

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

Lectures					PROBA B.Tech										
	5	:	4 Pe		/Week		Credit				ious A	ssess	ment	:	50
Final Ex	am	:	3 ho	urs							xam N			:	50
Pre-Req	uisite: 1	Non	e												
Course (Objectiv	ves:	Stud	ents	will lea	rn how	v to								
Þ	Apply the continuous probability densities to various problems in science and engineering.														
\triangleright	Estimate the point and interval estimators of the mean, variance and proportion for the given Sample data and apply Z-test, t-testto various real-life problems.														
\triangleright	Apply various sample tests like F-test and $\chi 2$ -test for decision making regarding the population based on sample data.														
\triangleright					of corre o perfo									the met	hod o
CO-1 CO-2	proble Estim	ems ate 1	in set	ience oint a	and en	gineer rval es	ing. stimato	ors of	the n	nean,	varia	nce ai	nd prop	bern to $\sqrt{2}$	
CO-3	given Sample data and apply Z-test and t-test to various real life problems. Apply various sample tests like F-test and $\chi 2$ -test for decision making regarding th population based on sample data and perform one way and two way analysis of variance to different realistic problems.														
CO-4	best f	it cu	urve	to the		data l	by the	meth	od o	f leas	t squa	ires a	nd per	riate da form m ring.	
	of Cou	rse (Outco	mes	with Pro	ogram	Outcor	nes &	: Prog	gram	Specif	ïc Ou	tcomes		
Mapping							PO's							PSO's	
		1	2	3	4 :	5 6	7	8	9	10	11	12	1	2	3
CO'					1 I	- -	-	-	-	-	-	2	2	_	
CO' CO-	1	3	3	-	-									-	-
CO' CO- CO-	1 2	3 3	3	- 2	-		-	-	-	-	-	2	2	-	-
CO' CO-	1 2 3	3		- 2 2 3	- - -		-	-			- - -			-	- - - -

Continuous Random Variables, Normal Distribution, Normal Approximation to the Binomial Distribution, Uniform Distribution, Gamma Distribution and its applications, Beta Distribution and its applications, Joint Distributions (Discrete), Joint Distributions (Continuous). Populations

BAPATLA ENGINEERING COLLEGE:: BAPATLA (Autonomous)

	Sections 5.1,							
5.2, 5.3, 5.5, 5.7, 5.8, 5.10, 6.1, 6.2, 6.3, 6.4 of Text Book [1])								
UNIT-2	(12 Hours)							
Point estimation, Interval estimation, Tests of Hypotheses, Null Hypothesis and Tes	ts of							
hypotheses, Hypothesis concerning one mean, Comparisons-Two independent Large	e samples,							
Comparisons-Two independent small samples, Paired sample t test.								
(Sections 7.1,7.2, 7.4, 7.5, 7.6, 8.2, 8.3, 8.4 of Text Book [1])								
	1							
UNIT-3	(12 Hours)							
The estimation of variances, Hypotheses concerning one variance, Hypotheses co								
variances, Estimation of proportions, Hypotheses concerning one proportion								
concerning several proportions, Procedure for Analysis of Variance (ANOVA) for								
means of k (>2) groups- one way classification(Completely randomized designs),								
Analysis of Variance (ANOVA) for comparing the means of k (>2) grou	ps- two way							
classification(Randomized block designs).								
(Sections 9.1, 9.2, 9.3, 10.1, 10.2, 10.3, 12.2, 12.3 of Text Book [1]).	1							
UNIT-4	(12 Hours)							
Multivariate Analysis: The concept of bivariate relationship, scatter diagra								
correlation and correlation matrix. Simple linear regression model and assumptions, Least								
Squares Estimation of the parameters of the model, Testing the significance of the model.								
Regression versus Correlation, Multiple linear regression model with k explanatory variables and								
assumptions of the model. Least Square Estimation of regression coefficients. C								
coefficient of determination R^2 . Test for significance of the regression model a	and individual							
regression coefficients. Applications of multiple regression analysis.								
$(1^{st} \text{ and } 2^{nd} \text{ Chapters of Text Book [2]}).$								
Textbooks 1. Miller & Freund's "Probability and Statistics for Engineers	s", Richard A.							
Johnson,								
8 th Edition, PHI.								
2. Introduction to Linear Regression Analysis, Douglas C.	2. Introduction to Linear Regression Analysis, Douglas C. Montgomery,							
E.A. Peck and G.G. Vining, 3 rd edition, Wiley.								
Reference 1. R.E Walpole, R.H. Myers & S.L. Myers 'Probability &	Statistics for							
Books Engineers and Scientists', 6 th Edition, PHI.								
2. Fundamentals of Mathematical Statistics, S.C.Gupta and V.	K.Kapoor,11 th							
Edition, Sultan Chand & Sons.								
3. Murray R Spiegel, John J.Schiller, R. AluSrinivasa, 'Probabilit	ty & Satistics',							
Schaum's outline series.								
4. K.V.S.Sarma, 'Statistics Made Simple – Do it yourself on PC', J	Prentice Hall							
India, Second Edition, 2015.								