

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

		NU	MER									D CA MA02		JLUS			
Lectures		:	2 Ho				utor		:			r/Wee		Practic	al	:	0
CIE Marl	ζS	:	30			S	SEE N	Mark	s :	7	0			Credits	5	:	3
Pre-Req	uisite:	Non	e														
Course (Objecti	ives:	Stude	ents v	will le	earn	how	to									
		-	gebrai meth		ansce	nder	ntal a	and	syste	m o	f line	ear e	quatio	ons wi	th th	e h	elp c
\triangleright	are n	ot ap		ble a	nd so	olve t	he fi	rst of	rder	ordin	ary d	liffere		erever r equatio			
\triangleright														and vo			
\blacktriangleright	Evalı appli			ne, s	surfa	ce ai	nd vo	olum	e int	egra	ls an	d lea	rn th	eir inte	er-rela	atior	is an
CO-2 CO-3 CO-4	condi Findt integ Appl	ition. he a rals. y ve	irea a	ind v	volun gral	ne o theor	f pla rems	ine a	and 1 otain	three the	dim solu	ensio	nal f	v with t igures engined	using	g m	ultip
Mapping	of Cou	rse (Dutcor	nes v	vith F	Progr	am C	Outco	mes	& Pr	ogran	n Spec	cific (Outcom	es		
	-						1	<u>D's</u>	-						PSO ⁹		_
	0)-1	1 3	2	3 2	4	5	6	7	8	9	10	11	12 2	1	2 3		3
)-1)-2	$\frac{3}{3}$	3	2	-	-	-	-	-	-	-	-	2	-	$\frac{3}{3}$		-
		3	3	2	-	-	-	-	_	_	-	-	2	_	2		_
CO-3 CO-4		3	3	2	-	-	-	-	-	-	-	-	2	-	3		-
														I		•	
Numeric equations deductior methods	s: Bise ns from of sol	ection n the utior	n me Newt n: Gau	thod, ton-R uss e	, Me Caphs climir	ns: I ethod son fo nation	of ormu n me	luctio false la; Se thod	e po olutio , Ga	sitior on of uss-J	n, Ne Elinea ordar	ewton ar sim 1 met	-Rap iultan hod,	hson n eous eo Factori	tran nethc quatic zatio	scen od; ons;	Usef Dire
Iterative [Sections										l, Gai	uss-S	eidel	iterat	ive met	hod.		

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

UNIT-2							
Finite differe	ences and Interpolation: Finite differences: Forward difference	es, Backward					
differences; Newton's interpolation formulae: Newton's forward interpolation formula, Newton's							
backward interpolation formula; Interpolation with unequal intervals; Lagrange's interpolation							
formula; Divided differences; Newton's divided difference formula; Numerical integration;							
Trapezoidal rule; Simpson's one-third rule; Simpson's three-eighth rule; Numerical solution of							
ODE's: Introduction; Picard's method; Euler's method; Runge-Kutta method.							
[Sections:29.1; 29.1-1; 29.1.2; 29.6; 29.9; 29.10; 29.11; 29.12; 30.4; 30.6; 30.7; 30.8; 32.1; 32.2;							
32.4; 32.7].							
	UNIT-3	(12 Hours)					
Multiple Inte	grals: Double integrals; Change of order of integration; Double inte	grals in polar					
coordinates; Area enclosed by plane curves; Triple integrals; Volumes of solids: Volume as							
Triple integral, Change of variables.							
[Sections: 7.1; 7.2; 7.3; 7.4; 7.5; 7.6.2; 7.7.2].							
	UNIT-4	(12 Hours)					
.							
	us and its Applications: Scalar and vector point functions; Del app						
	us and its Applications: Scalar and vector point functions; Del applies-Gradient: Definition, Directional derivative; Del applied to						
point function		vector point					
point function functions: Div	ns-Gradient: Definition, Directional derivative; Del applied to	vector point oss a surface;					
point function functions: Div	as-Gradient: Definition, Directional derivative; Del applied to vergence, Curl; Line integral; Surfaces: Surface integral, Flux acrossm in the plane (without proof); Stokes theorem (without proof); Gau	vector point oss a surface;					
point function functions: Div Green's theore theorem(witho [Sections: 8.4;	ns-Gradient: Definition, Directional derivative; Del applied to vergence, Curl; Line integral; Surfaces: Surface integral, Flux acro em in the plane (without proof); Stokes theorem (without proof); Gau ut proof). 8.5; 8.5.1; 8.5.3; 8.6; 8.11.1; 8.12.2; 8.12.3; 8.13; 8.14; 8.16]	vector point oss a surface; oss divergence					
point function functions: Div Green's theore theorem(witho [Sections: 8.4;	ns-Gradient: Definition, Directional derivative; Del applied to vergence, Curl; Line integral; Surfaces: Surface integral, Flux acro em in the plane (without proof); Stokes theorem (without proof); Gau ut proof).	vector point oss a surface; oss divergence					
point function functions: Div Green's theore theorem(witho [Sections: 8.4;	ns-Gradient: Definition, Directional derivative; Del applied to vergence, Curl; Line integral; Surfaces: Surface integral, Flux acro em in the plane (without proof); Stokes theorem (without proof); Gau ut proof). 8.5; 8.5.1; 8.5.3; 8.6; 8.11.1; 8.12.2; 8.12.3; 8.13; 8.14; 8.16]	vector point oss a surface; oss divergence					
point function functions: Div Green's theore theorem(witho [Sections: 8.4;	 as-Gradient: Definition, Directional derivative; Del applied to vergence, Curl; Line integral; Surfaces: Surface integral, Flux acrossment in the plane (without proof); Stokes theorem (without proof); Gau ut proof). 8.5; 8.5.1; 8.5.3; 8.6; 8.11.1; 8.12.2; 8.12.3; 8.13; 8.14; 8.16] B.S.Grewal, "Higher Engineering Mathematics", 44th edition, Kham 2017. 	vector point oss a surface; oss divergence na publishers,					
point function functions: Div Green's theore theorem(witho [Sections: 8.4;	 as-Gradient: Definition, Directional derivative; Del applied to vergence, Curl; Line integral; Surfaces: Surface integral, Flux acrossment in the plane (without proof); Stokes theorem (without proof); Gau ut proof). 8.5; 8.5.1; 8.5.3; 8.6; 8.11.1; 8.12.2; 8.12.3; 8.13; 8.14; 8.16] B.S.Grewal, "Higher Engineering Mathematics", 44th edition, Khana 	vector point oss a surface; oss divergence na publishers,					
point function functions: Div Green's theore theorem(witho [Sections: 8.4; Text Books :	 as-Gradient: Definition, Directional derivative; Del applied to vergence, Curl; Line integral; Surfaces: Surface integral, Flux acrossment in the plane (without proof); Stokes theorem (without proof); Gau ut proof). 8.5; 8.5.1; 8.5.3; 8.6; 8.11.1; 8.12.2; 8.12.3; 8.13; 8.14; 8.16] B.S.Grewal, "Higher Engineering Mathematics", 44th edition, Kham 2017. 	vector point oss a surface; oss divergence na publishers,					
point function functions: Div Green's theore theorem(witho [Sections: 8.4; Text Books :	 hs-Gradient: Definition, Directional derivative; Del applied to vergence, Curl; Line integral; Surfaces: Surface integral, Flux acrossment in the plane (without proof); Stokes theorem (without proof); Gau ut proof). 8.5; 8.5.1; 8.5.3; 8.6; 8.11.1; 8.12.2; 8.12.3; 8.13; 8.14; 8.16] B.S.Grewal, "Higher Engineering Mathematics", 44th edition, Khan 2017. [1] Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Wiley & Sons. 	vector point oss a surface; oss divergence na publishers, edition, John					
point function functions: Div Green's theore theorem(witho [Sections: 8.4; Text Books :	 Bas-Gradient: Definition, Directional derivative; Del applied to vergence, Curl; Line integral; Surfaces: Surface integral, Flux acrossment in the plane (without proof); Stokes theorem (without proof); Gau ut proof). 8.5; 8.5.1; 8.5.3; 8.6; 8.11.1; 8.12.2; 8.12.3; 8.13; 8.14; 8.16] B.S.Grewal, "Higher Engineering Mathematics", 44thedition, Khan 2017. [1] Erwin Kreyszig, "Advanced Engineering Mathematics", 9th 	vector point oss a surface; oss divergence na publishers, edition, John					