

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

I B.Tech							RDI	NAT	RYE)IFFI	EREN	TIA	L EQ	UATIO	ONS	
Lectures				eriods		,	(Credi	·s - 3		ontinu		SCACE	ment	•	50
Final Ex		:	3 hc		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	υĸ		Jieur	.0 0		nal Ey			mont	:	50
Pre-Req	uisite:	Nor	ne													
110 1009	u151001	1.01														
Course (Object	ives	: Stud	dents	will	learn	how	to								
\blacktriangleright	Solve a system of linear homogeneous and non-homogeneous equations, finding the inverse of a given square matrix and also its Eigen values and Eigen vectors															
\blacktriangleright	Identify the type of a given differential equation and select and apply the appropriate analyticaltechnique for finding the solution of first order ordinary differential equations.															
\blacktriangleright	Create and analyze mathematical models using higher order differential equations to solve application problems that arise in engineering.															
	Solv	Solve a linear differential equation with constant coefficients with the given initial conditions using Laplace Transforms.														
Course (Outcor	mes:	Afte	r stud	lying	this o	course	e, the	stude	ents v	vill be	able	to			
CO-1	Find the eigen values and eigen vectors of a given matrix and its inverse.															
CO-2	Apply the appropriate analytical technique to find the solution of a first order ordinary differential equation.															
CO-3	Solve higher order linear differential equations with constant coefficients arise in engineering applications.															
CO-4	Apply Laplace transforms to solve differential equations arising in engineering.															
Mapping	of Cou	urse	Outc	omes	with	Prog	ram (Dutco	mes d	& Pro	gram	Speci	fic Ou	itcomes	5	
			rse Outcomes with Program Outcomes & Program Specific Outcome PO's							PSO's						
CO's		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
<u>CO-1</u>		3	3	2	-	-	-	-	-	-		-	2	-	3	-
<u>CO-2</u>		3	3	3	-	-	-	-	-	-	-	-	2	-	2	-
<u> </u>		3	3	3	-	-	-	-	-	-	-	-	2	-	2	-
CO- 4	•	3	3	3	-	-	-	-	-	-	<u> </u>	-	2	-	2	
						UN	NIT-1								(12 Ho	ours)
Linear A method o System o Eigen va proof).	of find f linea	ling ır No	the i on-ho	invers moge	se; C eneou	trix; onsis s equ	Elem tency ation	entar of l s, Sy	inear stem	Syst of lin	em of hear ho	f equ omog	ations eneou	: Rouc s equat	Gauss-J ches the cions; ve	Jordan corem
[Sections	: 2.7.1	; 2.7	'.2; 2.	7.6;2	2.10.1	l; 2.1	0.2; 2	2.10.3	; 2.12	2.1; 2	.13.1;	2.14	; 2.15.]		

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

	UNIT-2	(12 Hours)						
Differential Equations of first order : Definitions; Formation of a Differential equation; Solution of a Differential equation; Equations of the first order and first degree; variables separable; Linear Equations; Bernoulli's equation; Exact Differential equations; Equations reducible to Exact equations: I.F found by inspection, I.F of a Homogeneous equation, In the equation M dx+ N dy = 0, $\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$ is a function of x and $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}$ is a function of y.								
Applications of a first order Differential equations: Newton's law of cooling; Rate of decay of Radio-active materials. [Sections: 11.1; 11.3; 11.4; 11.5; 11.6; 11.9; 11.10; 11.11; 11.12.1; 11.12.2; 11.12.4; 12.6; 12.8]								
UNIT-3 (12 Hours)								
Linear Differential Equations: Definitions; Theorem; Operator D; Rules for finding the complementary function; Inverse operator; Rules for finding the Particular Integral; Working procedure to solve the equation; Method of Variation of Parameters; Applications of Linear Differential Equations: Oscillatory Electrical Circuits. [Sections: 13.1; 13.2.1; 13.3; 13.4; 13.5; 13.6; 13.7;13.8.1;14.1;14.5].								
	UNIT-4	(12 Hours)						
Laplace Transforms: Definition; conditions for the existence; Transforms of elementary functions; properties of Laplace Transforms; Transforms of derivatives; Transforms of integrals; Multiplication by t ⁿ ; Division by t; Inverse transforms- Method of partial fractions; Other methods of finding inverse transforms; Convolution theorem(without proof); Application to differential equations: Solution of ODE with constant coefficients using Laplace transforms. [Sections:21.2.1; 21.2.2; 21.3; 21.4; 21.7; 21.8; 21.9; 21.10; 21.12; 21.13; 21.14; 21.15.1]								
Text Books :	B.S.Grewal, "Higher Engineering Mathematics", 44 th edition, Khan 2017.	I <i>i</i>						
References :	 [1] ErwinKreyszig, "Advanced Engineering Mathematics", 9th Wiley & Sons. [2] N.P.Bali and M.Goyal, "A Text book of Engineering Mathem Publications, 2010. 	edition, John natics" Laxmi						