O'Reilly.
References:	1. Antonio Goncalves "Beginning Java EE 7" apress.

				III B.						ORKS e: 18CS	5504)				
Lecture	s :	4 P	eriod	s / W	eek	C	ontin	uous	Inter	nal Ass	essmer	nt : 5	0 Mar	ks	
Final Ex	kam :	3 h	ours			S	emes	ter Er	nd Ex	am :		5	0 Mar	ks	
Pre-Re	quisit	te: N	one.												
Course	e Obj	ectiv	es: S	tudeı	nts w	ill be	able	to							
					conce	pts o	f data	com	munio	cation,	layered	model	l, prote	ocols	and
	OSI&				conce	ente o	of Dat	a I in	k cor	ntrol N	etwork	Laver	Desig	n Icc	1160
	Routi							a LIII	K COI	11101, 19	CIWOIK	Layer	Desig	311 155	ues,
								ıality	of se	ervice,	Networ	k Lay	er & T	[rans	port
	Layer						o mor		D 0						
<i>></i>	Under	rstanc	the t	basic (conce	epts o	t TCI	, UD	P & 1	Applica	tion La	ıyer			
				_											
Course													-1	1	
CO1											eferenc inicatio		eis and	u vari	lous
CO2	Anal	yze e	rror c	ontro	l, flov	w con	trol r	necha	nism	s used	at data		yer an	d vari	ious
CO2										work de			_		
CO3			d the rt pro						and it	ts addre	essing r	nechan	nisms,	elem	ents
CO4									ort la	aver an	d applic	cation	laver.		
Mappi	ng of	Cour	se O	utcon	nes w	ith P	rogra PO's		utcor	nes &	Progra	m Spe		Outco PSO':	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	-	-	-	-	-	-	-	-	3	-	3
CO2	3	3	3	-	-	-	-	-	-	-	-	-	3	-	3
CO3	3	3	3	-	-	-	-	-	-	-	-	-	3	-	3
CO4	3	3	3	-	-	-	-	-	-	-	-	-	3	-	3
					UI	NIT-	I					1.	5 Peri	ods	
Data C	omm	unica	tions	&]				vervi	ew:	A Con	nmunic	ations	Mod	lel, I	Data
Data Communications & Networking Overview: A Communications Model, Data Communications, Data Communication Networking.															
	Protocol Architecture: The Need for a Protocol Architecture, A Simple Protocol Architecture, OSI, The TCP/IP Protocol Architecture.														
	-									0116 &	Synchr	onous	Trans	mico	ion

Digital Data Communication Techniques: Asynchronous & Synchronous Transmission, Types of Errors, Error Detection, Error Correction.

UNIT-II 16 Periods

Data Link Control: Flow Control, Error Control.

Network Layer: Network Layer Design Issues: Store-and-Forward Packet Switching, Services Provided to the Transport Layer, Implementation of Connectionless Service, Implementation of Connection-Oriented Service, Comparison of Virtual-Circuit & Datagram Subnets.

Routing Algorithms: The Optimality Principle, Shortest Path Routing, Flooding, Distance Vector Routing, Link State Routing, Hierarchical Routing.

Congestion Control Algorithms: General Principles of Congestion Control, Congestion Prevention Policies, Congestion Control in Virtual-Circuit Subnets, Congestion Control in Datagram Subnets, Load Shedding, Jitter Control.

UNIT-III 16 Periods

Quality of Service: Requirements, Techniques for Achieving Good Quality of Service The Network Layer in the Internet: The IP Protocol, IP Addresses, Internet Control Protocols. The Transport Layer:

The Transport Service: Services Provided to the Upper Layers, Transport Service Primitives, Berkeley sockets.

Elements of Transport Protocols: Addressing, Connection Establishment, Connection Release, Flow Control and Buffering, Multiplexing, Crash Recovery.

UNIT-IV 15 Periods

The Internet Transport Protocol (UDP): Introduction to UDP, Remote Procedure Call, The Real-Time Transport Protocol.

The Internet Transport Protocols (TCP): Introduction to TCP, The TCP Service Model, The TCP Protocol, The TCP Segment Header, TCP Connection Establishment, TCP Connection Release, Modeling TCP Connection Management, TCP Transmission Policy, TCP Congestion Control, TCP Timer Management.

Application Layer:

The Domain Name System (DNS): The DNS Name Space, Resource Records, Name Servers.

Text Book(s):	1. Behrouz A.Forouzan, "Data Communications and Networking", 4th edition, TMH.
	2. Tanenbaum, "Computer Networks", 4th Edition, (Pearson Education / PHI).
References:	1. Wayne Tomasi, "Introduction to Data Communications and Networking", PHI.
	2. GodBole, "Data Communications & Networking", TMH.
	3. Nader F.Mir, "Computer and Communication Networks", PHI

ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE (Common for all branches) III B.Tech – V Semester (Code: 18CS505) Lectures: 3 Periods / Week Continuous Internal Assessment : Final Exam: 3 hours Semester End Exam: 50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- > Generalize the effect of precolonial and colonial period on Indian Traditional Knowledge System, traditional Medicine.
- > Discover the knowledge of ITK in Production, Construction, Physics, Chemistry, Architecture and Vastu
- ➤ Discriminate the contribution of India in Mathematics, Astronomy & Astrology
- Propose the importance of Yoga in holistic living.

Course Outcomes: At the end of the course students will be able to

CO1	Acknowledge the significance of ITK, the results of colonial rule, and conventional medicine.						
CO2	Know how well ITKS performs in the fields of architecture, physics, and chemistry.						
CO3	Discover about India's contributions to mathematics and astronomy.						
CO4	Know the benefits of Yoga, yogasanas, pranayama in leading a Happy and Healthy life						

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's										PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	ı	-	-	-	3	3	-	-	-	•	-	-	-	-
CO2	-	-	-	-	-	3	3	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	3	3	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	3	3	-	-	-	-	-	-	-	-

UNIT-I 12 Periods

- 1. Historical Background: TKS during the Pre-colonial and Colonial Period
- 2. Indian Traditional Knowledge System
- 3. Traditional Medicine: Ayurveda, Simple Definition, Origin, Texts, The Great Three Classics of Ayurveda, The Lesser Three Classics of Ayurveda, The Branches of Ayurveda, Basic Concepts of Ayurveda, Purusha/Prakruti, Manifestation of Creation, Space, Air, Fire, Water, Earth, Mental Constitution, Satvic Mental Constitutions, Rajasic Mental Constitutions, Tamasic Mental Constitutions, Vata, Pitta and Kapha: The Three Doshas

UNIT-II 12 Periods

4. Traditional Production and Construction Technology: Social Conditions and Technological Progress, The Impetus for Metallurgy, Social Needs and Technological Applications, Scientific Rationalism and Technological Efficacy, Cultural Mores and Technological Innovation, State Support of Technology, Limitations of Pre-Industrial

Manufacturing, India and the Industrial Revolution.

- 5. History of Physics and Chemistry: Philosophy and Physical Science, Particle Physics, Optics and Sound, Astronomy and Physics, The Laws of Motion, Experimentation versus Intuition, The Social Milieu, The Five Basic Physical Elements, Indian Ideas about Atomic Physics.
- 6. Traditional Art and Architecture and Vastu Shashtra: Vastu, The Principles of Vastu are Simple.

UNIT-III 12 Periods

- 7. Origin of Mathematics
- 8. Astronomy and Astrology
- 9. TKS and the Indian Union: Protection and the Legislative Frameworks in India, Comment, Sui Generis System, Trade Secrets and Know-how, Geographical Indications Bill, Protection of Plan varieties and Farmers Rights Bill, Rights of Communities, Monitoring Information on Patent Applications World-wide, Frameworks for Supporting R&D Activities in the Area of TKS

UNIT-IV 12 Periods

Common Yoga Protocol: Introduction, What is Yoga? Brief History and Development of Yoga, The fundamentals of Yoga, Traditional Schools of Yoga, Yogic practices for health and wellness

General Guidelines for Yoga Practice: Before the practice, During the Practice, After the Practice, Food for Thought, How Yoga can Help.

- 1. Invocation,
- 2. Sadilaja/Cālana Kriyās /Loosening Practices,
- 3. Yogāsanas:
 - A. Standing Postures: Tāḍāsana (Palm Tree Posture), Vṛkṣāsana (The Tree Posture), Pāda-Hastāsana (The Hands to Feet Posture), Ardha Cakrāsana (The Half Wheel Posture), Trikonāsana (The Triangle Posture)
 - B. Sitting Postures: Bhadrāsana (The Firm/Auspicious Posture), Vajrāsana (Thunderbolt Posture), Usṭrāsana (Camel Posture), Śaśakāsana (The Hare Posture), Vakrāsana (The Spinal Twist Posture),
 - C. Prone Postures: Makarāsana (The Crocodile Posture), Bhujaṅgāsana (The Cobra Posture), Śalabhāsana (The Locust Posture),
 - D. Supine Postures: Setubandhāsana (The Bridge Posture), Uttāna Pādāsana (Raised feet posture), Pavana Muktāsana (The Wind Releasing Posture), Śavāsana (The Corpse/ Dead Body Posture)
- 4. Kapālabhāti
- 5. Prānāyāma: naḍīśodhana or anuloma viloma prānāyāma (Alternate Nostril Breathing), Śītalī Prāṇāyāma, Bhrāmarī Prāṇāyāma (Bhrāmarī Recaka)
- 6. Dhyāna
- 7. Sankalpa
- 8. Śantih pātha

Text Book(s):

- 1. Traditional Knowledge System in India, Amit Jha, 2009
- 2. Common YOGA Protocol, Ministry of Ayush

References	1. Traditional Knowledge System & Technology in India, Basanta Kumar
	Mohanta, Vipin Kumar Singh, 2012

ADVANCED COMPUTER ARCHITECTURE Department Elective-I III B.Tech – V Semester (Code:18CSD11) Lectures: 4 Periods / Week Continuous Internal Assessment : Final Exam: 3 hours Semester End Exam: 50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- ➤ Understand the Concept of Parallel Processing and its applications.
- > Implement the Hardware for Arithmetic Operations.
- ➤ Analyze the performance of different scalar Computers.
- ➤ Develop the Pipelining Concept for a given set of Instructions.
- ➤ Distinguish the performance of pipelining and non pipelining environment in a processor.

Course Outcomes: At the end of the course students will be able to

CO1	Discover about the various system interconnect architectures, as well as parallel models like multiprocessors, multicomputers, multivector, and SIMD computers. Students should also be familiar with concepts like dependencies, parallelism, flow mechanisms, program partitioning and scheduling.
CO2	Recognize the performance laws, analytics, and pipelining that accelerate performance.
СОЗ	Know the various workings of Scalable, Multithreaded, and Data Flow Architectures and Multiprocessor Systems.

CO4 Discover about several parallel languages, models, and compilers.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's									-	PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	-	2	-	-	-	-	-	-	-	-	ı	3	-	-
CO2	3	-	2	-	-	-	-	-	-	-	-	-	3	-	-
CO3	2	-	2	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	-	2	-	-	-	-	-	-	-	-	-	3	-	-

UNIT-I 16 Periods

Parallel Computer Models: The state of computing, Classification of parallel computers, Multiprocessors and Multi computers, Multi-vector and SIMD computers.

Program and network properties: Conditions of parallelism, Data and resource Dependencies, Hardware and Software parallelism, Program partitioning and scheduling, Grain Size and latency, Program flow mechanisms, Control flow versus data flow, Data flow Architecture, Demand driven mechanisms, Comparisons of flow mechanisms.

System Interconnect Architectures: Network properties and routing, Static interconnection Networks, Dynamic interconnection Networks, Hierarchical bus systems, Crossbar switch and multiport memory, Multistage and combining network.

IJNIT-II	16 Periods

Principles of Scalable Performance: Performance Metrics and Measures: Parallelism Profile in Programs, Efficiency, Utilization and Quality, Standard Performance Measures, Speedup Performance Laws: Amdahl's law for fixed load, Gustafson's law for scaled problems, Memory Bounded Speedup Model.

Pipelining: Linear pipeline processor, nonlinear pipeline processor, Instruction pipeline Design- Instruction Execution Phases, Mechanisms for instruction pipelining, Dynamic instruction scheduling, Branch Handling techniques, Arithmetic Pipeline Design: Computer Arithmetic principles, Static Arithmetic pipeline, Multifunctional arithmetic pipelines.

UNIT-III 16 Periods

MULTI Processors: Multiprocessor System Interconnect: Hierarchical Bus Systems, Crossbar Switch and Multiport Memory, Multistage and Combining Networks, Cache Coherence and Synchronization Mechanisms: The Cache Coherence problem, Snoopy Bus Protocols, Directory Based Protocols, Hardware Synchronization Mechanisms, Message-passing Mechanism: Message Routing Schemes, Deadlock and Virtual Channels, Flow Control Strategies, Multicast Routing Algorithms.

Scalable, Multithreaded and Dataflow Architectures: Latency-Hiding Techniques, Principles of Multithreading, Scalable and Multithreaded Architectures.

UNIT-IV 16 Periods

Thread Based Parallelism: Introduction, Using the python threading model, How to define a Thread, How to determine a current Thread, How to use a thread in subclass, Thread Synchronization with Lock and RLock, Thread Synchronization with RLock, Thread Synchronization with a Condition, Thread Synchronization with an Event, Using a with Statement, Thread Communication with a Queue, Evaluating the performance of Multithreaded applications.

Process Based Parallelism: Introduction, How to spawn a process, How to name a Process, How to run a Process in the background, How to kill a process, How to use a process in subclass, how to exchange objects between processes, How to synchronize the Processes, How to manage a state between Processes, How to use a Process pool, Usingthe mpi4py python module, Point-to-Point to Communications, Avoiding Dedalock problems, Collective communication using Broadcast, Collective Communication using a Scatter, Collective Communication using Gather, Collective Communication using Alltoall, The reduce operation, How to Optimize an Operation.

Text Book(s):	 Kai Hwang, "Advanced Computer Architecture", TMH. "Python Parallel Programming cookbook", Giancarlo Zaccone, Packt Publishing.
References:	 D.A. Patterson and J.L.Hennessy, "Computer organization and Design", Morgan Kaufmann, 2nd Edition. V.Rajaram & C.S.R.Murthy, "Parallel Computer", PHI. Barry Wilkinson and Michael Allen, "Parallel Programming", Pearson Education. Parallel Programming with Python, Jan Palach, Packt Publishing

DATA WAREHOUSING & DATA MINING Department Elective-I III B.Tech – V Semester (Code: 18CSD12)											
Lectures:	4 Periods / Week	Continuous Internal Assessment :	50 Marks								
Final Exam :	3 hours	Semester End Exam:	50 Marks								
Pre-Requisit	te: None.										
Course Obj	ectives: Students will	l be able to									
 Under proble Under data n Devel 	 Identify the scope and necessity of Data Warehousing & Mining for the society. Understand importance of data, data preprocessing techniques to solve the real time problems. Understand and implement classical models and algorithms in data warehouses and data mining. 										
	Course Outcomes: At the end of the course students will be able to										
		Data pre-processing and data minir									
CO2 Uno	derstand the architectur	re of Data warehouse and Data Mod	lel.								
CO3 Und	derstanding of evaluation	on of the association rule and classif	fication Algorithms.								

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

Analyze clustering and assess clustering algorithm and Outlier Detection.

		PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	3	3	3	-	-	-	ı	ı	ı	2	3	3	2	
CO2	3	3	3	3	3	-	-	-	-	-	-	2	3	3	2	
CO3	3	3	3	3	3	-	-	-	-	-	-	2	3	3	2	
CO4	3	3	3	3	3	-	-	-	-	-	-	2	3	3	2	

UNIT-I 15 Periods

Introduction to Data Warehousing: A Short Historical Note, Increasing Demand for Strategic Information, Data Warehouse Defined, Data Warehouse Users, Benefits of Data Warehousing, Concerns in Data Warehousing.

Data Warehouse: Defining Features: Introduction, Features of a Data Warehouse, Data Granularity, The Information Flow Mechanism, Metadata, Two Classes of Data, The Lifecycle of Data, Data Flow from Warehouse to Operational Systems.

Architecture of a Data Warehouse: Introduction, Characteristics of Data Warehouse Architecture, Data Warehouse Architecture Goals, Data Warehouse Architecture, Data Warehouse and Data Mart Issues in Building Data Marts, Building Data Marts, Other Data Mart Issues, Increased Popularity of Data Marts, Can Data Warehouse and Data Mart Coexist? Pushing and Pulling Data.

UNIT-II 15 Periods

Gathering the Business Requirements: Introduction, Determining the End-user Requirements, Requirements Gathering Methods, Requirements Analysis, Dimensional Analysis, Information Package Diagrams (IPD).

Planning and Project Management: Project Management Principles, Data Warehouse Readiness Assessment, Data Warehouse Project Team, Planning for the Data Warehouse, Data Warehouse Project Plan, Economic Feasibility Analysis, Planning for the Data Warehouse Server, Capacity Planning, Selecting the Operating System, Selecting the Database Software, Selecting the Tools.

Data Warehouse Schema: Introduction, Dimensional Modelling, The Star Schema, The Snowflake Schema, Aggregate Tables, Fact Constellation Schema, The Strengths of Dimensional Modelling, Data Warehouse and the Data Model.

UNIT-III 15 Periods

Dimensional Modelling: Characteristics of a Dimension Table, Characteristics of a Fact Table, The Factless Fact Table, Updates to the Dimension Tables, Cyclicity of Data—The Wrinkle of Time, Other Types of Dimension Tables, Keys in the Data Warehouse (Star) Schema, Enhancing the Data Warehouse Performance, Technology Requirements.

The ETL Process: Introduction, Data Extraction, Data Transformation, Data Loading, Data Quality.

OLAP in the Data Warehouse: Need for OLAP, OLAP, OLAP and Multidimensional Analysis, OLAP Functions, OLAP Applications, OLAP Models, OLAP Design Considerations, OLAP Tools and Products, Existing OLAP Tools, Administration and Performance, OLAP Platforms.

UNIT-IV 15 Periods

Building a Data Warehouse: Introduction, Problem Definition, Critical Success Factors, Requirement Analysis, Planning for the Data Warehouse, The Data Warehouse Design Stage, Building and Implementing Data Marts, Building Data Warehouses, Backup and Recovery, Establish the Data Quality Framework, Operating the Warehouse, Recipe for a Successful Warehouse, Data Warehouse Pitfalls.

Trends in Data Warehousing: Introduction, Data Warehouse Solutions, Web-enabled Data Warehouse, Distributed Data Warehouse, Virtual Data Warehouses, Operational Data Store, Integration with Other Technologies, Trends in Data Warehousing, Data Warehouse Futures.

Text Book(s):	1. Data Warehousing by Reema Thareja, Oxford University Press(2012).
References:	 Data Warehousing: Fundamentals for IT Professionals by Paulraj Ponniah, Wiley; Second edition (2012). Data Warehousing in the Real World: A Practical Guide forBuilding Decision Support Systems by Anahory (2002).

DISTRIBUTED COMPUTING Department Elective-I IV B.Tech – V Semester (Code: 18CSD13) 4 Periods / Week Continuous Internal Assessment | 50 Marks Lectures: Final Exam: 3 hours Semester End Exam: 50 Marks **Pre-Requisite:** None. Course Objectives: Students will be able to understand and comprehend the architecture of distributed systems. > understand and comprehend process in distributed systems. > understand and apply naming and coordination of systems. > understand consistency and fault tolerance in distributed systems. **Course Outcomes**: At the end of the course students will be able to Recognize the definition of a distributed system, the rationale behind designing a CO₁ system in this way, and the desired characteristics of such systems. CO₂ Describe the process and communication of distributed system. CO₃ Describe the synchronization of distributed system. CO4 Recognize the consistency and replication of distributed system. Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PSO's PO's 7 2 2 5 6 8 9 1 CO 1 3 10 11 12 3 **CO1** 3 3 3 _ _ _ --2 1 --2 2 CO₂ 1 1 **CO3** 2 2 3 _ 1 1 **CO4** 2 1 3 _ **UNIT-I** 15 Periods Introduction: What is a distributed system? Design goals, Types of distributed systems. Architectures: Architectural styles, Middleware organization, System architecture, Example architectures. **UNIT-II** 15 Periods Processes: Threads, Virtualization, Clients, Servers, Code migration. Communication: Types of Communication, Remote procedure call, Message-oriented communication, Multicast communication. **UNIT-III** 15 Periods Naming: Names, identifiers, and addresses, Flat naming, Structured naming, Attribute-based Coordination: Clock synchronization, Logical clocks, Mutual exclusion, Election algorithms, Location systems. 15 Periods **UNIT-IV**

Consistency and replication: Introduction, Data-centric consistency models, Client-centric consistency models, Replica management, Consistency protocols. Fault tolerance: Introduction to fault tolerance, Process resilience, Reliable client-server communication, Reliable group communication, Distributed commit, Recovery.									
Text Book(s):	1. Andrew S.Tanenbaum, Maarten Van Steen, "Distributed Systems", Third Edition (2017), Pearson Education/PHI.								
References:	 Coulouris, Dollimore, Kindberg, "Distributed Systems-Conceptsand Design", 3rd edition, Pearson Education. Mukesh, Singhal & Niranjan G.Shivarathri, "Advanced Conceptsin Operating Systems", TMH. Sinha, "Distributed Operating System – Concepts and Design", PHI. 								

C# PROGRAMMING LAB III B.Tech – V Semester (Code:18CSL51)										
Lecture: 2 Periods, Practical:3 Periods	Continuous Internal Assessment :	50 Marks								
Final Exam : 3 hours	Semester End Exam:	50 Marks								

Course Objectives: Students will be able to

- Learn the basic elements of C# and practice the basic programming concepts.
- > Understand and apply object oriented concepts in c#.
- > Understand the concepts of inheritance and polymorphism and apply them in real world.
- Learn to handle exceptions and build the application handling exceptions.

Course Outcomes: At the end of the course students will be able to							
CO1	Identify the basic constructs of C# with a view of using them in problem solving.						
CO2	Apply object oriented features of C# to solve real world problems.						
CO3	Demonstrate the usage of inheritance and polymorphism.						
CO4	Build applications handling Exceptions, Events.						

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO2	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO3	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO4	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3

UNIT-I

20 Periods

Elements of C#: The C# keywords, Identifiers, Data Types, Literals, Variables, Operators & Program Control Statements.

Arrays and Strings: Arrays, Multidimensional Arrays, Jagged Arrays, Assigning Array References, Using the Length Property, Implicitly Typed Arrays, The foreach Loop, Exploring String Class Methods.

LIST OF EXPERIMENTS

Write a program to demonstrate Arrays (2-D and jagged). Design a class to demonstrate String class methods.

UNIT-II 20 Periods

Introducing Classes and Objects: Class Fundamentals, How Objects Are Created, Reference Variables and Assignment, Methods, Constructors, the new Operator Revisited, Garbage Collection and Destructors. 'this' Keyword.

A Closer Look at Methods and Classes: Controlling Access to Class Members, Pass References to Methods, Use ref and out Parameters, Use a Variable Number of Arguments, Return Objects, Method Overloading, Overload Constructors, Object Initializers, Optional Arguments, Named Arguments, The Main() Method, Recursion, Understanding static, Static Classes, Properties.

LIST OF EXPERIMENTS

Implement a class List and the list operations. Use all possible basic features of C#. Write a c# program to demonstrate Ref, Out & Variable No. of Arguments.

UNIT-III

20 Periods

Inheritance: Inheritance Basics, Member Access and Inheritance, Constructors and Inheritance, Inheritance and Name Hiding, Creating a Multilevel Hierarchy, When Are Constructors Called, Base Class References and Derived Objects, Virtual Methods and Overriding, Applying Virtual Methods, Using Abstract Classes.

Interfaces: Interfaces, Implementing Interfaces.

LIST OF EXPERIMENTS

Implement a class hierarchy with Abstract Classes, Virtual methods & Overriding. Write a C# program to demonstrate interfaces.

UNIT-IV

20 Periods

Exception Handling: Exception-Handling Fundamentals, A Simple Exception Example

Using following Keywords: try, catch, finally & throw.

Delegates & Events: Delegates, Events-Delegates, Events, Namespaces.

LIST OF EXPERIMENTS

Write a C# program to create and handle user defined exception.

Implement a class clock that publishes seconds change event. Design classes that subscribeto the event with respective behaviours.

C# 4.0 The Complete Reference by Herbert Schildt, Tata McGrawHill, 2010.
 Programming C# 5.0 by Ian Griffiths, O'REILLY, 2012.
 Programming C#, 2nd Edition, O'REILLY, 2002.
 Programming C# 3.0, Fifth Edition, Jesse Liberty & Donald Xie, O'Reilly Publ.

										MING: 18CS					
Practica	ls:	3 P	eriod	s / W	eek		Conti	nuou	s Inte	rnal As	ssessmen	t 50	Marl	ζS	
Final Ex	am:	3 h	ours				Seme	ster I	End E	xam:		50	Marl	KS	
Pre-Re	quisit	e: No	one.												
Course	Obje	ectiv	es: S	tude	nts w	ill be	able	to							
> 1		an a	pplic	ation ation	using on w	g JSP eb sei	and J	ISF. and	web s	ockets.	nce API				
Course	Outc	ome	s: At	the e	nd of	the c	cours	e stuc	lents	will be	able to				
CO1	Deve	lop a	n app	licati	on us	ing se	ervlet	s and	JDB	C.					
CO2 Design an application using JSP and JSF.															
CO3 Create an application on web services and web sockets.															
CO4 Code an enterprise application using EJBs and Persistence API															
Mappi	ng of (Cour	se Oı	utcon	nes w				utcor	nes &	Program	Spe			
CO	1	2	3	4	5	6	PO's 7	8	9	10	11	12	1	PSO'	3
CO1	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO2	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO3	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO4	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
LIST OF EXPERIMENTS 1. Write a JDBC application to implement DDL and DML commands. 2. Write an application to demonstrate HTTP Servlets. 3. Write an application to demonstrate cookie & Sessions. 4. Write an application to integrate JSP & Servlets. 5. Write an application to demonstrate custom tags and standard tags in JSP. 6. Write an application to demonstrate JSF validators, event handlers and convertors. 7. Write an application to demonstrate web service. 8. Write a chat application using Web sockets. 9. Write an application to demonstrate Session Bean and Entity Bean (persistence). 10. Write an application to demonstrate Asynchronous and Timer services of Enterprise Bean.															

1. Antonio Goncalves "Beginning Java EE 7" apress.

References:

SOFT SKILLS LAB (Common for all branches) III B.Tech – V Semester (Code: 18ELL02) Practicals: 3 Periods / Week Continuous Internal Assessment: 50 Marks : Final Exam: 3 hours Semester End Exam: 50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- To make the engineering students aware of the importance, the role and the content of soft skills through instruction, knowledge acquisition, demonstration and practice.
- ➤ To know the importance of interpersonal and intrapersonal skills in an employability setting.
- > Actively participate in group discussions / interviews and prepare & deliver Presentations.
- ➤ Function effectively in multi-disciplinary and heterogeneous teams through the knowledge of team work, Inter-personal relationships, stress management and leadership quality.

Course Outcomes: At the end of the course students will be able to CO1 Use appropriate body language in social and professional contexts. CO2 Demonstrate different strategies in presenting themselves in professional contexts. CO3 Analyze and develop their own strategies of facing the interviews successfully. CO4 Develop team coordinating skills as well leadership qualities.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's 2 CO 1 2 3 4 5 6 7 8 9 10 11 12 1 3 **CO1** 3 2 2 2 _ 3 2 CO₂ 2. 3 2 2 2. 3 CO₃ 2 3 3 2 2 2 **CO4** 2

LIST OF EXPERIMENTS

1. BODY LANGUAGE

- a. Facial Expressions.
- b. Kinesics.
- c. Oculesics.
- d. Haptics.
- e. Proxemics.
- f. Para Linguistics.

2. LIFE SKILLS

- a. Positive Attitude
- b. Social Behaviour & Social Norms.

- c. Ethics, Values and Positive Work Ethics.
- d. Time Management
- e. Goal Setting, Vision, Mission.

3. EMOTIONAL INTELLIGENCE

- a. Self-Awareness through Johari Window and SWOT analysis.
- b. Self-Control.
- c. Self-Motivation.
- d. Empathy.
- e. Social Skills.
- f. Self Esteem.
- g. Managing stress.
- h. Assertiveness.

4. PROBLEM SOLVING SKILLS

- a. Critical Thinking and Brain Storming
- b. Lateral Thinking and Six Thinking Hats.
- c. Creative Thinking.
- d. Conflict Management.

5. EMPLOYABILITY SKILLS

- a. Group Discussion.
- b. Team Building and Leadership Qualities
- c. Interview Skills.

References:

- 1. "The Definitive Book Of Body Language", Allan & Barbara Pease
- 2. "You Can Win", Shiv Khera.
- 3. "Lateral Thinking", Edward De Bono.
- 4. "How To Prepare For Group Discussions And Interview", Hari Mohan
- 5. Prasad, Rajnish Mohan, 2nd Edition, TMH.
- 6. "Emotional Intelligence", Daniel Goleman.
- 7. "The 7 Habits Of Highly Effective People", Stephen R. Covey
- 8. "Working in Teams", Sandy Pokras.

				III B				LEA ester		NG e:18CS	601)				
Lectures	:	4 P	eriod	s / W	eek	C:	ontin	uous	Inter	nal Ass	essment	50 N	⁄Iarks		
Final Ex	am :	3 h	ours			S	emes	ter Er	nd Ex	am :		50 N	⁄Iarks		
Pre-Req	uisite	e: No	ne.												
Course	Obje	ctive	es: St	uden	ıts wi	ll be	able	to							
<u> </u>	Learn	a Re	gressi	on M	lodel.										
	Comp						ning N	Model							
									e per	forman	ce of a L	earnir	ng Mo	del.	
> 1	Apply	an U	Insup	ervis	ed Le	arnin	g Mo	del.							
Course (Outco	omes	: At 1	the en	nd of	the c	ourse	stud	ents	will be	able to				
CO1 Understand a very broad collection of machine learning algorithms, problems and															
apply the correct regression model for the given problem and implement it.															
CO2		•	the su	•	ised d	iscrin	ninat	ive ar	ıd gei	nerate r	nodels fo	or the	given	prob	lem
CO3	Iden it.	tify t	he su	pervi	sed st	rong l	learni	ng m	odel f	for the g	given pro	blem	and in	nplen	nent
CO4											othesis,				
											problem				
Mappir	ig of (Cour	se O	utcon	nes w	ith P			utcoi	mes &	Progran	n Spe			
<u> </u>	1		_	4	_		PO's		0	10	11	12		PSO'	1
CO	3	3	3	3	5	6	7	8	9	10	11	12 2	3	3	3
CO1					-	-	<u> </u>	_	-	-	-				
CO2	3	3	3	3	3	-	-	-	-	-	-	2	3	3	3
CO3	3	3	3	3	3	-	_	-	-	-	-	2	3	3	3
CO4	3	3	3	3	3	-	-	-	-	-	-	2	3	3	3
					UN	IT-I						15 F	Period	S	
Machine Linear F descent regression Decision	Regres algor on. Tree	ssion: rithm	: Sim , Sto	iple lochasi	inear tic gr cision	radiei Tree	nt de repr	escent	algo ation,	orithm,	Locall	y we	eighte ns for	d li Dec	near ision

Decision Tree Learning: Decision Tree representation, appropriate problems for Decision Tree learning, hypothesis space search in Decision Tree learning, inductive bias in Decision Tree learning and issues in Decision Tree learning.

UNIT-II 15 P	eriods
--------------	--------

Artificial Neural Networks: Neural Network representations, appropriate problems for Neural Network learning, Perceptron, Multilayer Networks and the Backpropagation Algorithm and remarks on the Back propagation algorithm.

Evaluating Hypotheses: Estimating hypothesis accuracy, basics of sampling theory, general approach for deriving confidence intervals, difference in error of two hypotheses and comparing learning algorithms.

UNIT-III 15 Periods

Generative Classifiers::Learning Classifiers based on Bayes Rule, Naïve Bayes Algorithm, Conditional Independence, Derivation of Naïve Bayes Algorithm, Naïve Bayes For discrete-valued Inputs, Naïve Bayes For continuous inputs. Discriminative Classifiers:: Logistic Regression, Estimating Parameters For Logistic Regression, Regularization in Logistic Regression, Logistic Regression for functions with many discrete values, Relationship between Naïve Bayes classifiers and Logistic Regression.

UNIT-IV 15 Periods

Computational learning theory: Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis spaces, and sample complexity for infinite hypothesis spaces.

Instance Based Learning: Introduction, k-Nearest Neighbor learning.

Unsupervised Learning: K-means clustering algorithm.

Text Book(s):	1.	Tom M.	Mitchell	, "Ma	chine]	Learning",	Mc. G	raw Hill Pu	blishing.
References:	1.	Lecture (cs229.st		-		Andrew	Ng,	Stanford	University

				III B.			PILI Sem			GN e: 18CS	S602)				
Lectures	s :	4	Perio	ods / V	Week	C:	Contin	uous	Interi	nal Ass	essmen	t 50 N	Marks		
Final Ex	(am :	3	hour	S		S	emes	ter Er	nd Ex	am :		50 N	Marks		
Pre-Re	quisit	te: N	one.												
Course															
>	the alg design To pra To ap	gorith n of le actice ply V	ms ir exical Vari ariou	analyous Bous Inte	ed in tyzer. Sotton	the do n up p iate la	esign parsin angua	and congress.	onstr nniqu Fo un	uction es. derstan	nd const of comp nd Code table da	oilers, V genera	Under	stand algori	the
									•						
Course	Outo	come	s: At	the e	nd of	the o	cours	e stud	lents	will be	e able to)			
CO1		_				_		_			tion, as v yzer's la		the al	gorit	hms
CO2	Pract	tice d	iffere	nt Bo	ttom-	up pa	arsing	meth	ods.						
СОЗ		emen rating				nterm	ediat	e lang	guage	s. in oi	rder to o	compre	ehend	the c	ode
CO4						_			_		Symbol				
Mappi	ng of	Cour	se O	utcon	nes w	ith P	rogra PO's		utcor	nes &	Prograi	m Spe		Outco PSO's	
CO	1	2	3	4	5	6		8	9	10	11	12		2	3
CO1	3	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CO2	3	3	3	-	-	-	_	-	-	-	-	-	3	3	-
CO3	3	3	3	-	-	-	-	-	ı	-	-	-	3	3	-
CO4	2	2	2	-	-	-	-	-	-	-	-	-	3	2	-
						IT-I						-1	Period		
Introduc Compile Lexical Recognianalyzer Syntax a	er cor Analy tion c	nstruc /sis:] of tok	etion f The ro	tools. ole of mple	the l	exica	l anal ansiti	yzer, on di	input agran	t bufferns, a la	ring, sin nguage	nplification specification	ation (of tok	tens,

Syntax analysis: Writing a grammar-elimination of left recursion, left factoring. Top down parsing - Recursive descent parsing, Predictive parsers.

UNIT-II 14 Periods

Syntax Analysis: Bottom up parsing - Shift Reduce parsing, LR Parsers - LR parsing algorithm, Construction of SLR, Canonical LR and LALR parsing techniques, Parser generators - Yacc Tool.

Syntax – Directed Translation: Syntax Directed definition, construction of syntax trees, Bottom-up evaluation of S – attributed definitions.

UNIT-III 16 Periods

Intermediate code Generation: Intermediate languages, Declarations-Declarations in procedures, Assignment statements-Names in symbol table, Re-using Temporary Names, Boolean expressions- Numerical representation, short circuit code, Back patching. Code Generation- Issues in the design of code generator, the target machines, Basic blocks and flow graphs, Next use information, A simple code generator.

810p110, 1 (0110 000	miormation, it simple code generator.	
	UNIT-IV	14 Periods
strategies.	onment: Source language issues, Storage organization Symbol table entries, Data structures to symbol tables	-
Text Book(s):	1. Alfred V.Aho, Ravi Sethi, JD Ullman, "Co Techniques and Tools", Pearson Education, 2013.	ompilers Principles,
References:	 Alfred V.Aho, Jeffrey D. Ullman, "Principles o Narosa publishing. Lex Yacc", John R. Levine, Tony Mason, Doug Modern Compiler Implementation in C", A Cambridge University Press 	Brown,O'reilly.

	CRYPTOGRAPHY & NETWORK SECURITY III B.Tech – VI Semester (Code:18CS603)														
Lectures		1 4 D		ls / W					•		essmen	.+ .	50	Mark	· G
Final Ex		+	ours	15 / VV	CCK	_		ter Er			CSSIIICI	ιι .	_	Mark	
1 IIIai LA	<u> </u>	J 11	ours			5	CIIICS		IU LA	aiii .			130	iviaik	.0
Pre-Re	anisita	e: No	one												
TTC IXC	quisit		JIIC.												
Course															
												echniqu			
								cey c	rypto	graphy	and s	study a	bout	mess	age
1	authen								~~~~	nt and			h		• 0
											security	ecurity	шесп	amsn	18.
	mpart	KIIO	wicug	c on	Trans	sport.	layer	CC IVC	twon	X layer	<u>sccurri</u>	у			
Course	Outco	ome	s· At	the e	nd of	the o	course	e stud	lents	will he	able to	2			
												d unde	rstanc	l vari	ous
CO1	symn														
CO2	Analy	ze aı	nd ap	ply th	ne cor	cepts	of va	arious	publ	ic key e	encrypt	ion and	crypt	ograp	hic
CO2	hash									•			• •		
$ _{\text{CO3}}$	Evalu	ate tl	he au	thenti	catio	n, key	man man	agem	ent ar	nd desc	ribe vai	ious ap	plicat	ion la	ayer
	mech														
CO4												nd netv			
Mappi	Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes														
	4	•		4			PO's		0	10	44	10		PSO's	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	<u>-</u>	-	-	-	-	-	-	-	-	-	3	2	2
CO2	2	3	3	-	-	-	-	-	-	-	-	-	3	2	2
CO3	2	2	-	-	-	-	-	-	-	-	-	-	-	2	2
CO4		2	3	-	-	-	-	-	-	-	-	-	-	2	2
						UNI			13.5					Perio	ds
								ce and	a Me	chanisi	n. Tecl	ınıques	,		, •
	Introduction: Security Goals, Attacks, Service and Mechanism, Techniques Traditional symmetric key ciphers: Introduction, Substitution Ciphers, Transposition														
Ciphers, Stream and Block Ciphers														sposi	tion
1 -	, Strea	ım ar	nd Bl	ock (Ciphe	rs		luctio	n, Sı	ıbstitut	ion Ci	phers,	Tran		
Data Er	, Strea	m ar on S	nd Bl tanda	ock (Ciphe	rs		luctio	n, Sı	ıbstitut	ion Ci	phers,	Tran		
Data Er DES, So	, Strea crypti ecurity	m an on S of I	nd Bl tanda DES	ock (ard (I	Ciphe DES):	rs : Intro	oduct	luctio	n, Sı DES	ıbstitut Structu	ion Ci ire, DE	phers,	Trans	Mult	iple
Data En DES, Se Enciphe	, Strea ecypti ecurity erment	m an on S of I usin	nd Bl tanda DES ng Me	ock (ard (I odern	Ciphe DES): n Syn	rs : Intro nmeti	oduct	ion, l	n, Si DES phers	ibstitut Structu	ion Ci are, DE of Mod	phers, S Anal	Transysis,	Mult	iple
Data Er DES, So	, Strea ecypti ecurity erment	m an on S of I usin	nd Bl tanda DES ng Me	ock (ard (I odern	Ciphe DES): n Syn ard: I	rs Intro nmeti ntrod	oductric Ke	ion, l	n, Si DES phers	ibstitut Structu	ion Ci are, DE of Mod	phers, S Anal	Transysis, ock Casion,	Mult iphei Ciph	iple
Data En DES, Se Enciphe Advance	, Streamerypti ecurity erment ed End	on S of I usir	nd Bl tanda DES ng Mo ion S	ock (I ard (I odern standa	Ciphe DES) Syn ard: I	rs Intro nmeti ntrod J NIT	oduction	ion, l ey Ci	n, Su DES phers ansfo	Structus: Use o	ion Ci are, DE of Mod as, Key	phers, S Anal ern Blov Expan	Transysis, ock Cosion,	Mult ipher Ciph Perio	iple rs ers.
Data En DES, So Enciphe Advance	, Streamcrypti ecurity erment ed End	on Sy of I c usin	nd Bl tanda DES ng Mo ion S	ock (Inrd (Industrial (Industr	Ciphe DES) n Syn ard: It U y: Pri	rs Intro Introd UNIT mes,	oductric Ke uctio C-II Prima	uction, l ey Ci n, Tra	n, Su DES phers ansfo Testin	Structus: Use or rmation of the control of the cont	ion Ci are, DE of Mod ns, Key torizati	phers, S Anal ern Blov Expan	Transysis, ock Cosion,	Mult ipher Ciph Perio	iple rs ers.
Data Endorson DES, See Encipher Advance	, Streamcrypti ecurity erment ed End natics on, Qua	on S of I usir crypt of Cr dratio	nd Bl tanda DES ng Mo ion S yptog	ock (Ind (Ind (Ind (Ind (Ind (Ind (Ind (Ind	Ciphe DES) n Syn ard: In U y: Pri nce, I	rs Introduction INIT mes, Expor	oductric Keuctio	ey Cin, Tra	n, Su DES phers ansfo Testin and Le	Structus: Use or rmation of the control of the cont	ion Ci ure, DE of Mod ns, Key torizati m.	S Anal ern Blo Expan	ysis, ock Cosion, 16 nesel	Mult Tipher Ciph Perio Remir	iple rs ers. ds nder
Data Endorson DES, So Encipher Advance Mathematheorem Asymm	, Streameryptic ecurity ermented Endonatics on natics on, Qua- metric	on Sy of I to using the crypt of Crypt dratic Key	nd Bl tanda DES ng Mo ion S yptog c Cor Cry	ock (Inrd (Indexe) oderrated (In	Ciphe DES) n Syn ard: In y: Pri nce, H	rs Introduction INIT mes, Expor	oductric Keuctio	ey Cin, Tra	n, Su DES phers ansfo Testin and Le	Structus: Use or rmation of the control of the cont	ion Ci ure, DE of Mod ns, Key torizati m.	S Anal ern Blo Expan	ysis, ock Cosion, 16 nesel	Mult Tipher Ciph Perio Remir	iple rs ers. ds nder
Data Endorson DES, So Encipher Advance Mathemathemathemathemathemathemathemathem	, Streamerypti ecurity erment ed End natics on, Qua etric , Elgar	on S of I usir crypt of Cr dratic Key mal C	nd Bl tanda DES ng Mo ion S yptog Cory Crypt	ock (Ind (Ind (Ind (Ind (Ind (Ind (Ind (Ind	Ciphe DES): n Synard: In Expression Synard:	rs Introduction Introduction INIT Interpretation In	ric Ke uctio C-II Prima nentia roduc	ey Cin, Tra	DES phers ansfo Testin and La	Structus: Use or rmation of the control of the cont	of Modns, Key torization.	es Anal ern Blo Expan on, Chi	ysis, ock C sion, 16 nesel	Mult Cipher Ciph Perio Remin	iple rs ers. ds nder
Data Endorson DES, So Encipher Advance Mathemathemathemathemathemathemathemathem	, Streameryptic ecurity ermented Endo natics on, Quantetric , Elgar e Int	on S of I usir erypt of Cr dratic Key mal C	nd Bl tanda DES ng Mo ion S yptog Cory Crypt	ock (Ind (Ind (Ind (Ind (Ind (Ind (Ind (Ind	Ciphe DES): n Synard: In Expression Synard:	rs Introduction Introduction INIT Interpretation In	ric Ke uctio C-II Prima nentia roduc	ey Cin, Tra	DES phers ansfo Testin and La	Structus: Use or rmation of the control of the cont	of Modns, Key torization.	es Anal ern Blo Expan on, Chi	ysis, ock C sion, 16 nesel	Mult Cipher Ciph Perio Remin	iple rs ers. ds nder
Data Endorson DES, So Encipher Advance Mathemathemathemathemathemathemathemathem	, Streamerypticecurity ermented Encoratics on, Quantetrice, Elgare Intication	on S of I usin crypt of Cr dratic Key nal C egrit	nd Bl tanda DES ng Me ion S yptog c Cor Cry Crypt y a	ock (Index oder oder oder oder oder oder oder oder	ciphe DES): n Syn ard: In y: Pri nce, I raphy stem. Mess	rs Introduction Introduction INIT Interpretation In	ric Ke uctio C-II Prima nentia roduc	ey Cin, Translater tion action,	DES phers phers restin RSA	Structu :: Use or rmation ng, Fac ogarith A Cryp :: Me	of Modns, Key torization.	es Anal ern Blo Expan on, Chi	ysis, ock C sion, 16 nesel	Mult Cipher Ciph Perio Remin	iple rs ers. ds nder
Data Endorson DES, So Encipher Advance Mathemathemathemathemathemathemathemathem	, Streamerypticecurity ermented Encoratics on, Quantetrice, Elgare Intication	on S of I usin crypt of Cr dratic Key nal C egrit	nd Bl tanda DES ng Me ion S yptog c Cor Cry Crypt y a	ock (Index oder oder oder oder oder oder oder oder	Ciphe DES) a Syn ard: In y: Pri nce, I raphy stem. Mess ons: I	rs Introduction Introduction INIT Interpretation In	ric Ke uctio F-II Prima nentia roduc Auth	ey Cin, Translater tion action,	DES phers phers restin RSA	Structu :: Use or rmation ng, Fac ogarith A Cryp :: Me	of Modns, Key torization.	es Anal ern Blo Expan on, Chi	ysis, ock C sion, 16 nesel Robin	Mult Cipher Ciph Perio Remin	iple rs ers. ds nder /pto sage

Digital Signatures: Comparison, Process, Services, Attacks on Digital Signature, Digital Signature Schemes.

Key Management: symmetric key distribution, Kerberos, Symmetric Key Agreement, Public Key Distribution.

16 Periods

Security at the Application Layer: E-Mail, PGP, S-MIME.

Theory", 2/e, Pearson.

UNIT-IV

Security at the Transport Layer: SSL Architecture, Four Protocols, SSL MessageFormat, Transport Layer Security. Security at the Network Layer: Two Modes, Two Security Protocols, Security Association, Security Policy, Internet Key Exchange, ISAKMP. Text Book(s): Cryptography and network security - Behrouz A. Forouzan References: 1. William Stallings "Cryptography and Network Security" 4th Edition, (Pearson Education/PHI). 2. Kaufman, Perlman, Speciner, "NETWORK SECURITY", 2nd Edition, (PHI / Eastern Economy Edition) 3. Trappe & Washington, "Introduction to Cryptography with Coding

MIDDLEWARE TECHNOLOGIES III B.Tech – VI Semester (Code: 18CS604) Lectures: 4 Periods / Week Continuous Internal Assessment: 50 Marks Final Exam: 3 hours Semester End Exam: 50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- ➤ Understand the operations of HTML & Web controls with tracing.
- ➤ Apply styles using validation controls and rich controls by applying state management.
- ➤ Do operations on the database with ADO.NET fundamentals and format the data with data controls.
- Learn the framework, working with web services by following MVC.

Course	e Outcomes: At the end of the course students will be able to
CO1	Interpret the operations of HTML & Web controls with tracing.
CO2	Implement styles using validation controls and rich controls by applying state management.
CO3	Operate the database with ADO.NET fundamentals and format the data with data controls.
CO4	Discuss from awark working with was serviced by following MVC

CO4 Discuss framework, working with web services by following MVC.

Mappir	ng of	g of Course Outcomes with Program Outcomes & Program S _l										m Spec	ecific Outcomes			
		PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	3	-	3	-	-	-	-	-	ı	2	3	3	3	
CO2	3	2	3	-	3	-	-	-	-	-	ı	2	3	3	3	
CO3	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3	
CO4	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3	

UNIT-I 15 Periods

The .NET Framework: C#, VB, and the .NET Languages, Intermediate languages, Common language runtime, the .NET class library.

Web Form Fundamentals: Understanding the anatomy of an ASP.NET application, Introducing server controls, improving the currency converter, taking a deeper Look at HTML control classes, using the page class, using Application events.

Web Controls: Stepping up to web controls, web control classes, List controls, Table controls, Web control events and AutoPostBack, An interactive web page.

Tracing: Enabling Tracing, Writing Trace Information, Performing Application-Level Tracing.

UNIT-II 15 Periods

State Management: Understanding the problem of the state, using View State, Transferring information between pages, using cookies, managing session state Configuring session state, using application state

Validation: understanding the validation, using the validation controls.

Rich Controls: The calendar, The Ad Rotator, pages with multiple views: Multiview, Wizard Control.

Styles, Themes, and Master Pages: Styles, Themes, master page basics, advanced master pages.

UNIT-III 15 Periods

ADO.NET Fundamentals: Understanding databases, configuring your database, Understanding SQL basics, Understanding the data provider model, using direct data Access, using disconnected data access.

Data Binding: Introducing data binding, using single valued data binding, using repeated value data binding, working with data source controls.

The Data Controls: The grid view, formatting the gridview, selecting a grid view row, Editing with a grid view row, sorting and paging in gridview, using grid view templates The details view and form view.

UNIT-IV 15 Periods

LINQ and the Entity Framework: understanding LINQ, LINQ basics, using entity framework, Getting more advanced with entity framework, using the entity data source.

Working with Services: What is WCF Web Service, Application for Creating and Consuming a WCF Web Service?

Putting ASP.NET MVC in Context: Understanding the history of ASP.NET, Key Benefits of ASP.NET MVC.

Your First MVC Application: Preparing Visual Studio, Creating a new ASP.NET MVC Project, Rendering Web Page, Creating a simple Data Entry Application.

Troject, Rende	ing web rage, creating a simple Data Entry Application.
Text Book(s):	1. "Beginning ASP.NET 4.5 in C#", Matthew MacDonald, Apress
	Publishing Company.
	2. "Professional ASP.NET 4.5 in C# and VB", Jason N. Gaylord, Christian
	Wenz, Pranav Rastogi, Todd Miranda, Scott Hanselman, John Wiley &
	Sons, Inc., Indianapolis, Indiana 3. "Pro ASP.NET MVC 5", Adam Freeman, Apress Publishing
	Company.
References:	1. "Microsoft Windows Communication Foundation Step by Step",
	john sharp, Microsoft Press.

	MOBILE APPLICATION DEVELOPMENT														
						-		t Ele							
_									<u> </u>	e:18CS					
Lectures	s :	4 P	eriod	s / W	eek	C	ontin	uous	Interi	nal Ass	essmer	ıt:	50 N	1arks	
Final Ex	kam :	3 h	ours			S	emes	ter Er	nd Ex	am :			50 N	1arks	
Pre-Re	anisit	e: No	one.												
110 100	quisit														-
Course	Objec	tive	s: Stı	ıdent	s wil	l be	able 1	.o							
1						•					Workin	_			
											ernal w	orking	of app	olicat	ions
										ences.	. 1	~			
					op an	droid	appl	icatio	ns us	sing Da	atabase	s, Con	tent P	rovic	iers,
	Service	es &	Men	us.											
Course	Outco	omes	s: At	the e	nd of	the o	cours	e stud	lents	will be	able to	0			
											lamenta		andı	oid	app
CO1	devel														1.1
CO2	Desig	n ba	sic us	er int	erfac	es usi	ing ac	tiviti	es, lay	youts a	nd fragi	ments.			
CO3						_				Prefer					
CO4											ontent I				
Mappi	ng of (Cour	se O	utcon	nes w	ith P			utcor	nes &	Progra	m Spe			
							PO's			ı				PSO'	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3
CO2	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3
CO3	3	2	3	-	3	-	-	-	1	-	-	2	3	3	3
CO4	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3
					J	INI	`-I						15 P	eriod	S
Hello, A	Android	l, Ge	tting	Start											
						NIT							15 P	eriod	S
Creating	g Appl	icatio	ons ai	nd Ac				g Use	er Int	erfaces			4.5		
T	1.0		. D			NIT-		. D		D'1			•	eriod	S
Intents a Preferer		oadc	ast K	eceiv	ers, U	sing	Inter	net R	esour	ces, Fil	es, Sav	ing Sta	ite, an	ıd	
Tielelel	1008				TI	NIT-	IV						15 D	eriod	<u> </u>
Databas	es and	1 Co	ntent	Pro				σ in	the	Backor	ound	Fynanc			
Experie			incin	. 110	VIGCI	, ,,	OIKIII	g III	tiic .	Dackgi	ound,	Lxpane	ing (ine c	7501
Text Bo	ok(s):		1. "	Profe	ession	al A	ndroi	d 4 A	Applie	cation	Develo	pment'	'. Ret	o Me	eier.
	Text Book(s): 1. "Professional Android 4 Application Development", Reto Meier, John Wiley & Sons, Inc.														
Dofoma									D:	Nord	omal. C	Tuida"	Deia	. II.a	d
Referen	ices:				oıa Pr Philli						Ranch C	juiae",	briar	ı mar	лy
											Dawn	Griff	iths 4	& D:	avid
									_	,					
	Griffiths, O'Reilly Publications.														

CLOUD PROGRAMMING

Department Elective-II

III B.Tech – VI Semester (Code:18CSD22)

Lectures:	4 Periods / Week	Continuous Internal Assessment:	50 Marks
Final Exam:	3 hours	Semester End Exam:	50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- ➤ Understand the Cloud Computing environment, AWS platform, and AWS website service.
- ➤ Design cloud applications to demonstrate AWS services-EC2 and SQS.
- Make use of Amazon CLI, web interface and AWS SDK to develop applications and demonstrate the AWS services-Kinesis and S3.
- Develop applications using AWS SDK to work with the AWS services-RDS, NO SQL

Course Outcomes: At the end of the course students will be able to

- CO1 Configure Eclipse with AWS SDK. Understand the basics of cloud computing and register with the AWS cloud platform.
- CO2 Design cloud applications to demonstrate AWS services-EC2 and SQS.
- CO3 Make use of Amazon CLI, web interface and AWS SDK to develop applications and demonstrate the AWS services-Kinesis and S3.
- CO4 Develop applications using AWS SDK to work with the AWS services-RDS, NO SQL.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

							PO's	S]	PSO'	S
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	-	3	-	-	-	ı	-	-	2	3	3	3
CO2	3	2	3	-	3	-	-	-	ı	-	-	2	3	3	3
CO3	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3
CO4	3	2	3	-	3	-	-	-	•	-	-	2	3	3	3

UNIT-I 15 Periods

Introduction to Cloud Computing: Definition, 5-4-3 principles of Cloud Computing, Cloud Eco System, features of Cloud service, benefits and drawbacks, Cloud architecture, Anatomy of Cloud, Network Connectivity in Cloud Computing, Applications on the Cloud, Managing the Cloud, Migrating Application to Cloud.

Cloud Deployment and Service Models: Deployment Models, Service Models. Getting Started with AWS, Amazon CloudWatch

UNIT-II 15 Periods

Hands-on Elastic Compute Cloud - Introduction to EC2, Features of EC2, EC2 Instance Types, Managing EC2 Using Management Console, Managing EC2 Using AWS CLI, Managing EC2 Using AWS SDK (Java), Monitoring Using CloudWatch.

Hands-on Simple Queue Service (SQS) - What Is Messaging Queuing Service? Introduction of AWS SQS, Features of SQS, Using AWS Management Console, Using AWS CLI, Using AWS SDK—Java, Monitor Using CloudWatch.

UNIT-III 15 Periods

Hands-on Kinesis - Introduction to AWS Kinesis Stream and Firehose, Features, Using AWS Management Console, Using AWS CLI, Using AWS SDK—Java, Monitor Using CloudWatch.

Hands-on Simple Storage Service (S3) - Introduction to AWS S3, Features, Using AWS Management Console, Using AWS CLI, Using AWS SDK - Java, Monitoring Using CloudWatch.

Cloud waten.			
		UNIT-IV	15 Periods
Working with	Data -	using AWS RDS, using NoSQL Databases. Auto-scaling	ıg.
Text Book(s):	1.	Chandrasekaran, K. Essentials of cloud computing. C	rC Press,2014.
	2.	Gulabani, Sunil. Practical Amazon EC2, SQS, Kin	nesis, and S3.
		Apress, 2017.	
	3.	https://docs.aws.amazon.com/	
References:	1.	Wittig, Michael, Andreas Wittig, and Ben Whaley.	Amazon web
		services in action. Manning, 2018.	
	2.	Sarkar, Aurobindo, and Amit Shah. Learning AWS:	Design, build,
		and deploy responsive applications using AWS Clou	d components.
		Packt Publishing Ltd, 2018.	

STATISTICS WITH R

Department Elective-II

III B.Tech –VI Semester (Code:18CSD23)

Lectures:	4 Periods / Week	Continuous Internal Assessment :	50 Marks
Final Exam:	3 hours	Semester End Exam:	50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- ➤ Understand the fundamentals of statistical analysis in R environment.
- Analysis data for the purpose of exploration using Descriptive and Inferential Statistics.
- Students will understand Probability and Sampling Distributions.
- ➤ Learn the creative application of Linear Regression in multivariate context for predictive purpose.

Course	Outcomes: At the end of the course students will be able to
CO1	List motivation for learning a programming Language.

- CO2 Use R for statistical programming computation, graphics and modeling.
- CO3 Explore datasets to create testable hypothesis and identify appropriate statistical tests.
- CO4 Synthesize data to fit linear and nonlinear models.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

							PO's	5					J	PSO'	S
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	-	-	-	-	3	2	2	-
CO2	3	3	3	3	3	-	-	-	-	-	-	3	2	2	-
CO3	3	3	3	3	3	-	-	-	-	-	-	3	2	2	-
CO4	3	3	3	3	3	-	-	-	-	-	-	3	2	2	-

UNIT-I

15 Periods

Introduction, How to run R, R Sessions and Functions, Basic Math, Variables, Data Types, Vectors, Conclusion, Advanced Data Structures, Data Frames, Lists, Matrices, Arrays, Classes.

R Programming Structures, Control Statements, Loops, - Looping Over Nonvector Sets, - If-Else, Arithmetic and Boolean Operators and values, Default Values for Argument, Return Values, Deciding Whether to explicitly call return- Returning Complex Objects, Functions are Objective, No Pointers in R, Recursion, A Quicksort Implementation- Extended Example: A Binary Search Tree.

UNIT-II 15 Periods

Doing Math and Simulation in R, Math Function, Extended Example Calculating Probability-Cumulative Sums and Products-Minima and Maxima- Calculus, Functions Fir Statistical Distribution, Sorting, Linear Algebra Operation on Vectors and Matrices, Extended Example: Vector cross Product- Extended Example: Finding Stationary Distribution of Markov Chains, Set Operation, Input /output, Accessing the Keyboard and Monitor, Reading and writer Files, Graphics, Creating Graphs, The Workhorse of R Base Graphics, the plot() Function; Customizing Graphs, Saving Graphs to Files.

UNIT-III 15 Periods

Probability Distributions, Normal Distribution- Binomial Distribution- Poisson Distributions Other Distribution, Basic Statistics, Correlation and Covariance, Testing of

Hypothesis (T-	Test, F-Test, ANOVA Test).	
	UNIT-IV	15 Periods
Models, Logis	s, Simple Linear Regression, -Multiple Regression Generatic Regression, - Poisson Regression- other Generalized I vsis, Nonlinear Models, Splines- Decision- Random Forests	
Text Book(s):	 The Art of R Programming, Norman Matloff, Cengage R for Everyone, Lander, Pearson 	e Learning
References:	 R Cookbook, Paul Teetor, O'reilly. R in Action, Robert Kabacoff, Manning 	

ARTIFICIAL INTELLIGENCE Department Elective-III III B.Tech – VI Semester (Code: 18CSD31) 4 Periods / Week Continuous Internal Assessment: 50 Marks Lectures: Final Exam: 3 hours Semester End Exam: 50 Marks Pre-Requisite: None. Course Objectives: Students will be able to understand the fundamental concepts of artificial intelligence, and their environment, various Search techniques > understand knowledge representation using predicate logic and rules > understand the planning techniques. understand how to design and solve Learning techniques and Expert systems. Course Outcomes: At the end of the course students will be able to Comprehend the underlying ideas of artificial intelligence, as well as their CO₁ environment and different search methods. Acquire the skills to describe knowledge using rules and predicate logic. CO₂ CO3 Comprehend the planning methods. CO₄ Comprehend the design and resolution of Expert and Learning systems. Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PSO's PO's CO 2 7 9 1 2 1 3 4 5 6 8 10 12 3 11 **CO1** 3 3 3 3 3 3 3 CO₂ 3 3 3 3 3 3 3 3 3 3 3 **CO3** 3 3 3 3 3 3 3 3 3 3 **CO4 UNIT-I** 16 Periods Introduction to AI: What is AI?, Foundations of AI, History of AI, State of the Art. Intelligent Agents: Agents and Environments, Good Behavior: Concept of Rationality, The Nature of Environments And The Structure of Agents. Solving Problems by Searching: Problem Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth First Search, Uniform Cost Search, Depth First

Search, Iterative Deepening DFS and Bi-directional Search.

Informed (Heuristics) Search Strategies: Greedy BFS, A* Algorithm, Heuristics Functions.

Beyond Classical Search: Local Search Algorithms and Optimization Problems-Hill Climbing, Simulated Annealing, Searching with Non Deterministic Actions: AND-OR Graphs, Online Search Agents and Unknown Environments.

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Local Search in CSPs, Structure of Problems.

> **UNIT-II** 15 Periods

Logical Agents: Knowledge Based Agents, The Wumpus World, Logic and Propositional Logic: Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and Backward chaining, Agents Based on Propositional Logic.

First Order Logic: Representation, Revisited Syntax and Semantics of First Order Logic, Using First Order Logic, Knowledge Engineering in First Order Logic.

Inferences in First Order Logic: Propositional vs. First Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events, Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

UNIT-III 15 Periods

Slot and Filler Structures

Semantic Nets, Conceptual Dependency, Scripts.

Planning

Overview - An Example Domain: The Blocks Word - Component of Planning Systems – Goal Stack Planning - Non-linear Planning using constraint posting Hierarchical planning, Reactive systems.

UNIT-IV 15 Periods

Learning

What is learning? Rote learning - Learning by taking advice learning in problem solving learning from example: Induction Explanation Based Learning.

Expert Systems

Representing and using domain knowledge Expert system shells Explanation Knowledge Acquisition.

Text Book(s): 1. Artificial Intelligence- A Modern Approach, Stuart Russell and Peter Norvig, 3rd Edition Pearson Education/ PHI.(UNIT-1&2) 2. Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH).(UNIT-1. Artificial Intelligence- Saroj Kaushik, CENGAGE Learning. References: 2. Introduction to Artificial Intelligence, Patterson, PHI 3. Artificial Intelligence, 3rd Edition, Patrick Henry Winston, Pearson Education. 4. Artificial Intelligence, Shivani Goel, Pearson Education. Artificial Intelligence and Expert systems - Patterson, Pearson Education. Artificial intelligence, structures and Strategies for Complex problem solving, -George F Lugar, 5thed, PEA 7. Introduction to Artificial Intelligence, Ertel, Wolf Gang, Springer 8. Artificial Intelligence, A new Synthesis, Nils J Nilsson, Elsevier

SOFTWARE PROJECT MANAGEMENT Department Elective-III III B.Tech – VI Semester (Code: <u>18CSD32</u>) 4 Periods / Week Lectures: Continuous Internal Assessment 50 Marks Final Exam: 3 hours Semester End Exam: 50 Marks **Pre-Requisite:** None. Course Objectives: Students will be able to > Understand the fundamentals of modern software management, and difference from traditional software management. > Discuss various process workflows, artifacts, and life cycle phases as well as diverse software architectures. > Recognize the meaning of project milestones, organizational roles, and process automation. > Understand the fundamentals of future software project management and various metrics and indicators. **Course Outcomes:** At the end of the course students will be able to Discover the fundamentals of modern software management, how it differs from CO₁ traditional software management, and how to improve software economics. Recognize various process workflows, artifacts, and life cycle phases as well as CO₂ diverse software architectures. Recognize the meaning of project milestones, organizational roles, and process CO3 automation. Discover the fundamentals of future software project management and various CO4 metrics and indicators. Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's \mathbf{CO} 2 1 3 4 5 6 7 8 9 10 11 12 1 2 3 CO₁ 3 3 3 3 3 3 3 3 2 _ _ _ 3 3 3 3 2 CO₂ 3 3 3 3 CO₃ 3 3 3 3 3 3 3 2 3 **CO4** 3 3 3 3 3 3 3 2 3 UNIT-I 15 Periods Managing Software Projects: Processes and Project Management, Project Management and the CMM, Project Management at Infosys, Overview of the ACIC Case Study. Process Planning: The Infosys Development Process, Requirement Change Management, Process Planning for the ACIC Project. Effort Estimation and Scheduling: Estimation and Scheduling Concepts, Effort Estimation, Scheduling.

12

UNIT-II

15 Periods

Quality Planning: Quality Concepts, Quantitative Quality Management Planning. Defect Prevention Planning. The Quality Plan of the ACIC Project.

Risk Management: Concepts of Risks and Risk Management, Risk Assessment, Risk Control, Examples.

Configuration Management: Concepts in Configuration Management, The Configuration Management Process, The ACIC Configuration Management Plan.

UNIT-III 15 Periods

Measurement and Tracking Planning: Concepts in Measurement, Measurements, Project Tracking, The ACIC Measurement and Tracking Plan.

The Project Management Plan: The Process databases, The Process capability baseline, Process assets and the body of knowledge system, The Project Management Plan, Team Management, Customer Communication and Issue Resolution, The Structure of the Project Management Plan, The ACIC Project Plan.

	15 Periods				
Project Monitoring and Control: Project Tracking, Milestone Analysis, Activity-Lev Analysis Using SPC, Defect Analysis and Prevention, Process Monitoring and Audit. Project Closure: Project Closure Analysis, The ACIC Closure Analysis Report.					
Text Book(s):	t Book(s): 1. Software Project management in Practices by Pankaj Jalote, Pearso Education India (2015).				
References:	 Software Project Management by Bob Hughes, M Mall, McGraw Hill Education; 5th edition (2017). Software Project Management: A Unified Framework Pearson Education (2002). 				

BLOCKCHAIN TECHNOLOGIES Department Elective - III III B.Tech – VI Semester (Code: 18CSD33) Lectures: 4 Periods / Week Continuous Internal Assessment 50 Marks Final Exam: 3 hours Semester End Exam: 50 Marks Pre-Requisite: None. **Course Objectives:** Students will be able to ➤ Know the basic concepts of block chain technology. > Understand the bitcoin network and alternative coins. > Discuss the ethereum block chain and the steps to create block chain applications. > Understand applications and challenges of block chain. Course Outcomes: At the end of the course students will be able to CO₁ Understand the basic concepts of block chain technology. CO₂ Describe the bitcoin network and alternative coins. Understand the ethereum block chain and the steps to create block chain CO₃ applications. CO₄ Understand applications and challenges of block chain. Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 **CO1** 3 3 3 3 2 3 3 CO₂ 3 3 3 3 2 3 3 CO₃ 3 3 3 3 2 3 3 3 2 3 **CO4** 3 3 3 3 16 Periods **UNIT-I** Introduction, Structure of a Block, The Genesis Block, Linking Blocks in the Blockchain. Tiers of blockchain technology, Types of blockchain, Features of a blockchain Applications of blockchain technology **UNIT-II** 15 Periods Bitcoin Bitcoin definition, Transactions, The transaction life cycle, The transaction structure, Types of transaction, Bitcoin network, Mining, Wallets Bitcoin payments, Bitcoin improvement proposals (BIPs) Alternative Coins, Namecoin, Litecoin, Primecoin, Zcash, Trading Zcash, Mining guide, Bitcoin installation, Bitcoin programming and the command-

UNIT-III 15 Periods

line interface, Bitcoin limitations, Privacy and anonymity

Hyperledger, a Linux Foundation Project, Ten Steps to Your First Blockchain application Ethereum Intr Contract creation transaction, Message call transaction Elements of the Ethereum blockchain, Ethereum virtual machine (EVM) Execution environment, Applications developed on Ethereum.

oduction, Ethereum blockchain, The consensus mechanism, The world state Transactions,						
	UNIT-IV	15 Periods				
Blockchain-Outside of Currencies: Internet of Things, Government, Health, Finance, Insurance, Media, Scalability and Other Challenges: Scalability, Proof of Stake, Privacy, Security, Benefits and limitations of blockchain.						
Text Book(s):	 Mastering Blockchain, Packt Publishing by Imran B Mastering Bitcoin: Unlocking Digital Cryptocurr Antonopoulos Blockchain, IBM Limited Edition, Published by J Inc. www.wiley.com 	encies, by Andreas				
References:	 Blockchain by Melanie Swa, O'Reilly Hyperledger Fabric - https://www.hyperledger.org/p Zero to Blockchain - An IBM Redbooks course, I Smits https://www.redbooks.ibm.com/Redbooks.nsf/Redborse0401.html 	by Bob Dill, David				

					_					G LAB e:18CS					
Practical	s :	s: 3 Periods / Week Continuous Internal Assessment 50 Marks													
Final Ex	am :	3 h	ours				Seme	ster E	End E	xam :		50	Mark	XS .	
Pre-Rec	uisit	e: No	one.												
Course	Obj	ectiv	es: S	tuder	nts w	ill be	able	to							
> (> A	Apply Ensemble methods for improving the performance of a Learning Model														
Course	Outc	ome	s: At	the e	nd of	the c	cours	e stuc	lents	will be	able to)			
CO1	App	oly th	e cor	rect re	egress	sions	mode	els for	the g	given pi	roblems	s and in	nplem	ent it	
CO2	imp	leme	nt it.			•						given	•		
CO3		ntify oleme		suitab	le pr	obabi	ilistic	learr	ning	model	for the	given	prob	lem	and
CO4											•	m and i	•		
Mappin	g of	Cour	se O	utcon	nes w		rogra PO's		utcor	nes &]	Progra	m Spec		Outco PSO's	
CO															,
	1	2	3	1 1	5	I 6	' /	Q	Q	10	11	12	1	· ?	3
	3	3	3	3	5	-	7	8	9	2	11	12 3	3	3	3
CO1 CO2	3 3	3 3	3 3	3 3	3	-	-	2 2	- -	10 2 2	- -	3 3	3 3	3	3 3 3

LIST OF EXPERIMENTS

CO4

3

3

3

3

3

1. Write a program to implement the linear regression using stochastic gradient descent approach of training for a sample training data set stored as a .CSV file.

2

3

3

3

3

- 2. Write a program to implement the linear regression using Batch gradient descent approach of training for a sample training data set stored as a .CSV file.
- 3. Write a program to implement the Logistic regression for a sample training data set stored as a .CSV file and test the same using appropriate data sets
- 4. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply thisknowledge to classify a new sample.
- 5. Build an perceptron training model to learn linearly separable datasets and test the same using appropriate data sets.
- 6. Build an Artificial Neural Network by implementing the Back propagationalgorithm

- and test the same using appropriate data sets.
- 7. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering.
- 9. Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions.
- 10. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

	thoses completely with the training commerce.
Text Book(s):	1. Tom M. Mitchell, "Machine Learning", First Edition, Mc. Graw Hill
	Publishing.
	2. Python for Everybody, 2016 Edition by Charles R. Severance.
	3. Introduction to Machine Learning with Python by Andreas C.Mueller
	and Sarah Guido, O'Reilly Media, Inc.
References:	1. Core Python Programming Paperback – 2016 by R. Nageswara Rao,
	Dreamtech Press.
	2. Python Programming: A Modern Approach by Vamsi Kurama, Pearson.
	3. Machine Learning in Python by Michael Bowles, Wiley.

	MIDDLEWARE TECHNOLOGIES LAB III B.Tech –VI Semester (Code: 18CSL62)						
Practicals:	3 Periods / Week	Continuous Internal Assessment	50 Marks				
		:					
Final Exam :	3 hours	Semester End Exam:	50 Marks				

Pre-Requisite: None.

Course Objectives: Students will be able to

- > Understand the operations of HTML & Web controls with tracing.
- Apply styles using validation controls and rich controls by applying state management.
- ➤ Do operations on the database with ADO.NET fundamentals and format the data with data controls.
- Learn the framework, working with web services by following MVC.

Course Outcomes: At the end of the course students will be able to

CO1	Execute applications using HTML & Web controls with tracing.
CO2	Implement applications on rich controls and validation controls with state management.
СОЗ	Interpret the applications on ADO.NET fundamentals for matching data with data controls.
CO4	Solve the applications on framework and web services by following MVC.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

							PO's	3]	PSO'	S
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO2	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO3	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO4	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3

LIST OF EXPERIMENTS

- 1. Design an ASP.NET application to demonstrate Web Form markup and redirection.
- 2. Design an ASP.NET application to demonstrate Web Controls and Html controls.
- 3. Design an ASP.Net application to demonstrate List Controls and to display a table dynamically.
- 4. Design an ASP.Net application to demonstrate Cross page Postback andQueryString to transfer data between Web pages.
- 5. Design an ASP.Net application to demonstrate the use of Cookies and using cookies how to transfer data between web pages.
- 6. Design an ASP.Net application to demonstrate use of session state and using session state how to transfer data between Web Pages.
- 7. Design an ASP.NET application to demonstrate Validating ASP.NET Web Pages using Validation Controls.

- 8. Design an ASP.NET application to demonstrate Rich Controls.
- 9. Design an ASP.NET Web Site with Styles, Themes and Master Pages.
- 10. Design an ASP.NET application to work with SQL Server Database using ADO.NET.
- 11. Design an ASP.NET application to work with SQL Server Database using Data Controls.
- 12. Design an ASP.NET application to work with SQL Server Database using LINQ Queries.
- 13. Design an application to demonstrate a Web Service Creation and Consumption.
- 14. Design a Simple MVC Web Pages Application.

Text Book(s):	1. "Beginning ASP.NET 4.5 in C#", Matthew MacDonald, Apress
	Publishing Company.
	2. "Professional ASP.NET 4.5 in C# and VB", Jason N. Gaylord, Christian
	Wenz, Pranav Rastogi, Todd Miranda, Scott Hanselman, John Wiley &
	Sons, Inc., Indianapolis, Indiana
	3. "Pro ASP.NET MVC 5", Adam Freeman, Apress Publishing
	Company.
References:	1. "Microsoft Windows Communication Foundation Step by Step", john
	sharp, Microsoft Press.

MOBILE APPLICATION DEVELOPMENT LAB Dept. Elective-II Lab III B.Tech – VI Semester (Code: 18CSLD21) Practicals: 3 Periods / Week Continuous Internal Assessment : 50 Marks Final Exam: 3 hours Semester End Exam: 50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- ➤ Understand the Android Application Architecture and Working.
- ➤ Understand how to develop android applications and internal working of applications.
- > Understand Intents, Broadcast Receivers, Preferences.
- > Understand to develop android applications using Databases, Content Providers, Services & Menus.

Course	Outco	omes	: At t	he en	d of	the co	ourse	stud	ents v	will be	able to				
CO1	Crea	te an	Envi	ronm	ent to	deve	lop A	ndro	id app	olicatio	ns.				
CO2	Desi	gn us	er Int	erfac	es usi	ng A	ctivit	ies, L	ayout	ts & Fra	agment	s.			
CO3	Deve	elop A	Andro	oid ap	ps us	ing Ir	itents	and s	shared	d prefer	ences.				
CO4	Deve	elop A	Andro	oid ap	ps us	ing S	QL L	ITE I	Datab	ases, C	ontent]	Provide	rs &	Servi	ces.
Mappi	ng of	Cour	se O	utcon	nes w	ith P	rogra	ım O	utcoi	nes &	Progra	m Spec	cific (Outco	mes
							PO's	3]	PSO'	S
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO2	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO3	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO4	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3

LIST OF EXPERIMENTS

- 1. Downloading and Installing the Android SDK. Downloading and Installing Updates to the SDK.
- 2. Creating and understanding Hello World application.
- 3. Develop an Android application to demonstrate the usage of resources and animations.
- 4. Develop an Android application to demonstrate Activity lifecycle.
- 5. Develop To-Do List Android application to demonstrate Different LayoutManagers.
- 6. Develop an Android application to create and use custom controls.
- 7. Develop an Android application to demonstrate Intents.
- 8. Develop Earthquake Viewer Android application to demonstrate the usage ofInternet Resources.
- 9. Develop an Android application to demonstrate working with SQLITE Databases.

10. Develop	Earthquake-Monitoring Service.
Text Book(s):	1. "Professional Android 4 Application Development", Reto Meier, John Wiley & Sons, Inc.

CLOUD PROGRAMMING LAB

Dept. Elective-II Lab

III B.Tech – VI Semester (Code: 18CSLD22)

Practicals:	3 Periods / Week	Continuous Internal Assessment :	50 Marks
Final Exam :	3 hours	Semester End Exam:	50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- ➤ Understand the Cloud Computing environment, AWS platform, and AWS website service.
- ➤ Design cloud applications to demonstrate AWS services-EC2 and SQS.
- Make use of Amazon CLI, web interface and AWS SDK to develop applications and demonstrate the AWS services-Kinesis and S3.
- Develop applications using AWS SDK to work with the AWS services-RDS, NO SQL

Course	Outcomes: At the end of the course students will be able to
CO1	Configure Eclipse with AWS SDK. Understand the basics of cloud computing and register wit the AWS cloud platform.
CO2	Design cloud applications to demonstrate AWS services-EC2 and SQS.
СОЗ	Make use of Amazon CLI, web interface and AWS SDK to develop applications and demonstrate the AWS services-Kinesis and S3.
CO4	Develop applications using AWS SDK to work with the AWS services-RDS, NO SQL.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's CO **CO1** _ _ _ _ -CO₂ **CO3 CO4**

LIST OF EXPERIMENTS

- 1. Creating an AWS Account. Setting up a key pair. Creating a billing alarm.
- 2. Demonstrate managing EC2 using Management Console.
- 3. Demonstrate managing EC2 Using AWS CLI.
- 4. Develop an application to manage EC2 Using AWS SDK(Java).
- 5. Demonstrate managing SQS using Management Console.
- 6. Demonstrate managing SQS using AWS CLI.
- 7. Develop an application to manage SQS using AWS SDK(Java).
- 8. Demonstrate managing Kinesis using Management Console.
- 9. Demonstrate managing Kinesis using AWS CLI.
- 10. Develop an application to manage Kinesis using AWS SDK(Java).

- 11. Demonstrate managing S3 using Management Console.
- 12. Demonstrate managing S3 using AWS CLI.
- 13. Develop an application to manage S3 using AWS SDK(Java).
- 14. Develop an application using Amazon Relational Database Service (RDS).
- 15. Develop an application using NoSQL Database.

Text Book(s):

- 1. Gulabani, Sunil. Practical Amazon EC2, SQS, Kinesis, and S3. Apress, 2017.
- 2. https://docs.aws.amazon.com/
- 3. Wittig, Michael, Andreas Wittig, and Ben Whaley. Amazon web services in action. Manning, 2018.

STATISTICS WITH R LAB

Dept. Elective-II Lab

III B.Tech – VI Semester (Code:18CSLD23)

Practicals:	3 Periods / Week	Continuous Internal Assessment :	50 Marks
Final Exam :	3 hours	Semester End Exam:	50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- ➤ Understand the fundamentals of statistical analysis in R environment.
- Analysis data for the purpose of exploration using Descriptive and Inferential Statistics.
- > Students will understand Probability and Sampling Distributions.
- ➤ Learn the creative application of Linear Regression in multivariate context for predictive purpose.

Course Outcomes: At the end of the course students will be able to

CO1	Understand the basics of R. Understand the installation of R language and installation of required packages. Write commands for mathematical calculations, vectors, matrices, data frames and Arrays. Write programs using functions.
CO2	Write R programs fpr reading and writing CSV and excel files in R environment and manipulate data using SQL.
CO3	Analyze the data for various formats to see the data. Use various plots for visualization of data.
CO4	Understand statistics and linear models. Understand searching text patterns using regular expressions.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

							PO's	5]	PSO'	S
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	-	-	2	-	2	-	3	3	3	3
CO2	3	3	3	3	3	-	-	2	-	2	-	3	3	3	3
CO3	3	3	3	3	3	-	-	2	-	2	-	3	3	3	3
CO4	3	3	3	3	3	-	-	2	-	2	-	3	3	3	3

LIST OF EXPERIMENTS

1. a). Write R Code using R as a calculator.b).

Write R Code on Vector Operation.

- c). Write R code which demonstrate i) Array ii) List iii) Matrix iv) stack v) Data Frames
- 2. Write R Code to Importing & Exporting data from i) CSV file ii) Excel file
- 3. Write R code Which Demonstrate i) Missing Value Treatment ii) Outliers
- 4. Write R code to demonstrate i) Character functions ii) SQL operations using R.

- 5. Write R code which demonstrate functions and control loops.
- 6. Write R code which demonstrate plotting of graphs i) Histogram ii) Pie Graph iii) Plot Graph iv) Box Plot v) Dot Plot vi) Kernel Density Plots
- 7. Write R code which demonstrates descriptive statistical functions.
- 8. Write R code which demonstrates frequency and contingency tables.
- 9. Write R code which demonstrates Correlations.
- 10. Write R code which demonstrates T-Tests (Independent and Dependent).
- 11. Write R code which demonstrates Nonparametric tests of group differences.
- 12. Write R code which demonstrates i) Simple Linear Regression ii) Multiple Linear Regression
- 13. Write R code which demonstrates One-way ANOVA.
- 14. Write R code which demonstrates Two-way factorial ANOVA.

Text Book(s):	 R for Everyone, Lander, Pearson. (UNIT-I) R in Action, Robert Kabacoff, Manning. (UNIT-II, III, and IV)
References:	 R Cookbook, Paul Teetor, O'reilly. The Art of R Programming, Norman Matloff, Cengage Learning.

				F	ULL	STA	CK I	DEVI	ELO	PMEN	T				
			1	VB.	Tech	– VII	Sem	ester	(Code	e: 18CS	5701)				
Lectures	s:		4 I	Period	ds / W	eek	Co ₁	ntinuc	ous In	ternal A	Assessr	ment	50 Ma	arks	
Final Ex	am:		3 ł	nours			Ser	nestei	End	Exam	:		50 Ma	arks	
Pre-Re	quisit	e: No	one.												
Course	Obj	ootiv	00. 5	tude	nte w	ill be	able	, to							
								, 10							
	Devel Work	-			_			οησοΓ)R						
										eb-serv	ices.				
	Devel	•			-	-									
Course	Outo	ome	s: At	the e	nd of	the c	cours	e stuc	lents	will be	able to	0			
											Node.js				
CO1							Syste	em an	d De	velop a	an expr	ess w	eb app	olicati	ons
	-	_	_		empla					. 1		1.		•	1
CO2				_						-	ement operation				
CO2		ngoD		USE	NOU	e.js i	0 1111	pieme	m C	KUD (реганс	nis by	COIIII	ecung	3 10
~~^		_		2 an	d in	nplem	nentin	ıg ar	plica	tions	using	types	cript.	creat	ting
CO3			-	-		-		-	-		g angula		1 /		8
CO4	Cre	ate A	ngula	ar cor	npone	ents, e	events	s with	data	binding	g and A	ngula	r servi	ces.	
Mappii	ng of	Cour	se O	utcon	nes w	ith P	rogra	am O	utcor	nes &]	Progra	m Spe	ecific (Outco	mes
							PO's	5				ı]	PSO's	1
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3
CO2	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3
CO3	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3
CO4	3	2	3	-	3	-	-	-	-	-	-	2	3	3	3
						NIT-	-I						15 Pe	riods	
C - 44.															
_						_					, and C				•
Handlin	g Data	a I/O	in No	de.js	, Acc	essing	g the]	File S	ysten	from 1	Node.js	, Impl	ement	ing H	TTP
Handlin Services	g Data	a I/O	in No	de.js	, Acc	essing	g the]	File S	ysten	from 1	Node.js	, Impl	ement	ing H	TTP
Handlin	g Data	a I/O	in No	de.js	, Acc	essing Node.	g the l	File S	ysten	from 1	Node.js	, Impl	ement ojects,	ing H Tem _l	TTP
Handlin Services	g Data	a I/O	in No	de.js	, Acc	essing	g the l	File S	ysten	from 1	Node.js	, Impl	ement	ing H Tem _l	TTP
Handlin Services	g Data s in No	a I/O ode.js	in No s, Exp	ode.js	, Accomith 1	essing Node.	g the list, Ro	File S outes,	ysten Requ	n from latest and	Node.js	, Impl	ement ojects,	ing H Temp	TTP
Handlin Services engine.	g Data s in No	a I/O ode.js	in No	ode.js press	, Account of the Acco	Node. NIT	g the list, Ro	File Soutes,	ystem Requ ervin	n from last and	Node.js I Respo	, Implonse of	ement ojects, 15 Pe ing PO	ing H Tempriods	TTP plate
Handlin Services engine.	g Data s in No anding	g mic	in No	ode.js press	, Account of the Land of the L	Node. NITe	g the list, Rosellist,	File S outes, are, S nderst	ystem Requ ervin	g static	Node.js I Respo	Handl	ement ojects, 15 Pe ing PC	riods OST 1 3, Ge	TTP plate body tting
Handlin Services engine. Understa data, Co	g Data in No anding pokies with	g mic , Ses	in No	ode.js oress are, (Query thent	Node. NIT midication Star	g the lijs, Ro	File Soutes, are, Souterst with	ystem Requ ervin andin Mor	g static	Node.js I Response files, QL and M	Handld Mode.js	ement ojects, 15 Pe ing PC	riods OST 1 3, Ge	TTP plate body tting
Handlin Services engine. Understa data, Co Started	g Data in No anding pokies with	g mic , Ses	in No	ode.js oress are, (Query thent etting	Node. NIT midication Star	g the list, Rosellis, Rose	File Soutes, are, Souterst with	ystem Requ ervin andin Mor	g static	Node.js I Response files, QL and M	Handld Mode.js	ement ojects, 15 Pe ing PC	riods OST 1 General States of the second s	TTP plate body tting
Handlin Services engine. Understa data, Co Started	g Data s in No anding pokies with DB Do	g mic s, Ses Mon	in No	rare, Grom l	Query thent etting Node.	NIT mid ication Star	g the lijs, Ro	File Soutes, are, Soutest with ng M	ervin andin Mor	g static g NoS ngoDB	Node.js I Respo e files, QL an and Node	Handld Mode.js.	ement ojects, 15 Pe ing PongoDE s, Ma 15 Pe	riods OST 1 3, Ge nipula	TTP plate body tting ating
Handlin Services engine. Understa data, Co Started Mongol	g Data s in No anding pokies with DB Do	g mid g, Ses Mon ocume	in No	rare, (Care, Grom I	Query thent etting Node.	Node. NIT midication Star js, Ac IT-1 ses, m	g the list, Rosellis, Rose	File Soutes, outes, are, Sonderst with ng M es, fu	ervin andin Morongol	g static g NoS ngoDB from	Node.js I Response files, QL an and Node	Handld Mode.js.	15 Pe ing PongoDE s, Ma	riods OST 1 3, Ge nipula	TTP plate body tting ating

15 Periods

UNIT-IV

Data binding, Built	-in directives, Events and change detection- Browser events, Custom						
events, Observables, Angular services- Understanding Angular services, Built-in services,							
GET and PUT Requ	nests, A simple mock server, Changing views with the router service.						
Text Book(s):	1. Node.js, MongoDB and Angular Web Development (Second						
	Edition), Brad Dayley, Brendan Dayley Caleb Dayley, by						
	PearsonEducation, Inc.						
References:	1. Getting MEAN with Mongo, Express, Angular, and Node,						
	 Manning Publications, ISBN-10: 1617294756, Beginning Node.js, Express & MongoDB Development, ISBN-10: 9811480281, 						

WIRELESS NETWORKS IV B.Tech – VII Semester (Code: 18CS702) 4 Periods/week, Tutorial:1 Lectures Continuous Assessment 3 hours Final Exam Marks 50 Final Exam Pre-Requisite: None. Course Objectives: Students will be able to > Understand the fundamentals of the wireless communications systems, the wireless network architectures, protocols, and applications. > Understand architecture of different telecommunication systems and satellite systems. > Understand architecture and layers of wireless local area networks and network layer for wireless environment. ➤ Understand network architectures of 4G Technology Advancements. **Course Outcomes**: At the end of the course students will be able to Develop the foundation for the need of wireless networks and recognize the features CO1 of the multiple access mechanisms used in mobile communication, as well as the mobile communication systems. Learn the fundamentals, routing, and localization of satellite navigation systems as CO2 well as the 2G, DECT, TETRA, UMTS, and LTE mobile communication systems. Learns about the design and protocols of wireless LANs, as well as the mobile CO3 network layer and routing algorithms for ad hoc networks. Find out more about the mobile transport layer. learns about the wireless application CO4 protocol's architecture. Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's CO 1 2 3 4 5 6 10 11 12 1 3 **CO1** 3 3 3 3 3 3 CO₂ 3 3 3 3 3 3 3 CO₃ 3 3 3 3 3 3 3 **CO4** 3 3 3 UNIT-1 15 Periods Introduction: Applications, Short History of Wireless Communications, Simplified Reference Model. Wireless Transmission: Frequencies, Signals, Signal Propagation, Multiplexing, Modulation, SpreadSpectrum, and Cellular Systems. Medium Access Control: Motivation for a Specialized MAC, SDMA, FDMA, TDMA, CDMA, and Comparison. UNIT-2 15 Periods Telecommunication Systems: GSM, DECT, TETRA, UMTS and IMT-2000: System Architecture, and Radio Interface. Satellite Systems: History, Applications, Basics,

Routing, Localization, and Handover

UNIT-3 15 Periods

Wireless LAN: Infrared Vs. Radio Transmission, Infrastructure and Ad Hoc Networks, IEEE 802.11: System Architecture, Protocol Architecture, Physical Layer, MAC Layer, and MAC Management.

Mobile Network Layer: Mobile IP: Entities and Terminology, IP packet delivery, Agent

discovery, Registration, and Tunneling and Encapsulation, Dynamic Host Configuration Protocol. 15 Periods UNIT-4 Mobile Network Layer: Ad Hoc Networks. Mobile Transport Layer: Traditional TCP, Classical TCP Improvements: Indirect TCP, Snooping TCP, Mobile TCP, Fast Retransmit / Fast Recovery, Transmission / Time-Out Freezing, Selective Retransmission, and Transaction Oriented TCP. Support for Mobility: Wireless Application Protocol: Architecture, Wireless Datagram Protocol, Wireless Transport Layer Security, Wireless Transaction Protocol, Wireless Session protocol, and Wireless Application Environment. 1. Jochen Schiller, "Mobile communications", second edition, Addison-Text Books: Wesley, 2003. 2. Farooq Khan, "LTE for 4G Mobile Broadband" Line-Air Interface Technologies and Performance, CAMBRIDGE, 2009. 3. Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", WILEY, 2015. 1. William Stallings, "Wireless Communication Networks". UWE **References:** Hansmann, Lother Merk, Martin S. Nicklous, Thomas Stober, "Principles

of Mobile Computing", 2nd Edition.

	INSTITUTI	ONAL ELECTIVE - I							
		on for all branches)							
		Semester (Code: 18_I_)							
Lectures:	4 Periods / Week	Continuous Internal Assessment	50 Marks						
E' 1E	2.1	: C	50 N						
Final Exam :	3 hours	Semester End Exam : of the Subjects	50 Marks						
	List	of the Subjects							
18CEI01	Air Pollution & Con	trol							
18CEI02	Rural Water Supply	And Environment Sanitation							
18CSI01	Java Programming								
18CSI02	Database Manageme	ent System							
18ECI01	Digital Image Proces	ssing							
18ECI02	Embedded Systems	Embedded Systems							
18EEI01	Application of Wave	elets to Engineering Problems							
18EEI02	Industrial Electrical S	ystems							
18EII01	Principles & Applica	ations of MEMS							
18EII02	Power Plant Instrum	entation							
18ITI01	Introduction to Data	Analytics							
18ITI02	Cyber Security								
18MEI01	Fluid Power and Con	ntrol Systems							
18MEI02	Project Management								
18MAI01	Linear Algebra								
18PHI01	Nano-Materials and	Technology							
18PHI02	Fiber Optics Commu	unications							
	More Details	Please refer Annexure 1							

CYBER SECURITY Department Elective-IV IV B.Tech–VII Semester (Code: 18CSD41) 4 Periods/week Continuous Assessment 50 Lectures 3 hours Final Exam Marks 50 Final Exam Pre-Requisite: None. Course Objectives: Students will be able to > To make the students familiar with Security services and Security mechanisms and Hacking phases. > Understand about Security in the networks how to analyze. ➤ Understand how to secure computer system with using various techniques. > Gather the matter about how to secure applications in the computer system Course Outcomes: At the end of the course students will be able to Install the different Tools (VMWare, Kali Linux, Windows OS, Metasploitable2, CO1 Veil frame work and DVWA), practice the hacking & gathering information of a system using metasploit frame work and meterpreter shell commands Recognize and employ information gathering tools and cyber security attacks. CO₂ Test the Web application hijacking tools, Passwords Cracking and wireless CO₃ network attacking tools. CO4 Analyze the intrusions, Incidents and disk Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PSO's PO's \mathbf{CO} 5 6 8 9 2 1 2 3 4 7 10 11 12 1 3 2 2 **CO1** 2 3 3 3 3 2 CO₂ 2 2 3 3 3 3 2 2 2 2 CO₃ 2 2 3 3 3 3 2 2 2 2 **CO4** 2 3 3 3 2 2 3 2 UNIT-1 16 Periods Installing & Basic Over View: Installing kali with VM ware player, updating kali, Installing VM ware Tools for Linux, installing Metasploit able 2, Installing Windows OS, Installing Veil frame work, Installing DVWA. Metasploit Tutorial: Introduction to metasploit: Metasploit overview, picking an exploit,

Metasploit Tutorial: Introduction to metasploit: Metasploit overview, picking an exploit, Setting exploit options, Multiple Target types, Picking a payload, Setting payload options, Running the exploit

Meterpreter Shell: Basic Meterpreter Commands, Core commands, File system Commands, Network Commands, System Commands, Capturing Webcam Video, Screen shots.

UNIT-2 14 Periods

Information Gathering & Mapping: Recon Tool, Dmitry, netdiscover, nmap, Zenmap, Nessus.

Viruses, malware, Trojan, Types of cyber security attacks: malware, phishing, SQL injection attack(sqlmap), cross-site scripting, denial of service, session hijacking and man-in- the middle attacks.

UNIT-3	16 Periods
Web application hijacking tools- Burp suite, OWASPZAP.	

Web based password cracking Techniques: Introduction, Authentication Techniques, password cracking: definition, password cracking Tolls and techniques.

Wireless Network Attacks: Wireless Security Protocols, Using MacChanger to Change the Address (MAC) of your Wi-Fi Card, Fern WIFI Cracker, aircrack-ng, Wi-Fi Testing with WiFite, Kismet: Scanning with Kismet, Analysing the Data.

UNIT-4 14 Periods

Troubleshooting and configuring of network devices: Firewalls-what is firewall, packet, traffic, protocol, port, tool: IPtables (rules), IDS and IPS: what is IDS and IPS, installation procedure for snort, snort rules.

Incident Response: What is IR, Need for IR, Goals of IR.?

IR Methodologies: Based on procedure: Phases of IR, Pre-incident Preparation, Detection and Analysis, Containment, Eradication and Recovery, Post Incident Activity. Based on Artifacts: Investigating Unix Systems.

Disk analysis: FTK imager.

References:	1. Basic Security Testing with Kali Linux -Daniel W. Dieterle
	2. hacking exposed web applications - JOEL SCAMBRAY MIKE SHEMA

INTERNET OF THINGS

Department Elective-IV

IV B.Tech–VII Semester (Code: 18CSD42)

Lectures	:	4 Periods/Week	Continuous Assessment	:	50
Final Exam	:	3 hours	Final Exam Marks	:	50

Pre-Requisite: Basic Knowledge of Hardware and Programming

Course Objectives: Students will be able to

- Make the students to know the IoT challenges and architectures.
- Provide an understanding of the technologies and the standards relating to the Internet of Things.
- Understanding the concept of M2M (machine to machine) with necessary protocols.
- > Design and develop skills on IoT applications.

Course (Outcomes: At the end of the course students will be able to
CO1	Recognize the fundamentals of the IoT's logical and physical design.
CO2	Acquire skills required for development of IoT applications.
CO3	Design of the IoT applications based on M2M and design methodology
CO4	Create the IoT applications for real time problems

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

							PO's	S					PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	3	-	3	-	-	-	-	-	-	2	2	-	-
CO2	2	-	3	-	3	-	-	-	-	-	-	2	2	2	
CO3	2	-	3	-	3	-	-	-	-	-	-	2	2	-	-
CO4	2	-	3	-	3	-	-	-	-	-	-	2	2	2	-
		•	•		•	TINII	T 1	•					(1	5 IIa	

UNIT-1

(15 Hours)

Introduction to IoT:

The flavour of the IoT, the technology of the IoT, characteristics of IoT, physical design of IoT, logical design of IoT, IoT enabling technologies, IoT levels & deployment templates

UNIT-2 (15 Hours)

Elements of IoT:

Hardware Components-Computing (Arduino, Raspberry Pi), Sensors, Actuators, I/O interfaces, Communication Protocols (ZigBee, Bluetooth, 6LoPAN, and MQTT), Software Components- Programming API"s (using Python/Arduino).

UNIT-3

(15 Hours)

M2M and IoT Design Methodology:

M2M, Differences and Similarities between M2M and IoT, IoT Design Methodology.

UNIT-4

(15 Hours)

Cloud for IoT and Case Studies: Introduction, IoT with Cloud – Challenges, Selection of CloudService Provider for IoT Applications, Introduction to Fog Computing, Cloud Computing: Security Aspects,

Case Studies: Smart Lighting, Home Intrusion Detection, Smart Parking, Weather

Monitoring System, Smart Irrigation, and Adafruit Cloud

Text Books:	 Internet of Things: A Hands-on-Approachl, Arsh deep Bahga, Vijay Madisetti, VPT, 1st Edition, 2014. Internet of Things, Shriram K Vasudevan, Abhishek S Nagarajan, RMD Sundaram, John Wiley & Sons. 1st edition, 2019. Designing the Internet of Things, Adrian McEwen, Hakim Cassimally, JohnWiley and Sons, 1st Edition, 2014. Internet of Things: Architecture and Design, Raj Kamal, McGraw Hill
References :	Education; 1st edition, 2017. 1. Jeeva Jose, "Internet of Things", Khanna Publishing, 1st edition, 2018.
	2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things:key applications and Protocols", Wiley, 1st edition, 2015.

BIG DATA ANALYTICS

Department Elective - IV

IV B.Tech – VII Semester (Code: 18CSD43)

Lecture:	4 Periods/Week	Continuous Internal Assessment:	50 Marks
Final Exam:	3 hours	Semester End Exam:	50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- > Understanding Big data, Hadoop and Hadoop Distributed File System.
- ➤ Understanding YARN(Yet Another Resource Node), Map Reduce mechanism.
- ➤ Understanding PIG, HIVE.
- > Understanding SQOOP, SPARK.

Course	Outcomes: At the end of the course students will be able to
CO1	Identify Hadoop, the distributed file system in Hadoop, and big data.
CO2	Recognize the Map Reduce and YARN (Yet Another Resource Node) mechanisms.
CO3	Integrate PIG and HIVE.
~~.	

CO4 Recognize SQOOP and SPARK.

Mappii	ng of	Cour	se O	utcon	nes w	ith P	rogra	am O	utcoi	nes &]	Progra	m Spe	cific (Dutco	mes
			PSO's												
CO	1 2 3 4 5 6 7 8 9 10 11 12												1	2	3
CO1	3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
CO2	3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
CO3	3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
CO4	3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
					Т	TATTT	' T						1.5 D	1	

UNIT-I 15 Periods

UNDERSTANDING BIG DATA: What is big data? Why big data? Data!, Data Storage and Analysis, Comparison with Other Systems, Rational Database Management System, Grid Computing, Volunteer Computing, convergence of key trends, Unstructured Data.

INDUSTRY EXAMPLES OF BIG DATA: Web Analytics, Big Data and Marketing, Fraud and Big Data, Risk and Big Data - Credit risk management, Big Data and Algorithmic Trading, Big Data and Healthcare – Big data in medicine, Advertising and big data.

BIG DATA TECHNOLOGIES: Introduction to Hadoop, Open Source Technologies - Cloud and Big Data, Mobile Business Intelligence, Crowd sourcing analytics, Inter and Trans firewall analytics.

UNIT-II 15 Periods

BASICS OF HADOOP: Introduction to Hadoop, hadoop components, Configuration of Hadoop, Data format, Aanalyzing data with Hadoop, Scaling out, Hadoop streaming. Hadoop Distributed File System: Design of HDFS, HDFS concepts, Command line interpreter, Basic File system operations, Hadoop File System Interface, Data Flow, Parallel copying with distop, Java interface.

UNIT-III 15 Periods

How MapReduce Works: Classic Map Reduce, Anatomy of Map Reduce job run, Failure in Map Reduce, Shuffle and sort, Task execution.

Mapreduce Features: Counters, Sorting, Writing mapreduce programs, Deploying mapreduce programs on Hadoop Cluster.

YARN-Anatomy of YARN application run, YARN compared to Mapreduce 1,

Scheduling inYA	RN, Failures In YARN.	
	UNIT-IV	15 Periods
testing Pig Latin s Hive: Hive – data manipulation – H Sqoop: Getting So	Tools: Pig- Pig – Grunt – pig data model – Pig Latin – deverseripts, User-Defined Functions-A Filter UDF, An Eval UDI a types and file formats – HiveQL data definition – HiveQ iveQL queries. qoop, Sqoop Connectors, A Sample Import, Text and Binar Additional Serialization Systems, Imports: A Deeper Look.	F. QL data y File Formats,
· ·	ts and Consistency	, e
Text Book(s):	1. HADOOP "The Definitive Guide", Tom White Publications, 4 th Edition.	, O'Reilly
References:		

				(CON	STI	ΓUΤΙ	ON (OF II	NDIA					
			ΙV							e: 18C	S705)				
Lecture	:	2	Perio								sessme	nt :	50	Mark	(S
Final Ex	xam :	3	hours	\$		5	Semes	ster E	nd Ex	xam :			50	Mark	S
Pre-Re	quisit	e: No	one.												
Course	Ohia	otiv	06. 5	tude	nte w	ill be	able								
									itutio	n in a T) ama a am	atia Ca	oi otrz		
												atic Soo	•	ha di	ıtioc
											l citizer		anu i	iie at	illes
					_					_		iary an	d fiol	nt for	his
	legitin								репа	chec o	i sudic	iary an	u ngi	101	1115
									and b	e away	from o	destruc	tive o	utfits	and
	in the														
				•											
Course	Outc	ome	s· At	the e	nd of	the o	cours	e stud	lents	will he	ahle t				
CO1											society				
CO2							_					of them	and t	he du	ıties
											d citize				
CO3	ı						•		epend	dence c	of judic	iary an	d figl	ht for	his
	legitii								1.1					.	
CO4		-				_			d be a	away fr	om des	structiv	e outf	ıts an	d in
Mappi	the de								utcoi	nas &	Drogra	m Sna	cific (Jutea	mac
маррі	lig or v	Cour	se O	иссоп	iics w	1111 1	PO's		utcoi	nes &	riugra	ш эрс		PSO'	
CO	1	2	3	4	5	(7	8	9	10	11	12	1	2	3
			-	4		3		-	9	10	11		_		3
CO1	-	-	-	-	-		-	-	-	-	-	2	-	-	-
CO2	-	-	-	-	-	3	-	-	-	-	-	2	-	-	-
CO3	-	-	ı	-	-	3	-	-	-	-	-	2	-	-	-
CO4	-	-	1	-	-	3	-	-	-	-	-	2	-	-	-
						UNI	Г-І						8 F	Period	ls
Meanin	g of th	e coi	ıstitu	tiona	l law	and o	consti	tution	nalisn	1.					
Historio	cal per	cepti	ve of	the c	onsti	tution	of In	ndia							
Salient	feature	es and	d cha	ractei	ristics	of th	ne con	nstitut	ion o	f India					
Preamb	le, uni	on ar	nd its	territ	ory a	nd ci	tizens	ship.							
					J	JNIT	'-II						8 F	Period	ls
Fundan		_	•	•											
Directiv	-	_		tate p	oolicy	7.									
Fundan							_		_						
The gov					_							e coun	cil of 1	minis	ters,
The par	1.														

8 Periods

UNIT-III

The Machinery of Government in the states, The Governor, The Chief Minister and council of Ministers, The State legislature, High court, Judiciary in the states Union territories.

The Federal System, Division of powers between centre and states, Legislative Administration and financial relation.

Emergency Provisions, President Rule, National Emergency, Financial Emerging Local self Government, Panchayat Raj, Municipalities and municipal Corporation

UNIT-IV 8 Periods

Local self Government, Panchayat Raj, Municipalities and municipal Corporation Miscellaneous Provisions, The comptroller and Auditor general of India, The Public Service Commission, Special Provisions relating to certain classes, Elections – Political parties.

Amendment of the Constitution.

\mathbf{r}	•	•			
ĸ	Δŧ	$\alpha \mathbf{r}$	·Δn	ces	•
1.	u	u	VII.	CUS	٠

- 1. Constitutional Government in India M V Pylee Asia Publishing House
- 2. Indian Government and Politics D C Dasgupta. Vikas Publishing house
- 3. The Oxford Hand Book of the Indian Constitution, Sujit Chowdary, Madhav Khosla Pratapabhem Mehla.
- 4. Constitutional question in India; The President, Parliament and the States Noorani A G Oxford.
- 5. Indian Constitution and its features Astoush Kumar, Anmol Publishers
- 6. The Constitution of India Bakshi P M Universal Law Publishers
- 7. Legelect's the constitution of India Ramnarain Yadav, K K Legelest Publication

UNIFIED MODELING LANGUAGE LAB										
IV B.Tech – VII Semester (Code : 18CSL71)										
Lectures	:	3 Periods/Week	Continuous	:	50					
			Assessment							
Final Exam	:	3 hours	Final Exam Marks	:	50					

Pre-Requisite: None.

Course Objectives: Students will be able to

- Able to prepare problem statement and SRS (software requirements specification) document.
- Able to develop various analysis modeling diagrams. (use-case, activity, class etc.)
- ➤ Able to develop various design representations (component diagrams and deployment diagrams)
- Able to perform various testing techniques (black box and white box)

Course Outcomes: At the end of the course students will be able to

- CO1 Analyze Software Requirements for the given Software Application.
- CO2 Develop the UML Diagrams to view Software System in Static and Dynamic Aspects.
- CO3 Describe the dynamic behaviour and structure of the design.
- CO4 Comprehend overall system design.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's										PSO's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO2	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO3	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO4	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3

Requirements Capture: User Requirements, Fact Finding Techniques, User Involvement, Documenting Requirements, Use Cases, and Requirements Capture and Modelling; Designing Classes, The Class Diagram Revisited.

Object Interaction: Object Interaction and Collaboration, Interaction Sequence Diagrams, Collaboration Diagrams, Model Consistency;

Modeling Concepts: Models and diagrams, Drawing Activity Diagrams, States and Events, Basic Notation, Further Notation, preparing a State chart, Consistency Checking, Qualify Guidelines, A Development Process;

Design: Logical and Physical Design, System Design and Detailed Design, Qualities and objectives of Analysis and Design, Measurable Objectives in Design, Planning for Design. Concurrency, Processor Allocation, Data Management Issues, Development Standards, Prioritizing Design Trade-offs, Design for Implementation;

Implementation: Software Implementation, Component Diagrams, Development Diagrams, Software Testing, Data Conversion, User Documentation and Training, Implementation Strategies, Review and Maintenance; Reusable Components: Why Reuse?, Planning a Strategy for Reuse, Commercially Available component ware

LIST OF EXPERIMENTS

- 1. Identify a software system that needs to be developed
- 2. Document the Software Requirements Specification (SRS) for the identified system.
- 3. Identify use cases and develop the Use Case model.
- 4. Identify the conceptual classes and develop a Domain Model and also derive a ClassDiagram from that.
- 5. Using the identified scenarios, find the interaction between objects and represent them using UML Sequence and Collaboration Diagrams
- 6. Draw relevant State Chart and Activity Diagrams for the same system.
- 7. Implement the system as per the detailed design
- 8. Test the software system for all the scenarios identified as per the use-case diagram
- 9. Improve the reusability and maintainability of the software system by applying appropriatedesign patterns.
- 10.Implement the modified system and test it for various scenarios.

Text book:	1. "Object-Oriented Systems Analysis And Design Using UML", Simon
	Bennett, SteveMcRobb and Ray Farmer, Tata McGraw-Hill Edition,
	Third Edition.

1				DETE I	COTE	A CIT	, DE		O DA		T 4 D				
				_					_	IENT : le : 180					
Practica	alc				/ We		Sem	ester				sessmen	t ·	50)
Final E		•	3 ho		7 ***	CK								50	_
1 mai L	al Exam : 3 hours Final Exam Marks : 50														
Pre-Requisite: Web Technologies Lab.															
11C-ICC	<u> 1</u> uisi	ic. 11	7 00 1	CCIIII	ologi	CS La	ιυ.								
Course	Ohi	octiv	oc. 5	tude	nte w	ill he	able	e to							
>			a WE												
>			a wı th N(_{ro} DB	•					
>				-					_	s web-	com i co	a			
		-	a resp			_				s web-	service	S			
	Dev	еюр	a res	JOHSI	ve m	m-ei	IU III	Angu	lar						
Course	Course Outcomes: At the end of the course students will be able to														
Course	Utilize Listeners, Timer Events, and Callbacks. Use Node.js to implement HTTP										CTD				
001															
CO1							Syste	m an	a De	velop a	an expr	ess wel	app	iicati	ons
			ites, a				. • • •					1.		,	-
												cookies,			
CO2				Use	Nod	e.js t	o im	pleme	ent C	RUD o	peration	ons by	conne	ecting	g to
	_	ngoD								_					
CO3			-	-		-			•		_	typesci	ript,	crea	ting
										ns using					
CO4												Angular			
Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes															
	PO's PSO's														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3
CO2	3	3	3	-	3	-	-	2	-	2	-	3	3	3	3

LIST OF EXPERIMENTS

3

3

3

3

- 1. Write programs
 - a. to implement timers.

3

3

- b. to demonstrate different ways of performing read/write operations in local filesystem.
- 2. Write programs
 - a. to implement buffer operations.
 - b. to demonstrate different ways of performing stream operations.
- 3. Code

CO3

CO4

- a. a basic Node.JS user registration application.
- b. an Express application for user registration
- 4. Create a CRUD application using data from local file system.
- 5. Create a MongoDB application to create CRUD operations
- 6. Create a CRUD application using data from MongoDB server.
- 7. Refactor the above program to separate
 - a. Model operations
 - b. Controller operations
- 8. Code Angular applications to demonstrate

a. Data binding.
b. Directives
c. Data sharing between parent/child components.

9. Create an Angular CRUD application that interacts with a REST API.

Text Books: Node.js, MongoDB and Angular Web Development (Second Edition), BradDayley, Brendan Dayley Caleb Dayley, by Pearson Education, Inc.

References: 1. Getting MEAN with Mongo, Express, Angular, and Node, Manning Publications, ISBN-10: 1617294756,
2. Beginning Node.js, Express & MongoDB Development, ISBN-10: 9811480281,
3. Beginning Node.js, Basarat Syed, APress, ISBN-10: 9781484201886

	CYBER SECURITY LAB IV B.Tech – VII Semester (Code: 18CSLD41)										
Practicals	Practicals : 3 Periods / Week Continuous Assessment : 50										
Final Exam : 3 hours Final Exam Marks : 50											

Pre-Requisite:

Course Objectives: Students will be able to

- Learn the Installations of different Tools (VMWare, Kali Linux, Windows OS, Metasploitable2, Veil frame work and DVWA).
 - Understand the usage of Information Gathering and MITMF tools. Learn how to
- detect/prevent intrusions in system by using snort and configuring firewall Settings using IPtables,
 - Learn how to hack a system and gathering information of a system using metasploit
- Frame work and meterpreter shell commands, mechanisms for cracking passwords and wireless network attacks.
- Understand the usage of the Web application hijacking tools, DOS, Sql-injection, XSS and Phishing attacks.

Course Outcomes: At the end of the course students will be able to Install the different Tools (VMWare, Kali Linux, Windows OS, Metasploitable2, Veil framework and DVWA),practice the hacking and gathering information of a system using metasploit framework and meterpreter shell commands. CO2 Recognize and employ information gathering tools and cyber security attacks. Test the Web application hijacking tools, Passwords Cracking and wireless network attacking tools. CO4 Analyze the intrusions, Incidents and disk

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	-	3	3	-	2	-	2	ı	2	2	2	2
CO2	2	2	3	-	3	3	-	2	-	2	-	2	2	2	2
CO3	2	2	3	-	3	3	-	2	-	2	-	2	2	2	2
CO4	2	2	3	-	3	3	-	2	-	2	1	2	2	2	2

LIST OF EXPERIMENTS

- a. Installations:- VM-ware, kali, windows OS, metaspotiable-2, Veil frame work & DVWA.
- b. Hacking any windows OS by using msfconsole.
- c. Information gathering tools-recontool, Dmitry, netdiscovery, nmap, zenmap.
- d. Installation procedure and usage of nessus.
- e. Phishing attacks with Setoolkit.
- f. Sql-injection, Xssattack, denial of service attack, session hijacking.
- g. Burpsuit and owaspzap tool.
- h. Password Attacks:
 - i. Online Password Cracking with hydra, xhydra.

- ii. Offline Password Cracking with John the ripper.
- i. Wireless Network attacks:
 - i. Aircrack-NG.
 - ii. Fern Wi-Fi cracker
 - iii. WiFite.
 - iv. Mac changer.
- j. Linux Firewall rules configuraton by Iptables
- k. Snort installation and usage in
 - i. Packet Sniffer mode
 - ii. Packet Logger mode
 - iii. IDS mode
 - iv. IPS mode
- 1. Incident Response: Investigating UNIX System
- m. Disk Analyzer: FTK Imager.

References:	1. Basic Security Testing with Kali Linux -Daniel W. Dieterle
	2. hacking exposed web applications - JOEL SCAMBRAY MIKE
	SHEMA

			IV							S LAI : 18CS		`			
Practica	als	1 . 1			/Wee		SCIIIC	ster (_			<u>)</u> sessmen	tl ·	1 5	0
Final E			3 ho		7 11 00				-	inal Ex			' 	5	
1 IIIai L	Aum		3 110	uis					1 1		ulli ivic	IIKS	<u> </u>	1 2	<u> </u>
Pre-Re	quis	site:													
Course	Ob	iectiv	es: S	tude	nts w	ill be	e able	e to							
		<u> </u>							softwa	are plat	forms.	microco	ontro	llers	and
		gle boa								•	,				
>	Det	ailed s	tudy	and i	nterfa	acing	of se	nsors	, actu	iators a	nd cor	nmunica	tion	modi	ıles
		nicroco							puter	S.					
>		alyze t													
>	Dev	elopm	nent o	of diff	erent	IoT :	appli	cation	ıs.						
	_														
Course									dents	will b	e able	to			
CO1	_	nalyze										• .	•		
CO2	_											d networ	k.		
CO3										cteristi		1.1			
CO4												problem.		0.4	
Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's															
	1	1		4	_		PO's	1	0	10	11	12			1
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	3	-	3	-	-	2	-	2	-	2	2	-	-
CO ₂	2	-	3	-	3	-	-	2	-	2	-	2	2	2	
CO3	2	-	3	_	3	-	-	2	-	2	-	2	2	-	-
CO4	2	-	3	_	3	-	-	2	_	2	_	2	2	2	-
			<u> </u>		LIS	ТОЕ	EX	PER	IME	NTS		1		I	
Week	#			N				erime			S	pecific			
							•				R	equirem	ents		
1.										arizatio	- 1	rduino U	no		
		with								are, ai		ırdwarea			
		perfor			•			stanıa	10n.			ftware p			
2.		Outpu	_	_		_						rduino U	,	/ /	
		,								Uno ai		ED(2), a	nd B	uzzei	:
				_		turn	ON .	LED	tor I	sec aft	er (1)			
			ery 2				A1 :	T.T		1					
		,								d write					
	program to turn ON sound by Buzzer for 2 seconds.														
3.															
	a) Interface push button and LED with Arduino Uno Pushbuttons(2),														
	and write a program to turn ON LED when push LED (2), Buzzer (1),														
	button is pressed.														
b) Interface digital sensor (IR-infrared sensor) module															
with Arduino Uno and write a program to															
			n ON			_									
		So	und l	y Bu	ızzer	when	ı obje	ect de	tects.						

4.	Inputting Analog Signal:	Arduino Uno (1),
**	a) Interface Potentiometer with Arduino Uno and	Potentiometer (1),
	write a program to increase and decrease light	LED (2), and LDR
	intensity of LED.	sensor module (1)
	b) Interface LDR light sensor with Arduino and	
5	writea program to control LED.	A 1 ' TI (1) 4
5.	Reading and Writing Data: Interface 4 x 4	Arduino Uno (1), 4 x
	keypad and LCD display with Arduino Uno and write a	•
	program to display pressed value on LCD.	display (1)
6.	NodeMCU:	NodeMCU
	a) Familiarization with NodeMCU hardware,	hardware, software
	software, and perform necessary software	platforms, and
	installation.	RGB LEDs (1)
	b) Interface RGB LED with NodeMCU and write	
	a program to turn ON/OFF different colors	
 	for 2/3 seconds.	
7.	Web Server: Interface motor using relay with	NodeMCU (1), dc
	NodeMCU and write a program to turn ON/OFF	motor (1), 2 channel
	motorwith help of relay when button is pressed from server	relay (1), and motor driver (1)
	web page.	dilver (1)
8.	Raspberry Pi: Familiarization with single	Raspberry Pi
	board	hardwareand Python
	computer (SBC), Raspberry Pi hardware, software,	software
	and perform necessary software installation.	
9.	Radio Frequency Identification (RFID): Interface	Raspberry Pi (1),
	RFID with Raspberry Pi and write a program to	RFIDreader module
	print tag information (accept/reject) on OLED	(1), RFID tags (3), OLED
	display.	module(1)
10.	Short Range Communication: Interface	Raspberry Pi (1),
10.	Bluetooth and heart beat rate sensor with	Blutooth module
	Raspberry Pi and write a python program to send	
	beats per minute (BPM) rate to smart phone using	sensor module (1),
	Bluetooth.	and smart
		phone (1).
11.	Cloud Communication:	Raspberry Pi (1),
	a) Interface DHT11 sensor and write a python	temperature and
	program on Raspberry Pi to upload temperature	humidity(DHT11) sensor module (1),
	and humidity data to thingspeak cloud.b) Interface DHT11 sensor and write a program on	and library thingspeak
	Raspberry Pi to retrieve temperature and	cloud
	humidity data from thingspeak cloud.	
12.	Machine-to-Machine (M2M) Protocol:	Raspberry Pi (1),
	a) Write a program on Raspberry Pi to publish	temperature and
	temperature and humidity data to MQTT	humidity(DHT11)
	broker.	sensor module (1),
	b) Write a program on Raspberry Pi to subscribe	and library of MQTT
	to MQTT broker for temperature and humidity	
	dataand print it.	
	Add on Experiments	

13.	GSM and GPS:	Arduino/ Raspberry							
13.		1 1							
	Interface GSM and GPS Module using	Piand GSM and GPS							
	Arduino/Raspberry Pi and Write a program to	Module(1)							
	send latitude and longitude of my current								
	location through SMS.								
14.	Line of Site Communication:	Arduino/ Raspberry							
	Interface Zigbee communication module with	Pi							
	Arduino/ Raspberry Pi and write a program to	(1) and Zigbee							
		communication							
Text Books	: Vijay Madisetti, Arshdeep Bahga," Internet o	f Things A Hands-On-							
	Approach", 1stedition, Orient Blackswan Private	Limited,2014.							
References	1. Adrian McEwen, "Designing the Internet of Th	nings", 1st edition, Wiley							
	Publishers, 2013.								
	Daniel Kellmereit, "The Silent Intelligence: The	e Internet of Things",1st							
	edition, DND Ventures LLC, 2013.	3 /							

BIG DATA ANALYTICS LAB Department Elective - IV Lab IV B.Tech – VII Semester (Code: 20CSD43) 3 Periods / Week Continuous Internal Assessment: 50 Practicals: Final Exam: 3 hours 50 Semester End Exam: Pre-Requisite: None. Course Objectives: Students will be able to ➤ Understand the concepts of Data mining and Big Data Analytics > Apply machine learning algorithms for data analytics > Analyze various text categorization algorithms ➤ Use Technology and tools to solve the Big Data Analytics problems **Course Outcomes**: At the end of the course students will be able to Understand the concepts of Data mining and Big Data Analytics CO₁ CO₂ Apply machine learning algorithms for data analytics CO3 Analyze various text categorization algorithms CO4 Use Technology and tools to solve the Big Data Analytics problems Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's CO 2 3 5 7 8 9 2 3 1 4 6 10 11 12 1 **CO1** 3 3 3 3 3 2 3 3 3 _ _ -2 3 -CO₂ 3 3 3 3 3 2 2 3 3 3 3 CO₃ 3 3 3 3 3 2 2 3 3 3 3 3 3 CO₄ 3 3 3 2 2 3 3 3 3 _ LIST OF EXPERIMENTS 1. Write the steps for installation of Hadoop. 2. Write commands to interact with HDFS interface. 3. Write a Map Reduce program for Word Count Example. 4. Write a Map Reduce program for Card Count data set. 5. Write the steps for installation of Pig. 6. Write the word count script using Pig Latin. 7. Illustrate the basic Pig Latin concepts with help of any dataset. 8. Write the steps for installing Hive. 9. Illustrate the creation, loading & complete select statements in Hive.

Text Book(s): 1. HADOOP "The Definitive Guide", Tom White, O'Reilly Publications,

10. Write the script how data will be transfer using Sqoop.

		IV B.	PROJECT-1 Tech – VII Semester (Code: 18CSP01)						
Practica	Practicals: Continuous Internal Assessment: 50								
Final E	xam :		Semester End Exam:	50					
Course	Outco	mes: At the er	nd of the course, students will be able to						
Course	Outoo	mos: At the er	ad of the course students will be able to						
CO1	Identi proble	•	problem related to domain knowledge and outline	e a solution for the					
CO2	-		wledge related to preparation of project.						
CO3	CO3 Report the outcomes of the project by means of verbal and written presentation								

Mappii	Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes														
		PO's								PSO's					
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	3	3	3	3	3	1	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	-	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	-	3	3	3	3

The Project work shall be carried out by a batch consisting not more than four students for one semester. It should help the students to comprehend and apply different theories and technologies that they have learnt through and are learning. It should lead to a substantial result as a comparative study, a new application of the technologies available or some extension to the works carried out by some researcher and published in referred journals. Each batch must carry out the analysis, design, implementation and testing of the entire project basing on the Software Engineering principles. There shall be a total of four reviews made by the batch regarding:

- 1. 0^{th} Review: The idea/concept which forms the basis for their project shall be presented to the guide, concerned in charge and classmates and shall get the approval for Continuation.
- 2. 1st Review: The analysis and design carried out.
- 3. 2nd Review: The implementation and the testing done.
- 4. 3rd Review: Over all Presentation of the work carried out and the results found out for the valuation under the internal Assessment.

A comprehensive report on the lines of IEEE Format is to be submitted at theend of the semester, which is certified by the concerned guide and the HOD.

There shall be an external guide appointed by the Principal/Controller of Examinerto make an assessment and to carry out the Viva-Voce examination.

	INTERNSHIP IV B.Tech – VII Semester (Code: 18CSII1)														
Practica	ls:	T					Conti	inuou	s Inte	rnal As	ssessme	ent :	T		
Final Exam : Semester End Exa						xam :			10	0					
Pre-Req				he en	d of i	the co	nurce	etud	ents	will be	able to				
CO1							Juise	, stud	CHIS	will be	able ic)			
CO2	Improve Communication skills Improve Soft Skills														
CO3	Develop report writing skills														
CO4			_		_		s, and	ideas							
Mappi										nes &	Progra	m Spec	cific (Outco	mes
							PO's	5]	PSO'	S
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	-	-	-	3	3	-	3	3	3	3
CO2	-	-	-	-	-	-	-	-	3	3	-	3	3	3	3
CO3	-	-	-	-	-	-	-	-	3	3	-	3	3	3	3
CO4		-	-	-	-	-	-	-	3	3	-	3	3	3	3

INDUS	TRIA	L N								ENEUI le:18M		P DEV	ELO	PMI	ENT
Lectures	s : 	4 P	eriod	s / W	eek	:	Contin	uous	Interi	nal Ass	essmer	nt 50 N	Marks		
Final Ex	am:	3 h	ours			S	emes	ter Er	d Ex	am :		50 N	Aarks		
Pre-Re	quisit	e: N	one.												
Course	Obje	ectiv	es: S	tude	nts w	ill be	able	to							
A A A	 and various forms of business organizations along with awareness about various organization structures It aims to provide the students with an understanding of basics of human resource management, marketing management. To make the students to understand inventory control concepts, fundamentals of TQM, and supply chain management. To provide an understanding of financial management and realize the importance of Entrepreneurship. 														
Course	Outc	ome	s: At	the e	nd of	the o	cours	e stud	lents	will be	able t	o			
CO1	struc	tures	of bu	sines	s orga	anizat	tions.					n vario			
CO2	theor	ies, l	eader	ship s	styles	and 1	narke	ting 1	nanag	gement		nd vario			
CO3	mana	igeme	ent ar	ıd und	dersta	nd su	ipply	chain	mana	agemer	ıt.	ledge or			
CO4	unde	rstan	d cap	ital ar	ıd vaı	ious	types	of ca	pital.		•	ırship			
Mappi	ng of (Cour	se O	utcon	nes w	ith P	rogra PO's		utcor	nes & l	Progra	m Spe		Outco PSO':	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	_	-	-	-	-	-	-	-	-	3	3	2	-	-
CO2	-	_	_	-	-	-	-	-	-	-	3	3	2	-	-
_															-

General management: Management definition, Functions of Management and Principles of Management.

15 Periods

UNIT-I

CO3

Forms of Business Organization: Salient features of Sole Proprietorship, Partnership, Joint Stock Company, Private Limited and Public Limited companies; Merits and Demeritsof above types

Marketing Management: Functions of Marketing, Concepts of Selling and Marketing, Marketing mix (4 Ps); Advertising and sales promotion; Product life cycle.

UNIT-II	15 Periods
---------	------------

Production Management: Types of production systems, Productivity vs. Production, Production planning and control.

Materials Management: Inventory Control, Basic EOQ model, ABC analysis.

Quality Control: Control Charts: chart, R chart, P chart, C chart, Acceptance sampling.

UNIT-III

15 Periods

15 Periods

Financial Management: Functions of finance, Types of Capital-Fixed and WorkingCapital, Break Even Analysis.

Depreciation: Straight line method of depreciation, declining balance method and the Sum of Years digits method of Depreciation.

Personnel Management: Functions of personnel management, human resource planning, recruitment, selection, placement, training and development and performance appraisal. Motivation theories, leadership styles

UNIT-IV

Entrepreneurship Development: Introduction, Entrepreneurial characteristics, Functions of an Entrepreneur; Factors affecting entrepreneurship; Role of communication in entrepreneurship; Entrepreneurial Development-Objectives, Need of Training for enterprises; Finance for the enterprises; Product, Process and Plant Design- Product analysis

and Product Design process. Steps in process design and Plant Design.

Text Book(s): 1. Industrial Engineering and Operations Management, S.K.Sharma, Savita Sharma and Tushar Sharma. 2. Industrial Engineering and Production Management, Mahajan. 3. Management Science, A.R.Aryasri References: 1. Operations Management, Joseph G Monks. 2. Marketing Management, Philip Kotler. 3. The Essence of Small Business, Barrow colin.

INSTITUTIONAL ELECTIVE - II (Common for all branches) IV B.Tech – VIII Semester (Code: 18_I)								
Lectures:	4 Periods / Week	Continuous Internal Assessment :	50 Marks					
Final Exam :	3 hours Semester End Exam: 50 Mark							
	<u>List of the Subjects</u>							
18CEI03	Disaster Managemen	nt						
18CEI04	Remote sensing & C	GIS						
18CSI03	Python Programmin	g						
18CSI04	Computer Networks							
18ECI03	Wireless Communications							
18ECI04	Artificial Neural Networks							
18EEI03	High Voltage Engineering							
18EEI04	18EEI04 Electrical Energy Conservation and Auditing							
18EII03	Robotics and Autom	nation						
18EII04	Sensors And Signal	Conditioning						
18ITI03	Mobile Application	Developments						
18ITI04	Web Technologies							
18MEI03	Non-Conventional E	Energy Sources						
18MEI04	Automobile Enginee	ering						
18MAI02	Graph Theory							
18PHI03	Advanced Materials							
18PHI04	Opto Electronic Dev	rices And Applications						
18ELI03 Professional Communication								
More Details Please refer Annexure 2								

PROTOCOLS FOR SECURE ELECTRONIC COMMERCE

Department Elective - V

IV B.Tech – VIII Semester (Code: 18CSD51)

Lectures:	4 Periods / Week	Continuous Internal Assessment:	50 Marks
Final Exam:	3 hours	Semester End Exam:	50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- To Comprehend and apply electronic money and payment systems.
- > To Plan the architecture for the electronic payments and provide security for the payments.
- ➤ To Recognize the concept of security socket layer and the protocols.
- To Comprehend and plan micro payments and support face to face commerce.

Course Outcomes: At the end of the course students will be able to							
CO1	Analyse the impact of E-Commerce on business models and strategy. To develop						
	E-marketing strategies and digital payment.						
CO2	Elaborate the concepts of SSL, TSL and established protocols.						
СОЗ	Create and carryout secure payments with magnetic strip and integrated circuit						
	cards.						
COA	Davidon the frame work and engions of manay and neverant existence						

CO4 Develop the framr work and anatomy of money and payment systems.

Manning of Course Outcomes with Program Outcomes & Program Specific Outcomes

Mappii	ig oi	of Course Outcomes with Frogram Outcomes & Frogram Spe								m spec	cine Outcomes				
		PO's									PSO's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	-	-	3	-	-	2	-	-	-	2	2	2	2
CO2	3	3	2	-	3	-	-	2	-	-	-	2	2	3	3
CO3	3	3	2	-	3	-	-	2	-	-	-	2	3	3	3
CO4	3	3	2	-	3	-	-	2	-	-	1	2	3	3	3

UNIT-I 15 Periods

Overview of Electronic Commerce: Electronic Commerce and Mobile Commerce, Effects of the Internet and Mobile Networks, Network Access, Barcodes, Smart Cards, Parties in Electronic Commerce, Security.

Money and Payment Systems: Mechanisms of Classical Money, Payment Instruments, Types of Dematerialized Monies, Purses, Holders, and Wallets, Transactional Properties of Dematerialized Currencies, Overall Comparison of the Means of Payment, Practice of Dematerialized Money, Clearance and Settlement in Payment Systems, Drivers of Innovation in Banking and Payment Systems.

UNIT-II 15 Periods

Transport Layer Security and Secure Sockets Layer: Architecture of SSL/TLS,SSL/TLS Security Services, SSL/TLS Subprotocols, Performance of SSL/TLS, Implementation Pitfalls.

The SET Protocol: SET Architecture, Security Services of SET, Certification, Purchasing Transaction, Optional Procedures, Efforts to Promote SETs, SET versus TLS/SSL.

UNIT-III	15 Periods

Payments with Magnetic Stripe Cards: Point-of-Sale Transactions, Communication Standards for Card Transactions, Security of Point-of-Sale Transactions, Internet Transactions, 3-D Secure, Migration to EMV.

Secure Payments with Integrated Circuit Cards: Description of Integrated Circuit Cards, Integration of Smart Cards with Computer Systems, Standards for Integrated Circuit Cards, Multi Application Smart Cards, Security of Integrated Circuit Cards, Payment Applications of Integrated Circuit Cards, EMV Card, General Consideration on the Security of Smart Cards.

UNIT-IV 15 Periods

Mobile Payments: Reference Model for Mobile Commerce, Secure Element in Mobile Phones, Barcodes, Bluetooth, Near-Field Communication, Text Messages, Bank-Centric Offers, Mobile Operator-Centric Offers, Third-Party Service Offers, Collaborative Offers, Payments from Mobile Terminals.

Micropayments: Characteristics of Micropayment Systems, Standardization Efforts, Electronic Purses, Online Micropayments.

PayPal.: Evolution of PayPal, Evolution of PayPal, Business Accounts.

Digital Money: Privacy with Cash and Digital Money, DigiCash (eCash), Anonymity and Untraceability in DigiCash, Splitting of Value, Detection of Counterfeit (Multiple Spending), Evaluation of DigiCash.

Spending), Eva	ation of DigiCasii.							
Text Book(s):	1. Protocols for Secure Electronic Commerce by Mostafa Hashem							
	Sherif, CRC Press (2016).							
References:	1. Secure Electronic Commerce by Ford & Baum, Pearson EducationIndia.							
	2. Secure E-Commerce Systems by P. S. Lokhande and B B Meshram,							
	Amazon Asia-Pacific Holdings Private Limited.							

ARTIFICIAL NEURAL NETWORKS AND DEEP LEARNING Department Elective - V IV B.Tech – VIII Semester (Code: 18CSD52) Lectures: 4 Periods / Week Continuous Internal Assessment: 50 Marks Final Exam: 3 hours Semester End Exam: 50 Marks Pre-Requisite: None. Course Objectives: Students will be able to Design an ANN model for identifying complex decision boundaries Design a CNN model for Computer Vision applications. Apply sequence models to natural language processing tasks. Model the structure in the existing data to generate new data samples. Course Outcomes: At the end of the course students will be able to Analyze the key computations underlying deep learning and use them to build and CO1 train deep neural networks for various tasks. Build, train and test customized object detection systems using Deep CNN-based CO₂ techniques. Apply CNN and its variants for suitable applications. Create Generative Adversarial Networks using the Tensor flow library, train it on the MNIST dataset and generate new images of handwritten digits and to create a CO₃ vector representation with a much lower dimensional space using Word Embedding's. Design recurrent neural networks with attention mechanisms for speech CO₄ recognition, natural language classification, generation, translation. Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's \mathbf{CO} 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 **CO1** 3 3 3 3 3 2 3 3 CO₂ 3 3 3 3 3 2 3 3 3 3 3 3 2 3 3 CO₃ 3 3 3 3 3 2 **CO4** 3 3 3 3 3 3 **UNIT-I** 15 Periods

Multi-layer perceptron – Training, Activation functions, Recognizing handwritten digits, One-hot encoding (OHE), Defining a simple neural network in TensorFlow, Running a simple TensorFlow, Improving the simple net, Dropout, Optimizers, Epochs, Optimizer learning rate, Increasing the number of internal hidden neurons, Regularization, Sentiment analysis, Hyper parameter tuning.

> **UNIT-II** 15 Periods

Convolutional Neural Networks - Deep Convolutional Neural Network (DCNN), local receptive fields, shared weights and bias, A mathematical example, Convnets in TensorFlow, pooling layers, max pooling, average pooling. LeNet and CIFAR-10, classification with VGG16 Net.

> **UNIT-III** 15 Periods

Generative Adversarial Networks - What is a GAN, MNIST using GAN in TensorFlow, Deep convolutional GAN (DCGAN), and DCGAN for MNIST digits.

Word embeddings - Origins and fundamentals, Distributed representations, Static embeddings, Word2Vec, GloVe, Creating your own embedding using genism, Exploring the embedding space with genism, Using word embeddings for spam detection.

> **UNIT-IV** 15 Periods

Recurrent Neur	Recurrent Neural Networks - The basic RNN cell, back propagation through time (BPTT),						
vanishing and	vanishing and exploding gradients, RNN cell variants, Long short-term memory (LSTM),						
Gated recurren	t unit (GRU), peephole LSTM, RNN variants, Bidirectional RNNs, stateful						
RNNs, RNN	topologies- One-to-Many, Many-to-One, Many-to-Many - POS tagging,						
Encoder-Decod	ler architecture – seq2seq						
Text Book(s):	1. Deep Learning with TensorFlow 2 and Keras, Antonio Gulli, Amita						
	Kapoor, Sujit Pal, second edition, Packt publishers.						
References:	1. Deep Learning by Ian Goodfellow, Yoshua Bengio, Aaron Courville,						
	MIT Press.						
	2. Deep Learning: Methods and Applications by Li Deng, Dong Yu, Now						
	Publishers.						
	3. Neural Networks and Deep Learning by Michael Nielsen, Determination						
	Press.						

NATURAL LANGUAGE PROCESSING Department Elective - V

IV B.Tech – VIII Semester (Code:18CSD53)

Lectures:	4 Periods / Week	Continuous Internal Assessment:	50 Marks
Final Exam :	3 hours	Semester End Exam:	50 Marks

Pre-Requisite: None.

Course Objectives: Students will be able to

- Fig. Get familiarized with the concepts and techniques of Natural language Processing for analyzing words based on Morphology and CORPUS.
- > Make them understand the concepts of morphology, syntax, semantics and pragmatics of the language and that they are able to give the appropriate examples that will illustrate the above mentioned concepts.
- Recognize the significance of pragmatics for natural language understanding.
- > Be capable to describe the application based on natural language processing and to show the points of syntactic, semantic and pragmatic processing.

Course Outcomes: At the end of the course students will be able to

CO1	Know the basics of NLP techniques and how to model languages using their
	grammars.
CO2	Gain a thorough understanding of NLP at the structural and word levels

CO3 Comprehend the nuances of language at the conversational and semantic levels. Gain Knowledge on Natural Language generators and Machine Translation CO4

Techniques

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's										PSO's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	2	3	3	-	-	-	-	-	-	2	2	3	3
CO2	-	2	2	3	3	-	-	-	-	-	-	2	3	3	3
CO3	-	2	2	3	3	-	-	-	-	-	-	2	3	3	3
CO4	-	2	2	3	3	-	-	-	-	-	-	2	3	3	3

UNIT-I 15 Periods

Introduction: - Understanding natural language processing, Understanding basic applications, Advantages of togetherness-NLP and Python, Environment setup for NLTK. Practical Understanding of a Corpus and Database: - What is a corpus? Why do we need a corpus? Understanding corpus analysis, Understanding types of data attributes, Exploring different file formats for corpora, Resources for accessing free corpora, Preparing a dataset for NLP applications, Web scraping.

> **UNIT-II** 15 Periods

Understanding the Structure of a Sentence: - Understanding components of NLP, Natural language understanding, Defining context-free grammar, Morphological analysis, Syntactic analysis, Discourse integration, Pragmatic analysis.

> **UNIT-III** 15 Periods

Preprocessing: - Handling corpus-raw, Handling corpus-raw sentences, Basic preprocessing, Practical and customized preprocessing.

> **UNIT-IV** 15 Periods

Feature Engineering and NLP Algorithms:- Understanding feature engineering, Basic feature of NLP, Basic statistical feature of NLP, Advantages of features engineering, Challenges of features engineering.

Text Book(s):	1. Python Natural Language Processing (Packt Publishers) Author: Jalaj Thanaki
References:	1. Natural Language Processing (Oxford Publishers) Author: Tanvir Siddiqui

	PROJECT - II IV B.Tech – VIII Semester (Code: 18CSP02)														
Practica	Practicals:						Conti	inuou	s Inte	rnal As	ssessme	ent 50	Marl	ζS	
Final Ex	Exam: Semester End Exam: 50 Marks									ζS					
Pre-Re	Pre-Requisite: None.														
Course	Outc	ome	s: At	the e	nd of	the o	cours	e stud	dents	will be	able to	0			
CO1												probler re to han			
CO2	Prepa execu		plan	to ha	ndle p	projec	t. App	oly ad	vance	d softw	are tool	s to ana	lyze t	he pro	ject
СОЗ	CO3 Improve the presentation and documentation writing skills. Apply an insight into modern technologies, tools to get the results for the real-world problems.														
Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes															
	PO's PSO's														
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	3	3	3	3	3	-	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	-	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	-	3	3	3	3

The Project work shall be carried out by a batch consisting not more than four students for one semester. It should help the students to comprehend and apply different theories and technologies that they have learnt through and are learning. It should lead to a substantial result as a comparative study, a new application of the technologies available or some extension to the works carried out by some researcher and published in referred journals. Each batch must carry out the analysis, design, implementation and testing of the entire project basing on the Software Engineering principles. There shall be a total of four reviews made by the batch regarding:

- 5. 0th Review: The idea/concept which forms the basis for their project shall be presented to the guide, concerned in charge and classmates and shall get the approval for Continuation.
- 6. 1st Review: The analysis and design carried out.
 7. 2nd Review: The implementation and the testing done.
- 8. 3rd Review: Over all Presentation of the work carried out and the results found out for the valuation under the internal Assessment.

A comprehensive report on the lines of IEEE Format is to be submitted at theend of the semester, which is certified by the concerned guide and the HOD.

There shall be an external guide appointed by the Principal/Controller of Examinerto make an assessment and to carry out the Viva-Voce examination.

Annexure – 1 Institution Elective - I

BAPATLA ENGINEERING COLLEGE::BAPATLA

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System)

For

Computer Science and Engineering

List of Institutional Electives

Institutional Elective-I								
18CEI01	Air Pollution & Control							
18CEI02 Rural Water Supply And Environment Sanitation								
18CSI01	Java Programming							
18CSI02	Database Management System							
18ECI01	Digital Image Processing							
18ECI02	Embedded Systems							
18EEI01	Application of Wavelets to Engineering Problems							
18EEI02	Industrial Electrical Systems							
18EII01	Principles & Applications of MEMS							
18EII02	Power Plant Instrumentation							
18ITI01	Introduction to Data Analytics							
18ITI02	Cyber Security							
18MEI01	Fluid Power and Control Systems							
18MEI02	Project Management							
18MAI01	Linear Algebra							
18PHI01	Nano-Materials and Technology							
18PHI02	Fiber Optics Communications							

AIR POLLUTION & CONTROL Institutional Elective-I (Code: 18CEI01) Lectures : 4 Periods/Week, Continuous Assessment : 50 Final Exam : 3 Hours Final Exam Marks : 50

Pre-Requisite: None.

Course Objectives: Students will be able to

- To take up the basic concepts of sources and effects of Air Pollution
- The contents involved the knowledge of the effect of metrological parameters on air pollution.
- The contents involved the knowledge of the control of air pollution from particulates.
- To develop skills relevant to control of gaseous pollution and also introduce about Air QualityManagement.

CO-1 The concepts of sources of air pollution and effects of air pollutants on man, materials and plants CO-2 Be able to understand the effect of air pollution with meteorological parameters CO-3 The knowledge about particulate control by different devices Be able to develop gaseous pollution control technologies and estimate the quality monitoring of air pollutants

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	2	3		1		3	3	1					3	3	1
CO-2	3	2	3	1	2	1	2						2	2	1
CO-3	3	3	3	2	2	1	3					1	2	3	2
CO-4	2	3	3	3	2	1	3	1				1	2	3	2

UNIT-1 15 Periods

Air Pollution –Definitions, Air Pollutants–Classifications –Natural and Artificial– Primary and Secondary, point and Non-Point, Line and Areal Sources of air pollution-stationary and mobile sources.

Effects of Air pollutants on man, material land vegetation: Global effects of air pollution – Green House effect, Heat Islands, Acid Rains and Ozone Holes etc.

UNIT-2 15 Periods

Meteorology and plume Dispersion; properties of atmosphere; Heat, Pressure, Wind forces, Moisture and relative Humidity, Influence of Meteorological phenomenon Air Quality-wind rose diagrams.

UNIT-3 15 Periods

Lapse Rates, Pressure Systems, Winds and moisture plume behavior and plume Rise Models; Theory and problem related to Gaussian dispersion model.

Control of particulates –Control at Sources, Process Changes, Equipment modifications, Design and operation of control. Equipment's–Settling Chambers, Centrifugal separators, filters Dry and Wet scrubbers, Electrostatic precipitators.

UNIT-4 15 Periods

General Methods of Control of NOx and Sox emissions–In-plant Control Measures, process changes, dry and wet methods of removal and recycling. Air Quality Management–Monitoring of SPM, SO; NO and CO Emission Standards.								
Text Books :	1. Airpollution By M.N.Raoand H.V.N.Rao –Tata Mc.Graw Hill Company. 2. Airpollution by Wark and Warner. –Harper & Row, NewYork.							
References:	1. An introduction to Air pollution by R.K.Trivedy and P.K.Goel, B.S.Publications							

				<u>Inst</u> it	<u>utio</u> na	<u>al E</u> le	ctive-	<u>-I (C</u> o	de: 18	<u>CE</u> I0	2)_				
Lectures	:	4 F	Perio	ds/W	eek,						us Ass		nt	:	50
Final Exam	:	3 F	Iour	S					Fin	al Exa	am Ma	rks		:	50
Pre-Requisit	e: No	ne.													
Course Obje	ctive	s: St	uder	ıts wi	ll be a	ble to	1								
>								nd eng	ineerir	ng to a	ınalyze	water	resou	irces	system
>						pment		r chara	cterist	ice					
>		-									techno	ology			
>		•									mental		ns		
Course Out	come	s: St	uder	nts wi	ll be a	ble to									
CO-1								al wat	er sup	ply ar	nd san	itation	1		
CO-2	Des	sign '	wate	r supp	oly an	d sani	tation	syste	m for	rural	comm	unity			
CO-3	_										al area	S			
CO-4	Pla	n and	d des	sign aı	n efflı	ient di	isposa	l mec	hanisr	n					
Mapping of (Cours	e Ou	tcon	nes wi	th Pro	gram	Outco	mes &	& Prog	gram (Specifi	ic Out	comes	5	
]	PO's	1						PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	2	2			2	2	2 2	2	2		2	2	2	1
CO-2 CO-3	2	2	2			2	2	2	2	2		2	2	2	1
CO-4	2		1			2		2				2	2	2	+ -
					TIN	NIT-1							1.4	5 Peri	
													-		
WATER SUF							-						-		
National rural maintenance o					am- r	ural w	ater q	uality	monito	oring a	and su	rveillai	nce- o	perati	on an
maintenance o	1 I UI a	ı wat	CI Su	ppiics	Ul	NIT-2							15	Peri	ods
LOW-COST	WAT	FDT	rpr	ATMI				Enid	emiolo	vaical	achecto	e of wa	ter au	ality r	nethod
for low cost w											aspects	or wa	ici qu	arrty r	псинос
					Uľ	NIT-3							15	Peri	ods
RURAL SAN	ITAT	'ION	: Int	roduct	ion to	rural s	anitati	on- Co	ommui	nity ar	nd sani	tary la	trines	- Plar	ning o
wastewater col	lectio	n sys	stem	in rura	al area	s- Trea	atment	and D	isposa	l of w	astewa	iter - C	ompa	ct and	l simpl
wastewater tre									ation p	onds -	septic	tanks	- Imho	off tar	ık- soa
pits- low-cost	excre	ta dis	posa	I syste		VIT-4		al.					1.4	5 Peri	a da
					UI	111-4							1.	Pen	ous
INDUSTRIAL															
Hospitals- Eati plant sanitation	ng est	tablis LID	shme Was	nts- Sv	Vimmi [AN] A	ing poo	ols – C ≀Nit- e	leanlii Vie n oe	ness an	d man	ntenan Jastes-	ce and	comfo	ort- In - land	dustri 1 fillin
incineration- I															
sanitation.		1									1				
Text Books :															
TOAT DOORS.	1	End.	1	7 1 1	1 04	- 1 T	117 N	r : . :	1 1	l D	10 .		C41.		
									oai and	l Kura	1 Sanit	ation,	otn		
	Ed	l., M	cGra	w Hill	Book	Comp	any, 19	965.			1 Sanii nd Soc			a Ros	narci A

Bhanot, 1972

References:

					T 4 T	7 A D-	2005		ATNIC	٦					
			1	Instit				RAMN -I (Co			1)				
Lectures	Τ.	4 1		ds/W		ai Eie	Clive	-1 (C0				ssessme	ent		50
Final Exam	<u> </u>	_	Hour		cck,					nal Ex			J11t	:	50
Timer Entern	<u> </u>	0 1	1041						111	101 E/1	wiii 141	wino .		•	
Pre-Requisit	e: No	ne.													
•															
Course Obje															
>								Types	s, Vai	riables	s, Arra	ays, Op	perat	ors, c	ontrol
						Obje									
>								, Pack	_		_				
												nd I/O.			
>	Uno	aerst	ana	tne co	ncepi	S OI E	event	Handi	ing, F	Applet	s and	Swings	S		
Course Out	nom o	a. Ct	udar	to wi	II ba a	hla ta									
Course Out		s. St	udei	iis wi	ii be a	DIE 10									
CO 1												write			
CO-1	1		-									executi			
	And	d use	e the	Java	SDK	envii	onme	ent to	create	, debu	ıg and	run Ja	va pi	rograr	ns
	Ide	ntify	clas	sses,	objec	ts, m	embei	s of	a clas	ss and	d rela	tionship	ps a	mong	them
CO-2												n progr			
								cturing							
CO-3												ackage			
CO-4		ite Ja dling		progr	ams t	o imp	leme	nt erro	or har	ndling	techr	niques	usin	g exc	eption
		rse (utc	omes	with			utcor	nes &	z Prog	gram (Specifi			
Mapping of	Cou	150					PO's				11	10	1	PSO'	
			12	4	_		7	0	Λ	10				,	
CO	1	2	3	4	5	6	7	8	9	10	11	12			3
CO CO-1	1 3	2 2	3	-	-	-	7	-	<u>9</u> -	-	-	-	3	3	3 2
CO CO-1 CO-2	1 3 3	2 2 2	3			6	7 -						3	3	3 2 2
CO-1 CO-2 CO-3	1 3 3 3	2 2 2 2	3 3 3	-	- -	-	7	-		-	-	-	3 3	3 3 3	3 2 2 2
CO CO-1 CO-2	1 3 3	2 2 2	3	-	-	-	7 - - -	-		-	-	-	3	3	3 2 2
CO-1 CO-2 CO-3	1 3 3 3	2 2 2 2	3 3 3	-	- - 2	-	7	-		-	-	-	3 3 3 3	3 3 3	3 2 2 2 2
CO-1 CO-2 CO-3 CO-4	1 3 3 3 3	2 2 2 2 2	3 3 3 3	- - - -	- - 2	6 - - - - NIT-1			- - - -		- - -		3 3 3 3	3 3 3 3	3 2 2 2 2 2 ods
CO-1 CO-2 CO-3 CO-4 The History	1 3 3 3 3	2 2 2 2 2	3 3 3 3	- - - of Ja	- - 2 UN	6 NIT-1	- - - -	- - - - v of J	- - - - ava, I	- - - - Data T	- - - - -	- - - - Variab	$ \begin{array}{c c} \hline 3\\ \hline 3\\ \hline 3\\ \hline 3\\ \hline \end{array} $	3 3 3 3 Perio	3 2 2 2 2 2 2 ods
CO-1 CO-2 CO-3 CO-4	1 3 3 3 3	2 2 2 2 2	3 3 3 3	- - - of Ja	- - 2 UN	6 NIT-1	- - - - erviev	- - - - v of J	- - - - ava, I	- - - - Data T	- - - - -	- - - - Variab	3 3 3 3 3 oles and C	3 3 3 3 Perio	3 2 2 2 2 2 2 ods

Strings: String Constructors, Program using 10 String methods, String Buffer class, Program using 10 String Buffer methods Introducing String Builder class.

UNIT-3 15 Periods

Exception Handling

I/O: I/O Basics, Reading Console Input, Writing Console Output, The Print Writer class, Reading and Writing Files, Automatically Closing a File.

UNIT-4 15 Periods

The Applet Class: Applet Architecture, An Applet Skeleton, Applet program to draw shapes, setting Color, Font using Graphicsclass

over AWT, The	ng, GUI Programming with Swing: The Origins of Swing, Advantages of Swing e MVC Connection, Program using Swing Components JLabel, JText Field, JText box, JButton, JTabbed Pane, JTable, JTree, JCombo Box.
Text Books :	1. Java The Complete Referencel, 9th Edition, Herbert Schildt, TMH Publishing Company Ltd.
References:	1. Java: A Beginner's Guide, Eighth Edition, Herbert Schildt, TMH Publishing Company Ltd.
	2. Head First Java, Second Edition, O'Reilly

DATABASE MANAGEMENT SYSTEM Institutional Elective-I (Code: 18CSI02) Lectures : 4 Periods/Week, Continuous Assessment : 50 Final Exam : 3 Hours Final Exam Marks : 50

Pre-Requisite: None.

Course Objectives: Students will be able to

- Familiarize with fundamental concepts of database and various database architectures and Design relations for Relational databases using conceptual data modeling. Familiarize the student with the basic taxonomyand terminology of the computer networking area.
- > Implement formal relational operations in relational algebra and SQL
- ➤ Identify the Indexing types and normalization process for relational database.
- Use mechanisms for the development of multi user database applications.

CO-1 Ability to apply knowledge of database design methodology which give a good formal foundation in relational data model and Understand and apply the principles of data modeling using ER Model. CO-2 Familiar with relational DB theory and will able to write relational algebra expressions, Relational Calculusand SQL. CO-3 Design database schema and Identify and solve the redundancy problem in database tables using normalization. CO-4 Understand transaction processing and concurrency control techniques.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's									PSO's					
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1		3	2	2		2				3			2		3
CO-2	3	3	2	2						3			3	3	3
CO-3	3	3	3	3						3			3	3	3
CO-4		3	3	3		3				3			2	3	3

UNIT-1 16 Periods

Databases and Database Users: Introduction - An Example - Characteristics of the Database Approach—Actors on the Scene- Workers behind the Scene-Advantages of Using the DBMS Approach.

Database System Concepts and Architecture: Data Models, Schemas, and Instances- Three-Schema Architecture and Data Independence- Database Languages and Interfaces- The Database System Environment -Centralized and Client/Server Architectures for DBMSs.

Data Modeling Using the Entity-Relationship(ER)Model: Using High-Level Conceptual Data Models for Database Design-An Example Database Application-Entity Types, Entity Sets, Attributes, and Keys-Relationship Types, Relationship Sets, Roles, and Structural Constraints-Weak Entity Types-Refining the ER Design for the COMPANY Database-ER Diagrams, Naming Conventions, and Design Issues

UNIT-2 16 Periods

The Relational Algebra and Relational Calculus: Unary Relational Operations: SELECT and PROJECT - Relational Algebra Operations from Set Theory-Binary Relational Operations: JOIN and DIVISION–Additional Relational Operations-The Tuple Relational Calculus-The Domain Relational Calculus

Schema Definition, Constraints, Queries, and Views: SQL Data Definition and Data Types – Specifying Constraints in SQL-Schema Change Statements in SQL-Basic Queries in SQL-More Complex SQL Queries-INSERT, DELETE, and UPDATE Statements in SQL-Views (Virtual Tables) in SQL

UNIT-3 14 Periods

Introduction to Schema Refinement: Problems Caused by Redundancy, Decompositions—ProblemRelated to Decomposition, Functional Dependencies - Reasoning about FDS, Normal Forms, FIRST, SECOND, THIRD Normal Forms, BCNF, Properties of Decompositions, Loss Less- Join Decomposition, Dependency Preserving Decomposition, Schema Refinement in Database Design – Multivalued Dependencies FOURTH Normal Form, Join Dependencies, FIFTH Normal form, Inclusion Dependencies.

UNIT-4 15 Periods

Introduction to Transaction Processing Concepts and Theory: Introduction to Transaction Processing- Transaction and System Concepts-Desirable Properties of Transactions-Characterizing Schedules Based on Recoverability —Characterizing Schedules Based on Serializability

Concurrency Control Techniques: Two-Phase Locking Techniques for Concurrency Control

-Concurrency Control Based on Time stamp Ordering- Multi version Concurrency

Control Techniques-Validation(Optimistic) Concurrency Control Techniques-Granularity of

Data Items and Multiple GranularityLocking

Text Books:	Fundamentals of Database Systems, Ramez Elmasri and Navathe Pearson
	Education, 6thedition
References:	1. Introduction to Database Systems, C.J. Date Pearson Education
	2. Database Management Systems, Raghu Rama krishnan, Johannes Gehrke,
	TATA McGraw Hill3rdEdition
	3. Database System Concepts, Silberschatz, Korth, McGraw hill,5thedition

Digital Image Processing Institutional Elective-I (Code: 18ECI01) Lectures : 4 Periods/Week, Continuous Assessment : 50 Final Exam : 3 Hours Final Exam Marks : 50

Pre-Requisite: None.

Course Objectives: Students will be able to

- Recall and summarize the digital image fundamentals and to be exposed to basic image processing techniques.
- ▶ Be familiar with image restoration, segmentation and compression techniques.
- ➤ Illustrate the representation of monochrome and color images in the form of features and descriptors.
- For the students a taste of the applications of the theories taught in the subject. This will be achieved through the project and some selected lab sessions. Develop a theoretical foundation of fundamental Digital Image Processing concepts.

Course Outcomes: Students will be able to										
CO-1	Explain the digital image fundamentals and basic image processing techniques									
CO-2	Apply appropriate technique for image enhancement both in spatial and frequency domains									
CO-3	Analyze the need for image restoration and color image processing and illustrate various restoration and color image processing techniques.									
CO-4	Evaluate various segmentation, representation and description techniques on digital images									

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	2	2	2	2	2	-	-	-	-	-	-	-	2	1	2
CO-2	3	2	3	1	2	-	-	-	-	-	-	-	2	1	2
CO-3	3	2	3	3	2	-	-	-	-	-	-	-	2	2	2
CO-4	2	2	1	2	2	-	-	-	-	-	-	-	2	2	2

UNIT-1 15 Periods

INTRODUCTION: What Is Digital Image Processing? The Origins of Digital Image Processing, Examples of Fields that Use Digital Image Processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing System.

DIGITAL IMAGE FUNDAMENTALS: Elements of Visual Perception, Light and the Electromagnetic Spectrum, Image Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships between Pixels.

UNIT-2 15 Periods

SPATIAL AND FREQUENCY DOMAIN FILTERING: Background. Some Basic Intensity Transformation functions, Histogram Processing, Fundamentals of Spatial Filters, Smoothing Spatial Filters, Sharpening Spatial Filter. The basics of filtering in the Frequency Domain, Image smoothing using frequency domain filters, Image sharpening using frequency domain filters.

IMAGE COMPRESSION: Fundamentals – Image Compression models – Error Free Compression, Lossy Compression

UNIT-3 15 Periods

IMAGE RESTORATION: A Model of the Image Degradation/Restoration Process, Noise Models, Restoration in the Presence of Noise Only-Spatial Filtering, Periodic Noise Reduction

by Frequency Domain Filtering, Linear, Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering.

COLOR IMAGE PROCESSING: Color Fundamentals, Color Models, Pseudo color Image

002011 11:11:	102 1110 025511 (GV 00101 1 minuminoniums), 00101 1110 u015, 1 50 uut 00101 1111 ug										
Processing, Ba	Processing, Basics of Full-Color Image Processing, Color Transformations, Smoothing and										
Sharpening, Image Segmentation based on Color.											
	UNIT-4 15 Periods										
IMAGE SEC	GMENTATION: Detection of discontinuities, Thresholding, Edge based										
Segmentation	Segmentation and Region based Segmentation										
IMAGE REP	IMAGE REPRESENTATION AND DESCRIPTION: Representation schemes, Boundary										
	Descriptors, Regional Descriptors.										
Text Books:	1. R. C. Gonzalez, R. E. Woods, Digital Image Processing 4th Edition, Pearson										
	Education Publishers, 2019.										
References:	1. S Jayaraman, S Esakkirajan, T Veerakumar, Digital Image Processing,										
	Mc-Grah Hill Publications, 2010.										
	2. Milan Sonka, Vaclav Hlavac and Roger Boyle, Image Processing Analysis										
	and Machine Vision, Thomson learning, Second Edition, 2001.										
	3. S.Sridhar, Digital Image Processing, Oxford University Press, 2016.										

EMBEDDED SYSTEMS Institutional Elective-I (Code: 18ECI02) Lectures 4 Periods/Week, Continuous Assessment 50 Final Exam Marks Final Exam 3 Hours 50 Pre-Requisite: None. Course Objectives: Students will be able to Understand characteristics, design metrics, technologies in embedded system design. > Know computation models in embedded system design and the details of various serial communication interfaces ➤ Understand Embedded/RTOS concepts Learn the overview of Embedded/RTOS and general techniques in design technologies **Course Outcomes**: Students will be able to Describe hardware/software tradeoffs in the design of an embedded system. CO-1 Discuss computation models in embedded system design and the details of various CO-2 serial communication interfaces CO-3 Demonstrate the architecture of kernel and various kernel objects Explain overview of Embedded/RTOS and general techniques in design CO-4 technologies to improve productivity

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes
--

		PO's										PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	2	3			2								2	2	
CO-2	2	3			2								2	2	
CO-3	2	3											2	2	
CO-4	2	3	3		2								2	2	

UNIT-1 15 Periods

Introduction to embedded systems: Design challenges, processor technology, IC technology, design technology, tradeoffs, single purpose processor, RT level combinational logic, sequential logic (RT level) custom single purpose processor design, General purpose processors: basic architecture, pipelining, programmers view, development environment, ASIPS, microcontrollers and digital signal processors.

UNIT-2 15 Periods

STATE MACHINE AND CONCURRENT PROCESS MODELS: models vs. languages, FSMD, using state machines, PSMM, concurrent process model, concurrent processes, communication and synchronization among processes, data flow model and real-time systems. Need for communication interfaces, RS232/UART, RS422/RS485, USB, Infrared, IEEE 802.11, and Bluetooth.

UNIT-3 15 Periods

EMBEDDED SYSTEM AND RTOS CONCEPTS: Architecture of kernel, tasks and task scheduler, interrupt service routines, semaphores, mutex. Mail boxes, message queues, event registers, pipes and signals.

UNIT-4 15 Periods

EMBEDDEDSYSTEM AND RTOS CONCEPTS: Timers, memory management, priority

technology: In logic synthesis	inversion problem, embedded OS and real-time OS, RTLinux, and Handheld OS. Design technology: Introduction, automation, synthesis, parallel evolution of compilation and synthesis, logic synthesis, RT synthesis, behavioral synthesis, system synthesis, HW/SW co-design, verification, and co-simulation.								
Text Books :	1. Frank Vahid, Tony D Givargis, Embedded system design – A unified HW/SW Introduction, JohnWiley & sons 2002.								
	2. KVKK Prasad, Embedded and real-time systems, DreemtechPress, 2005.								
References:	 Raj Kamal, Embedded system architecture, programming and design, TMH edition. Mohammad Ali Mazidi, Janice G., The 8051 microcontroller and embedded systems, Pearson edition. Jonathan W Valvano, Embedded Microcomputer Systems, Brooks/cole, Thompson 								

APPLICATIONS OF WAVELETS TO ENGINEERING PROBLEMS

Institutional Elective-I (Code: 18EEI01)

Lectures	:	4 Periods/Week,	Continuous Assessment	:	50
Final Exam	:	3 Hours	Final Exam Marks	:	50

Pre-Requisite: None.

Course Objectives: Students will be able to

- > Understand the fundamental of signal decomposition using Fourier transform, Short Time Fourier Transform and Wavelet Transform.
- Analyze the signals using discrete wavelet transform.
- > Understand the concept of multi-resolution analysis.
- Explain the wavelet reconstruction and applications of wavelet.

Course Outcomes: Students will be able to

004150 0400	Cometi, Students will see well ve
CO-1	Explain the signal decomposition using Fourier transform, Short Time Fourier Transform and Wavelet Transform.
CO-2	Analyze the signals using discrete wavelet transform.
CO-3	Apply multiresolution analysis to the signals for decomposition.
CO-4	Explain the wavelet reconstruction and applications of wavelet.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's									PSO'	S			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	2	2	-	2	-	-	-	-	-	-	-	3	-	-
CO-2	3	2	2	-	2	-	-	-	-	-	-	-	3	-	-
CO-3	3	2	2	-	2	-	-	-	-	-	-	-	3	-	-
CO-4	3	3	3	2	3	-	-	-	-	-	-	-	3	-	-

UNIT-1 15 Periods

Fundamentals of signal decomposition: Stationary and non-stationary signals. brief overview of Fourier transforms, Short-time Fourier transform (STFT). Introduction to wavelets, continuous wavelet transform - definition - scaling - shifting - scale and frequency. CWT as a correlation, time frequency resolution.

UNIT-2 15 Periods

Discrete Wavelet Transform: Introduction to the DWT and orthogonal wavelet decomposition. One Stage filtering, Approximation and Details, Filter bank analysis. Multi resolution analysis. orthogonal wavelet decomposition based on the Haar wavelet – digital filter implementation of the Haar wavelet decomposition (Mallat's algorithm).

UNIT-3 15 Periods

Multi Resolution Analysis: Construction of a general orthonormal MRA, formal definition, implication of the dilation equation and orthogonality. Introductory concepts of biorthogonal wavelet basis and wavelet packet synthesis. Two-dimensional wavelet decomposition, regularity, vanishing moments. Multilevel Decomposition, Number of levels

UNIT-4 15 Periods

Wavelet reconstruction: Reconstruction filter, Reconstructing Approximations and details, Multilevel Reconstruction. Signal energy, wavelet-based energy, and power spectra.

Typical Applications: Signal denoising, fault detection and classifications.

Text Books: 1. Rao R.M. & Bopardikar A.S., "Wavelet Transforms-Introduction to Theory

	and Applications", Addison-Wesley, 1998.
	2. K P Soman and K. I. Ramachandran, —Insight into Wavelets from theory
	to practice, Prentice Hall of India, 2005.
	3. Don Hong (Author), Jianzhong Wang (Author), Robert Gardner (Author),
	Real Analysis with an Introduction to Wavelets and Applications, Academic
	Press; 1 edition, 2004.
References:	1. James S. Walker, "A Primer on Wavelets and Their Scientific Applications",
	Chapman and Hall/CRC,2 edition, 2008.
	2. C S Burrus, A Gopinath, and Haitao Guo, "Introduction to wavelets and
	wavelet transforms", Pearson, 1st Edition, 1997.
	3. S.V.Narasimhan (Author), Nandini Basumallick (Author), S. Veena
	(Author), Introduction to Wavelet Transform: A Signal Processing
	Approach, Alpha Science; 1 edition, 2011.

		INDUSTRIAL ELECTRICA	L SYSTEMS					
		Institutional Elective-I (Cod	le: 18EEI02)					
Lectures	:	4 Periods/Week,	Continuous Assessment	:	50			
Final Exam	:	3 Hours	Final Exam Marks	:	50			
Pre-Requisit	e: No	ne.						
Course Obje		s: Students will be able to						
>	Understand the electrical wiring systems for residential, commercial and							
	industrial consumers, representing the systems with standard symbols and							
		vings, SLD.						
>		lerstand various components of industrial	<u> </u>					
>		llyze and select the proper size of var	•					
>	Solv	ve problems involving with different A	C and DC sources in electr	rical	circuits.			
Course Outo		s: Students will be able to						
		nonstrate the electrical wiring syst						
CO-1	l	strial consumers, representing the	systems with standard s	ymb	ols and			
		vings, SLD.						
CO-2	Infe	r and outline various components of in	ndustrial electrical systems.					
CO-3		estigate and analyse the selection the	proper size of various elect	trical	system			
		ponents.						
CO-4	Illus	strate and solve problems involving	with different AC and DC	C soi	arces in			

Mapping of	Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes														
		PO's							PSO ⁵	S					
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	3	2										3	2	
CO-2	3	3	2										3	2	
CO-3	3	3	2										3	2	
CO-4	3	3	2										3	2	

Electrical circuits.

UNIT-1 15 Periods

Electrical System Components: LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components- Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices.

Residential and Commercial Electrical Systems: Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components.

UNIT-2 15 Periods

Illumination Systems: Understanding various terms regarding light, lumen, intensity, candle power, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, energy saving in illumination systems, design of a lighting scheme for a residential and commercial premises, flood lighting.

UNIT-3	15 Periods

Industrial Electrical Systems I: HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, single line diagram, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction – kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components.

UNIT-4 15 Periods

Industrial Electrical Systems II: DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks.

Industrial Electrical System Automation: Study of basic PLC, Role of in automation, advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation.

introduction to	SCADA system for distribution automation.
Text Books:	1. H. Joshi, "Residential, "Commercial and Industrial Electrical Systems",
	McGraw Hill Education, 2007.
	2. K. B. Raina, "Electrical Design, Estimating & Costing", New age
	International, 2017.
References:	1. Surjit Singh, "Electric Estimating and Costing", DhanpatRai and Co., 2016.
	2. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing",
	Khanna publishers,2008.
	3. J. B. Gupta, "A Course in Electrical Installation Estimating and Costing",
	S.K. Kataria&Sons, 2013.

PRINCIPLES AND APPLICATIONS OF MEMS Institutional Elective-I (Code: 18EII01) Lectures : 4 Periods/Week, Continuous Assessment : 50 Final Exam : 3 Hours Final Exam Marks : 50

Pre-Requisite: None.

Course Objectives: Students will be able to

- Introduce the reader to the world of MEMS and their fabrication.
- Treatment of actuators and sensing from a generic standpoint and modelling strategies for selected MEMS.
- Acquire the new skills of considering microtechnology based solutions to problems.
- To know how MEMS are modeled.

Course Outcomes: Students will be able to

-	
CO-1	List the advantages and applications of MEMS, list various techniques foradding
	materials to a substrate
CO-2	List various steps in photolithography and micromachining
CO-3	Define a transducer and list its characteristics, state working principles of various
00-3	transducers.
CO-4	To model any transducer.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's							PSO's						
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	2	2													
CO-2	1	1													
CO-3	2	2		1											
CO-4	3	3	2	2											

UNIT-1 15 Periods

Introduction: What are MEMS? Why MEMS? How MEMS are made? Roadmap and perspective

The substrate and adding materials to it: Introduction, the silicon substrate, additive techniques: oxidation and physical vapour deposition, other additive techniques.

UNIT-2 15 Periods

Creating and transferring patterens-photolithography: Introduction, keeping it clean, photoresist, working with resist, masks, resolution, permanent resists.

Creating Structures-Micromachining: Introduction, bulk micromachining processes, surface micromachining, process integration.

UNIT-3 15 Periods

Modeling: what is modelling? The input output concept, physical variables and notation. **MEMS transducers**: definition of transducer, distinguishing between sensors and actuators, response characteristics of transducers, MEMS sensors, MEMS actuators, signal conditioning. **Piezoresistive transducers**: Introduction, modeling piezoresistive transducers, Piezoresistive pressure sensor.

UNIT-4 15 Periods

Capacitive transducers: Introduction, capacitor fundamentals, modelling acapacitive sensor, capacitive accelerometer.

Piezoelectric transducers: Introduction, modelling piezoelectric materials, mechanical

modelling of be	modelling of beams and plates, cantilever piezoelectric actuator.								
Thermal trans	Thermal transducers: Introduction, Basic heat transfer, hot-arm actuator.								
Text Books:	Thomas M. Adams, Richard A Layton: Introductory MEMS: Fabrication								
	and applications, Springer publication								
References:	Julian W. Gardner, Vijay K Varadan, Osama O. Awadelkarim								
	Microsensors, MEMS, and smart devices, John Wiley and sons.								

POWER PLANT INSTRUMENTAITON

Institutional Elective-I (Code: 18EII02)

Lectures	:	4 Periods/Week,	Continuous Assessment	:	50
Final Exam	:	3 Hours	Final Exam Marks	:	50

Pre-Requisite: None.

Course Objectives: Students will be able to

- Compare various types of power plants used to generate electricity by using Renewable and Non-Renewable energy sources.
- > Understand the operation of steam generation and its components.
- ➤ Understand the operation of various types of boilers and turbines used in power plants.
- Analyze the process control operation involved in power plant instrumentation.

Course Outcomes: Students will be able to

CO-1	Compare various types of power plants used to generate electricity by using
	Renewable and Non- Renewable energy sources.
CO-2	Understand the operation of steam generation and its components.
CO-3	Understand the operation of various types of boilers and turbines used in power
	plants.

CO-4 Analyze the process control operation involved in power plant instrumentation.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's								PSO's					
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3		1										2	3	3
CO-2	1		2		1	1							2	2	1
CO-3	1		2		1	1							2	2	1
CO-4	1		2		3	1							2	3	1

UNIT-1 15 Periods

AN OVERVIEW OF POWER GENERATION: Brief survey of methods of power generation Hydro, Thermal, Nuclear, Solar wind etc. Importance of instrumentation for power generation – Thermal power plants – Building BlocksDetails of the Boiler process – PI diagram of Boiler. Non electrical parameters, flow of feed water, fuel, air and strain with correction factors for temperature, pressure, temperature level –radiation detectors – smokedensity measurement, dust monitor.

UNIT-2 15 Periods

CONTROL LOOPS AND INTERLOCKS IN BOILER: Combustion control – control of Main header pressure, air fuel ratio control, furnace draft and excessive air control, drum level, main and reheat steam temperature control, burner tiltingup, bypass damper, super heater, spray and gas recirculation controls – B.F.P. recirculation control – hot well and de-aerator level control – Pulverizer control, computers in power plants.

UNIT-3 15 Periods

TURBINE MONITORING AND CONTROL: Condenser Vacuum Control –gland steam exhaust pressure control – speed vibration, shell temperature monitoring and control – lubricating oil temperature control – hydrogen generatorcooling system.

UNIT-4 15 Periods

ANALYSERS IN POWER PLANTS: Thermal conductive type – Paramagnetic type Oxygen Analyzer, IR type and trim Analyzer – spectrum analyzer – Hydrogen purity meter –

chromatograph	chromatography PH meter - conductivity cell - Fuel analyzer - brief survey of pollution					
monitoring and	monitoring and control equipment.					
Text Books:	1. Modern Power station practice: Volume 6, Instrumentation, Controls and					
	Testing, Pergaman Press, Oxford 1971.					
	2. Wakil. M.M.; Power Plant Technology (McGraw Hills), 1985.					
References:	1. Elonka S.M. and Kohal, Standard Boiler Operations Questions and Answers,					
	TMH, 1975.					

INTRODUCTION TO DATA ANALYTICS Institutional Elective-I (Code: 18ITI01) Lectures : 4 Periods/Week, Continuous Assessment : 50 Final Exam : 3 Hours Final Exam Marks : 50

Pre-Requisite: None.

Course Objectives: Students will be able to

- ➤ Understand the use of R, Basics of R, Advanced data structures, reading/writing data into R.
- ➤ Understand the basic & advanced data management, manipulate data using SQL statements and visualization of data using different plots.
- ➤ Understand the normal, binomial distributions, correlation and covariance, T-test, ANOVA, Manipulation string, and Linear models .
- Understand the cluster analysis and classification.

CO-1 Import, review, manipulate and summarize data-sets in R. CO-2 Understand advanced data structures like vectors, lists, matrices, arrays and data frame. CO-3 Understand normal and binomial distributions and apply basic and advanced statistical tools. CO-4 Understand the difference between Supervised and Un-supervised Machine Learning Algorithms.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's 3 5 9 2 \mathbf{CO} 2 4 7 8 10 11 12 1 3 **CO-1** 2 1 1 2 CO-2 2 3 1 2 **CO-3** 3 2 1 2 2 **CO-4** 3 2

UNIT-1 15 Periods

Introduction to R - Why use R?, Obtaining and installing R, The R Environment - Command line interface, RStudio,R Packages - Installing packages, loading packages, Building packages, Basics of R - basic Math, variables, Datatypes, vectors, calling function, function documentation, missing data. Advanced Data Structures- data.Frames, Lists, Matrices, Arrays, Reading Data into R-Reading CSVs, Excel data, reading from database.

UNIT-2 15 Periods

Basic Data Management - A working example, creating new variables, recoding variables, renaming variables, missing values, date values, type conversion, sorting data, merging data set, sub-setting datasets, Using SQL statement to manipulate data

UNIT-3 15 Periods

Normal distribution, binomial distribution, summary statistics, correlation and covariance, T-test, ANOVA, paste, sprintf, extracting text, regular expression, Simple linear regression, multiple linear regressions.

UNIT-4 15 Periods

Cluster Analysis-common steps in cluster analysis, calculating distances, Hierarchical cluster analysis,

Partitioning clu	uster analysis, avoiding nonexistence clusters, Preparing the data, logistic					
regression, dec	regression, decision trees, random forests, support vector machines, choosing a best predictive					
solution.						
Text Books :	 R for Every One, Advanced analytics and graphics by Jared P Lander, Addison Wisley Data and Analyticsseries, 2017, 2nd edition. R in Action, Data Analysis and graphics with R, Robert L Kaacoff, Manning Publisher, 2015, 2nd. 					
References:	 Beginning R by Dr.Mark Gardener, Wrox publisher, 2012, 1st edition. Associate Analytics Facilitator Guide provided by NASSCOM 					
	http://183.82.43.252/~gopam/html/NASSCOM.					

CYBER SECURITY							
		Institutional Elective-I (Cod	de:18ITI02)				
Lectures	:	4 Periods/Week,	Continuous Assessment	:	30		
Final Exam	:	3 Hours	Final Exam Marks	:	70		

Pre-Requisite:

Course Objectives: Students will be able to

- > Understand about Security basics and Cryptographic algorithms.
- Understand how to secure computer system with Cryptographic algorithms and data integrity.
- Identify hacking basics information and privacy concepts.
- Gather the matter about Security in the networks & Damp; analyze, and various types of attacks in the computer system.

Course Outcomes: Students will be able to			
CO-1	Explain basic security information and cryptographic algorithms.		
CO-2	Explain principles of operation of Asymmetric Encryption techniques and integrity algorithms.		
CO-3	Analyze hacking techniques and privacy concepts.		
CO-4	Add security feature to computer networks and improve computer security.		

Mapping of	Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes														
		PO's PSO's													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	2	2	3	2	3	-	-	-	-	2	2	2	3	3	2
CO-2	2	3	2	2	2	-	-	-	-	2	2	2	3	2	2
CO-3	2	2	2	2	2	-	-	-	-	2	2	2	2	3	2
CO-4	2	2	2	2	2	-	2	2	-	2	-	2	3	2	2

UNIT-1 15 Periods

Int. to Computer Security: Definition of Computer Security, the OSI Security Architecture, Security Attacks, Security Services, Security Mechanisms and A Model for Network Security. **Symmetric Ciphers:** Classical Encryption Techniques, Block Ciphers and the DES, AES Techniques.

UNIT-2 15 Periods

Public Key Cryptography: Principles of Public-Key Cryptosystems, The RSA algorithm and Diffie Hellman Key Exchange Algorithm.

Digital Signatures: Properties, Attacks and Forgeries, Digital Signature Requirements, Direct Digital Signature and Elgamal Digital Signature Scheme.

UNIT-3 15 Periods

Hacking: Basic Terminology, Hacker's Motives and Objectives, Hacker Classes, Hacking Phases and Role of an Ethical Hacker.

Privacy in Cyberspace: Privacy Concepts, -Privacy Principles and Policies, Privacy on the Web, Email Security, Privacy Impacts of Emerging Technologies.

UNIT-4 15 Periods

Information gathering tools: Recon-ng, Dmitry, Net discover and Nmap.

Network Scanning: Objectives of Network Scanning, TCP/IP protocol stack, Types of Network Scanning.

Security of Computer Systems: Malware attacks, Password attacks.

Text Books: 1. Cryptography and Network Security - Principles & Practice, William

	Stallings, Pearson, 7 edition, 2017. ISBN: 978-0-13-444428-4
References:	1. Cryptography and Network Security, Behrouz A. Forouzan and Debdeep
	Mukhopadhyay, Mcgraw-Hill Education 2, 2010. ISBN: 978-93-392-2094-
	5
	2. CISSP All-in-One Exam Guide, Shon Harris and Fernando Maymi,
	McGraw-Hill Education 7, 2016, ISBN: 978-0-07-184961-6.
	3. Gray Hat Hacking: The Ethical Hackers Handbook, Allen Harper, Shon
	Harris, McGraw-Hill Edition 3, 2011. ISBN: 978-0-07-174256-6
	4. Security in Computing, Charles P. Pfleeger Shari Lawrence Pfleeger
	Jonathan Margulies, Pearson Edition 5, 2015. ISBN: 78-0-13-408504-3.
	DOI: www.wileyindia.com
	DOI: www.wneymdia.com

FLUID POWER & CONTROL SYSTEMS Institutional Elective-I (Code: 18MEI01) Lectures : 4 Periods/Week, Continuous Assessment : 50 Final Exam : 3 Hours Final Exam Marks : 50

Pre-Requisite: None.

Course Objectives: Students will be able to

- > To acquire knowledge in fluid power sources, power utilization and trouble shooting.
- To understand and develop hydraulic circuits for various applications.
- To understand and develop pneumatic circuits used in automation.
- > To understand the importance and uses of accumulator.

CO-1 Categorize fluid power systems and understand the working of hydraulic power sources and actuators CO-2 Illustrate the construction and working of control elements in hydraulic and pneumatic circuits. CO-3 Select suitable pneumatic circuit for various industrial applications. CO-4 Understand the function of an accumulator and Identify faults in hydraulic systems and maintenance of hydraulic system

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's 9 \mathbf{CO} 2 3 4 5 7 8 10 11 12 2 1 6 1 3 **CO-1** 2 1 **CO-2** 2 3 2 **CO-3** 3 1 2 1 2 **CO-4** 1

UNIT-1	15 Periods
UN11-1	13 remous

Introduction: Fluid Power, Basic Law, Application of Fluid Power, Advantages of Fluid Power Systems, Typesof Fluid Power Systems.

Hydraulic Systems: Pumps – Gear Pumps and Vane Pumps. Selection and Specification of Pumps. Hydraulic Actuators: Linear and Rotary Actuators.

UNIT-2 15 Periods

Control and Regulation Elements: Pressure, Flow and Direction Control Valves Hydraulic Circuits: Reciprocation, Quick Return, Sequencing, Synchronizing Circuits, Industrial Circuits - Punching Press Circuit, Milling Machine Circuits

UNIT-3 15 Periods

Introduction to Pneumatic Systems: Pneumatic fundamentals, Pneumatic Valves Pneumatic Circuits: Pneumatic circuits- Basic pneumatic circuit, Quick exhaust circuit, feed control circuit and Time delay circuit.

UNIT-4 15 Periods

Hydraulic Circuits: Accumulators, Accumulator Circuits – Leakage Compensation, Auxiliary Power Source, Emergency Source of Power Maintenance of Hydraulic Systems: Maintenance of Hydraulic Systems, Trouble Shooting of Hydraulic System.

Text Books :	 Anthony Esposito 'Fluid Power with applications" Pearson Education. Andrew Parr "Hydraulics and Pneumatics-A technicians and engineers guide" Jaico publishing co.
References:	1. W.Bolton,"Pneumatic and Hydraulic systems" Butterworth-Heinemann
	Web page references 1. https://www.grc.nasa.gov/www/k- 12/WindTunnel/Activities/Pascals_principle.html 2. http://www.vickers.sh.cn/pdfs/M-SRSR-MC001-E.pdf 3. http://file.seekpart.com/keywordpdf/2011/3/31/20113319837232.pdf 4. http://www.associatedgroups.com/EATON-CAT/pdfs/i3155s.pdf

PROJECT MANAGEMENT Institutional Elective-I (Code: 18MEI02)															
_		1				l Elec	tive-	l (Coo							
Lectures	:	_		ds/W	eek							ssessn	nent	:	50
Final Exam	:	: 3 Hours Final Exam Marks : 50													
Dua Daguisit															
Pre-Requisit	Pre-Requisite:														
Course Obje	otivo	a. St	udar	te wi	11 ha a	bla to									
>								ing a	nroiec	t					
>		Γο acquire the knowledge of planning a project Γο perform SWOT analysis of project													
>		•				techn			nleme	ntina	a nroi	ect			
>					ge a pr		iques	111 1111	picine	nung	a proj	cci			
	10	16ai i	1 10 1	Hallag	ge a pi	ojeci									
Course Outo	omo	a. Ct	11110	ta xxi	11 ha a	hla ta									
Course Out						vn stri									
CO-1						analy			БРТ М	Metho	de				
CO-2 CO-3		_		_								releva	nt co	ct	
								_			_	approp			archin
CO-4	styl		ong	amza	iioii si	Tuctui	C 101 6	a proj	cci œi	uciitii	y the	approp	пас	icau	cisinp
	Styl														
Mapping of	Com	rse (Inte	omes	with	Progr	am C	outco	mes &	Proc	ram	Snecif	ic O	ıtcor	nes
mapping of		150	Juic	omes	*******		PO's	utto	ines e	ع	,1 4111	Бресп		PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	2	3	3	1	3	3	3	3			3		3		3
CO-2	3	3	3	3	3	3	3	3			3		3		3
CO-3	3	3	3	3	3	3	3	3			3		3		3
CO-4	3	3	3	1		3	3	3			3		3		3
					•										
					Uľ	NIT-1							1:	5 Per	iods
Introduction to	o Pro	niect '	Man	agem	ent - I)efinit	tions	scone	and c	onteni	ts Rei	evanc	e Cla	ecifi	ration
of Projects, E				_				-							
project Plan, I							10 0 5	010,	,	110,0		o oyon	·, D·	· Clo	Jing u
FJ, -				,, -									1.	- D	' 1
					Uľ	NIT-2							1;	5 Per	lods
Critical path	meth	od, I	Risk	analy	sis, P	ERT;	proble	ems, I	Reduci	ing Pr	oject i	Durati	on		
					U	NIT-3							14	5 Per	iods
											1.0				
Estimating p	-						edulii	ng Ro	esourc	es an	d Co	sts, pi	roble	n so	lvıng,
Progress and	Perfo	orma	nce I	vieasi	ıreme	nt									
					Uľ	NIT-4							1:	5 Per	iods
Organization	– St	ructu	ire a	nd Cı	ulture,	Desi	gning	a str	ucture	for a	proje	ect, Le	aders	ship s	styles,
Leading, Man	agin	g Pro	oject	Tean	ns. Th	e Proj	ect M	anage	ment	Matur	ity M	odel (PMM	IM)	
Text Books:	1.						t Mar	nagem	ent",	8 th	Editio	n, Wi	ley, 1	Vew	York,
					ailabl										
	2.									ess, E	rik W	. Lars	on, a	nd Cl	ifford
						Hill H									• • •
References:	1.				e Pro	ject M	Ianage	ement	Body	of K	nowle	edge (I	PMB	OK g	uide),
	_		I, 20		1 .	ώD .		D1		, .	1	٠.			
	2. Prasanna Chandra, "Projects – Planning, analysis, selection, implementation and review", Tata McGraw-Hill, New Delhi, 2010.														
		and	revi	ew",	ı ata N	ıcGra	w-H1l	ı, ivev	w Dell	11, 20	ıU.				

		LINEAR A	LGEBRA				
		Institutional Elective	e-I (Code: 18MAI01)				
Lectures	: 4 Periods/Week Continuous Assessment :						
Final Exam	:	3 hours	Final Exam Marks	:	50		
	·						
Pre-Requisi	ite: None	e					
Course Obj	ectives:	Students will learn how to	·				
>	Verify a	vector Space, check for basis	and find the rank.				
>	To le Fi	nd the eigen values and eigve	n vectors, diagonalization of a squar	re matr	ix and		
	finding l	nigher power of a given square	re matrix.				
>	Define an inner product inner product, orthogonal projections, Gram-						
	orthogonalization process, least square solution of a system.						
	To learn diagonalization of symmetric matrices and singular value decomposition of a						

Course O	utcomes : After studying this course, the students will be able to
COI	Appy the definition for verification of a vector space, Change

dimension of a vector space

CO2

Find matrix representation of a transformation, eigven values, eigen vectors and diagonalization of a matrix and its power matrix

Use the knowledge for orthonormal basis. Method of least square to fit a polynomial for

Use the knowledge for orthonormal basis. Method of least square to fit a polynomial for the given data

To diagonalize a symmetric matrix and singular value decomposition of a matrix.

CO4 To diagonalize a symmetric matrix and singular value decomposition of a matrix.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

						P	O's							PSO's	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3										2	2		
CO2	3	2										3	2		
CO3	3	3		2								2	3		
CO4	2	2										3	3		

UNIT-1 15 Periods

of basis and finding

Vector Spaces:

Vector Space and Subspaces, Null Spaces, Column Spaces and Linear Transformations, Linear Independent Sets, Bases, The dimension of a vector space, Rank.

[Sections 4.1, 4.2, 4.3 4.5, and 4.6]

UNIT-2 15 Periods

Eigen Values and Eigen Vectors:

Eigen Vectors and Eigen values, The Characteristic Equation, Diagonalization, Eigen Vectors and Linear Transformations.

[Sections 5.1, 5.2, 5.3, and 5.4]

UNIT-3 15 Periods

Orthogonality and Least Squares:

Inner Product,	Length, and Orthogonality, Orthogonal Sets, Orthogonal Projections, The Gram-				
Schmidt Proces	ss, Least-Squares Problems.				
[Sections 6.1, 6	5.2, 6.3, 6.4 and 6.5]				
	UNIT-4 15 Periods				
Symmetric Ma	atrices and Quadratic Forms:				
Diagonalization	Diagonalization of Symmetric Matrices, Quadratic Forms, Constrained Optimization, The Singular				
Value Decomp	osition.				
[Sections 7.1, 7	7.2, 7.3 and 7.4]				
Text Books:	1. Linear Algebra And Its Applications by David C. Lay, Steven R. Lay and Jud				
	J. McDonald 5 th edition, Pearson, 2016.				
References:	1. "Linear Algebra And Its Application" by Gilbert Strang, 4 th edition, Cengago				
	India Limited 2014.				

		NANO MATERIALS AND T	ECHNOLOGY		
		Institutional Elective-I (Co	ode: 18PHI01)		
Lectures	:	4 Periods/Week	Continuous Assessment	:	50
Final Exam	:	3 hours	Final Exam Marks	:	50

Pre-Requisite: None

Course Objectives: Students will learn how to

- Understand the concepts of nanoscience and synthesis of nano materials
- Learn the nano scale paradigm in terms of various properties
- Gain the knowledge of specific characterization technics of nanomaterials and nanotubes
- For the description of Section of

Course (Course Outcomes: The students will be able to					
CO1	Scale up synthesis of nanomaterials and understand quantum confinement					
CO2	Understand properties of nanomaterials and nano tubes					
CO3	Know the characterization techniques of nano materials					
CO4	Know the usage of nano particles in nano biology and nano medicine.					

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

		PO's									PSO's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	2											2		
CO-2	3	2											2		
CO-3	2		2	2									2		
CO-4	2				2								2		

UNIT-1 15 Periods

ADVANCED OPTICS

I NTRODUCTION TO NANO TECHNOLOGY: history of Nano materials nano scale, conventional and Nano materials differences, quantum confinement, quantum wells, quantum wires, quantum dots, surface to volume ratio, nano ceramics, nano composites and nano clusters. SYNTHESIS OF NANOMATERIAL: Bottom up and top down approaches, cryo rolling, high energy ball milling, chemical vapour deposition, solgel method, laser ablation, rapid solidification processing, equal channel angular extrusion, molecular beam epitaxy, sputtering ,hydrothermal method, physical vapour deposition and electro deposition.

UNIT-2 15 Periods

PROPERTIESOFNANOMATERIALS: Electrical, magnetic, optical, physical, chemical, mechanical, thermal and electro-chemical properties.

CARBON NANOMATERIALS: Nanotubes, graphene, bucky balls, nano horns, properties of carbon nanotubes, synthesis of carbon nano materials, application of carbon nano tubes.

UNIT-3 15 Periods

CHARACTERIZATION OF NANO MATERIALS:X-ray diffraction, scanning electron microscopy, uv-visible spectroscopy, scanning tunnelling microscopy, differential thermal

analysis and dif	ferential scanning calorimetry, FTIR.
	UNIT-4 15 Periods
APPLICATION	N OF NANOMATERIALS: Electronics, computers, biomedical, mechanical
chemical, coati	ngs, optoelectronic, environmental, sensors ,aerospace, textiles, cosmetics and
medical applica	tions.
Text Books :	 Kulkarni Sulabha K,Nano technology: Principles and Practices, capital publishing company, 2007. Stuart M.Lindsay, Introduction to nano science ,Oxford University Press 2009.
References:	1. Robert Kelsall ,Iam Hamley, Mark Geoghegan, Nanoscale, Scince and
	Technology, John Wiley & Sons, 2005.

		_	FICS COMMU			
		Institutiona	ıl Elective-I (Co	ode: 18PHI02)		
Lectures	:	4 Periods/Week	Credits -	Continuous Assessment	:	50
		3				
Final Exam	:	3 hours		Final Exam Marks	:	50

Pre-Requisite: None

Course Objectives: Students will learn how to

- Get the concepts of optical fibers and losses and distortion of optical signals
- Understand the optical sources to fiber couplings and fiber to fiber joints
- Figure 6. Gain the knowledge of optical communication link analysis
- Learn the attenuation measurement and fault-finding technics

Course Outcomes: The students will be able to

CO1	identify signal degradation and losses in optical fibers
CO2	understand power launching and coupling in optical fibers
CO3	compute optical fiber link design parameters
CO4	measure optical parameters and optical signal losses.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

						P	O's							PSC)'s
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	2	2											2		
CO-2	2	2											2		
CO-3	2		2										2		
CO-4	2			2	2								2		

UNIT-1 15 Periods

Fiber optical wave guides :Introduction ,total internal reflection ,types of fibers,planar dielectric wave guide, optical fiber wave guides-inter-modal dispersion ,single mode fibers,low dispersion fibers.

Signal degradation in optical fibers: Attenuation, Absorption, Scattering losses, Radioactive losses signal distortion in optical wave guides ,information capacity determination, intra model dispersion(material dispersion, wave guide dispersion)

UNIT-2 15 Periods

Power launching and coupling: Source to fiber power launching, source output pattern power-coupling calculation, power launched verss wave length, equilibrium numerical. Aperture lensing schemes for coupling improvement nanimaging micro sphere. Laser diode-to-fiber-coupling, fiber-to-fiber joints, mechanical misalignment, fiber-related losses, fiber end face preparation, fiber splicing optical fiber connectors.

UNIT-3 15 Periods

Transmission link analysis :point –to-point links, system consideration, link power budget, rise time budget ,transmission distance for single model links ,wave length division multiplexing (WDM) passive components ,the 2x2 fiber coupler ,the 2x2 wave guide coupler ,star coupler, local area network .

	UNIT-4	15 Periods
Measurement a	ttenuation Measurement, the cut back technique, insertion loss metho	d optical time
domain reflect	ometer. dipersion measurement - inter modal diaspersion, time dor	nainter modal
diaspersion me	asurement, Frequency domain inter modal diaspersion measurement	, OTDR fiber
application, O	FDR Trace ,attenuation measurments fiberfault location.	
Text Books :	1. Willam J&Hawkes F.B opto electronics :An introduction.(PHI)	
	2. Gerd Keiser optical fiber communication (3 rd edition Mc Grawl	Hill)
References:	1. A .Selvarajan ,S .Kar, and T.SRINIVAS , fiber optic communicati	ons,Tata Mc
	GrawHill,2002.	
	2. D.C Agarwal "fiber optics in communications "Wheeler publish	ning,1993.

Annexure – 2 Institution Elective - II

BAPATLA ENGINEERING COLLEGE::BAPATLA

(Autonomous)

SCHEME OF INSTRUCTION & EXAMINATION (Semester System)

For

Computer Science and Engineering

List of Institutional Electives

Institutiona	al Elective-II
18CEI03	Disaster Management
18CEI04	Remote sensing & GIS
18CSI03	Python Programming
18CSI04	Computer Networks
18ECI03	Wireless Communications
18ECI04	Artificial Neural Networks
18EEI03	High Voltage Engineering
18EEI04	Electrical Energy Conservation and Auditing
18EII03	Robotics and Automation
18EII04	Sensors And Signal Conditioning
18ITI03	Mobile Application Developments
18ITI04	Web Technologies
18MEI03	Non-Conventional Energy Sources
18MEI04	Automobile Engineering
18MAI02	Graph Theory
18PHI03	Advanced Materials
18PHI04	Opto Electronic Devices And Applications
18ELI03	Professional Communication

DISASTER MANAGEMENT Institutional Elective-II (Code: 18CEI03) Lectures : 4 Periods/Week Continuous Assessment : 50 Final Exam : 3 Hours Final Exam Marks : 50

Pre-Requisite: None.

CO-4

Course Objectives: Students will be able to

- Clear knowledge of Disaster, Hazards and Vulnerabilities.
- Knowledge of Mechanism of Disaster Management.
- > Clear idea of Capacity Building.
- Explains how to do the planning for disaster management.

Course Outo	Course Outcomes: The student will be able to						
CO-1	Understand the importance of Disaster Management.						
CO-2	Exposure on Basic mitigation techniques of various disasters.						
CO-3	Knowing about various responding agencies for different kinds of Disasters.						
	<u> </u>						

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

Enhancing the knowledge of recovery methodologies after Disaster.

	PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1						2	1			2		2	1	1	
CO-2			1		1	2	3		2	2		2	1	1	
CO-3						1	1		3	2		2			
CO-4			1		1	3	3		3	2		3	1	2	2

UNIT-1 15 Periods

Understanding Disaster: Concept of Disaster - Different approaches- Concept of Risk - Levels of Disasters - Disaster Phenomena and Events (Global, national and regional)

Hazards and Vulnerabilities: Natural and man-made hazards; response time, frequency and forewarning levels of different hazards - Characteristics and damage potential or natural hazards; hazardassessment - Dimensions of vulnerability factors; vulnerability assessment - Vulnerability and disaster risk- Vulnerabilities to flood and earthquake hazards.

UNIT-2 15 Periods

Disaster Management Mechanism: Concepts of risk management and crisis managements - Disaster Management Cycle - Response and Recovery - Development, Prevention, Mitigation and Preparedness - Planning for Relief.

UNIT-3 15 Periods

Capacity Building: Capacity Building: Concept - Structural and Nonstructural Measures Capacity Assessment; Strengthening Capacity for Reducing Risk - Counter-Disaster Resources and their utility in Disaster Management - Legislative Support at the state and national levels

UNIT-4 15 Periods

Coping with Disaster: Coping Strategies; alternative adjustment processes – Changing Concepts of disaster management - Industrial Safety Plan; Safety norms and survival kits -Mass media and disaster management.

Planning for disaster management: Strategies for disaster management planning - Steps for formulating a disaster risk reduction plan - Disaster management Act and Policy in India - Organizational structure for disaster management in India - Preparation of state and district disaster management plans.

Text Books :	1. Manual on Disaster Management, National Disaster Management, Agency									
	Govt of India.									
	2. Disaster Management by Mrinalini Pandey Wiley 2014.									
	3. Disaster Science and Management by T. Bhattacharya, McGraw Hill									
	Education (India) Pvt Ltd Wiley2015.									
References:	1. Earth and Atmospheric Disasters Management, N. Pandharinath, CK									
	Rajan, BS Publications 2009.									
	2. National Disaster Management Plan, Ministry of Home affairs,									
	Government of India									
	(http://www.ndma.gov.in/images/policyplan/dmplan/draftndmp.pdf)									

			T.			OTE :					4)				
Lectures	Ι.	1 4 D		ds/W		Elec	uve-i	I (Co	_			ssessmo	ont.	. 1	50
Final Exam					eek								ent		50
Tillai Exaili	: 3 Hours Final Exam Marks : 50												30		
Pre-Requisit	e: No	ne.													
Course Obje	ctive	s: St	uder	its wi	l be a	ble to									
>	Learn basic concepts of Aerial Photographs.														
	Learn basic concepts of remote sensing and its characteristics, satellite														
	sensors and platforms.														
>	Know about satellite digital image processing and classification techniques.													aes.	
>	Understand the basic concepts GIS, spatial data and analysis														
>	Applications of GPS in surveying.														
>	Know various remote sensing and GIS applications in civil engineering														
Course Outo															
CO-1	Analyse the principles and components of photogrammetry & Interpret														
	Information from Aerial Photographs.														
CO-2	Acquaintance with the Foundations of Remote Sensing, Satellite Sensors and Platforms, and Hands-On Experience with Satellite Image Classification.														
							_								
CO-3	Acquire a Fundamental Knowledge of Geographic Information Systems and														
_	Cartography. Evaluation of Spatial Data using Overlay Techniques Exposed.														
CO 1	Discover Ways to Utilise GPS to GeoTag Assets, Add Attributes and Metadata,														
CO-4	and Improve Your Awareness of Remote Sensing and GIS in Civil Eng Applications.									ngıne	ering				
	A	ppnc	alio	ns.											
Manning of (Соль	50 O	11100	mogr	with 1	Риоди	am O	utoon	205 Pr	Dwag	nam 6	hooifi	· Ou	toom	06
Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's															
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	2	1	2		-	,	-	2	10	11	1#			+
CO-2	3	2		2	3				3		3		3		+
CO-3	3	2		2	3				2		3		3		
CO-4	3	2			3				3		1		3		
						1	l		l	1				l	

UNIT-1 15 Periods

PHOTOGRAMMETRY: Fundamentals of Photogrammetry and Photo interpretation – types of photographs; Vertical photographs – principal point; scale; Stereoscopy; Overlap, side lap and flight planning.

UNIT-2 15 Periods

REMOTE SENSING: Introduction to Remote Sensing: Basic concepts of remote sensing, electromagnetic radiation, electromagnetic spectrum, interaction with atmosphere and target.

Sensors and platforms: Introduction, types of sensors, airborne remote sensing, Space-borne remote sensing. Visual Interpretation Techniques. Overview of Indian Remote sensing satellites and sensors, satellite definition and types, characteristics of satellite, characteristics of satellite orbit

UNIT-3 15 Periods

GEOGRAPHIC INFORMATION SYSTEM (GIS):Introduction, key components, data entry &preparation – Spatial data input, Raster Data Model, Vector Data Model, Raster Vs Vector, advantages and disadvantages of Raster & Vector network analysis - concept and types,

.									
Data storage-ve	ector data storage, attribute data storage. UNIT-4	15 Periods							
definition, com Advantages an (IRNSS, GAG	OSITIONING SYSTEM (GPS)&RS AND GISAPPLIC aponents of GPS, GPS receivers. Space, Control and User segred disadvantages of GPS, Limitations and applications of GPS I AN)Development of GPS surveying techniques, Navigation of GPS. Applications: Photogrammetry, Remote Sensing and	ATIONS: GPS ments of GPS. Indian Systems on with GPS,							
Text Books :	 Bhatta B (2008), 'Remote sensing and GIS', Oxford University Press Chang, K. T. (2006). Introduction to Geographic Information Systems. The McGraw-Hill. Lillesand, T.M, R.W. Kiefer and J.W. Chipman (2013) 'Remote Sensing and Image Interpretation', Wiley India Pvt. Ltd., New Delhi Schowenger, R. A (2006) 'Remote Sensing' Elsevier publishers. Parkinson, B. W., Spilker, J. J. (Jr.) (1996). Global Positioning System: 								
References :	 Theory & Applications(Volume-I). AIAA, USA 'Fundamentals of Remote Sensing' by George Joseph Press, 2013. 'Fundamentals of Geographic Information Systems' by Wiley India Pvt.Ltd, 2013. Jensen John R. Introduction to Digital Image Processi Sensing Perspective Prenticehall, New Jersey Paul Wolf, Elements of Photogrammetry, McGraw Hill. Leick Alfred, 1995: GPS Satellite Surveying, Wiley Interest. Burrough, P. P. & McDonnel, R. A. (1998). Principles of University Press. 	Demers, M.N, ng: A Remote							

PYTHON PROGRAMMING								
Institutional Elective-II (Code: 18CSI03)								
Lectures	:	4 Periods/Week	Continuous Assessment	:	50			
Final Exam	••	3 Hours Final Exam Marks :						

Course Objectives: Students will be able to

- Understand and write code using the basics of Python, Statements, Expressions, ConditionalExecutions, and Functions.
- Write code for Iteration, Strings, File I/O.
- Write code in creating, usage of Lists, Dictionaries, and Tuples.
- Understand the concepts of Object Orientation, Databases and write code implementing them.

Course Outcomes: Students will be able to								
CO-1	Understanding of scripting and the contributions of python language.							
CO-2	Understanding of Python especially the object-oriented concepts, using databases.							
CO-3	Able to design and implement machine learning solutions to classification, regression.							
CO-4	Able to design and implement machine learning solutions to clustering problems and features of various data.							

Mapping of	Cour	se O	utco	mes	with I	Progr	am O	utcon	nes &	Prog	ram S	Specif	ic Ou	tcom	es
						J	PO's							PSO's	S
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	2	1	-	3	-	-	-	-	1	-	2	3	1	-
CO-2	3	2	1	-	3	-	-	-	-	1	-	2	3	2	1
CO-3	3	2	2	2	3	-	-	-	-	1	1	2	3	2	1
CO-4	3	2	2	2	3	_	-	_	_	1	2	2	3	2	1

UNIT-1 15 Periods

Introduction: Overview, History of Python, Python Features, Environment Setup. Variables, expressions, and statements: values and types, variables, names and keywords, statements, operators and operands, expressions, order of operations, modulus operator, string operations, asking the user for input, comments, choosing mnemonic variable names.

Conditional execution: Boolean expressions, logical operators, conditional execution, Alternative execution, chained conditionals, nested conditionals, catching exceptions using try and except, short-circuit evaluation of logical expressions.

Iteration: updating variables, the while statement, infinite loops and break, finishing iterations with continue, definite loops using for, loop patterns.

UNIT-2 15 Periods

Functions: function calls, built-in functions, type conversion functions, random numbers, math functions, adding new functions, definitions and uses, flow of execution, parameters and arguments, fruitful functions and void functions.

Strings: string is a sequence, getting the length of a string using len, traversal through a string witha loop, string slices, strings are immutable, looping and counting, the in operator, string comparison, string methods, parsing strings, format operator.

FileI/O: persistence, opening files, text files and lines, reading files, searching through a file,

letting the user choose the file name, using try except and open, writing files.	
UNIT-3	15 Periods

Lists: a list is a sequence, lists are mutable, traversing, operations, slices, methods, deleting elements, functions, strings, parsing lines, objects and values, aliasing, arguments.

Tuples: tuples are immutable, comparing tuples, tuple assignment, dictionaries and tuples, multiple

assignment with dictionaries, the most common words, using tuples as keys in dictionaries, sequences.

Sets: Introduction, access set items, add set items, remove set items, loop sets, join sets, set methods. **Dictionaries:** Dictionary as a set of counters, dictionaries and files, looping and dictionaries, advanced text parsing.

UNIT-4 15 Periods

Regular Expressions: Character matching in regular expressions, Extracting data using regular expressions, Combining searching and extracting, Escape character.

Object-Oriented Programming: Managing Larger Programs, Using Objects, starting with Programs, Subdividing a Problem–Encapsulation, First Python Object, Classes as Types, Object Lifecycle, Many Instances.

Using Databases and SQL: Database concepts, Database Browser for SQLite, creating a database table, Structured Query Language summary, Basic data modeling, Programming with multiple tables, three kinds of keys, Using JOIN to retrieve data.

Text Books:	Python for Everybody, Charles Severance
References:	W3Schools - https://www.w3schools.com/python/
	A Python Book: Beginning Python, Advanced Python, and PythonExercises,
	Dave Kuhlman, Open Source MIT License.

COMPUTER NETWORKS								
Institutional Elective-II (Code: 18CSI04)								
:	4 Periods/Week	Continuous Assessment	:	50				
:	3 Hours	Final Exam Marks	:	50				
	:	Institutional Elective-II (Cod : 4 Periods/Week	Institutional Elective-II (Code: 18CSI04) : 4 Periods/Week Continuous Assessment	Institutional Elective-II (Code: 18CSI04) : 4 Periods/Week Continuous Assessment :				

Course Objectives: Students will be able to

- > Build an understanding of the fundamental concepts of computer networking.
- Familiarize the student with the basic taxonomy and terminology of the computer networking area.
- Introduce the student to advanced networking concepts, preparing the student for entry Advanced courses incomputer networking.
- Allow the student to gain expertise in some specific areas of networking such as the design and maintenance

CO-1 CO-2 CO-3 Understand and explain Data Communications System and its components and Identify the different typesof network topologies and protocols. Enumerate the layers of the OSI model and TCP/IP. Explain the function(s) of each layer. CO-3 Understand and building the skills of subnetting and routing mechanisms. Familiarity with the application layer protocols of computer networks, and how they can be used to assist innetwork implementation.

Mapping of	Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes														
	PO's								PSO's						
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	1	1	1	-	1	-	1	1	-	3	1	1	1	2	1
CO-2	1	1	2	-	2	1	1	-	1	2	-	1	2	2	1
CO-3	2	2	2	1	1	-	-	-	3	1	1	2	1	3	1
CO-4	1	2	2	2	1	-	-	-	-	1	1	1	1	3	1

UNIT-1 15 Periods

Data Communications & Networking Overview: A Communications Model, Data Communications, DataCommunication Networking.

Protocol Architecture: The Need for Protocol Architecture, A Simple Protocol Architecture, OSI, The TCP /IPProtocol Architecture.

Digital Data Communication Techniques: Asynchronous & Synchronous Transmission, Types of Errors, ErrorDetection, Error Correction.

UNIT-2 15 Periods

Data Link Control: Flow Control, Error Control.

Network Laver:

Network Layer Design Issues: Store-and-Forward Packet Switching, Services Provided to the Transport Layer, Implementation of Connectionless Service, Implementation of Connection-Oriented Service, Comparison of Virtual-Circuit & Datagram Subnets.

Routing Algorithms: The Optimality Principle, Shortest Path Routing, Flooding, Distance Vector Routing, Link State Routing, Hierarchical Routing.

Congestion Control Algorithms: General Principles of Congestion Control, Congestion Prevention Policies, Congestion Control in Virtual-Circuit Subnets, Congestion Control in

Datagram Subnets, Load Shedding, Jitter Control.	
UNIT-3	15 Periods

Quality of Service: Requirements, Techniques for Achieving Good Quality of Service The Network Layer in theInternet: The IP Protocol, IP Addresses, Internet Control Protocols. The Transport Layer: The Transport Service: Services Provided to the Upper Layers, Transport ServicePrimitives, Berkeley sockets

Elements of Transport Protocols: Addressing, Connection Establishment, Connection Release, Flow Control and Buffering, Multiplexing, Crash Recovery.

UNIT-4	15 Periods
--------	------------

The Internet Transport Protocol (UDP): Introduction to UDP, Remote Procedure Call, The Real-Time Transport Protocol.

The Internet Transport Protocols (TCP): Introduction to TCP, The TCP Service Model, The TCP Protocol, The TCP Segment Header, TCP Connection Establishment, TCP Connection Release, Modeling TCP Connection Management, TCP Transmission Policy, TCP Congestion Control, TCP Timer Management.

Application Layer: The Domain Name System (DNS): The DNS Name Space, Resource Records, Name Servers.

Text Books:	1. Behrouz A. Forouzan, —Data Communications and Networking, 4th							
	edition, TMH.							
	2. Tanenbaum, Computer Networks, 4th Edition, (Pearson Education / PHI).							
References:	1. Wayne Tomasi, —Introduction to Data Communications and							
	Networking , PHI.							
	2. GodBole, —Data Communications & Networkingl, TMH.							
	3. Nader F.Mir, —Computer and Communication Networks, PHI							

WIRELESS COMMUNICATION								
Institutional Elective-II (Code: 18ECI03)								
Lectures	:	4 Periods/Week	:	50				
Final Exam	:	3 Hours	:	50				

Course Objectives: Students will be able to

- Understand basic fundamentals of wireless communications.
- To know the role of equalization in Mobile communication and to study different types of Equalizers and Diversity techniques.
- > Differentiate various multiple access technique
- Demonstrate different wireless communication systems and standards (1G to 4G).

Course Outcomes: Students will be able to Understand the fundamental concepts of Cellular & Mobile CO-1 communications CO-2 Demonstrate knowledge equalization and different diversity techniques CO-3 Compare different multiple access techniques in mobile communication. Demonstrate different wireless communication systems and standards (1G to CO-4 4G)

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's \mathbf{CO} 1 2 3 4 6 7 8 9 10 11 12 1 2 3 **CO-1** 2 2 2 2 1 1 1 2 _ _ _ _ _ _ 3 3 3 3 3 3 **CO-2** 3 3 **CO-3** 2 2 1 2 1 2 2 2 _ -2 2 2 2 2 **CO-4** 1

UNIT-1 15 Periods

Cellular Mobile Communication Concepts: Evolution of mobile radio communications, Examples of wireless communication systems, Frequency re-use and channel assignment strategies, Handoff strategies, Interference and system capacity, co-channel and adjacent channel interference, Grade of service, Coverage and capacity enhancement in cellular network, cell splitting, sectoring, repeaters, microcells.

UNIT-2 15 Periods

Equalization: Fundamentals of equalizers, Equalizers in a communication receiver, Linear equalizers, Nonlinear equalizers: Decision feedback equalizers, Maximum likelihood sequence Estimation (MLSE) equalizer.

Diversity Techniques: Space diversity: Selection diversity, feedback, MRC, EGC diversity, Polarization diversity, Frequency diversity, Time diversity, Rake Receiver.

UNIT-3 15 Periods

Multiple Access in Wireless communications: Principle and applications of Multiple Access Techniques- FDMA, TDMA, CDMA, Spread Spectrum Multiple Access.

UNIT-4 15 Periods

Wireless Generations Technologies up to 3G:1G, TDMA-based 2G, IS-95, 2.5G, 3G development, Air interface technologies, Internet speeds of 2G, 2.5G, and 3G technologies,

Limitations of 3G, Quality of services (QOS) in 3G.						
4G1 echnology	4GTechnology: 4G evolution, Advantages of 4G over 3G, Applications of 4G, Limitations of					
40.						
Text Books :	 Theodore S. Rappaport, Wireless Communications Principles and Practice, 2ndEdition, PearsonEducation, 2003 (UNIT I, II, III). G Sasibhusan Rao, Mobile Cellular Communications, Pearson Education, 					
	2013(UNIT IV).					
References:	1. W.C.Y. Lee, Mobile Cellular Communications, 2nd Edition, MC Graw Hill, 1995.					
	2. Yi-BingLin, ImrichChlamtac, Wireless and Mobile Network architectures, Wiley, 2001.					
	3. KamiloFeher, Wireless Digital Communications, PHI, 2003.					

				A DTI	IFICI	AT N	EUR	AT N	ETX/	ODIZ	C				
					_		tive-			-	_				
Lectures	Ι.	141		ds/W		1 Lice	tive-	11 (CO			ous A	ssessn	nent		50
Final Exam			Hour		CCK						am M		icit		50
T Hidi Eztairi		131	Tour	5					111	101 127	uiii ivi	uiks	ı	•	
Pre-Requisit	e: No	one.													
Course Obje	ctive	s: St	uder	nts wi	ll be a	able to)								
>	Cer	tain	fund	lamen	tal co	ncept	s of ar	tificia	l neur	al net	works				
	Bas	sic el	eme	ntary	patte	rns cla	assify	ing ne	ural n	ets ar	nd the	funda	ment	al ide	as of
>				iation			,	O							
>	Bas	Basic concepts of competitive networks and brief descriptions of certain													
					orks.										
>	Vai	ious	app	licatio	ons of	Neur	al net	works	in dif	ferent	doma	ains.			
Course Outo	come	s: St	uder	ıts wi	ll be a	able to)								
CO-1							ity of					el and	imple	ement	ation
							ıg vari								
CO-2							one a								
CO-3		Understanding A multilayer feed forward neural net with one or more hidden													
_		layers can learn any continuous mapping to an arbitrary accuracy. Learn various applications of Neural networks.													
CO-4	Lea	ırn v	ario	ısapp	licatio	ons of	Neur	al net	works	•					
N/ · · ·					•41							<u> </u>	e	4	
Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes															
CO	1	2	3	4	5	6	PO's 7	8	9	10	11	12	1	PSO'	$\frac{s}{3}$
CO-1	2	2	-	3									3	2	2
CO-1	2	3	-	-	-	-	-	-	-	-	-	-	2	2	2
CO-2		2	_	3	-	2	<u>-</u>	-	-	_	-	-	3	3	
CO-3	2	3	-		-		<u> </u>	-	-	_	-		3	2	2
<u> </u>				_					_			_			
					III	NIT-1							15	5 Perio	ods
ADTITION								7. (7.0)	NODI	NEC I	. 1				
terms of pat															
Architectures	, Act	, 111 ivati	on F	uncti	ons, L	earnii	ng by	Neura	l Nets	iic i	стеср	поп, 1	veura	ı INCI	WOIK
						NIT-2							1.5	5 Perio	
													15	Perio	Jus
PATTERN (CLA	SSIF	TER	RS: H	ebb N	Jets, P	ercep	trons,	Adali	ne, M	Iadaliı	ne.			
PATERN A	SSO	CIA	TO	RS:	Auto-	-assoc	iative	Nets	. Het	ero-A	ssocia	ative	Nets.	Hor	ofield
Networks, Bi-								1 (00)	, 110				1 (000,	1101	11010
UNIT-3 15 Periods															
					Ul	N11-3)						13	Perio	oas
COMPETIT	IVE	NE	UR	AL I	NETS	: The	e MA	XNE	T, K	ohone	n's S	Self C)rgani	zing	Map
(SOM), Learn	ning	Vect	or Q	uanti	zation	ı (LV	Q), A	daptiv	e Res	onanc	e The	ory(A	RT)		
BACKPROPAGATION: Multilayer Feed forward Net, The Generalized Delta Rule, The Back										Back					
propagation A					<i>J</i> -1				,					,	
	<i>5</i>														
					T 17	NIT 4	1						1.6	Darri	
					U	NIT-4	•						13	5 Perio	sas

APPLICATIONS OF NEURAL NETWORKS:

Applications of Neural Networks in Forecasting, Applications of Neural Networks in

Healthcare, Applications of Neural Networks in Business, Applications of Neural Networks in image processing and compression, Applications of Neural Networks in control systems, Applications of Neural Networks in pattern recognition.								
Text Books:	 Introduction to SOFT COMPUTING by Samir Roy and Udit Chakraborty, Pearson Publishing,2013.(Unit I,II, III) Introduction to Neural Networks using Matlab 6.0 by S N Sivanandam, SSumathi, S N Deepa, Tata McGraw Hill Publishing,7th Reprint, 2008(Unit IV) 							
References:								

HIGH VOLTAGE ENGINEERING										
		Institutional Elective-II (Cod	le: 18EEI03)							
Lectures	:	4 Periods/Week	Periods/Week Continuous Assessment : 50							
Final Exam	:	3 Hours	Final Exam Marks	:	50					

Course Objectives: Students will be able to

- Understand the breakdown phenomenon in solids, liquids and gases.
- Know the concepts of partial discharges and Identify the generation of high voltages.
- Employ different measuring techniques in high voltages and Know the protective techniques against over voltages.
- Interpret different testing techniques of different high voltage apparatus and Aware of the layout of high voltage laboratories.

CO-1 Demonstrate the basic physics related to various breakdown processes in solid, liquid and gaseous insulating materials. CO-2 Examine the generation and measurement of D. C., A.C., & Impulse voltages. CO-3 Illustrate the standards needed to conduct tests on H. V. equipment and on insulating materials, as per the standards. CO-4 Apply the knowledge of protection against over voltages and illustrate the layout of HV labs

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes									es						
	PO's														S
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	3	1	1									3		
CO-2	3	3	1	2									3	3	
CO-3	2	1	2	2									3	3	
CO-4	3	3	2	2									3		

UNIT-1 15 Periods

Breakdown phenomenon of Gases, Liquids and Solids: Ionization processes and deionization processes, Types of Discharge, Gases as insulating materials, Breakdown in Uniform gap, non-uniform gaps, Townsend's theory, Streamer mechanism, Corona discharge. Breakdown in pure and commercial liquids, Solid dielectrics and composite dielectrics, intrinsic breakdown, electromechanical breakdown and thermal breakdown, Partial discharge, applications of insulating materials.

UNIT-2 15 Periods

Generation of High voltages: Generation of high D. C. and A.C. voltages, generation of impulse voltages, generation of impulse currents, tripping and control of impulse generators.

UNIT-3 15 Periods

Measurement of high voltages and currents: Measurements of Peak voltage, impulse voltage and high direct current measurement method, cathode ray oscillographs for impulse voltage and current measurement, measurement of dielectric constant and loss factor, partial discharge measurements. Protection against over-voltages, Surge diverters, Surge modifiers.

UNIT-4 15 Periods

High voltage testing techniques: Various standards for HV Testing of electrical apparatus, IS,

IEC standards, Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, power transformers and some high voltage equipment, High voltage laboratory layout, indoor and outdoor laboratories, testing facility requirements, safety precautions in H. V. Labs.								
Text Books :	1. High Voltage Engineering by M.S.Naidu and V.Kamaraju – TMH.							
Text Books (C. L. Wadhwa, "High Voltage Engineering", New Age International Publishers, 2007.							
References:	High Voltage Engineering fundamentals by Kuffel and Zungel, Elsavier Publications							
	2. D. V. Razevig (Translated by Dr. M. P. Chourasia), "High Voltage EngineeringFundamentals", Khanna Publishers, 1993.							
	3. R. Arora and W. Mosch "High Voltage and Electrical Insulation Engineering", JohnWiley & Sons, 2011.							
	NPTEL COURSE LINK:							
	i. NPTEL:: Electrical Engineering - High Voltage Engineering							

ELECTRICAL ENERGY CONSERVATION & AUDITING										
	Institutional Elective-II (Code: 18EEI04)									
Lectures	:	4 Periods/Week	Periods/Week Continuous Assessment : 50							
Final Exam	:	3 Hours	Final Exam Marks	:	50					

Course Objectives: Students will be able to

- > Understand the concept of energy conservation, energy management.
- **K**now the energy efficient motors and its characteristics.
- Understand the power factor improvement, lighting and different measuring instruments.
- **K**now the economic aspects of energy management.

CO-1 Examine the principles of Energy audit and its process in thermal powerstation & analyze the different aspects of energy management. CO-2 Describe the characteristics of energy efficient motors. CO-3 Illustrate the power factor improvement, good lighting system practice and the types of energy instruments. CO-4 Analyze the economic aspects of Energy Management.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes								es								
	PO's													PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO-1	3	-	-	-	-	-	-	3	2	-	1	3	-	-	1	
CO-2	3	-	-	-	-	2	-	-	-	-	3	-	-	1	2	
CO-3	3	-	4	-	-	2	3	-	-	-	-	4		2	1	
CO-4	3	-	-	-	-	-	-	2	3	-	1	3		-	1	

UNIT-1 15 Periods

Basic Principles of Energy Audit: Energy audit - definitions, concept, types of audit, energy index, cost index, pie charts, Sankey diagrams, load profiles, Energy conservation schemes - Energy saving potential, energy audit of thermal power station, building energy audit.

Energy Management: Principles of energy management, organizing energy management program, initiating, planning, controlling, promoting, monitoring, reporting, Energy manger, Qualities and functions, language, Questionnaire - check list for top management.

UNIT-2 15 Periods

Energy Efficient Motors: Energy efficient motors, factors affecting efficiency, loss distribution, constructional details. Characteristics - Variable speed, variable duty cycle systems, Voltage variation -Voltage unbalance - Over motoring - Motor energy audit.

UNIT-3 15 Periods

Power Factor Improvement, Lighting & Energy Instruments: Power Factor Improvement, Lighting: Power factor – Methods of improvement, location of capacitors, Pf with non-linear loads, effect of harmonics on power factor. Power factor motor controllers - Good lighting system design and practice, lighting control, lighting energy audit. Energy Instruments: Watt meter, data loggers, thermocouples, pyrometers, lux meters, tong testers, application of PLC's.

UNIT-4 15 Periods

Economic Aspects and Analysis: Economics Analysis - Depreciation Methods, time value of

money, rate of return, present worth method, replacement analysis, life cycle costing analysis -									
t motors, Calculation of simple payback method, net present worth method -									
correction, lighting - Applications of life cycle costing analysis, return on									
1. W.R. Murphy and G. Mckay, "Energy Management", Butter worth									
Publications.									
2. John. C. Andreas, "Energy Efficient Electric Motors", Marcel Dekker Inc									
Ltd, 2 nd Edition, 1995.									
1. Paul O' Callaghan, "Energy Management", Mc-Graw Hill Book									
Company, 1 st Edition, 1998.									
2. W.C.Turner, "Energy Management Hand Book", A John Wiley and Sons.									
3. S. C. Tripathy, "Utilization of Electrical Energy", Tata McGraw Hill,									
1993.									
4. Guide books for National Certification Examination for Energy									
Manager / Energy Auditors Book-1, General Aspects (available online).									
5. L.C. Witte, P.S. Schmidt and D.R.Brown, "Industrial Energy									
Management and Utilization", Hemisphere Publication, Washington,									
1998									

ROBOTICS AND AUTOMATION										
Institutional Elective-II (Code: 18EII03)										
Lectures	:	4 Periods/Week	Periods/Week Continuous Assessment : 30							
Final Exam	:	3 Hours	Final Exam Marks	:	70					
		·	·							

Course Objectives: Students will be able to

- > To understand the basic anatomy of robots and trajectory planning
- To enable students to understand about the work envelopes of robots and its role inautomation
- To give an overview of the various methods of control of robots
- To select robots based on their applications and their related issues in industrial automation

Course Out	Course Outcomes: Students will be able to							
CO-1	Expertise in fundamentals of Robotics (Unit I)							
CO-2	Understand the issues related to end effectors and sensors (Unit II)							
CO-3	Acquire knowledge in Programming and control of Robots (Unit III)							
CO-4	Understand the issues related to implementation of Industrial Automation with							
CO-4	RobotApplications							

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes									es							
	PO's													PSO's		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO-1	3	2	2						2	1	2	3	2			
CO-2	2	2	3	1	2				2	2	1	1	3			
CO-3	3	3	3	1	3				2	2	2	1		2		
CO-4	2	2	2	2	2		2		3	2	2	1		3		

UNIT-1 15 Periods

Fundamentals of Robots: Definition —Historical background- Robot Anatomy: Polar, Cylindrical, Cartesian coordinate, Joint-arm configuration—Work volume—Robot Drive System: Hydraulic, Electric, Pneumatic — Control System: Limited sequence, Play backwith point to point and Continuous path control Intelligent Robots- Dynamic performance: Speed of response and Stability - Precision of movement: Spatial Resolution, Accuracy, Repeatability and Compliance — Introduction to End effectors, Robotic Sensors, Robot Programming and work cell control.

UNIT-2 15 Periods

Robot End Effectors, Sensors, End Effectors: Types-Mechanical grippers-Magnetic grippers, Vacuum cups, Adhesive gripper, Hooks and Scoops- Tools as end effectors - Robot/ Endeffectors, interface- Consideration in Gripper selection and Design.

Sensors: Transducers and Sensors – Sensors in Robotics: Tactile, Proximity, and Range Sensors, Miscellaneous sensors and sensor based systems- Machine Vision System.

UNIT-3 15 Periods

Programming and Control of Robots :Robot Programming: Methods of Programming-: Lead through Methods, Robot program as a path in space- Motion interpolation, WAIT, SIGNAL and DELAY Commands, Branching, Capabilities and limitations of Lead through Methods-

Textual Robot Programming- structure, Motion, End effectors and Sensor commands, Program

control communication, Monitor mode commands Robot Control: Open and Closed loop control- control Problem- Linear control Schemes- Design of Partitioned PD,PID and Adaptive Controllers for Linear Second order SISO Model of robot and their Block schematic representation- Control of Industrial Robots Using PLCs.

UNIT-4 15 Periods

Automation: Factory Automation: Fixed Automation, Flexible Automation and Programmable Automation. Intelligent Industrial Automation, Industrial

Networking, Bus Standards Automatic Feeders, Automatic Storage and Retrieval Systems (AS/RS), Transfer Lines, Automatic Inspection Systems Applications of Robots, Factorsinfluencing the selection of Robots – Robots for Welding, Painting, Assembly, Nuclear, Thermal and Chemical Plants.

Introduction to Mobile Robots, Legged Robots and Remote Controlled Robots, Automated Guided Robots, Micro Robots – Control and Safety Issues.

Text Books:	1. Groover, M.P., Weiss, M., Nagel, R.N., Odrey, N.G., Industrial Robots:
	Technology, Programming and Applications, McGraw-Hill Book
	Company, 2012.
	2. Mittal R K, Nagrath I J, "Robotics and control", Tata McGraw Hill, 2010.
References:	1. Groover, M.P., Automation, Production Systems, and Computer-
	Integrated Manufacturing, Prentice-Hall of India Private Limited, New
	Delhi, 2007.
	2. S.R.Deb, "Robotics Technology and Flexible Automation", Tata McGraw
	Hill, 1994.
	3. Yoran Koren, Robotics for Engineers, McGraw Hill, 1980.
	4. Saeed B. Niku, An Introduction to Robotics- Analysis, Systems,
	Applications, SecondEdition, John Wiley & Sons Inc., 2010.
	5. Wesley, E. Sryda, "Industrial Robots: Computer interfacing and Control"
	PHI, 1985.

SENSORS AND SIGNAL CONDITIONING								
Institutional Elective-II (Code: 18EI104)								
Lectures	:	4 Periods/Week	Continuous Assessment	:	50			
Final Exam	:	3 Hours	Final Exam Marks	:	50			
Pre-Requisite: None.								

Course Objectives: Students will be able to

- Describe the basics of sensors, their static and dynamic characteristics, primary sensors for common quantities, working principles of resistive sensors and various methods of signal condition of resistive sensors.
- Study various reactive variation sensors and design of signal condition circuitsfor these sensors
- Know various self generating sensors and design of signal condition circuits for these sensors
- Understand the working principles of various digital and Intelligent sensors

Course Outcomes: Students will be able to						
CO-1	List the characteristics of sensors and their significance					
CO-2	State applications of resistive sensors and design a signal conditioning circuit for a given resistive sensor.					
CO-3	State the working principles of self generating sensors, their applications designa signal conditioning circuit for a given self generating sensor					
CO-4	List various digital sensors and their applications					

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PSO's PO's CO 2 3 4 5 8 9 10 2 1 6 7 11 12 1 3 2 **CO-1** 3 **CO-2** 3 3 2 3 **CO-3** 3 3 3 2 3 2 **CO-4** 2

UNIT-1 15 Periods

Introduction to sensor-based measurement systems: General concepts and terminology, sensor classification, general input-output configuration, static and dynamic characteristics of measurement systems, primary sensors.

Resistive sensors: potentiometers, strain gauges, resistive temperature detectors, thermistors.

Signal conditioning for resistive sensors: Measurement of resistance, voltage dividers, Wheatstone bridge-balance measurements, Wheatstone bridge- deflection measurements, differential and instrumentation amplifiers, interference.

UNIT-2 15 Periods

Reactance variation and electromagnetic sensors: capacitive sensors, inductive sensors-variable reluctance sensors, eddy current sensors, linear variable differential transformer, electromagnetic sensors.

Signal conditioning for reactance variation sensors: problems and alternatives, ac bridges, carrier amplifiers and coherent detection, specific signal conditioning for capacitive sensors.

UNIT-3 15 Periods

Self generating Sensors: thermocouples, piezoelectric sensors, photovoltaic sensors, electrochemical sensors.

Signal conditioning for self-generating sensors: Chopper and low-drift amplifiers,

electrometer and transimpedance amplifiers, charge amplifiers, noise in amplifiers, noise and						
drift in resistors.						
UNIT-4 15 Periods						
Digital and Intelligent sensors : Position encoders, resonant sensors, variable oscillators, conversion to frequency, period or time duration, direct sensor-microcontroller interfacing, communication systems for sensors, intelligent sensors.						
Text Books :	Raman Pallas – Areny, John G. Webster: Sensors and signal condition second edition, John Wiley and sons.	ing,				
References:	1. Walt Kester: Practical design techniques for sensor signal condition Analog devices and Prentice Hall.	iing,				

MOBILE APPLICATION DEVELOPMENT Institutional Elective-II (Code: 18ITI03) Lectures : 4 Periods/Week Continuous Assessment : 50 Final Exam : 3 Hours Final Exam Marks : 50

Pre-Requisite: Object Oriented Programming using Java.

Course Objectives: Students will be able to

- Understand basic concepts of Android platform.
- Learn Android UI palette.
- Familiarize with Building blocks of Android App.
- > Understand working with Mobile hardware in Apps.

Course Outcomes: Students will be able to					
CO-1	Apply Java programming concepts to Android App development.				
CO-2	Develop User interfaces for Android Apps.				
CO-3	Use the mobile sensors, google maps & multimedia in Apps.				
CO-4	Develop a full featured Android Apps				

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes															
		PO's									PSO's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	3	3		3		2		2	2	2		1		
CO-2	3				2		1		2	2			1		
CO-3	3		3		3		2				2			1	2
CO-4	1								2	1	2			2	

UNIT-1 15 Periods

Introduction: Android background, Android SDK features, Android Software Stack, Android Development Tools, Types of Android applications, Hardware imposed design considerations, Practical application design considerations.

Creating Applications & Activities: Creating basic Android application using Android Studio, Exploring Android Studio IDE, Application Manifest file, Using the Manifest Editor, Using Resources. The Activity Life Cycle.

Building User Interfaces: Basic Views, Picker views, List views, View Groups, Android Layouts, Fragments -Fragment Life Cycle, working with Android fragments, using Adapters.

UNIT-2 15 Periods

Advanced Views: Image View, Grid View, Image Switcher, Working with Menus, Web View, Working with Dialogs – Alert Dialog, Progress Dialog, Date Picker Dialog, Time Picker Dialog, Character Picker Dialog.

Intents and Broadcast Receivers: Using Intents to launch Activities, Returning results from Activities, Using intents to broadcast events; Pending Intents, Intent filters & Broadcast Receivers - using Intent Filters to serviceImplicit Intents, Listening for Native Broadcast Intents.

Files, Saving State & Preferences: Working with the File System, Saving & Restoring Activity Instance stateusing Life cycle Handlers, Saving & Retrieving Shared Preferences.

Using Internet Resources: Downloading files using Download Manager.

Databases: SQLite, Content Values & Cursors, Working with SQLite databases.

Content Providers: Creating Content Providers, Using Content Providers, Native Android Content Providers.

Messaging & Notifications: Sending SMS & MMS using Intents, sending SMS using SMS Manager, Receiving SMS Messages. Notifications - Creating Notifications, Using Standard Notification UI, Creating a Custom Notification UI, Triggering, Updating & Canceling Notifications.

Working in the Background: Creating and Controlling Services, Binding Services to Activities. Creating andRunning Asynchronous Tasks, Manual Thread Creation.

UNIT-4	15 Periods
	•

Hardware Sensors: Supported Android Sensors, Virtual Sensors, Monitoring Sensors, Interpreting Sensorvalues, using Accelerometer & Proximity sensors.

Maps & Location Based Services: Using the emulator with location based services, Finding and Tracking yourlocation, using proximity alerts, using the Geocoder, map based activities.

Audio, Video and using the Camera: Playing Audio and Video, Recording Sound, Recording Video, usingCamera.

video, using Ca	amera.
Text Books:	1. "Professional Android 4 Application Development", Reto Meier, John Wiley
	& Sons, Inc., 2012.
	2. "Beginning Android Programming with Android Studio", J. F. DiMarzio, 4th
	edition, John Wiley & Sons,Inc., 2017.
References:	1. Head First Android Development - A Brain Friendly Guide, Dawn Griffiths &
	David Griffiths, O' Reilly.
	2. Introduction to Android Application Development - Developer's Library,
	Joseph Annuzzi, Jr.LaurenDarcey& Shane Conder, 5th ed., Addison-Wesley.

WEB TECHNOLOGIES Institutional Elective-II (Code: 18ITI04) 4 Periods/Week Lectures Continuous Assessment 50 Final Exam 3 Hours Final Exam Marks 50 Pre-Requisite: C Programming. Course Objectives: Students will be able to Analyze a web page and identify HTML elements and their attributes. ➤ Build dynamic web pages using JavaScript (client side programming). > Write a well formed / valid XML documents. > Understand Web server and its working also working with Ajax for asynchronous communication. Course Outcomes: Students will be able to Design web pages with different elements and attributes. CO-1 CO-2 Build websites with dynamic functionality using java script. Identify the functionality of XML and create an XML document and display data CO-3 from XML document. **CO 4:** Recognize the use of web servers and know the functionality of web servers CO-4 Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's \mathbf{CO} 4 5 8 9 10 12 2 1 2 3 6 7 11 1 3 **CO-1** 2 2 1 1 2 2 3 2 **CO-2** 1 1 3 2 **CO-3** 1 2 **CO-4** 2 3 2 2 3 **UNIT-1** 15 Periods Introduction to HTML5 Part I, Introduction to HTML5 Part II, Cascading Style Sheets I, Cascading Style Sheets II, JavaScript: Introduction to Scripting, Control Statements I, Control Statements II, Functions, Arrays. UNIT-2 15 Periods JavaScript: Objects, Dynamic HTML: Document Object Model and Collections, Event Model, HTML5Introduction to Canvas. UNIT-3 15 Periods XML: Introduction, XML Basics, Structuring data, XML Namespaces, DTD, XSD, XSL Transformations. UNIT-4 15 Periods Building Ajax-Enabled Web Applications, Web Servers (IIS and Apache), Working with JQuery. 1. Harvey M. Deitel and Paul J. Deitel, "Internet & World Wide Web How to Text Books: Program", 5/e, PHI. 2. Kogent Learning Solutions Inc., HTML5 Black Book: "Covers CSS3, Javascript, XML, XHTML, Ajax, PHPand Jquery". **References:** 1. Jason Cranford Teague, "Visual Quick Start Guide CSS, DHTML & AJAX", 4e, Pearson Education. 2. Tom NerinoDoli smith, "JavaScript & AJAX for the web", Pearson Education

NON-CONVENTIONAL ENERGY SOURCES

Institutional Elective-II (Code: 18MEI03)

Lectures	:	4 Periods/Week	Continuous Assessment	:	50
Final Exam	:	3 Hours	Final Exam Marks	:	50

Pre-Requisite: None.

Course Objectives: Students will be able to

- > To explain different methods of exploiting solar energy
- To familiarize students with the principles, components, and performance characteristics of energy conversion technologies, such as wind turbines, geothermal power plants
- > To evaluate the energy from ocean, tidal and biomass
- > To familiarize the techniques in power generation using fuel cells, biogas and MHD

Course Outcomes: Students will be able to						
CO-1	Understand different methods of exploiting solar energy.					
CO-2	Understand the principles and energy conversion from wind and geo thermal sources					
CO-3	Gain knowledge in exploring the energy from ocean, tidal and bio-mass					
CO-4	Understand the techniques in power generation using Fuel cells, bio gas and MHD					

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes															
		PO's									PSO's				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3	1		3	3		2			3	3	3	2	2	1
CO-2	3	1		3	3		2			3	3	3	3	3	1
CO-3	3	1		3	3		2			3	3	3	3	3	2
CO-4	3	1		3	3		2			3	3	3	3	3	2

UNIT-1	15 Periods

Various non-conventional energy resources- Introduction, availability, classification, relative merits and demerits **Solar Energy:** Extra terrestrial solar radiation - terrestrial solar radiation - solar radiations on earth-measurement of solar radiations-solar constant-solar collectors-flat plate collectors-concentrating collectors-solar thermal conversion-solar thermal central receiver systems - photovoltaic energy conversion - solar cells- energy storagemethods-applications of solar energy.

UNIT-2 15 Periods

Wind energy: Availability of wind energy in India, site selection-Components of wind energy conversion systems-Classification of wind energy conversion systems-vertical axis and horizontal axis wind turbines-Performance characteristics-Betz criteria coefficient-applications of WECS-environmental aspects

Geo thermal Energy: Structure of earth's interior-geothermal sites-geothermal resources-Site selection for geothermal power plants-Principle of working-various types of geothermal power plants- applications.

UNIT-3 15 Periods

Ocean thermal energy conversion (OTEC): Principle of ocean thermal energy conversion-Open cycle and closed cycle OTEC plants-Merits and demerits

Tidal Power: Tides and waves as sources of energy-fundamentals and use of tidal energy-limitations of tidalenergy conversion system

Bio mass: Availability of biomass and its conversion techniques-bio mass gasification-bio mass

resourcedevelop	ment in India.							
	UNIT-4	15 Periods						
Bio Gas: Bio gas production, aerobic and anaerobic bio conversion process-Properties of bio gas- classification biogas plants-advantages and disadvantages-bio gas applications Fuel Cells: Classification, Principle of working of various types of fuel cells, merits and demerits, future potential of fuel cells.								
Magneto-Hydradvantages and	rodynamics (MHD): Principle of working of MHD Power plant, Idisadvantages.	Classification,						
Text Books :	 H.P. Garg& Jai Prakash, Solar Energy: Fundamentals and Ap McGraw Hill, New Delhi. Non-Conventional Energy Sources by G.D.Rai, Khanna Publis. B H Khan, "Non-Conventional Energy Resources", 2nd McGraw HillEducation Pvt Ltd, 2011 	lisher.						
References:	 Power plant technology by EL-Wakil, McGraw-Hill. Renewable Energy Sources by John Twidell& Toney Weir: I 	E&F.N. Spon.						

AUTOMOBILE ENGINEERING Institutional Elective-II (Code: 18MEI04) Lectures : 4 Periods/Week Continuous Assessment : 50 Final Exam : 3 Hours Final Exam Marks : 50

Pre-Requisite: None.

Course Objectives: Students will be able to

- Familiarize the fundamentals of Engine Components, Chassis and suspension system, braking andtransmission system, and cooling and lubrication system.
- ➤ Develop a strong base for understanding future developments like hybrid and electric vehicles in theautomobile industry.

G 0	0.1								
Course Out	Course Outcomes: Students will be able to								
CO-1	List different types of Vehicles and their applications								
CO-2	Define working of Automobile Engine cooling and lubrication system.								
CO-3	Describe functioning of Ignition system and its accessories.								
CO-4	Describe functioning of Transmission, Steering, Braking and Suspension system.								
CO-5	Understand the working and layout of Hybrid and electric vehicles and their								
	components								

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	1	2	2	1	1	2	2	1		1	1	2	1	1	1
CO-2	2	1	2	1		1		1		1	2	2	1		1
CO-3	1	2	2		2	2				2	1	3	1		1
CO-4	2	2	2	2		2		2			2	2	2	2	2

UNIT-1 15 Periods

INTRODUCTION: Classification of vehicles – applications, valves, valve arrangements and operating Mechanisms, Piston - design basis, types, piston rings, firing order; Crankshafts, Flywheel, Air and Fuel Filters. Mufflers.

FUEL SUPPLY SYSTEMS: Fuel supply pumps, Mechanical and Electrical type Diaphragm pumps.

COOLING SYSTEMS: Need for cooling system, Air and water cooling, Thermal syphon cooling systems.

UNIT-2 15 Periods

LUBRICATING SYSTEMS: Various lubricating systems for I.C. Engines.

ELECTRICAL SYSTEM: Ignition system, Spark plugs, Distributor, Electronic Ignition, Alternator, cut out, Current and voltage regulators, charging circuit, starting motors, lighting, instruments and accessories.

CHASSIS: Introduction, Construction, Requirements of Chassis.

UNIT-3 15 Periods

TRANSMISSION: Gear Box - Theory, Four speed and Five Speed Sliding Mesh, Constant mesh & synchromesh type, selector mechanism, automatic transmission, overdrive, propeller shaft, differential - principle of working.

SUSPENSION SYSTEMS: Need for suspension systems, springs, shock absorbers, axles – front and rear, different methods of floating rear axle, front axle and wheel alignment.

	UNIT-4 15 Periods									
VEHICLE CONTROL: Steering mechanisms and power steering, types of brakes and brake actuation mechanisms (air and hydraulic).										
ELECTRIC, H	ELECTRIC, HYBRID AND FUEL CELL VEHICLES: Layout of electric and hybrid vehicles									
- Advantages	- Advantages and drawbacks, System Components, Electronic control system, Different									
configurations	of electric and hybrid vehicles hybrid vehicles, Power split devic	e, High energy								
and power dens	sity batteries – Basics of fuel cell vehicles.									
Text Books:	1. Automobile Engineering - G.B.S.Narang.									
	2. Automobile Engineering - R.B.Gupta.									
	3. Automobile Engineering - Vol I & II - Kirpal Singh									
References:	1. Automotive Mechanics - Joseph Heitner.	_								
	2. Automobile Engineering - S.Srinivasan.									

GRAPH THEORY												
	Institutional Elective-II (Code: 18MAI02)											
Lectures	:	4 Periods/Week	Continuous Assessment	:	50							
Final Exam : 3 hours Final Exam Marks												

Course Objectives: Students will learn how to

- To apply the fundamental concepts of graph theory for determining Isomorphism of graphs and also solving the real life problems like Konigsberg Bridge Problem and travelling Salesman Problem.
- To analyze the concepts of Trees and Fundamental Circuits with their properties for finding Minimal Spanning Trees in weighted Graphs by using Kruskals and Prim's Algorithms.
 - To acquire the ample knowledge of coloring of a graph and Planar graphs with their different representations for detecting the planarity of graphs by using Kurotowski's
- Theorem and also Computing the Chromatics number for a given graph including four color problem
 - To get an idea of representation of graphs in matrices such as incidence matrix,
- Adjacency matrix etc and establishment of the correspondence between graph-theoretic properties and matrix properties.

Course Outcomes: After studying this course, the students will be able to

- CO1 Discuss the basic concepts of graph theory and able to determine whether a graph is Eulerian and Hamiltonian.

 CO2 Apply Kruskal's and Prim's algorithms in order to determine the minimum spanning tree in a connected weighted graph.

 CO3 Determine the planarity of a graph using Kuratowski's algorithm and find the chromatic number of a given graph.

 Analyse the properties of graphs through matrix representation and utilize these ideas in
- CO4 Analyse the properties of graphs through matrix representation and utilize these ideas in the application of switching network.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's											PSO's			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3									2		2	
CO2	3	3	3									2		2	
CO3	3	3	3									2		2	
CO4	3	3	3									2		2	

UNIT-1	15 Periods

PATHS AND CIRCUITS:

Introduction: Graphs: Graph, Finite and infinite graphs, Incidence and degree, isolated vertex, pendent vertex and null graph; Isomorphism; Subgraphs; walks, paths and circuits; Connected graphs, Disconnected graphs and Components; Euler graphs(Konigsberg Bridge Problem); Hamiltonian Paths and circuits; Travelling salesman problem.

[Sections: 1.1; 1.3; 1.4; 1.5; 2.1; 2.2; 2.4; 2.5; 2.6; 2.9; 2.10]

UNIT-2 15 Periods

TREES AND FUNDAMENTAL CIRCUITS: Trees; Some Properties of Trees; Distance and centers in a Tree; Rooted and Binary Trees; Spanning Trees; Fundamental circuits; Spanning Trees in a Weighted graphs (Kruskal's Algorithm and Prim's Algorithm).

[Sections: 3.1; 3.2; 3.4; 3.5; 3.7; 3.8; 3.10

UNIT-3

15 Periods

PLANAR AND DUAL GRAPHS: Planar graphs; Kuratowski's two graphs; Different Representations of a Planar graph: Euler's formula, Theorem-5.6 and Corollary; Detection of planarity(Kuratowski's theorem); Geometric Dual; Coloring of a Graph, Chromatic number, The four Color problem.

[Sections: 5.2; 5.3; 5.4; 5.5; 5.6; 8.1, 8.6]

UNIT-4

15 Periods

MATRIX REPRESENTATION OF GRAPHS: Incidence Matrix; Submatrices of A(G); Circuit Matrix; Fundamental Circuit Matrix and Rank of B; Application to a switching network; Cut-set Matrix; Relationship among A_f, B_f and C_f; Path Matrix; Adjacency Matrix.

[Sections: 7.1; 7.2; 7.3; 7.4; 7.5; 7.6; 7.7; 7.8; 7.9]

Text Books : Narsingh Deo, 'Graph Theory with Applications to Engineering and Computer Science' Prentice-Hall of India Private Limited, New Delhi.

References: Douglas B. West "Introduction to graph Theory" Pearson Education Private limited, Delhi, 2002.

	ADVANCED MATERIALS										
Institutional Elective-II (Code: 18PHI03)											
Lectures	:	4 Periods/Week	Continuous Assessment	:	50						
Final Exam	:	3 hours	Final Exam Marks	:	50						

Course Objectives: Students will be able

- > To acquire knowledge on synthesis and properties of nano and bio materials
- > To educate the student on characteristics and usage of composite and optical materials.
- > To possess the knowledge on properties and applications of superconducting materials.
- To know the functionality of smart materials and their adoption in real time applications

Course C	Course Outcomes: After studying this course, the students will be able to								
CO1	Understand the importance of nano-materials, their characteristics and applications.								
CO2	Identify, describe and evaluate the properties of fibre reinforcements, polymer materials and optical materials.								
CO3	Advance their knowledge in phenomenon of superconductivity and applications.								
CO4	Explain the strengths and weaknesses of a smart material and surface acoustic wave materials into the design of a product in various applications.								

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

			PO's											PSO's		
CC)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-	-1	3												2	-	_
CO-	-2	2	2											2	-	-
CO-	-3	2			2									2	-	-
CO-	-4	2	2											2	-	-

UNIT-1 15 Periods

Nano Materials: Origin of nano technology, Classification of nano materials, Physical, chemical, electrical, mechanical properties of nano materials. Preparation of nano materials by plasma arcing, physical vapour deposition, chemical vapour deposition (CVD), Sol-Gel, electro deposition, ball milling, carbon nano tubes(CNT). Synthesis, preparation of nanotubes, nano sensors, Quantum dots, nano wires, nano biology, nano medidcines.

Biomaterials: Overview of biomaterials. Biomaterials, bioceramics, biopolymers, tissue grafts, soft tissue applications, cardiovascular implants, biomaterials in ophthalmology, orthopeadiac implants, dental materials.

UNIT-2 15 Periods

Composites: General characteristics of composites, composites classes, PMCs, MMCs, CMCs, CCCs, IMCs, hybrid composites, fibers and matrices, different types of fibers, whiskers, different matrices materials, polymers, metal, ceramic matrices, toughening mechanism, interfaces, blending and adhesion, composite modeling, finite element analysis and design.

Optical materials: Mechanisms of optical absorption in metals, semiconductors and insulators. Non-linear optical materials, optical modulators and optical fibers. Display devices and materials photo-emissive, photovoltaic cells, charge coupled devices (CCD), laser materials.

UNIT-3 15 Periods

Super conducting materials: Types of super conductors, an account of mechanism of superconductors, effects of magnetic field currents, thermal energy, energy gap, acoustic attenuation, penetration depth, BCS theory, DC and AC Josephson effects, high Tc superconductors, potential applications of superconductivity, electrical switching element, superconductor power transmission and transformers, magnetic mirror, bearings, superconductor motors, generators, SQUIDS etc.

UNIT-4 15 Periods

Smart materials: An introduction, principles of smart materials, input – output decision ability, devices based on conductivity changes, devices based on changes in optical response, biological systems smart materials. Devices based on magnetization, artificial structures, surfaces, hetero structures, polycrystalline, amorphous, liquid crystalline materials.

Surface Acoustic Wave (SAW) Materials and Electrets: Delay lines, frequency filters, resonators, Pressure and temperature sensors, Sonar transducers. Comparison of electrets with permanent magnets, Preparation of electrets, Application of electrets.

permanent ma	gnets, 1 reparation of electrets, Application of electrets.
Text Books:	1. B.S. Murthy et al., Textbook of Nano science and Nanotechnology, Universities
	press, Springer.
	2. Krishan K Chawla, Composite Materials; Springer; 3rd ed. 2012.
References:	1. A.C. Rose-Innes and E.H. Rhoderick, Introduction to Superconductivity.2nd
	Edition 1978
	2. Brian Culshaw, Smart structures and materials, Artech House Publishers

OPTOELECTRONIC DEVICES AND APPLICATIONS												
	Institutional Elective-II (Code: 18PHI04)											
Lectures	:	4 Periods/Week	Continuous Assessment	:	50							
Final Exam	:	3 hours	Final Exam Marks	:	50							

Course Objectives: Students will learn

- > Understand the concepts of different lasers and mode locking systems.
- Figure 3. Gain the knowledge about light generating devices, solar cells and display devices.
- To know the operating mechanism and applications of various light detecting devices.
- To familiarize electro optic modulators relating to communication

Course Outcomes: The students will be able to

CO1	Develop the knowledge of laser operating principles and structures to produce giant optical pulses.
	To Acquire the detailed knowledge about functionality and applications of solar cells, light generating and display devices

CO3 To possess the skills of design, develop and adoption of photo detectors in real time electronic applications.

CO4 To have the knowledge on the usage of optical modulators in communication process.

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes

	PO's												PSO's		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	3												2		
CO-2	2												2		
CO-3	2		2										2		
CO-4	2			2	2								2		

UNIT-1 15 Periods

Optical process in semiconductors /optical media: Interaction of photons with matter, radiative non radiative processes, rates of absorption and emission—laser principle optical feedback-threshold condition-semiconductor laser—heterojunction lasers quantum well lasers, tunneling based lasers, mode locking: active mode locking and passive mode locking Q-switching

UNIT-2 15 Periods

Display devices: photo luminescence, cathode luminescence, electro luminescence, injection luminescence, LED principle of operation- LED structure –frequency response –defects and reliability, plasma display liquid crystal display, numerical display-photovoltaic effect- I-V characteristics and spectral response of solar cells –heterojunction and cascaded solar cells—Schottky barrier and thin film solar cells –design of solar cell.

UNIT-3 15 Periods

Detection devices: photodetection principle, photo detector –thermal detector – photo conductor – noise in photo conductors –PIN photo diode –APD detector performance parameters –detectors for long wave length operation –wave length selective detection charge coupled device (CCD),

application of infrared detector used for TV and remote controllers	
UNIT-4 15 Periods	
Communication –types of communication –examples –modulation-types of modulation	_
imitations of direct modulation - modulation by carrier injection in semiconductors - electro opt	ic
modulators - Kerr modulators Acousto- optic modulators (Bragg cell), interferometr	ic
modulators semiconductor optical amplifiers.	
Γext Books: 1. Pallab Bhattacharya "Semiconductor opto electronic devices", Prentice Ha	all
of India Pvt. LTD, New Delhi 2009	
2. Jasptit Singh, "Opto Electronics-An introduction to Materials and Devices	s"
,Mc Graw-Hill International Edition,2014.	
3. S.C.Gupta,"Opto Electronic Devices and Systems", Prentice Hall	of
India,2015	
4. J.Wilson and J.F.B.Hawes,"Optoelectronics-An Introduction",Pearso	on
Educatiob, Taiwan Ltd,2010.	
References:	

						ONAI 1 Elec									
Lectures	Institutional Elective-II (Code: 18ELI03) : 4 Periods/Week Continuous Assessmen								nt	:	50				
Final Exam											:	50			
D D '.'														'	
Pre-Requisit	e:														
Course Obje															
> Im	prove	gra	mma	ar, me	chani	cs and	l writi	ng sty	le for	clarit	y, cor	ncision	ı, coh	eren	ce an
	 Improve grammar, mechanics and writing style for clarity, concision, coherence an emphasis and increase knowledge of technical communication Identify and understand the facets and functions of the primary genres of technical 														
										of the	prima	ry ger	ires o	f tec	hnica
wr ➤ De						nd pro				profes	aion al	lifo			
> Ex													mone	trate	thes
				tions.		CS 01	CIICC	iive c	OIIIII	umcai	1011 a	na ac	1110113	пан	tiics
Course Out															
CO-1								echnic	al rep	orts, l	Projec	t Prop	osals	and	make
CO-2		oral presentation of their findings Develop strategies for addressing multiple audiences, expert and lay audiences													
CO-2		_										essiona			
CO-4												for th			
Mapping of (Cours	e Ou	tcon	ies wi	th Pro			mes &	& Prog	gram S	Specifi	ic Out			•
CO	1	2	3	4	5	6	PO's 7	8	9	10	11	12	1	PSO 2	$\frac{3}{3}$
CO-1	1		<u> </u>	-	_	-	2	2	3	3	3	2	2	2	-
CO-2	_	_	_		_	_	2	2	3	3	3	2	2	2	+ -
CO-3	_	_	-	_	_	_	0	2	3	3	3	2	2	2	_
CO-4	-	-	-	-	-	-	2	2	3	3	3	2	2	2	-
					TIN	NIT-1							1.6	Per	ماء
Preparing pro	niect i	renoi	tc.		UI	111-1							1.	rei.	lous
Research me	-	-		ct wr	iting-	backs	round	l knov	vledg	e of th	ne res	earch	topic	-Lite	raturo
review—Pla					_	_			_				_		
figures, and															
references- A	ppen	dice	S												
						NIT-2							15	Per	iods
Oral present				_											
Presentation							_	_	-		-		ch- M	lainta	aining
audience orientation- body language- voice modulation- delivery of ideas UNIT-3 15 Periods									1						
			1		Uľ	NIT-3							13	rer	ious
Life skills for	nrote	CCIAN	วเต												
Life skills for Understanding	_			ment-	Netwo	orking	profes	sional	1 _V - M:	asterin	g Cro	ss Cul	ltural	Etia	uette

Power Dressing - Greeting - Introduction - Polishing Business Manners (Hand Shakes, Gifts, Humour, Office Behaviour) - The art of Small talk & Conversations - Dining Etiquette

1. Training in Interpersonal Skills: Tips for Managing People at Work, Pearson **Text Books:** Education, India; 6 edition, 2015. 2. The Ace of Soft Skills: Attitude, Communication and Etiquette for Success, Pearson Education; 1 edition, 2013.

	3. Markel, Mike, Technical Communication (9th Edition) Boston: Bedford/St. Martin's, 2009.
References:	1. Butterfield Jeff, "Soft Skills for Everyone", Cengage Learning India Pvt Ltd; 1 edition, 2011.