

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

CIE Marks : 30 SEE Marks : 70 Credits : Pre-Requisite: None					Ι	B.Te	ch.	I Semes		EE1	01/MA	NO1		QUATI				
Pre-Requisite: None Pre-Requisite: None Solve a system of linear homogeneous and non-homogeneous equations, finding inverse of a given square matrix and also its Eigen values and Eigen vectors Identify the type of a given differential equation and select and apply the appropriat analytical technique for finding the solution of first order ordinary differential equations. Create and analyze mathematical models using higher order differential equation solve application problems that arise in engineering. Solve a linear differential equation with constant coefficients with the given in conditions using Laplace Transforms. Course Outcomes: After studying this course, the students will be able to CO-1 Find the eigen values and eigen vectors of a given matrix and its inverse. CO-2 Apply the appropriate analytical technique to find the solution of a first order ordin differential equations. CO-4 Apply Laplace transforms to solve differential equations arising in engineering Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's CO-1 3 3 - - - 2 3 - Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PSO's CO-1 3 3 - - - 2 3 - - <					urs/V	Veek			:			·/Wee			1:	:	0	
Course Objectives: Students will learn how to Solve a system of linear homogeneous and non-homogeneous equations, finding inverse of a given square matrix and also its Eigen values and Eigen vectors Identify the type of a given differential equation and select and apply the appropriat analytical technique for finding the solution of first order ordinary different equations. > Create and analyze mathematical models using higher order differential equation solve application problems that arise in engineering. > Solve a linear differential equation with constant coefficients with the given in conditions using Laplace Transforms. Course Outcomes: After studying this course, the students will be able to CO-1 Find the eigen values and eigen vectors of a given matrix and its inverse. CO-2 Apply the appropriate analytical technique to find the solution of a first order ordin differential equation. CO-3 Solve higher order linear differential equations with constant coefficients arise engineering applications. CO-4 Apply Laplace transforms to solve differential equations arising in engineering Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes CO-1 3 3 - - - 2 3 - CO-2 3 3 3 - - - 2 3 -	CIE Mar	ks	:	30			SI	EE Mark	ts :	7	0			Credits	:		3	
Solve a system of linear homogeneous and non-homogeneous equations, finding inverse of a given square matrix and also its Eigen values and Eigen vectors Identify the type of a given differential equation and select and apply the appropriat analytical technique for finding the solution of first order ordinary different equations. Create and analyze mathematical models using higher order differential equation solve application problems that arise in engineering. Solve a linear differential equation with constant coefficients with the given in conditions using Laplace Transforms. Course Outcomes: After studying this course, the students will be able to CO-1 Find the eigen values and eigen vectors of a given matrix and its inverse. CO-2 Apply the appropriate analytical technique to find the solution of a first order ordin differential equations. CO-3 Solve higher order linear differential equations with constant coefficients arise engineering applications. CO-4 Apply Laplace transforms to solve differential equations arising in engineering Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes CO-1 3 3 2 - CO-1 3 3 2 - - 2 3 - CO-3 3 3 3 - - - 2 3 - -	Pre-Req	uisite:	None	2														
inverse of a given square matrix and also its Eigen values and Eigen vectors Identify the type of a given differential equation and select and apply the appropriat analytical technique for finding the solution of first order ordinary difference equations. Create and analyze mathematical models using higher order differential equation solve application problems that arise in engineering. Solve a linear differential equation with constant coefficients with the given in conditions using Laplace Transforms. Course Outcomes: After studying this course, the students will be able to CO-1 Find the eigen values and eigen vectors of a given matrix and its inverse. CO-2 Apply the appropriate analytical technique to find the solution of a first order ordin differential equation. CO-3 Solve higher order linear differential equations with constant coefficients arise engineering applications. CO-4 Apply Laplace transforms to solve differential equations arising in engineering Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes CO-1 3 3 2 - CO-1 3 3 2 - - 2 3 - CO-1 3 3 - - - - 2 3 - CO-3 3 3 - -	Course (Object	ives:	Stude	ents v	vill le	arn h	low to										
> analytical technique for finding the solution of first order ordinary difference equations. > Create and analyze mathematical models using higher order differential equation solve application problems that arise in engineering. > Solve a linear differential equation with constant coefficients with the given in conditions using Laplace Transforms. Course Outcomes: After studying this course, the students will be able to CO-1 Find the eigen values and eigen vectors of a given matrix and its inverse. CO-2 Apply the appropriate analytical technique to find the solution of a first order ordin differential equations. CO-3 Solve higher order linear differential equations with constant coefficients arising engineering applications. CO-4 Apply Laplace transforms to solve differential equations arising in engineering Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes CO-1 3 3 2 - CO-2 3 3 3 - - - 2 3 - CO-3 Gourse Outcomes with Program Outcomes & Program Specific Outcomes PSO's - - - 2 3 - - - - 2 3 - - - - 2 3								-				-		-		ndin	g t	
solve application problems that arise in engineering. Solve a linear differential equation with constant coefficients with the given in conditions using Laplace Transforms. Course Outcomes: After studying this course, the students will be able to CO-1 Find the eigen values and eigen vectors of a given matrix and its inverse. CO-2 Apply the appropriate analytical technique to find the solution of a first order ordin differential equation. CO-3 Solve higher order linear differential equations with constant coefficients arise engineering applications. CO-4 Apply Laplace transforms to solve differential equations arising in engineering Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's CO-1 3 3 2 - - - - 2 3 - - CO-2 3 3 3 - - - - 2 3 - - - 2 3 - - - - 2 3 - - - - 2 3 - - - 2 3 - - - - 2 3 -		Identify the type of a given differential equation and select and apply the appropriate analytical technique for finding the solution of first order ordinary differentiation																
conditions using Laplace Transforms.Course Outcomes: After studying this course, the students will be able toCO-1Find the eigen values and eigen vectors of a given matrix and its inverse.CO-2Apply the appropriate analytical technique to find the solution of a first order ordin differential equation.CO-2Solve higher order linear differential equations with constant coefficients arise engineering applications.CO-4Apply Laplace transforms to solve differential equations arising in engineeringMapping of Course Outcomes with Program Outcomes & Program Specific OutcomesCO-4Apply 1011123CO-13Q'sPO'sPSO'sCO-13CO-13CO-23ACO-13CO-13CO-233CO-13CO-13CO-233CO-13CO-13CO-23		solve	appl	icatio	n pro	blem	s that	t arise in	engi	neeri	ng.							
Course Outcomes: After studying this course, the students will be able toCO-1Find the eigen values and eigen vectors of a given matrix and its inverse.CO-2Apply the appropriate analytical technique to find the solution of a first order ordin differential equation.CO-2Solve higher order linear differential equations with constant coefficients arise engineering applications.CO-4Apply Laplace transforms to solve differential equations arising in engineeringMapping of Course Outcomes with Program Outcomes & Program Specific OutcomesCO-123CO-123CO-123CO-123CO-123CO-123CO-123CO-123CO-123CO-123CO-123CO-123CO-123CO-122CO-122CO-1<	\triangleright								vith c	onsta	ant co	effici	ents	with the	giv	ven i	niti	
differential equation.CO-3Solve higher order linear differential equations with constant coefficients arise engineering applications.CO-4Apply Laplace transforms to solve differential equations arising in engineeringMapping of Course Outcomes with Program Outcomes & Program Specific OutcomesPO'sPSO'sCO-12CO-123CO-123CO-132CO-132CO-132CO-132CO-132CO-132CO-133CO-133CO-233CO-233CO-233CO-233CO-333CO-333CO-433CO-433CO-4 <th colspas<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th>																	
CO-4 Apply Laplace transforms to solve differential equations arising in engineering Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes PO's PSO's CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 CO-1 3 3 2 - - - - - 2 3 - - - - 2 3 - - - - 2 3 - - - - - 2 3 - - - - - 2 3 - - - - - 2 3 - - - - 2 3 - - - - 2 3 - - - - 2 3	CO-1	Find	the ei	igen v	value	s and	eiger	n vectors	s of a	give	n matı	rix and	d its		ordei	r ord	ina	
CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 CO-1 3 3 2 - - - - - 2 3 - - - - 2 3 -<	CO-1 CO-2	Find Appl differ Solve	the ei y the centia e high	igen v appro l equa her o	value opria ation	s and te ana linea	eiger alytica	n vectors al techn	s of a ique 1	give to fin	n mati	rix and soluti	d its on o	f a first o				
CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 CO-1 3 3 2 - - - - - 2 3 - - - - 2 3 - - - - - 2 3 - - - - - 2 3 - - - - - 2 3 -	CO-1 CO-2 CO-3	Find Appl differ Solve engin	the ei y the centia e high high	igen v appro l equa her o	values opria ation order olicat	s and te ana linea	eiger alytica ar dif	n vectors al techn fferentia	s of a ique 1 l equ	give: to fin ation	n matr d the s with	rix and soluti h con	d its on or istant	f a first o t coeffic	ients	s aris		
CO-1 3 3 2 - - - - - 2 3 - - - CO-2 3 3 3 - - - - - 2 3 - - - CO-2 3 3 3 - - - - - 2 3 - - CO-3 3 3 3 - - - - - 2 3 - - CO-4 3 3 3 - - - - - 2 3 - -	CO-1 CO-2 CO-3 CO-4	Find Appl differ Solve engin Appl	the ei y the centia e high eerin y Lap	appro appro l equa her o g app blace	values opria ation order olicat trans	s and te ana linea ions. forms	eiger alytica ar dif	n vectors al techn ferentia blve diff	s of a ique t l equ erenti	give o fin ation al eq	n matr d the s with uation	rix and soluti h con	d its on or istant	f a first of t coeffic n engine Dutcomes	ients erinş	s aris		
CO-2 3 3 3 - - - - - 2 3 - - - CO-3 3 3 3 - - - - - 2 3 -	CO-1 CO-2 CO-3 CO-4	Find Appl differ Solve engin Appl of Cou	the ei y the centia e high eerin y Lap	igen v appro l equa her o g app blace	values opria ation order olicat trans	s and te ana linea ions. forms	eiger alytica r dif to so rogra	al techn ferentia blve diff m Outco PO's	s of a ique t l equ erenti	give to fin ation al eq	n matr d the s with uation ogram	rix and soluti h con ns aris	d its on or istant ing i ific C	f a first of t coeffic n engine Dutcomes	ients ering	g aris	se	
CO-3 3 3 3 - - - - - - 2 3 - - - CO-4 3 3 3 - - - - - 2 3 - - -	CO-1 CO-2 CO-3 CO-4 Apping	Find Appl differ Solve engin Appl of Cou	the ei y the centia e hig leerin y Lap urse O	igen v appro l equa her o g app blace	values opria ation. order blicat: trans: mes w	s and te ana linea ions. forms vith P	eiger alytica r dif to so rogra	al techn ferentia blve diff m Outco PO's	s of a ique t l equ erenti	give to fin ation al eq	n matr d the s with uation ogram	rix and soluti h con ns aris	d its on of istant ific C 12	f a first of t coeffic n engine Dutcomes P 1	ients ering SO's 2	g aris	se	
CO-4 3 3 3 - - - - - 2 3 -	CO-1 CO-2 CO-3 CO-4 Mapping	Find Appl differ Solve engin Appl of Cou	the ei y the rentia high eerin y Lap urse O	appro appro l equa her o g app blace Dutcor 2 3	values opria ation. order olicat transs nes w 3 2	s and te ana linea ions. forms vith P	eiger alytica r dif to so rogra	al techn ferentia blve diff m Outco PO's	s of a ique t l equ erenti omes 8 -	give to fin ation al eq	n matr d the s with uation ogram	rix and soluti h con ns aris	d its on o istant ing i ific C 12 2	f a first of t coeffic n engine Dutcomes PS 1 3	ients ering SO's 2	g aris	se	
UNIT-1 (12 Hour	CO-1 CO-2 CO-3 CO-4 Mapping	Find Appl differ Solve engin Appl of Cou	the end y the rentia high eerin y Lap rse O	appro appro l equa her o g app blace Dutcor 2 3 3	value: opria ation order olicat trans mes w 3 2 3	s and te ana linea ions. forms vith P	eiger alytica r dif to so rogra	al techn ferentia blve diff m Outco PO's	s of a ique t l equ erenti omes 8 -	give to fin ation al eq	n matr d the s with uation ogram	rix and soluti h con ns aris	d its on or istant ific C 12 2 2	f a first of t coeffic n engine Dutcomes 1 3 3	ients ering SO's 2	g aris	se	
	CO-1 CO-2 CO-3 CO-4 Mapping	Find Appl differ Solve engin Appl of Cou of Cou D-1 D-2 D-3	the ei y the centia e high eerin y Lap rse O 1 3 3 3	appro appro l equa her o g app lace Dutcor 2 3 3 3 3	values opriation order plication trans mes w 3 2 3 3 3	s and te ana linea ions. forms rith P	eiger alytica r dif to so rogra	al techn ferentia blve diff m Outco PO's	s of a ique t erenti omes 8 - - -	give to fin ation al eq	n matr d the s with uation ogram	rix and soluti h con ns aris	d its on or stant ific C 12 2 2 2 2	f a first of t coeffic n engine Dutcomes Pt 1 3 3 3	ients ering 50's 2 - - -	s aris g 3 - -	se	
Linear Algebra: Rank of a Matrix; Elementary transformations of a matrix; Gauss-Jon	CO-1 CO-2 CO-3 CO-4 Mapping	Find Appl differ Solve engin Appl of Cou of Cou D-1 D-2 D-3	the ei y the centia e high eerin y Lap rse O 1 3 3 3	appro appro l equa her o g app lace Dutcor 2 3 3 3 3	values opriation order plication trans mes w 3 2 3 3 3	s and te ana linea ions. forms rith P	eiger alytica ar dif s to so rogra 5 - - - -	a) vectors al techn ferential blve diff m Outco PO's 6 7 - - - - - - - - - - - - - - - - - - - - - - - - - -	s of a ique t erenti omes 8 - - -	give to fin ation al eq	n matr d the s with uation ogram	rix and soluti h con ns aris	d its on or stant ific C 12 2 2 2 2	f a first of t coeffic n engine Dutcomes Pt 1 3 3 3	ients ering 60's 2 - - - -	s aris		

method of finding the inverse; Consistency of linear System of equations: Rouches theorem, System of linear Non-homogeneous equations, System of linear homogeneous equations; vectors; Eigen values; properties of Eigen values(without proofs); Cayley-Hamilton theorem (without proof).

[Sections: 2.7.1; 2.7.2; 2.7.6; 2.10.1; 2.10.2; 2.10.3; 2.12.1; 2.13.1; 2.14; 2.15.]

BAPATLA ENGINEERING COLLEGE:: BAPATLA

(Autonomous)

	UNIT-2	(12 Hours)						
Differential Equations of first order : Definitions; Formation of a Differential equation; Solution of a Differential equation; Equations of the first order and first degree; variables separable; Linear Equations; Bernoulli's equation; Exact Differential equations; Equations reducible to Exact equations: I.F found by inspection, I.F of a Homogeneous equation, In the equation M dx+ N dy = 0, $\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$ is a function of x and $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}$ is a function of y.								
	of a first order Differential equations: Newton's law of cooling; Rat	te of decay of						
Radio-active n	.; 11.3; 11.4; 11.5; 11.6; 11.9; 11.10; 11.11; 11.12.1; 11.12.2; 11.12.4;	12 6. 12 8]						
	UNIT-3	(12 Hours)						
Linear Differ	rential Equations: Definitions; Theorem; Operator D; Rules fo	r finding the						
procedure to a Differential Ec	complementary function; Inverse operator; Rules for finding the Particular Integral; Working procedure to solve the equation; Method of Variation of Parameters; Applications of Linear Differential Equations: Oscillatory Electrical Circuits.							
[Sections: 13.1	; 13.2.1; 13.3; 13.4; 13.5; 13.6; 13.7;13.8.1;14.1;14.5].							
	UNIT-4	(12 Hours)						
Laplace Transforms: Definition; conditions for the existence; Transforms of elementary functions; properties of Laplace Transforms; Transforms of derivatives; Transforms of integrals; Multiplication by t ⁿ ; Division by t; Inverse transforms- Method of partial fractions; Other methods of finding inverse transforms; Convolution theorem(without proof); Application to differential equations: Solution of ODE with constant coefficients using Laplace transforms. [Sections:21.2.1; 21.2.2; 21.3; 21.4; 21.7; 21.8; 21.9; 21.10; 21.12; 21.13; 21.14; 21.15.1]								
Text Books :	B.S.Grewal, "Higher Engineering Mathematics", 44 th edition, Khan 2017.	na publishers,						
References :	 [1] Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Wiley & Sons. [2] N.P.Bali and M.Goyal, "A Text book of Engineering Mathematical Mathematical States and Math							
	Publications, 2010.							