

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

Lectures		•	2 Ho				Tutoria		:		01/MA Hou		-k	Practic	a1	:	0
CIE Marks		:	30	u15/ v	VCCK		SEE Ma		:		0			Credits		:	3
Pre-Req	uisite:	Non	e														
Course (Object	ives:	Stude	ents v	will lea	arn	how to)									
\triangleright	Solve a system of linear homogeneous and non-homogeneous equations, finding the inverse of a given square matrix and also its Eigen values and Eigen vectors																
		vtical	techni											pply the ordina			
\triangleright	Creat	te an	d ana				tical m at arise					er ord	ler di	ifferenti	al ec	quati	ons t
\blacktriangleright	Solve	e a l	inear	diffe	rentia	l ec		wit				effic	ients	with th	ne gi	ven	initia
Course (CO-1	Find	the e	igen v	value	s and	eige	en vect	ors o	fag	give	n mat	rix ar	nd its	inverse			
CO-2	diffe	rentia	ıl equ	ation	•									of a first			
CO-3	Solve higher order linear differential equations with constant coefficients arise engineering applications.Apply Laplace transforms to solve differential equations arising in engineering							rise i									
CO-4	Appl	y Laj	place	trans	forms	to s	solve d	iffer	entia	al eq	uatio	ns ari	sing	in engir	leerii	ıg	
Mapping	of Cou	irse (Jutcor	nes v	vith Pr	ogr	am Ou	tcom	ies &	k Pr	ogran	1 Spec	cific (Outcom	es		
			1				PO				1]	PSO	's	
	0	1	2	3	4	5	6	7	8	9	10	11		1	2		3
	<u>)-1</u>	3	3	2	-	-	-	-	-	-	-	-	2	-	3	_	-
)-2)-3	3	3	3	-	-	-	-	-	-	-	-	2	-	$\frac{2}{2}$	_	-
)-3)-4	3	3	3	-	-	-	-	-	-	-	-	2	-	$\frac{2}{2}$		-
		5	5	5									_		_		
						UN	NIT-1								(1	2 H	ours)
									tra	nofe	rmati	ana	ofa	motini	Go	1199-	Jorda
Linear A method o System o Eigen va proof). [Sections	of find f linea llues; j	ing 1 r Noi prope	the in n-hon erties	of E	e; Cor neous Ligen	nsist equ valu	tency o ations, ues(wit	of lin Syst hout	near tem pro	Sys of li oofs)	stem near I ; Cay	of eq homo yley-I	luatic gene Hami	ons: Ro ous equ lton the	uche atior	s th ns; v	eoren ector

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

	(12 Hours)					
Differential Equations of first order : Definitions; Formation of a Differential equation; Solution of a Differential equation; Equations of the first order and first degree; variables separable; Linear Equations; Bernoulli's equation; Exact Differential equations; Equations reducible to Exact equations: I.F found by inspection, I.F of a Homogeneous equation, In the equation M dx+ N dy = 0, $\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$ is a function of x and $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}$ is a function of y. Applications of a first order Differential equations: Newton's law of cooling; Rate of decay of						
Radio-active n						
[Sections: 11.1	[Sections: 11.1; 11.3; 11.4; 11.5; 11.6; 11.9; 11.10; 11.11; 11.12.1; 11.12.2; 11.12.4; 12.6; 12.8]					
	UNIT-3 (12 Hours)					
complementar procedure to Differential Ec [Sections: 13.1	rential Equations: Definitions; Theorem; Operator D; Rules for finding the y function; Inverse operator; Rules for finding the Particular Integral; Working solve the equation; Method of Variation of Parameters; Applications of Linear quations: Oscillatory Electrical Circuits.L; 13.2.1; 13.3; 13.4; 13.5; 13.6; 13.7; 13.8.1; 14.1; 14.5].UNIT-4					
functions; prop Multiplication methods of fi differential equ	nsforms: Definition; conditions for the existence; Transforms of elementary perties of Laplace Transforms; Transforms of derivatives; Transforms of integrals; by t ⁿ ; Division by t; Inverse transforms- Method of partial fractions; Other inding inverse transforms; Convolution theorem(without proof); Application to uations: Solution of ODE with constant coefficients using Laplace transforms. 1; 21.2.2; 21.3; 21.4; 21.7; 21.8; 21.9; 21.10; 21.12; 21.13; 21.14; 21.15.1]					
Text Books :	B.S.Grewal, "Higher Engineering Mathematics", 44 th edition, Khanna publishers, 2017.					
References :	 [1] Erwin Kreyszig, "Advanced Engineering Mathematics", 9th edition, John Wiley & Sons. [2] N.P.Bali and M.Goyal, "A Text book of Engineering Mathematics" Laxmi Publications, 2010. 					