

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

LINEAR ALGEBRA AND ORDINATRY DIFFERENTIAL EQUATIONS																		
Lectures			<u>р</u> по		D. I ec	<u>п.</u>	I Sel					101 r/11/00	1	Droatic	<u>a</u> 1		0	
CIE Morles		•	2 110	u15/ v	VEEK	11 51		11 Iorlee	· ·		100 10		<i>ж</i>	Cradit		•	2	
	15	•	30			51	LL IV.	Tarks	> .	/	0			Clean	5	•	3	
Dro Dogi	visito	Non	0															
11e-Key	uisite.	INOII	C															
Course Objectives: Students will learn how to																		
~	Solve a system of linear homogeneous and non-homogeneous equations, finding the																	
	inverse of a given square matrix and also its Eigen values and Eigen vectors																	
	Identify the type of a given differential equation and select and apply the appropriate																	
	analyticaltechnique for finding the solution of first order ordinary differential																	
	equations.																	
	Create and analyze mathematical models using higher order differential equations to															to		
	solve	app	licatio	n pro	oblems	tha	t aris	e in	engi	neeri	ng.					1		
<u> </u>	Solve	e a l	inear	diffe	rential	equ	uatio	n wi	ith c	onsta	ant co	beffic	ients	with t	he g	iven	initi	al
	cond	ition	s using	g Lar	blace T	rans	sform	ıs.							C	,		
Course Outcomes: After studying this course, the students will be able to																		
CO-1	CO-1 Find the eigen values and eigen vectors of a given matrix and its inverse.																	
CO-2	Apply the appropriate analytical technique to find the solution of a first order ordinary differential equation.																	
CO-3	Solve higher order linear differential equations with constant coefficients arise in															in		
00-5	engineering applications.																	
CO-4	Appl	y La	place	trans	forms t	to so	olve	diffe	renti	al eq	uatio	ns ari	sing	in engir	ieeri	ng		
M	-f C		<u>)</u>				0			0 D		C	.:e () 4				
Mapping	of Cou	irse (Jutcor	nes v	vith Pro	ogra		utcol	mes a	x Pr	ogran	1 Spec		Jutcom	es DCO	2.4		
	0	1	1	2		_) S 7	0	0	10	11	10	1	201) ^ S	2	
	<u>U</u>		2	3	4	3	0	/	ð	9	10	11	12	1	2		3	
)-1))	2	2	2	-	-	-	-	-	-	-	-	2	-	<u> </u>		-	
)-2	2	2	2	-	-	-	-	-	-	-	-	2	-	2		-	
)-3) 4	2	2	2	-	-	-	-	-	-	-	-	2	-	2		-	
)-4	3	3	3	-	-	-	-	-	-	-	-	Z	-	2		-	
						TINT	TTT 1								6	12 11		
UNII-I (12 Hours)																		
Linear Algebra: Rank of a Matrix; Elementary transformations of a matrix; Gauss-Jordan													in m					
Include of finding the inverse; Consistency of linear System of equations: Rouches theorem,																		
Figen values: properties of Figen values(without proofs). Caylow Hamilton theorem (without																		
proof)																		
[Sections: 2, 7, 1: 2, 7, 2: 2, 7, 6: 2, 10, 1: 2, 10, 2: 2, 10, 2: 2, 12, 1: 2, 12, 1: 2, 14: 2, 15, 1]																		
[Jeethons, 2.7.1, 2.7.2, 2.7.0, 2.10.1, 2.10.2, 2.10.3, 2.12.1, 2.13.1, 2.14, 2.13.]																		
UNIT-2																		

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

(12 Hours)								
Differential Equations of first order: Definitions; Formation of a Differential equation;								
Solution of a Differential equation; Equations of the first order and first degree; variables								
separable; Linear Equations; Bernoulli's equation; Exact Differential equations: Equations								
reducible to Exact equations: I.F found by inspection, I.F of a Homogeneous equation. In the								
$\frac{\partial M}{\partial N} = \frac{\partial N}{\partial N}$								
equation M dx+ N dy = 0, $\frac{\partial y}{N} = \frac{\partial x}{N}$ is a function of x and $\frac{\partial x}{M} = \frac{\partial y}{M}$ is a function of y.								
Applications of a first order Differential equations: Newton's law of cooling; Rate of decay of								
Radio-active materials.								
[Sections: 11.1; 11.3; 11.4; 11.5; 11.6; 11.9; 11.10; 11.11; 11.12.1; 11.12.2; 11.12.4; 12.6; 12.8]								
12 Hours)								
Linear Differential Equations: Definitions; Theorem; Operator D; Rules for finding the								
complementary function; Inverse operator; Rules for finding the Particular Integral; Working								
procedure to solve the equation; Method of Variation of Parameters; Applications of Linear								
Differential Equations: Oscillatory Electrical Circuits.								
[Sections: 13.1; 13.2.1; 13.3; 13.4; 13.5; 13.6; 13.7;13.8.1;14.1;14.5].								
12 Hours)								
Laplace Transforms: Definition; conditions for the existence; Transforms of elementary								
functions; properties of Laplace Transforms; Transforms of derivatives; Transforms of integrals;								
Multiplication by t ⁿ ; Division by t; Inverse transforms- Method of partial fractions; Other								
methods of finding inverse transforms; Convolution theorem(without proof); Application to								
differential equations: Solution of ODE with constant coefficients using Laplace transforms.								
[Sections:21.2.1; 21.2.2; 21.3; 21.4; 21.7; 21.8; 21.9; 21.10; 21.12; 21.13; 21.14; 21.15.1]								
publishers,								
lition, John								
[2] N.P.Bali and M.Goval, "A Text book of Engineering Mathematics" Laxmi								