

BAPATLA ENGINEERING COLLEGE::BAPATLA

(Autonomous)

					IV	G B.T	RAF ech.V	PH T /II S	HEC)RY ster/(OMA	1					
Lectures		:	3 Ho	urs/V	Veek		Tuto	orial		:	0			Pra	actical	:	0
CIE Marks		:	30				SEE	Mar	ks	:	70			Cr	edits	:	3
Pre-Requ	isite: N	lone															
Course O	bjectiv	ves:	Stude	ents v	vill l	earn	how	to									
	To apply the fundamental concepts of graph theory for determining Isomorphism of																
>	graphs and also solving the real life problems like Konigsberg Bridge Problem and																
	travelling Salesman Problem.																
	To ana	alvze	e the	conc	ents	of 7	Frees	and	Fund	lame	ental (Circu	its w	vith the	eir prop	erties	for
>	finding	луд. л М	inima	al Sr	anni	ng T	rees	in w	eight	ted (Franh	s bv	using	y Krus	kals an	d Pri	m's
	Algorithms																
	To acc	uire	the	amp	le kn	owle	edge	of cc	lorir	ng of	a gra	aph a	nd Pl	anar g	raphs v	vith t	heir
	differe	nt re	epres	entat	tions	for o	detect	ting 1	the p	lana	ritv o	f gra	phs	bv usi	ng Kuro	otows	ki's
	Theore	em a	nd al	lso C	omp	uting	the the	Chro	mati	cs nu	imber	for a	give	n grap	h inclu	ding f	four
	color p	orob	lem		1	C							U	0 1		U	
	To get	t an	idea	of r	epres	senta	tion	of g	graph	s in	matri	ices s	such	as in	cidence	matr	ix,
\succ	Adjace	ency	mat	trix	etc a	and o	estab	lishn	nent	of	the o	corre	spone	lence	betwee	n gra	ıph-
	theore	tic p	ropei	rties	and n	natri	x pro	perti	es.								
Course O	utcom	es: A	After	study	ying	this c	course	e, the	stuc	lents	will ł	be ab	le to				
	Discus	s th	e bas	sic co	oncep	ots of	f graj	ph th	eory	and	able	to de	term	ine wł	ether a	grap	h is
0-1	Euleria	an ai	nd Ha	amilt	oniar	1.											
CO-2	Apply	Kru	ıskal'	's an	d Pri	m's	algor	ithm	s in	orde	r to d	etern	nine t	he mi	nimum	spanr	ning
0-2	tree in a connected weighted graph.																
CO-3	Detern	nine	the	plaı	narity	of of	a g	raph	usir	ng k	Curato	wski	's alg	gorithr	n and	find	the
	chrom	atic	numl	ber o	f a gi	ven	graph	ı.									
CO-4	Analys	se th	e pro	opert	ies o	f gra	phs t	hrou	gh m	atrix	repro	esenta	ation	and u	tilize th	ese ic	leas
	in the	appl	icatio	on of	swite	ching	g netv	vork.									
Mapping of Course Learning Outcomes with Program Outcomes & Program Specific Outcomes																	
	<u> </u>	1	•	2			P	$\mathbf{D}^{\prime}\mathbf{S}$	0	0	10	11	10	1	PSO's		_
)	2	2	3	4	5	6	7	8	9	10	11	12	I	2	3	_
	-1	3	3	2	-	-	-	-	-	-	-		2	-	-	-	_
	-2	2	2 2	2	-	-	-	-	-	-	-	-	2	-	-	-	_
		2	2 2	2	-	-	-	-	-	-	-	-	2	-	-	-	_
															1/10	Ucur	- C - C - C - C - C - C - C - C - C - C

Introduction: Graphs: Graph, Finite and infinite graphs, Incidence and degree, isolated vertex, pendent vertex and null graph; Isomorphism; Subgraphs; walks, paths and circuits; Connected graphs, Disconnected graphs and Components; Euler graphs(Konigsberg Bridge Problem); Hamiltonian Paths and circuits; Travelling salesman problem. [Sections: 1.1; 1.3; 1.4; 1.5; 2.1; 2.2; 2.4; 2.5; 2.6; 2.9; 2.10]

BAPATLA ENGINEERING COLLEGE::BAPATLA

(Autonomous)

UNIT-2								
TREES AND	Distance and							
centers in a T	centers in a Tree; Rooted and Binary Trees; Spanning Trees; Fundamental circuits; Spannin							
Trees in a Weighted graphs(Kruskal's Algorithm and Prim's Algorithm).								
[Sections:3.1; 3.2; 3.4; 3.5; 3.7; 3.8; 3.10								
	(12 Hours)							
PLANAR AN	ND DUAL GRAPHS: Planar graphs; Kuratowski's two grap	ohs; Different						
Representations of a Planar graph: Euler's formula, Theorem-5.6 and Corollary; Detection of								
planarity(Kuratowski's theorem); Geometric Dual; Coloring of a Graph, Chromatic number, The								
four Color problem.								
[Sections: $52:53:54:55:56:81:86$]								
	5.5, 5.1, 5.5, 5.6, 6.1, 6.6]							
	UNIT-4	(12 Hours)						
MATRIX REPRESENTATION OF GRAPHS: Incidence Matrix: Submatrices of A(G):								
Circuit Matrix: Fundamental Circuit Matrix and Rank of B: Application to a switching network:								
Cut-set Matrix: Relationship among A _f , B _f and C _f ; Path Matrix: Adjacency Matrix.								
[Sections:7.1: 7.2: 7.3: 7.4: 7.5: 7.6: 7.7: 7.8: 7.9]								
[,	,,,,,,]							
Text Books :	NarsinghDeo, 'Graph Theory with Applications to Engineering and	Computer						
	Science' Prentice-Hall of India Private Limited, New Delhi.							
References :	Douglas B. West "Introduction to graph Theory" Pearson Educ	cation Private						
	limited. Delhi, 2002.							