

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

	NUMERICAL METHODS AND ADVANCED CALCULUS																
I B. Tech. II Semester 20CS201/MA02																	
Lectures		:	2 Ho	urs/V	Veek		utori		:			r/Weel	k	Practic		:	0
CIE Marks		:	30			S	SEE N	Marks	:	7	0			Credit	S	:	3
Pre-Requisite: None																	
Course Objectives: Students will learn how to																	
>	nume	we algebraic, transcendental and system of linear equations with the help of nerical methods.															
>	are n	oply the techniques of numerical integration whenever and wherever routine methods e not applicable and solve the first order ordinary differential equations numerically ith the given initial condition using different methods.															
>	Evalu	Evaluate double and triple integrals and apply them to find areas and volumes.															
>	Evaluate the line surface and volume integrals and learn their inter relations and								and								
Course Outcomes: After studying this course, the students will be able to CO-1 Solve non-linear equations and system of linear equations with the help of Numerical techniques.							erical										
CO-2	Solve	e the first order ordinary differential equations numerically with the given initial															
CO-3	integ	dthe area and volume of plane and three dimensional figures using multiple egrals.															
CO-4	Apply vector integral theorems toobtain the solutions of engineering problems involving circulation, flux, and divergence in vector fields.							lems									
Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes																	
		PO's 1 2 3 4 5 6 7 8 9 10 11 12									PSO's						
	CO		2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO-1		3	3	2	-	-	-	-	-	-	-	-	2	-	3	-	
CO-2		3	3	2	-	-	-	-	-	-	-	-	2	-	3	-	_
CO-3		3	3	2	-	-	-	-	-	-	-	-	2	-	2	-	
CO-4		3	3	2	-	-	-	-	-	-	-	-	2	-	3	-	

UNIT-1 (12 Hours)

Numerical Solution of Equations: Introduction; Solution of algebraic and transcendental equations: Bisection method, Method of false position, Newton-Raphson method; Useful deductions from the Newton-Raphson formula; Solution of linear simultaneous equations; Direct methods of solution: Gauss elimination method, Gauss-Jordan method, Factorization method; Iterative methods of solution: Jacobi's iterative method, Gauss-Seidel iterative method.

[Sections:28.1; 28.2; 28.3; 28.5; 28.6; 28.7.1;28.7.2].

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

UNIT-2

(12 Hours)

Finite differences and Interpolation: Finite differences: Forward differences, Backward differences; Newton's interpolation formulae: Newton's forward interpolation formula, Newton's backward interpolation formula; Interpolation with unequal intervals; Lagrange's interpolation formula; Divided differences; Newton's divided difference formula; Numerical integration; Trapezoidal rule; Simpson's one-third rule; Simpson's three-eighth rule; Numerical solution of ODE's: Introduction; Picard's method; Euler's method; Runge-Kutta method.

[Sections:29.1; 29.1-1; 29.1.2; 29.6; 29.9; 29.10; 29.11; 29.12; 30.4; 30.6; 30.7; 30.8; 32.1; 32.2; 32.4; 32.7].

UNIT-3

(12 Hours)

Multiple Integrals: Double integrals; Change of order of integration; Double integrals in polar coordinates; Area enclosed by plane curves; Triple integrals; Volumes of solids: Volume as Triple integral, Change of variables.

[Sections: 7.1; 7.2; 7.3; 7.4; 7.5; 7.6.2; 7.7.2].

UNIT-4

(12 Hours)

Vector calculus and its Applications: Scalar and vector point functions; Del applied to scalar point functions-Gradient: Definition, Directional derivative; Del applied to vector point functions: Divergence, Curl; Line integral; Surfaces: Surface integral, Flux across a surface; Green's theorem in the plane (without proof); Stokes theorem (without proof); Gauss divergence theorem(without proof).

[Sections: 8.4; 8.5; 8.5.1; 8.5.3; 8.6; 8.11.1; 8.12.2; 8.12.3; 8.13; 8.14; 8.16]

Text Books:	B.S.Grewal, "Higher Engineering Mathematics", 44 th edition, Khanna publishers,
	2017.
References:	[1] Erwin Kreyszig, "Advanced Engineering Mathematics", 9 th edition, John
	Wiley & Sons.
	[2] N.P.Bali and M.Goyal, "A Text book of Engineering Mathematics" Laxmi
	Publications 2010