

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

					ROBA B.Tech										
Lecture	s	:	4 Pe		Week		Credit				ious As	ssessi	ment	:	50
Final Ex	kam	:	3 ho	ours					Fi	nal E	xam M	[arks		:	50
Pre-Req	uisite	Non	e												
Course (Object	tives:	Stuc	lents v	vill lear	1 how	to								
\triangleright	Apply the continuous probability densities to various problems in science and engineering.														
\triangleright	give	n Sar	nple	data a	nd inter nd apply	Z-tes	t, t-te	stto v	ariou	is real	-life p	roble	ms.	•	
\checkmark	Apply various sample tests like F-test and χ^2 -test for decision making regarding the population based on sample data.														
\triangleright	Compute the level of correlation, the best fit curve to the given data by the method of least squares and also perform ANOVA arising in the field of engineering.														
Course (Outco	mes:	At th	e end	of the c	ourse,	the st	tuden	ts wi	ll be a	ble to				
CO-1					continuo and eng			lity d	ensity	/ func	tions a	ind ap	oply tl	nem to	variou
CO-2	Estimate the point and interval estimators of the mean, variance and proportion for the given Sample data and apply Z-test and t-test to various real life problems.														
CO-3	Apply various sample tests like F-test and χ^2 -test for decision making regarding th population based on sample data and perform one way and two way analysis o variance to different realistic problems.														
CO-4	Compute the level of correlation, the linear relationship for the given bivariate data, th best fit curve to the given data by the method of least squares and perform multipl regression analysis to the regression model arising in the field of engineering.														
Mapping	of Co	urse (Outco	omes w	vith Prog	gram (Outco	mes &	z Pro	gram	Specifi	c Out	tcome	5	
				-		-	O's	-	-					PSO's	1
CO CO-		<u>1</u> 3	2 3	3	4 5	6	7	8	9	10	11	12 2	1	2 3	3
CO-		3	3	2		-	-	-	-	-	-	2	-	3	-
CO-		3	3	2		-	-	-	-	-	_	2	_	3	-
CO-		3	3	3		-	-	-	-	-	-	2	-	3	-
					T	NIT-1	1							(12]	[ours)
					. U									- I I / E	ien it S F

BAPATLA ENGINEERING COLLEGE:: BAPATLA (Autonomous)

Distribution, Uniform Distribution, Gamma Distribution and its applications, Beta Distribution and its applications, Joint Distributions (Discrete), Joint Distributions (Continuous). Populations and Samples, Law of large numbers, Central limit theorem and its applications, The sampling distribution of the mean (σ unknown), The sampling distribution of the variance. (Sections 5.1, 5.2, 5.3, 5.5, 5.7, 5.8, 5.10, 6.1, 6.2, 6.3, 6.4 of Text Book [1])

UNIT-2	(12 Hours)							
Point estimation, Interval estimation, Tests of Hypotheses, Null Hypothesis and Tests of								
hypotheses, Hypothesis concerning one mean, Comparisons-Two independent Large samples,								
Comparisons-Two independent small samples, Paired sample t test.								
(Sections 7.1,7.2, 7.4, 7.5, 7.6, 8.2, 8.3, 8.4 of Text Book [1])								
UNIT-3	(12 Hours)							
The estimation of variances, Hypotheses concerning one variance, Hypotheses concerning two								
variances, Estimation of proportions, Hypotheses concerning one proportion, Hypotheses								
concerning several proportions, Procedure for Analysis of Variance (ANOVA) for comparing the								
means of k (>2) groups- one way classification(Completely randomized designs), Procedure for								
Analysis of Variance (ANOVA) for comparing the means of k (>2) groups- two way								
classification(Randomized block designs).								
(Sections 9.1, 9.2, 9.3, 10.1, 10.2, 10.3, 12.2, 12.3 of Text Book [1]).								
UNIT-4	(12 Hours)							

Multivariate Analysis: The concept of bivariate relationship, scatter diagram, Pearson's correlation and correlation matrix. Simple linear regression model and assumptions, Least Squares Estimation of the parameters of the model, Testing the significance of the model. Regression versus Correlation, Multiple linear regression model with k explanatory variables and assumptions of the model. Least Square Estimation of regression coefficients. Concept of the coefficient of determination R^2 . Test for significance of the regression model and individual regression coefficients. Applications of multiple regression analysis.

((1^{st})	and	2^{nd}	Cha	pters	of	Text	Book	[2]).

(1 and 2 Ch	apters of Text Book [2]).
Textbooks	1. Miller & Freund's "Probability and Statistics for Engineers", Richard A.
	Johnson,
	8 th Edition, PHI.
	2. Introduction to Linear Regression Analysis, Douglas C. Montgomery,
	E.A. Peck and G.G. Vining, 3 rd edition, Wiley.
Reference	1. R.E Walpole, R.H. Myers & S.L. Myers 'Probability & Statistics for
Books	Engineers and Scientists', 6 th Edition, PHI.
	2. Fundamentals of Mathematical Statistics, S.C.Gupta and V.K.Kapoor,11 th
	Edition, Sultan Chand & Sons.
	3. Murray R Spiegel, John J.Schiller, R. AluSrinivasa, 'Probability & Satistics',
	Schaum's outline series.
	4. K.V.S.Sarma, 'Statistics Made Simple – Do it yourself on PC', Prentice Hall
	India, Second Edition, 2015.