Hall Ticket	Number:	

I/IV B.Tech (Regular\Supplementary) DEGREE EXAMINATION

	Feb	ruary, 2024 Com	Common to EC, EE & EI						
	First	Semester Waves	and]	Mode	rn Ph	ysics			
	Time:	Three Hours	ľ	Maximu	m: 70	Marks			
-	Answe	er question 1 compulsorily.	(14)	X1 = 14	Mark	s)			
	Answe	er one question from each unit.	(4)	(4X14=56 Marks					
		-		CO	BI	M			
		CI light		COI	LI	1M			
1	a)	List the four properties of Laser light.		COI	L1	1M			
	b)	Define the working principle of optical fibre.		CO1	L1	1 M			
	c)	What are the advantages of optical fibre.		CO2	L1	1 M			
	d)	Define pointing vector.		CO2	L1	1 M			
	e)	Define Hall effect.		CO2	L1	1 M			
	f)	Write the Energy stored in magnetic field.		CO3	L1	1M			
	g)	What is the working principle of scanning funnelling microscope.		CO3	L1	1M			
	h)	State the Heisenberg's uncertainty principle.		CO3	L2	1M			
	i)	Write the expression for energy of a particle in 1- dimensional box.		CO4	L1	1M			
	j)	List any two properties of ultrasonic waves.		CO4	LI	1M			
	k)	What is meant by magnetostriction.		CO4	LI	1M			
	1)	Expand NDT and mention an example for it.		CO1	L1	1M			
	m)	Define population inversion.		CO3	I I	1M			
	n)	Explain the physical significance of wave function.		COJ	LI	1101			
		$\frac{\text{Unit-I}}{27}$	<u></u>	CO1	1.3	6M			
1	2 a)	Derive the relation between the Einstein coefficients and write their significant		CO1	L2	8M			
	b)	Discuss the construction and working principle of He-Ne Daser.							
		(OR)		COL	1.3	8M			
3	a)	Define numerical aperture. Derive the expression for numerical aperture.	v	CO1	L2	6M			
	b)	List and explain the types of optical fibres based on fildes and refractive filde	Δ.	001					
				CO2	L1	4M			
4	a)	Write Maxwell equations.	e the	CO2	L3	10M			
	b)	Discuss the resonance frequency in series LCR resonance encur and contract	•						
		expression for II. (OR)							
~	-)	Eveloin the working principle of cyclotron with a neat diagram.		CO2	L2	10M			
С	a)	Write the applications of Hall effect.		CO2	L2	4M			
	0)	Unit-III			-				
6	a)	Derive the 1-dimensional Shrodinger's time independent wave equation.		CO3	L3	7 M			
Ŭ	b)	Discuss the concept of matter waves using Debroglie's hypothesis.		CO3	LI	/M			
	- /	(OR)		CO3	T 1	414			
7	a)	What is quantum tunnelling and explain.	0.00	CO3	12	10M			
	b)	Derive the expression for wave function associated with a particle moving in a	one-	COJ	12	10141			
		dimensional potential box.							
		<u>Unit-IV</u>		CO4	12	8M			
8	a)	Explain the piezo-electric method to produce the ultrasonic waves.		CO4	12	6M			
	b)	Write the applications of ultrasonics.		004	24	0141			
		(UK)		CO4	1.2	8M			
9	a)	Discuss the working mechanism of Givi counter.	nes	CO4	L1	6M			
	b)	Briefly explain the radio isotopes and mention the medical applications of radio iso to	P00.	001		0101			

20PH001

Hall Ticket Number:									

I/IV B.Tech(Regular/Supplementary) DEGREE EXAMINATION

	Mar	ch,2023 Common to	n to ECE,EEE & EIE					
	First	t Semester Waves an	d Mode	ern Ph	ysics			
	Time:	Three Hours	Maxim	um:70	Marks			
	Answe	er question 1 compulsory.	(14X1 =	14 Mar	ks)			
	Answe	er one question from each unit.	(4X14=50	6 Mark	s)			
1.	a)	What is population inversion in Lasers?	CO1	L1				
	b)	Define the basic principle in semi conducting lasers.	CO1	L1				
	c)	List out any four applications of optical fibers.	CO1	L1				
	d)	Write the equation for frequency for LC circuit.	CO1	L2				
	e)	What is skin effect?	CO2	L1				
	f)	What is the expression for velocity of electromagnetic wave in vacuum?	CO2	L2				
	g)	State Heisenberg's uncertainty principle with any kind of equation.	CO2	L1				
	h)	Write the Physical significance of a wave function (ψ) .	CO2	L1				
	i)	Which experiment can give the existence of matter waves?	CO3	L1				
	j)	What is Magnetostriction effect?	CO3	L1				
	k)	What is the advantage of using NDT technique in industry over other methods?	CO3	L1				
	1)	Write any two applications of radio isotopes.	CO4	L1				
	m)	What are the different type of losses in optical fibers?	CO4	L3				
	n)	Write the expression for de-Broglie's wavelength.	CO4	L1				
		Unit –I						
2.	a)	Distinguish between spontaneous emission and stimulated emission.	CO1	L4	7M			
	b)	Explain the construction and working of Ruby LASER system with a neat sketch.	CO1	L1	7M			
2	`		001	т 1				
3.	a)	Explain the structure and principle of Optical fibers. Obtain the relations betwee	n COI	LI	/M			
	1.)	Numerical aperture and acceptance angle.		1.0	714			
	D)	what are the types of optical fibers based on their modes and refractive index profil	e COI	L2	/ [V]			
		and explain them with schematic representations.						
1	2)	Write the Maxwell's equations in both differential and integral forms in the case of	$f CO^2$	12	7M			
4.	<i>a)</i>	conducting media and vacuum	<i>n</i> CO2	LZ	/ 11/1			
	b)	Obtain the velocity of electromagnetic wave in vacuum	CO^{2}	12	7M			
	0)	(OR)	002		/ 141			
5	a)	Derive an expression for resonance frequency in series I CR resonance circuit	CO^2	L1	7M			
5.	b)	What is Hall effect? Obtain an equation for Hall coefficient and give it's significance	CO2	L1	7M			
	0)	Unit –III	002	21	, 1,1			
6.	a)	What is de-Broglie hypothesis related to dual nature of matter waves? Explain	it CO3	L2	7M			
		briefly.						
	b)	Describe the Dvission and Germer's experiment with necessary theory and schemati	c CO3	L3	7M			
	<i>.</i>	diagram.						
		(OR)						
7.	a)	Obtain Schrodinger time independent wave equation, show that energy of a particle in	a CO3	L4	7M			
		one-dimensional potential box is quantized.						
	b)	Discuss the construction and working of scanning electron microscope with near	at CO3	L2	7M			
		sketch.						
_		Unit –IV						
8.	a)	Explain the production of Ultrasonic waves by piezo electric method with nea	at CO4	L3	7M			
		sketch.						
	b)	List out the medical and industrial applications of ultrasonics	CO4	L2	7M			
-		(OR)						
9.	a)	What are radio isotopes? Give any four examples for radio isotopes. Write any two	CO4	L3	7M			
	1 \	each application of medical and industrial applications of radio isotopes.						
	b)	Explain the construction and working of GM counter with a neat sketch.	CO4	L2	/M			

(20EC102/20EE102/20EI102) 20PH001

Hall Ticket Number:											

I/IV B.Tech (Regular) DEGREE EXAMINATION

April, 2022

First Semester

Common to ECE,EEE & EIE WAVES AND MODERN PHYSICS

(14X1 = 14 Marks)

Maximum:70 Marks

Time: Three Hours

Answer Question NO. 1 compulsorily. Answer $\tilde{O}NE$ questions from each unit

Answer \widetilde{ONE} questions from each unit. (4X14=			X14=5	6 Marks)
		M	CC) BL
1.	a)	List out the applications of lasers		CO1
	b)	Write the importance of V-number		CO1
	c)	Define the basic principle involved in optical fibre		CO1
	d)	Name the important components of laser device.		CO1
	e)	What is Resonant frequency		CO1
	f)	Write about quality factor		CO2
	g)	Write the equation of Velocity of electromagnetic wave in vacuum		CO2
	h)	Write the physical significance of wave function		CO3
	i)	Write the Schrodinger Time independent wave equation		CO3
	j)	What is quantum tunnelling		CO3
	k)	Determine wavelength of an electron accelerated through a potential of 1600V.		CO3
	1)	Mention the properties of Ultrasonics		CO4
	m)	What are radio isotopes		CO4
	n)	Identify the applications of Ultrasonics in Medical field		CO4
		UNIT I	JJ	
2.	a)	Distinguish between the spontaneous and stimulated emission of radiation	7 M	CO1
	b)	Explain the construction and working of Ruby Laser With the help of suitable diagram.	7 M	CO1
		OR COR		
3.	a)	Derive the expression for Acceptance angle and Numerical Aperture of an optical fiber	7 M	CO1
	b)	Explain in detail the optical communication system with a neat block diagram	7 M	CO1
		UNIT II		
4.	a)	Write the Maxwell equations in vacuum and conducting medium	7 M	CO2
	b)	Derive an expression for resonance frequency in series LCR resonance circuit	7 M	CO2
		(OR)		
5.	a)	Write a short note on Hall effect	7 M	CO2
	b)	Explain the construction and working mechanism of cyclotron	7M	CO2
		UNIT III		
6.	a)	Explain Heisenberg's uncertainty principle. Discuss the nonexistence of the electron inside	7 M	CO3
		the nucleus using this principle		
	b)	Describe an experiment to prove dual nature of matter waves	7 M	CO3
		(OR)		
7.	a)	Applying Schrodinger time independent wave equation, show that energy of a particle in a	7 M	CO3
	Í	one dimensional potential box is quantized.		
	b)	Discuss the working mechanism of scanning electron microscope	7 M	CO3
		UNIT IV		
8.	a)	Explain the production of Ultrasonic waves by Magnetostriction method	7M	CO4
	b)	Discuss the pulse echo NDT Technique in detail	7M	CO4
	,	(OR)		
9.	a)	Demonstrate the ultrasonic imaging technique and mention its advantages and limitations	7M	CO4
	b)	Explain the working mechanism of G.M.Counter with neat sketch	7M	CO4

(20EC102/20EE102/20EI102) 20PH001

Hal	l Ti	cket	t Nu	ımb	er:		

I/IV B.Tech (Regular) DEGREE EXAMINATION

JULY, 2021

First Semester

Common to ECE,EEE & EIE WAVES AND MODERN PHYSICS

Time: Three Hours

Maximum:70 Marks

Ans	wer Q	Question NO. 1 compulsorily.	(14X)	1 = 1	4 Mar	ks)	
Ans	wer U	INE questions from each unit.	(4X)	14=3	6 Mar	KS)	
1		Evaluin the term "Dumping"					
1.	a) b)	Define Accentance angle			$\frac{CO1}{CO1}$	+	
	(0)	List out the advantages of ontical fibres	<u> </u>		$\frac{COI}{CO1}$		
	() d)	What are matter wayes?			$\frac{001}{003}$	_	
	u) e)	Define inductive reactance in AC circuit			$\frac{cos}{cos}$	-	
	(c) f)	Define quality factor					
	1)	Define quanty factor.			02		
	g)	What is Poynting Vector?			CO2		
	h)	What is Hall effect?			CO2		
	i)	Discuss the applications of Ultrasonic waves.			CO4		
	j)	What are radio isotopes?			CO4		
	k)	Define piezo electric effect.			CO4		
	1)	What is the purpose of quenching agent?			CO4		
	m)	Write the properties of laser.			CO1		
	n)	What is the de-Broglie wavelength of an electron accelerating in 100V potential difference?			CO3		
		UNIT I	I				
2.	a)	Illustrate the construction and working of Ruby Laser With neat diagram.	81	М	CO1		
	b)	Write the applications of laser.	61	М	CO1		
		OR					
3.	a)	Define Acceptance angle and Numerical Aperture and derive the expression for them.	10	0M	CO1		
	b)	Calculate the numerical aperture of a given optical fiber, if the refractive indices of core	41	М	CO1		
		and cladding are 1.54 and 1.42 respectively.				_	
4		UNIT II	1(0 N /	001	_	
4.	a)	Derive the expressions for impedance of LCR series circuit and obtain the condition for resonance	п	UIVI	02		
	b)	Write the integral and differential forms of Maxwell's equations.	41	М	CO2	-	
		OR					
5.	a)	Explain the construction and working mechanism of cyclotron and write its limitations.	10	0M	CO2		
	b)	Write applications of Hall effect.	41	М	CO2		
		UNIT III					
6.	a)	Explain de-Broglie hypothesis and derive the wavelength of matter waves.	81	М	CO3		
	b)	State and explain Heisenberg's uncertainty principle.	61	М	CO3		
		OR					
7.	a)	Derive one dimensional time independent Schrodinger wave equation for a particle.	81	М	CO3		
	b)	Explain the physical significance of wave function and write its Limitations.	61	М	CO3		
	Ĺ	UNIT IV				\top	
8.	a)	Describe the production of Ultrasonic waves by Magnetostriction method.	10	0M	CO4	\top	
	b)	Discuss various properties of ultrasonic waves.	4	М	CO4	\top	
	Ĺ	OR				\top	
9.	a)	Explain the construction and working of G.M.Counter.	10	0M	CO4	\top	
<u> </u>	b)	Write the applications of radio isotopes in medicine.	4	М	CO4	\uparrow	