

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

Lecture	I Se			arioda	s/Wee	-k	(Credit	s_2	C	ntinu	0110 1	ssessi	ment	:	50
Final Ex		•	$\frac{410}{3 ho}$		5/ 00 CC	~~		licun	5-5		nal Ex			ment	· ·	50
T IIIdi Li	um	•	5 110	Juis						11		unn n	Turns		•	20
Pre-Req	uisite:	Nor	le													
Course (Object	ives	: Stud	dents	will l	earn	how	to								
\triangleright	Solve a system of linear homogeneous and non-homogeneous equations, finding the inverse of a given square matrix and also its Eigen values and Eigen vectors															
	Identify the type of a given differential equation and select and apply the appropriate analyticaltechnique for finding the solution of first order ordinary differential equations.															
\triangleright	Crea	te ar	nd an									orde	r diffe	erential	equation	ons t
\triangleright	solve application problems that arise in engineering. Solve a linear differential equation with constant coefficients with the given initial conditions using Laplace Transforms.															
Course (
CO-1	Find the eigen values and eigen vectors of a given matrix and its inverse.															
CO-2	Apply the appropriate analytical technique to find the solution of a first order ordinar differential equation.															
CO-3	Solve higher order linear differential equations with constant coefficients arise in engineering applications.															
CO-4							solve	diffe	rentia	l equ	ations	arisi	ng in o	engine	ering.	
	of Cou	irse	Outco	omes	with]	Prog			nes &	: Prog	gram	Specif	ic Out	tcomes	DCOL	
Mapping						5	6 P	D's 7	8	9	10	11	12	1	PSO's	3
		1	2	2	Λ		U	1	O	7	10	11	12 2	1	2 2	3
CO's	6	1	2	3 2	4	-	-	-	-	-						_
CO's CO-1	6 I	3	2 3 3	3 2 3	4 - -	-	-	-	-	-	-	-	2	_	2	
CO's	S L 2		3	2	4 - - -		- - -	- - -	- - -	- - -	-	-		-		
CO's CO-1 CO-2	5 2 }	3 3	3 3	2 3	4 - - - -		- - -	- - -	- - -	- - -		-	2	-	2	-
CO's CO-1 CO-2 CO-3	5 2 }	3 3 3	3 3 3	2 3 3	4 - - -	-		- - -	- - -	- - -	-	-	2 2	-	2 2	-
CO's CO-1 CO-2 CO-3	5 2 }	3 3 3	3 3 3	2 3 3	4 - - -	- - -	- - - NIT-1	-	- - -	- - -	-	-	2 2	-	2 2	-
CO's CO-1 CO-2 CO-2 CO-4	5 1 2 3 4 4	3 3 3 3	3 3 3 3 Rank	2 3 3 3 of a	- - -	- - - UN trix;	Elem	entar		- nsfor	- matio	- ns of	2 2 2		2 2 2 (12 Ho Gauss-J	- - - ours)
CO's CO-1 CO-2 CO-4 CO-4	s l 2 3 4 Algebi	3 3 3 3	3 3 3 3 Rank the i	2 3 3 3 of a nvers	- - - - Mat	- - - trix;	Elem tency	entar of 1	inear	- nsfor Syst	- matio em o	- ns of f equ	2 2 2 2 a m ations	: Rouc	2 2 2 (12 Ho Gauss-J	- - - ours) forda
CO-2 CO-2 CO-3 CO-4 Linear 4 method of System of Eigen va	Algebrief find	3 3 3 3 ra: I ling ur No	3 3 3 3 Rank the i	2 3 3 3 of a nvers moge	- - - - - - - - - - - - - - - - - - -	- - - trix; onsis s equ	Elem tency ation	entar of l s, Sys	inear stem	- nsfor Syst of lin	- matio em o ear ho	- ns of f equ	2 2 2 2 a m ations eneous	: Rouc s equat	2 2 (12 Ho Gauss-J ches the ions; ve	- - - - forda
CO's CO-2 CO-2 CO-4 Linear 4 method 6 System c	Algebra Algebra of find f linea	3 3 3 3 ra: I ling ur No prop	3 3 3 3 Rank the i on-ho erties	2 3 3 3 of a inverse moge	- - - - - se; Cu eneou Eigen	- - - trix; onsis s equ	Elem tency ation ues(w	entar of 1 s, Sys rithou	inear stem it pro	- Syst of lin ofs);	- matio em o ear ho Cayl	- ns of f equ omog ey-Ha	2 2 2 3 a m ations eneous amilto	: Rouc s equat n theo	2 2 (12 Ho Gauss-J ches the ions; ve	- - - - forda

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

	UNIT-2	(12 Hours)					
Solution of a separable; L reducible to E equation M dx	Differential Equations of first order : Definitions; Formation of a Differential equation Solution of a Differential equation; Equations of the first order and first degree; variables separable; Linear Equations; Bernoulli's equation; Exact Differential equations; Equations reducible to Exact equations: I.F found by inspection, I.F of a Homogeneous equation, In the equation M dx+ N dy = $0, \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$ is a function of x and $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}$ is a function of y.						
Radio-active n	of a first order Differential equations: Newton's law of cooling; Rat naterials. 1; 11.3; 11.4; 11.5; 11.6; 11.9; 11.10; 11.11; 11.12.1; 11.12.2; 11.12.4;	·					
	UNIT-3	(12 Hours)					
complementar procedure to Differential Ec	rential Equations: Definitions; Theorem; Operator D; Rules for y function; Inverse operator; Rules for finding the Particular Integ solve the equation; Method of Variation of Parameters; Application quations: Oscillatory Electrical Circuits.	gral; Working					
	UNIT-4	(12 Hours)					
functions; prop Multiplication methods of fi differential equ [Sections:21.2	nsforms: Definition; conditions for the existence; Transforms of perties of Laplace Transforms; Transforms of derivatives; Transform by t ⁿ ; Division by t; Inverse transforms- Method of partial frainding inverse transforms; Convolution theorem(without proof); A uations: Solution of ODE with constant coefficients using Laplace trans.1; 21.2.2; 21.3; 21.4; 21.7; 21.8; 21.9; 21.10; 21.12; 21.13; 21.14; 21.	actions; Other Application to nsforms. 15.1]					
Text Books :	B.S.Grewal, "Higher Engineering Mathematics", 44 th edition, Khan 2017.	I <i>i</i>					
References :	 [1] ErwinKreyszig, "Advanced Engineering Mathematics", 9th Wiley & Sons. [2] N.P.Bali and M.Goyal, "A Text book of Engineering Mathem Publications, 2010. 	edition, John natics" Laxmi					