

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

	LINE	AR	AL	GEB										L EQU	ATIO	NS	
Lectures		Τ.	2 1	Hour				Sem torial		120C	E101/		i Veek	Pra	ctical	.	0
CIE Mar	ks	:	30		3/ ** C	CK		E Ma		:	70	.Oui/ V	VCCK		edits	:	3
Pre-Req	uisite:	No	ne														
Course (Object	tive	s: St	udent	ts wi	ll lea	rn ho	w to									
>	Solv	Solve a system of linear homogeneous and non-homogeneous equations, finding the															
	inverse of a given square matrix and also its Eigen values and Eigen vectors																
>	analy equa	Identify the type of a given differential equation and select and apply the appropriate analytical technique for finding the solution of first order ordinary differential equations.															
>		Create and analyze mathematical models using higher order differential equations to solve application problems that arise in engineering.															
>	Solve a linear differential equation with constant coefficients with the given initial conditions using Laplace Transforms.																
Course (Outco	mes	: Aft	ter stu	ıdyir	ng thi	is cou	ırse,	the s	tudei	nts wi	ll be	able t	0			
CO-1	Find the eigen values and eigen vectors of a given matrix and its inverse.																
CO-2		Apply the appropriate analytical technique to find the solution of a first order ordinary differential equation.															
CO-3	Solv	Solve higher order linear differential equations with constant coefficients arise in engineering applications.															
CO-4							to sol	ve di	iffere	ntial	equa	tions	arisir	ng in e	ngineeı	ring	
M :	- C C		O 1		• <i>1</i>	L D.		. 0	4	O	D		· • •	- O1			
Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's																	
CO		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO-1		3	3	2	-	-	-	-	-	-	-	-	2	2	-	-	-
CO-2	;	3	3	3	-	-	-	-	-	_	_	-	2	2	-	-	
CO-3		3	3	3	-	-	-	-	-	-	-	-	2	2	-	-	-
CO-4		3	3	3	-	_	-	-	-	-	-	-	2	2	-	-	-

UNIT-1 (12 Hours)

Linear Algebra: Rank of a Matrix; Elementary transformations of a matrix; Gauss-Jordan method of finding the inverse; Consistency of linear System of equations: Rouches theorem, System of linear Non-homogeneous equations, System of linear homogeneous equations; vectors; Eigen values; properties of Eigen values(without proofs); Cayley-Hamilton theorem (without proof).

[Sections: 2.7.1; 2.7.2; 2.7.6; 2.10.1; 2.10.2; 2.10.3; 2.12.1; 2.13.1; 2.14; 2.15.]

UNIT-2

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

(12 Hours)

Differential Equations of first order: Definitions; Formation of a Differential equation; Solution of a Differential equation; Equations of the first order and first degree; variables separable; Linear Equations; Bernoulli's equation; Exact Differential equations; Equations reducible to Exact equations: I.F found by inspection, I.F of a Homogeneous equation, In the

equation M dx+ N dy = 0, $\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$ is a function of x and $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}$ is a function of y.

Applications of a first order Differential equations: Newton's law of cooling; Rate of decay of Radio-active materials.

[Sections: 11.1; 11.3; 11.4; 11.5; 11.6; 11.9; 11.10; 11.11; 11.12.1; 11.12.2; 11.12.4; 12.6; 12.8]

UNIT-3 (12 Hours)

Linear Differential Equations: Definitions; Theorem; Operator D; Rules for finding the complementary function; Inverse operator; Rules for finding the Particular Integral; Working procedure to solve the equation; Method of Variation of Parameters; Applications of Linear Differential Equations: Oscillatory Electrical Circuits.

[Sections: 13.1; 13.2.1; 13.3; 13.4; 13.5; 13.6; 13.7;13.8.1;14.1;14.5].

UNIT-4 (12 Hours)

Laplace Transforms: Definition; conditions for the existence; Transforms of elementary functions; properties of Laplace Transforms; Transforms of derivatives; Transforms of integrals; Multiplication by tⁿ; Division by t; Inverse transforms- Method of partial fractions; Other methods of finding inverse transforms; Convolution theorem(without proof); Application to differential equations: Solution of ODE with constant coefficients using Laplace transforms.

[Sections:21.2.1; 21.2.2; 21.3; 21.4; 21.7; 21.8; 21.9; 21.10; 21.12; 21.13; 21.14; 21.15.1]

[50000015.21.2.1, 21.2.2, 21.3, 21.4, 21.7, 21.0, 21.3, 21.10, 21.12, 21.13, 21.14, 21.15.1]					
Text Books:	B.S.Grewal, "Higher Engineering Mathematics", 44 th edition, Khanna publishers,				
	2017.				
References:	[1] Erwin Kreyszig, "Advanced Engineering Mathematics", 9 th edition, John				
	Wiley & Sons.				
	[2] N.P.Bali and M.Goyal, "A Text book of Engineering Mathematics" Laxmi				
	Publications, 2010.				